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1 The Wiener-Hopf factorisation for random walks

Suppose that {ξi : i = 1, 2, ....} are a sequence of R-valued identically and
independently distributed random variables defined on the common probability
space (Ω,F ,P) with common distribution function F . Let

S0 = 0 and Sn =

n∑
i=1

ξi.

The process S = {Sn : n ≥ 0} is called a (real valued) random walk. For
convenience we shall make a number of assumptions on F . First,

min{F (0,∞), F (−∞, 0)} > 0,

meaning that the random walk may experience both positive and negative
jumps, and second, F{0} = 0.

We now turn out attention to the Wiener-Hopf factorization. Fix 0 < p < 1
and define

G = min{k = 0, 1, ...,Γp : Sk = max
j=0,1,...,Γp

Sj}

and
D = max{k = 0, 1, ...,Γp : Sk = min

j=0,1,...,Γp
Sj}

where Γp is a geometrically distributed random variable with parameter p which
is independent of the random walk S. In words, G is the first visit of S to its
maximum over the time period {0, 1, ...,Γp}. Now define

N = inf{n > 0 : Sn > 0}.

In words, the first visit of S to (0,∞) after time 0.

The next theorem is one of many statements that could be made under the
heading of ‘The Wiener-Hopf Factorisation’, however we consider it the most
fundamental of them all.
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Theorem 1.1 Assume all of the notation and conventions above. (G,SG) is
independent of (Γp−G,SΓp −SG) and both pairs are infinitely divisible. More-
over, the latter has the same law as (D,SD).

Other statements that can be made in the spirit of the Wiener-Hopf factori-
sation go further in specifying additional distributional information about the
pairs (G,SG) and (D,SD). However, we refrain here from pursuing those more
detailed results.

Crucial to the proof of Theorem 1.1 is the ladder height process of the random
walk S. The latter is the bivariate random walk (T,H) := {(Tn, Hn) : n =
0, 1, 2, ...} where (T0, H0) = (0, 0) and otherwise for n = 1, 2, 3, ...,

Tn =

{
min{k = 1, 2, ... : STn−1+k > Hn−1} if Tn−1 <∞
∞ if Tn−1 =∞

and

Hn =

{
STn if Tn <∞
∞ if Tn =∞.

That is to say, the process (T,H), until becoming infinite in value, represents
the times and positions of the running maxima of S; the so-called ladder times
and ladder heights. It is not difficult to see that Tn is a stopping time for each
n = 0, 1, 2, .. and hence thanks to the i.i.d. increments of S, the increments
of (T,H) are independent and identically distributed with the same law as the
pair (N,SN ).

Proof of Theorem 1.1. The path of the random walk may be broken into
ν ∈ {0, 1, 2, ....} finite (or completed) excursions from the maximum followed
by an additional excursion which straddles the random time Γp. Note that if
Tn <∞ then the (n+1)-th excursion from the maximum is identified as the path
segment {Sn −Hn : n = Tn, ..., Tn+1}. Moreover, we understand the use of the
word straddle to mean that if k is the index of the left end point of the straddling
excursion then k ≤ Γp. By the Strong Markov Property for random walks and
lack of memory, the completed excursions must have the same law; namely that
of a random walk sampled on the time points {1, 2, ..., N} conditioned on the
event that {N ≤ Γp} and hence ν is geometrically distributed with parameter
1− P (N ≤ Γp). Mathematically we write

(G,SG) =

ν∑
i=1

(N (i), H(i))

where the pairs {(N (i), H(i)) : i = 1, 2, ...} are independent having the same
distribution as (N,SN ) conditioned on {N ≤ Γp}. Note also that G is the
sum of the lengths of the latter conditioned excursions and SG is the sum of
the respective increment of the terminal value over the initial value of each
excursion. In other words, (G,SG) is the component-wise sum of ν independent
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copies of (N,SN ) (with (G,SG) = (0, 0) if ν = 0). Infinite divisibility follows
as a consequence of the fact that (G,SG) is a geometric sum of i.i.d. random
variables; see for example Exercise 1. The independence of (G,SG) and (Γp −
G,SΓp − SG) is immediate from the decomposition described above.

Feller’s classic Duality Lemma (cf. Feller (1971)) for random walks says
that for any n = 0, 1, 2... (which may later be randomized with an indepen-
dent Geometric distribution), the independence and common distribution of
increments implies that {Sn−k − Sn : k = 0, 1, ..., n} has the same law as
{−Sk : k = 0, 1, ..., n}. In the current context, the Duality Lemma also im-
plies that the pair (Γp −G,SΓp − SG) is equal in distribution to (D,SD).

2 The Wiener-Hopf factorisation for Lévy pro-
cesses

It is reasonably clear that if one is able to decompose the path of a Lévy process
into excursions from its maximum in a similar way to the case of random walks,
then one might expect a similar independence result to hold such as we have
established in Theorem 1.1. Indeed this turns out to be the case and this
constitutes the following main result. Some notation first.

As usual, we shall write X for a general Lévy process and moreover we shall
understand ep to be an independent random variable which is exponentially
distributed with mean 1/p. Further, we define

Xt = sup
s≤t

Xs and Xt = inf
s≤t

Xs.

Moreover we let

Gt = inf{s < t : Xs = Xt} and Gt = sup{s < t : Xs = Xt}.

Theorem 2.1 Suppose that X is any Lévy process. The pairs

(Gep , Xep) and (ep −Gep , Xep −Xep)

are independent and infinitely divisible. Moreover the latter is equal in distribu-
tion to (Gep ,−Xep).

Note that the geometric distribution in Theorem 1.1 has been replaced by
its natural continuous-time analogue, the exponential distribution. Note also
that Theorem 2.1 (and by analogy Theorem 1.1) may be associated with the
terminology ‘factorisation’ in the sense that, for all α, β ∈ R,

E(eiαep+iβXep ) = E(eiαGep+iβXep )E(ei(ep−Gep )+iβ(Xep−Xep ))

= E(eiαGep+iβXep )E(e
iGep

+iβXep ).

As alluded to above, the proof of Theorem 2.1 will require us understand
how we can decompose the path of our Lévy process into excursions from the
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maximum and from this the proof will follow in an analogous way to the proof
of Theorem 1.1. However this turns out to be technically much more demanding
than one might anticipate. We are going to make things easier for ourselves by
proving the result for the case of spectrally negative Lévy processes. Even so
we still need to make a digression into the theory of Poisson random measures.

3 Poisson Random Measures

With a view to describing the Wiener-Hopf factorisation, we would like to de-
compose the paths of a general Lévy process in a different way, through its
so-called excursions from the maximum. For this we will need to review some
classical theory on Poisson random measure.

Definition 3.1 (Poisson random measure) In what follows we shall assume
that (S,S, η) is an arbitrary σ-finite measure space. Let N : S → {0, 1, 2, ...} ∪
{∞} in such a way that the family {N(A) : A ∈ S} are random variables defined
on the probability space (Ω,F , P ). Then N is called a Poisson random measure
on (S,S, η) (or sometimes a Poisson random measure on S with intensity η) if

(i) for mutually disjoint A1, ..., An in S, the variables N(A1), ..., N(An) are
independent,

(ii) for each A ∈ S, N(A) is Poisson distributed with parameter η(A) (here we
allow 0 ≤ η(A) ≤ ∞),

(iii) N(·) is a measure P -almost surely.

In the second condition we note that if η(A) = 0 then it is understood that
N(A) = 0 with probability one and if η(A) = ∞ then N(A) is infinite with
probability one.

Theorem 3.1 There exists a Poisson random measure N(·) as in Definition
3.1.

Proof. First suppose that S is such that 0 < η(S) < ∞. There exists a
standard construction of an infinite product space, say (Ω,F , P ) on which the
independent random variables

N and {υ1, υ2, ...}

are collectively defined such that N has a Poisson distribution with parameter
η(S) and each of the variables υi have distribution η(dx)/η(S) on S. Define for
each A ∈ S,

N(A) =

N∑
i=1

1(υi∈A)

so that N = N(S). As for each A ∈ S and i ≥ 1, the random variables 1(υi∈A)

and N are F-measurable, then so are the random variables N(A).
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Fix k ≥ 2. Suppose now that A1, ..., Ak are disjoint sets of S and let A0 =
S\(A1 ∪ · · · ∪ Ak). Suppose that n1, n2, · · · , nk are non-negative integers such

that
∑k
i=1 ni ≤ n and accordingly define n0 = n−

∑
i≤k ni. By conditioning on

the even {N = n}, we have by classical ‘balls-in-boxes’ combinatorial probability1

that

P (N(A1) = n1, ..., N(Ak) = nk|N = n) =
n!

n0!n1! · · ·nk!

k∏
i=0

(
η(Ai)

η(S)

)ni
It follows that

P (N(A1) = n1, ..., N(Ak) = nk)

=
∑

n≥Σki=1ni

e−η(S) (η(S))n

n!

n!

n0!n1!...nk!

k∏
i=0

(
η(Ai)

η(S)

)ni

=
∑

n≥Σki=1ni

e−η(A0) η(A0)(n−Σki=1ni)

(n− Σki=1ni)!

(
k∏
i=1

e−η(Ai)
(η(Ai))

ni

ni!

)

=

k∏
i=1

e−η(Ai)
η(Ai)

ni

ni!

Returning to Definition 3.1 it is now clear from the previous calculation that
conditions (i)–(iii) are met by N(·). In particular, the third condition is auto-
matic as N(·) is a counting measure by definition.

Next we turn to the case that (S,S, η) is a σ-finite measure space. The
meaning of σ-finite is that there exists a countable disjoint exhaustive sequence
of sets B1, B2, ... in S such that 0 < η(Bi) < ∞ for each i ≥ 1. Define the
measures ηi(·) = η(· ∩ Bi) for each i ≥ 1. The first part of this proof shows
that for each i ≥ 1 there exists some probability space (Ωi,Fi, Pi) on which
we can define a Poisson random measure, say Ni(·), in (Bi,S ∩ Bi, ηi) where
S ∩Bi = {A∩Bi : A ∈ S} (the reader should verify easily that S ∩Bi is indeed
a sigma algebra on Bi). The idea is now to show that

N (·) =
∑
i≥1

Ni(· ∩Bi)

is a Poisson random measure on S with intensity η defined on the product space

(Ω,F , P ) :=
∏
i≥1

(Ωi,Fi, Pi).

First note that it is again immediate from its definition that N(·) is P -almost
surely a measure. In particular with the help of Fubini’s Theorem, for disjoint

1We want to put n balls in the k + 1 boxes A0, A1, · · · , Ak. Note the importance of
including A0 = S\(A1 ∪ · · · ∪Ak) as a box.
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A1, A2, ..., we have

N

⋃
j≥1

Aj

 =
∑
i≥1

Ni

⋃
j

Aj ∩Bi

 =
∑
i≥1

∑
j≥1

N(Aj ∩Bi)

=
∑
j≥1

∑
i≥1

N(Aj ∩Bi)

=
∑
j≥1

N(Aj).

Next, for each i ≥ 1. we have that Ni(A ∩ Bi) is Poisson distributed with
parameter ηi(A); Exercise 2 tells us that under P the random variable N (A)
is Poisson distributed with parameter η(A). The proof is complete once we
show that for disjoint A1, ..., Ak in S the variables N(A1), ..., N(Ak) are all
independent under P . However this is obvious since the double array of variables

{Ni(Aj ∩Bi) : i = 1, 2, ... and j = 1, ..., k}

is also an independent sequence of variables.

From the construction of the Poisson random measure, the following two
corollaries should be clear.

Corollary 3.1 Suppose that N(·) is a Poisson random measure on (S,S, η).
Then for each A ∈ S, N(· ∩ A) is a Poisson random measure on (S ∩ A,S ∩
A, η(· ∩ A)). Further, if A,B ∈ S and A ∩ B = ∅ then N(· ∩ A) and N(· ∩ B)
are independent.

Corollary 3.2 Suppose that N(·) is a Poisson random measure on (S,S, η),
then the support of N(·) is P -almost surely countable. If in addition, η is a
finite measure, then the support is P -almost surely finite.

Finally, note that if η is a measure with an atom at, say, the singleton s ∈ S
and {s} ∈ S, then it is intuitively obvious from the construction of N(·) in the
proof of Theorem 3.1 that P (N({s}) ≥ 1) > 0. Conversely, if η has no atoms
then P (N({s}) = 0) = 1 for all singletons s ∈ S such that {s} ∈ S. For further
discussion on this point, the reader is referred to Kingman [2].

It should be clear from the proof of Theorem 3.1 that the Poisson random
measure N is supported by a countable number of points in S. One often
refers to suppN as simply a Poisson random field. In the special case that
S = [0,∞) × E for some space E and η = dt × dn where n is a measure on
E , then we can think of the Poisson random field as a process in time, say
{εt : t ≥ 0} where εt ∈ E if (t, εt) ∈ suppN and otherwise we introduce an
isolated point, say ∂, such that ε = ∂ when (t, εt) 6∈ suppN . In that case we call
the process ε := {εt : t ≥ 0} a Poisson point process on E with intensity n.
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There is a lot of structure in the definition of a Poisson point process which
leads us to the following classical result for Poisson point processes.

Theorem 3.2 (Thinning Theorem) Suppose that {εt : t ≥ 0} is a Poisson
point process on E with intensity n. Suppose that A ∈ E is an n-measurable set
such that n(A) <∞ and let

σA := inf{t > 0 : εt ∈ A}.

Then,

(i) σA is a stopping time with respect to the natural filtration of the underlying
Poisson point process and is exponentially distributed with parameter n(A),

(ii) εσA is independent of {εt : t < σA} and has law given by

n(dε;A)

n(A)
,

(iii) {εt : t < σA} is equal in law to a Poisson point process with intensity
dt×n(dε;A) stopped at an independent and exponentially distributed time
with parameter n(A).

Proof. We give a sketch proof. Suppose that f : [0,∞) × E is any non-
negative, bounded measurable function with respect to dt× n(dε;A). We start
by noting that for any n-measurable B ⊆ A,

E
[
e−

∫ t
0

∫
E f(s,ε)N(ds,dε);σA > t; εσA ∈ B

]
= E

[
e−

∫ t
0

∫
E\A f(s,ε)N(ds,dε);N([0, t]×A) = 0; ε̃σ̃A ∈ B

]
where {ε̃s : s ≥ 0} = {εt+s : s ≥ 0} and σ̃A = inf{s > 0 : ε̃s ∈ A}. Note
in particular that on the event {σεA > t} = {N([0, t] × A) = 0} (this equality
justifies the first statement of the theorem) we have that σ̃A = σA − t. Note
also that {ε̃s : s ≥ 0} is independent of {εs : s ≤ t} and hence, making use of
Corollary 3.1, we have that

E
[
e−

∫ t
0

∫
E f(s,ε)N(ds,dε);σA > t; εσA ∈ B

]
= E

[
e−

∫ t
0

∫
E\A f(s,ε)N(ds,dε)

]
E [N([0, t]×A) = 0]E [ε̃σ̃A ∈ B]

= E
[
e−

∫ t
0

∫
E\A f(s,ε)N(ds,dε)

]
e−n(A)tE [εσA ∈ B]

= E
[
e−

∫ t
0

∫
E\A f(s,ε)N(ds,dε)

]
e−n(A)tP

[
σB < σA\B

]
(3.1)

where we have used obvious notation for σB and σA\B .

At this point in the proof, if one is prepared to accept that E
[
e−

∫ t
0

∫
E f(s,ε)N(ds,dε)

]
characterises the law of {εs : s ≤ t}, then the penultimate equality of (3.1) al-
ready indicates that {εt : t ≤ σA}, εσA and σA, the latter of which is necessarily
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exponentially distributed with parameter n(A). Since A is arbitrary, the latter
fact may also be used in turn to easily deduce that

P
[
σB < σA\B

]
=

n(B)

n(B) + n(A\B)
=
n(B)

n(A)
.

This justifies part (ii) and (iii) of the theorem.

There is one glaringly obvious example of a Poisson point process that we
have already encountered thus far in this course. That is the the case that E = R
and n(dx) = Π(dx) where Π is a Lévy measure. Indeed this Poisson random
measure describes the jumps in any Lévy process with Lévy measure Π.

To see why, recall that we earlier described the latter as the superposition
of a number of (compensated) compound Poisson processes whose jumps are
respectively concentrated on the annuli {x : |x| ≥ 1}, {x : 2−1 ≤ |x| < 1},
{x : 2−2 ≤ |x| < 2−1}, ... , {x : 2−(n+1) ≤ |x| < 2−n}, .... For the n-th of these
compound Poisson processes, we could define Nn((s, t] × A) be the the count
of the number of jumps in the time interval (s, t] whose magnitude belongs to
A ⊆ [2−(n+1), 2−n). A little thought reveals that Nn is a Poisson point process
with intensity Π(dx)|{x:2−(n+1)≤|x|<2−n}. By independence we can define

N(·) =
∑
n≥0

Nn(·),

where N0((s, t] × A) counts the the number of jumps in the time interval (s, t]
whose magnitude belongs to A ⊆ [1,∞), and note that by Corollary 3.1 we have
that N is a Poisson point process with intensity Π. Moreover, N necessarily
counts all the jumps in the Lévy process associated with Π.

A second important and less obvious example of a Poisson point process
embedded within the paths of Lévy processes is discussed in the next section.

4 The ladder process

As our ultimate goal is to show how to decompose events concerning the path of
a Lévy process according to the behaviour of the path in individual excursions,
we need a way of indexing them. To this end we introduce the notion of local
time at the maximum. To see that we are staying close in analogy with random
walks, note that in the latter case a notion of local time at the maximum is
perfectly visible in the discussion of Section 1. Indeed there we spoke freely
of sequentially counting excursions from the maximum. Mathematically, this
counting process can be described as

`n = max{k : Tk ≤ n}, n ≥ 0.

To avoid trivialities we shall assume throughout this section that neither X
nor −X is a subordinator. Recall also the definition Xt = sups≤tXs. In the
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sequel we shall repeatedly refer to the process X−X = {Xt−Xt : t ≥ 0}, which
we also recall from Exercise 4, can be shown to be a strong Markov process.

Definition 4.1 (Local time at the maximum) A continuous, non-
decreasing, [0,∞)-valued, F-adapted process L = {Lt : t ≥ 0} is called a lo-
cal time at the maximum (or just local time for short) if the following hold.

(i) The support of the Stieltjes measure dLt is the closure of the (random) set
of times {t ≥ 0 : Xt = Xt} and is finite for each t ≥ 0.

(ii) For every F-stopping time T such that XT = XT on {T < ∞} almost
surely, the shifted process

{LT+t − LT : t ≥ 0}

is independent of FT on {T <∞} and has the same law as L under P.

(The process which is identically zero is excluded).

Let us make some remarks about the above definition. Firstly note that since
X and X−X are strong Markov processes, it also follows from the requirement
in part (ii) of the above definition that the shifted trivariate process

{(XT+t −XT , XT+t −XT+t, LT+t − LT ) : t ≥ 0}

is independent of FT on {T < ∞} and has the same law as
(
X,X −X,L

)
under P. Next note that if L is a local time then so is kL for any constant
k > 0. Hence local times can at best be defined uniquely up to a multiplicative
constant. On occasion we shall need to talk about both local time and the time
scale on which the Lévy process itself is defined. In such cases we shall refer to
it as real time. Finally, by applying this definition of local time to −X it is clear
that one may talk of a local time at the minimum. This will always be referred
to as L̂.

Local times as defined above do not always exist on account of the require-
ment of continuity. Nonetheless, in such cases, it turns out that one may con-
struct right continuous processes which satisfy conditions (i) and (ii) of Defini-
tion 4.1 and which serve their purpose equally well in the forthcoming analysis
of the Wiener–Hopf factorisation. We leave these cases out in our forthcoming
discussion and henceforth, unless otherwise indicated:

We assume that X is a spectrally negative Lévy process.

Theorem 4.1 When X is spectrally negative, we may always take for local
time at the maximum, L = X.
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Proof. The claim can s be trivially checked against Definition 4.1.

Let us temporarily return to the case of the random walk and note an
interesting relation between the ladder times {Tn : n ≥ 0} and the process
{`n : n ≥ 0}. First recall that for each n, Tn is a stopping time and by the Strong
Markov property, on the event {Tn <∞} we have that Tn+1−Tn is independent
of {Sk : k ≤ Tn} and has the same distribution as N = inf{n > 0 : Sn > 0}.
Note moreover the simple functional relation

Tn = `−1
n := inf{k ≥ 0 : `k ≥ n}.

We are thus lead to the conclusion that `−1 := {`−1
n : n ≥ 0} has the law of a

random walk with positive increments, equal in distribution to the common law
of T1 conditional on {T1 <∞}, that jumps to +∞ at the first n for which Tn+1−
Tn =∞. Said another way, the process `−1 is an increasing random walk killed
at an independent and geometrically distributed random time with parameter
equal to the probability that T1 = ∞. With this in mind, the following result
should be thought of as very natural for the inverse process L−1 := {L−1

x : x ≥
0} where

L−1
x = inf{t > 0 : Lt > x}.

Theorem 4.2 If E(X1) ≥ 0 then the process L−1 is a subordinator and other-
wise it is equal in law to a subordinator killed (i.e. sent to +∞) at an indepen-
dent and exponentially distributed time.

Note in particular that

L−1
x = inf{t > 0 : Lt > x} = inf{t > 0 : Xt > x} = inf{t > 0 : Xt > x},

making it the first passage time above level x and, as such, is a stopping time.
Hence the above theorem is as much a result about first passage times as it is
local time at the maximum. This concurrence is unique to the case of spectrally
negative Lévy processes. We also refer to the process L−1 as the ladder time
process.

Before we can prove this theorem we need to introduce the Laplace exponent
of a spectrally negative Lévy process. If we revisit the construction of a general
spectrally negative Lévy process through the Lévy-Itô decomposition, in par-
ticular the use of Theorem 4.1 in Part I of the notes, we see that the Laplace
exponent of X,

ψ(λ) :=
1

t
logE(eλXt),

is well defined for all λ ≥ 0 as soon as the Laplace exponent (in the above sense)
of a compound Poisson process with negative jumps is well defined for all λ ≥ 0.
However the latter is easily verified. Moreover, again working through the Lévy-
Itô decomposition with Laplace exponents instead of characteristic exponents,
one easily finds that

ψ(λ) = −aλ+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1(|x|<1))Π(dx).
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Figure 1: Two examples of ψ, the Laplace exponent of a spectrally negative
Lévy process, and the relation to Φ.

for λ ≥ 0.
Henceforth we shall denote its right inverse by

Φ(q) = sup{λ ≥ 0 : ψ(λ) = q}.

Exercise 7 shows that on [0,∞), ψ is infinitely differentiable, strictly convex and
that ψ(0) = 0 whilst ψ(∞) =∞. As a particular consequence of these facts, it
follows that E(X1) = ψ′(0+) ∈ [−∞,∞). In the case that E(X1) ≥ 0, Φ(q) is
the unique solution to ψ(θ) = q in [0,∞). When E(X1) < 0 the latter statement
is true only when q > 0 and when q = 0 there are two roots to the equation
ψ(θ) = 0, one of them being θ = 0 and the other being Φ(0) > 0. See Fig. 1 for
further clarification.

An immediate consequence of the existence of a Laplace exponent together
with stationary and independent increments is the fact that

Et(β) := eβXt−ψ(β)t, t ≥ 0

is a martingale with respect to {Ft : t ≥ 0} the natural filtration generated byX.
When X is a Brownian motion, this martingale is the same as the exponential
martingale that is used in the context of the Girsanov change of measure.

As a first step to proving Theorem 4.2 we shall first establish the following
lemma.

Lemma 4.1 For any spectrally negative Lévy process, with q ≥ 0,

E(e−qL
−1
x 1(L−1

x <∞)) = e−Φ(q)x.
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Proof. Fix q > 0. Using spectral negativity to write x = XL−1
x

on {τ+
x <

∞}, note with the help of the Strong Markov Property that

E(eΦ(q)Xt−qt|FL−1
x

)

= 1(L−1
x ≥t)e

Φ(q)Xt−qt + 1(L−1
x <t)e

Φ(q)x−qL−1
x E(e

Φ(q)(Xt−XL−1
x

)−q(t−L−1
x )|FL−1

x
),

= e
Φ(q)X

t∧L−1
x
−q(t∧L−1

x )

where in the final equality we have used the fact that E(Et(Φ(q))) = 1 for all
t ≥ 0. Taking expectations again we have

E(e
Φ(q)X

t∧L−1
x
−q(t∧L−1

x )
) = 1.

Noting that the expression in the latter expectation is bounded above by eΦ(q)x,
an application of dominated convergence yields

E(eΦ(q)x−qL−1
x 1(L−1

x <∞)) = 1

which is equivalent to the statement of the theorem.
The case q = 0 can be achieved by taking limits as q ↓ 0.

Note in particular that the above result tells us that

P(L−1
x <∞) = e−Φ(0)x

for all x ≥ 0.

Proof of Theorem 4.2. First we claim that Φ(q) − Φ(0) is the Laplace
exponent of a non-negative infinitely divisible random variable. To see this, note
that for all x ≥ 0,

E(e−qL
−1
x |L−1

x <∞) = e−(Φ(q)−Φ(0))x = E(e−qL
−1
1 |L−1

1 <∞)x,

and hence in particular

E(e−qL
−1
1 |L−1

1 <∞) = E(e
−qL−1

1/n |L−1
1/n <∞)n

showing that P(L−1
1 ∈ dz|L−1

1 <∞) for z ≥ 0 is the law of an infinitely divisible
random variable. Next, using the Strong Markov Property, spatial homogeneity
and again the special feature of spectral negativity that {XL−1

x
= x} on the

event {L−1
x <∞}, we have for x, y ≥ 0 and q ≥ 0,

E(e−q(L
−1
x+y−L

−1
x )1(L−1

x+y<∞)|FL−1
x

)1(L−1
x <∞)

= E(e−qL
−1
y 1(L−1

y <∞))1(L−1
x <∞)

= e−(Φ(q)−Φ(0))ye−Φ(0)y1(L−1
x <∞).
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In the first equality we have used standard notation for Markov processes,
Ex(·) = E(·|X0 = x). We see then that the increment L−1

x+y − L−1
x is inde-

pendent of FL−1
x

on {L−1
x <∞} and has the same law as the subordinator with

Laplace exponent Φ(q) − Φ(0) but killed at an independent exponential time
with parameter Φ(0).

When E(X1) ≥ 0 we have that Φ(0) = 0 and hence the concluding statement
of the previous paragraph indicates that {L−1

x : x ≥ 0} is a subordinator (with-
out killing). On the other hand, if E(X1) < 0, or equivalently Φ(0) > 0 then
the second statement of the corollary follows. In particular the rate at which
the subordinator is killed is Φ(0).

Corollary 4.1 Suppose that q > 0 and let eq be an exponentially distributed
random variable which is independent of the spectrally negative Lévy process X.
Then Xeq is exponentially distributed with parameter Φ(q). When E(X1) < 0
(equivalently Φ(0) > 0), and with the understanding that e0 = ∞, the previous
conclusion still holds when q = 0.

Proof. The result is an easy consequence of the fact that

P(Xeq > x) = P(τ+
x < eq) = E(e−qτ

+
x 1(τ+

x <∞))

together with the conclusion of Theorem 4.1.

Note that the last corollary tells us that in the case E(X1) < 0, the maximum
(equivalently the local time at the maximum) increases to a terminal value which
is exponentially distributed with parameter Φ(0).

We conclude this section by considering the analogue of the ladder height
process for random walks. Quite simply we can now define for each t < L∞

Ht = XL−1
t
.

Moreover, a special consequence of the fact that X is spectrally negative, and
that L−1

t the time to first passage over level t, is that Ht = t on t < L∞.

5 Excursions

Now that we have established the concept of local time at the maximum for
any Lévy process we can give the general decomposition of the path of a Lévy
process in terms of its excursions from the maximum.

Definition 5.1 For each moment of local time t > 0 we define

εt =

{
{XL−1

t−+s −XL−1
t−

: 0 < s ≤ L−1
t − L−1

t−} if L−1
t− < L−1

t

∂ if L−1
t− = L−1

t

13



where we take L−1
0− = 0 and ∂ is some “dummy” state. Note that for each fixed

t > 0, when L−1
t− < L−1

t , the object εt is a stochastic process and hence is double

indexed with εt(s) = XL−1
t−+s −XL−1

t−
for 0 < s ≤ L−1

t − L−1
t− . When εt 6= ∂ we

refer to it as the excursion (from the maximum) associated with local time t.

Note also that for t such that εt 6= ∂, εt has paths that are right continuous
with left limits and, with the exception of its terminal value (in the case that
L−1
t <∞), is valued in (−∞, 0).

Definition 5.2 Let E be the space of excursions of X from its running supre-
mum. That is the space of mappings which are right continuous with left limits
satisfying

ε : (0, ζ]→ (−∞, 0] for some ζ ∈ (0,∞]

where ζ = ζ(ε) is the excursion length. Finally let ε = − infs∈(0,ζ) ε(s) for the
excursion height.

Theorem 5.1 There exists a σ-algebra Σ and σ-finite measure n such that
(E ,Σ, n) is a measure space and Σ is rich enough to contain sets of the form

{ε ∈ E : ζ (ε) ∈ A, ε ∈ B}

where, for a given ε ∈ E, ζ (ε) and ε were all given in Definition 5.2. Further,
A and B are Borel sets of [0,∞].

(i) If E(X1) ≥ 0 then {(t, εt) : t ≥ 0 and εt 6= ∂} is a Poisson point process on
([0,∞)× E ,B[0,∞)× Σ,dt× dn).

(ii) If E(X1) < 0 then {(t, εt) : t ≤ L∞ and εt 6= ∂} is a Poisson point process
on ([0,∞) × E ,B[0,∞) × Σ,dt × dn) stopped at the first arrival of an
excursion in E∞ := {ε ∈ E : ζ (ε) =∞}.

We offer no proof for this result. We refer instead to Bertoin (1996) who
gives a rigorous treatment. However, the intuition behind this theorem lies with
the observation that for each t > 0, L−1

t− is a stopping time. To see why note
that

{L−1
t− < s} =

⋂
n≥1

{L−1
t−1/n < s} ∈ Fs.

The Strong Markov Property for Lévy processes thus tells us that the progres-
sion of XL−1

t−+s
−XL−1

t−
in the time interval (L−1

t− , L
−1
t ] is independent of FL−1

t−
.

As alluded to earlier, this means that the paths of X may be decomposed into
the juxtaposition of independent excursions from the maximum. Excursions
from the maximum are interlaced by moments of real time where X can be
described as drifting at its maximum. That is to say, moments of real time
which contribute to a strict increase in the Lebesgue measure of the real time
the process spends at its maximum. The aforesaid Lebesgue measure may be
identically zero for some processes. If there is a last maximum, then the process
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of excursions is stopped at the first arrival of an excursion with infinite length;
i.e. the first arrival of an excursion in E∞.

Theorem 5.1 generalises the statement of Theorem 4.2. To see why, suppose
that we write

Λ(dx) = n(ζ (ε) ∈ dx). (5.1)

On {t < L∞} the jumps of the ladder time process L−1 form a Poisson process
on [0,∞)× (0,∞) with intensity measure dt×Λ(dx). We can write L−1

t as the
sum of the Lebesgue measure of the time X spends drifting at the maximum
(if at all) plus the jumps L−1 makes due to excursions from the maximum.
Hence, if N is the counting measure associated with the Poisson point process
of excursions, then on {L∞ > t},

L−1
t =

∫ L−1
t

0

1(εs=∂)ds+

∫
[0,t]

∫
E
ζ (ε)N(ds× dε)

=

∫ L−1
t

0

1(Xs=Xs)
ds+

∫
[0,t]

∫
E
ζ (ε)N(ds× dε)

= at+ +

∫
[0,t]

∫
E
ζ (ε)N(ds× dε), (5.2)

where a ≥ 0 is necessarily a constant on account of the fact that L−1 is a
(possibly killed) subordinator.

We can also see that P(L∞ > t) is the probability that in the process of
excursions the first arrival in E∞ is after time t. Written in terms of the Poisson
point process of excursions we see that

P(L∞ > t) = P(N([0, t]× E∞) = 0) = e−n(E∞)t.

This reinforces the earlier conclusion that L∞ is exponentially distributed and
we equate the parameters

Φ(0) = n(E∞). (5.3)

6 Proof of Theorem 2.1

The crux of the first part of the Wiener–Hopf factorisation lies with the following
important observation. Consider the Poisson point process of marked excursions
on

([0,∞)× E × [0,∞),B[0,∞)× Σ× B[0,∞),dt× dn× dη)

where η(dx) = pe−pxdx for x ≥ 0. That is to say, a Poisson point process

whose points are described by {(t, εt, e(t)
p ) : t ≤ L∞ and εt 6= ∂} where e

(t)
p is an

independent copy of an exponentially distributed random variable if t is such

that εt 6= ∂, and otherwise e
(t)
p := ∂. The Poisson point process of unmarked

excursions is then obtained as a projection on to [0,∞) × E . Sampling the
Lévy process X up to an independent exponentially distributed random time
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ep corresponds to sampling the Poisson process of excursions up to time Lep ;
that is {(t, εt) : t ≤ Lep and t 6= ∂}. In turn, we claim that this process is equal
in law to the projection on to [0,∞)× E of

{(t, εt, e(t)
p ) : t ≤ σ1 ∧ σ2 and εt 6= ∂} (6.1)

where

σ1 := inf{t > 0 :

∫ L−1
t

0

1(Xs=Xs)
ds > ep}

and
σ2 := inf{t > 0 : ζ(εt) > e(t)

p }
where we recall that ζ(εt) is the duration of the excursion indexed by local time
t. Note that in the case that the constant a in (5.2) is zero, in other words∫ ·

0
1(Xs=Xs)

ds = 0, we have simply that σ1 = ∞. A formal proof of this claim
would require the use of some additional mathematical tools. However, for the
sake of brevity, we shall lean instead on an intuitive explanation as follows.

We recall that the path of the Lévy process up to time ep is the independent
juxtaposition of excursions interlaced with moments of real time when X = X
(which accumulate positive Lebesgue measure when a > 0). The event {t <
Lep} corresponds to the event that there are at least t units of local time for
a given stretch of ep units of real time. By the lack of memory property this
is equivalent to the event that the total amount of real time accumulated at
the maximum by local time t has survived independent exponential killing at
rate p as well as each of the excursion lengths up to local time t have survived
independent exponential killing at rate p.

The times σ1 and σ2 are independent and further σ2 is of the type of stopping
time considered in Theorem 3.2 with A = {ζ(ε) > ep} when applied to the
Poisson point process (6.1). From each of the statements given in Lemma 3.2
we deduce three facts concerning the Poisson point process (6.1).

(1) Since
∫ L−1

t

0
1(Xs=Xs)

ds = at we have

P(σ1 > t) = P

(∫ L−1
t

0

1(Xs=Xs)
ds < ep

)
= e−apt.

As mentioned earlier, if the constant a = 0 then we have that σ1 = ∞.
Further, we also have that

P(σ2 > t) = exp

{
−t
∫ ∞

0

pe−pxdx · n(ζ(ε) > x)

}
,

i.e. σ2 is exponentially distributed. As σ1 and σ2 are independent it
follows that σ1 ∧ σ2 is independent with the sum of their rates, say

κ = ap+

∫ ∞
0

pe−pxdx · n(ζ(ε) > x)
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(2) The Poisson point process (6.1) is equal in law to a Poisson point process
on [0,∞)× E × [0,∞) with intensity

dt× n(dε; ζ(ε) < x)× η(dx) (6.2)

which is stopped at an independent time which is exponentially distributed
with parameter κ.

(3) On the event σ2 < σ1, the process

{(t, εt, e(t)
p ) : t < σ1 ∧ σ2 and εt 6= ∂} (6.3)

is independent of εσ2
= εσ1∧σ2

. On the other hand, when σ1 < σ2 since
at the local time σ1 we have ∂ = εσ1

= εσ1∧σ2
We conclude that εσ1∧σ2

is
independent of (6.3).

Now note that

Gep
d
= L−1

(σ1∧σ2)− = a(σ1 ∧ σ2) +

∫
[0,σ1∧σ2)

∫
E
ζ(εt)N(dt× dε) (6.4)

and
Xep

d
= H(σ1∧σ2)− = σ1 ∧ σ2. (6.5)

From point (3) above, the random variables on the right hand sides of (6.4)
and (6.5) are independent of the excursion εσ1∧σ2

. Moreover, the pair (ep −
Gep , Xep −Xep) are equal in law to

(e(σ1∧σ2)
p , εσ1∧σ2

(e(σ1∧σ2)
p ))1(σ2<σ1) + (0, 0)1(σ1<σ2)

. In conclusion (Gep , Xep) is independent of (ep −Gep , Xep −Xep).

From point (2), the process {L−1
t : t < σ1 ∧ σ2} behaves like a subordinator

with characteristic measure∫ ∞
0

pe−ptdt · n(ζ(ε) ∈ dx, x < t) = e−pxΛ(dx)

and drift a which is stopped at an independent exponentially distributed time
with parameter κ. Suppose that we denote this subordinator L−1 = {L−1

t : t ≥
0}. Then

(L−1
eκ , eκ)

d
= (Gep , Xep)

where eκ is an independent exponential random variable with parameter κ.
Whilst it is clear that eκ is infinitely divisible, we leave it as an exercise

for the reader to show that any subordinator sampled at an independent and
exponentially distributed random time is also infinitely divisible. See Exercise
8.

Finally to conclude that (ep −Gep , Xep −Xep) and (Gep ,−Xep) are equal
in distribution, we use exactly the same argument as in the random walk case.
Specifically we need the analogue of Feller’s Duality Lemma which we give below,
the proof of which is essentially the same as in the random walk case.
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Figure 2: Duality of the processes X = {Xs : s ≤ t} and Y = {X(t−s)− −Xt :
s ≤ t}. The path of Y is a reflection of the path of X with an adjustment of
continuity at jump times.

Lemma 6.1 (Duality Lemma) For each fixed t > 0, define the reversed pro-
cess

{X(t−s)− −Xt : 0 ≤ s ≤ t}

and the dual process,
{−Xs : 0 ≤ s ≤ t}.

Then the two processes have the same law under P.

Proof. Define the time reversed process Ys = X(t−s)− − Xt for 0 ≤ s ≤ t
and note that under P we have Y0 = 0 almost surely as t is a jump time
with probability zero. (For the last statement recall that jumps appear as
the countable superposition of compensated Poisson point processes). As can
be seen from Fig. 2 (which is to be understood symbolically), the paths of Y
are obtained from those of X by a reflection about the vertical axis with an
adjustment of the continuity at the jump times so that its paths are almost
surely right continuous with left limits. Further, the stationary independent
increments of X imply directly the same as is true of Y. Further, for each
0 ≤ s ≤ t, the distribution of X(t−s)− − Xt is identical to that of −Xs and
hence, since the finite time distributions of Y determine its law, the proof is
complete.

Exercises

Exercise 1 Suppose that S = {Sn : n ≥ 0} is any random walk and Γp is an
independent random variable with a geometric distribution on {0, 1, 2, ...} with
parameter p.

(i) Show that Γp is infinitely divisible.
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(ii) Show that SΓp is infinitely divisible.

Exercise 2 The object of this exercise is to give a reminder of the additive
property of Poisson distributions (which is also the reason why they belong to
the class of infinite divisible distributions). Suppose that {Ni : i = 1, 2, ...}
is an independent sequence of random variables defined on (Ω,F , P ) which
are Poisson distributed with parameters λi for i = 1, 2, ..., respectively. Let
S =

∑
i≥1Ni. Show that

(i) if
∑
i≥1 λi < ∞ then S is Poisson distributed with parameter

∑
i≥1 λi and

hence in particular P (S <∞) = 1,

(ii) if
∑
i≥1 λi =∞ then P (S =∞) = 1.

Exercise 3 Denote by {Ti : i ≥ 1} the arrival times in the Poisson process
N = {Nt : t ≥ 0} with parameter λ.

(i) By recalling that inter-arrival times are independent and exponential, show
that for any A ∈ B([0,∞)n),

P ((T1, ..., Tn) ∈ A|Nt = n) =

∫
A

n!

tn
1(0≤t1≤...≤tn≤t)dt1 × ...× dtn.

(ii) Deduce that the distribution of (T1, ..., Tn) conditional on Nt = n has the
same law as the distribution of an ordered independent sample of size n
taken from the uniform distribution on [0, t].

Exercise 4 Show that for any y ≥ 0,

{(y ∨Xt)−Xt : t ≥ 0} and {Xt − (Xt ∧ (−y)) : t ≥ 0}

are [0,∞)-valued strong Markov process.

Exercise 5 Let X be a Lévy process with Lévy measure Π. Denote by N the
Poisson random measure associated with its jumps.

(i) Show that
P( sup

0<s≤t
|Xs −Xs−| ≥ a) = 1− e−tΠ(R\(−a,a))

for a > 0.

(ii) Show that the paths of X are continuous if and only if Π = 0.

(iii) Show that the paths of X are piece-wise linear if and only if it is a com-
pound Poisson process with drift if and only if σ = 0 and Π(R) < ∞.
[Recall that a function f : [0,∞) → R is right continuous and piece-wise
linear if there exist sequence of times 0 = t0 < t1 < ... < tn < ... with
limn↑∞ tn =∞ such that on [tj−1, tj) the function f is linear].
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(iv) Now suppose that Π(R) = ∞. Argue by contradiction that for each pos-
itive rational q ∈ Q there exists a decreasing sequence of jump times for
X, say {Tn(ω) : n ≥ 0}, such that limn↑∞ Tn = q. Hence deduce that the
set of jump times are dense in [0,∞).

Exercise 6 Suppose that X is a compound Poisson process with drift δ ≥ 0.
Just by considering the piece-wise linearity of the paths of these processes, one
has obviously that over any finite time horizon, the time spent at the maximum
has strictly positive Lebesgue measure with probability one. Hence the quantity

Lt :=

∫ t

0

1(Xs=Xs)ds, t ≥ 0 (E.1)

is almost surely positive.

(i) Show that in fact {Lt : t ≥ 0} is a local time according to Definition 4.1.

(ii) If we only allow negative jumps and δ > 0 (in particular, X is a spectrally
negative Lévy process), show that the local time in (i) agrees with the X
up to a multiplicative constant. Specifically, show that

Xt = δ

∫ t

0

1(Xs=Xs)
ds

for all t ≥ 0.

Exercise 7 Suppose that ψ is the Laplace exponent of a spectrally negative
Lévy process. By considering explicitly the formula

ψ(β) = −aβ +
1

2
σ2β2 +

∫
(−∞,0)

(eβx − 1− βx1(x>−1))Π(dx)

show that on [0,∞), ψ is infinitely differentiable, strictly convex and that ψ(0) =
0 whilst ψ(∞) =∞.

Exercise 8 Suppose that X is any Lévy process with characteristic exponent
Ψ. Let ep be an independent and exponentially distributed random variable.

(i) Show that, on the one hand

E
(
eiθXep

)
=

p

p+ Ψ (θ)
.

(ii) Show on the other hand, using the Frullani integral that

exp

{
−
∫ ∞

0

∫
R

(1− eiθx)
1

t
e−ptP (Xt ∈ dx) dt

}
=

p

p+ Ψ (θ)
.

(iii) Deduce that Xep is infinitely divisible.
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