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1 The M/G/1 Queue

Recall that an M/G/1 queue consists of a single server who receives customers
at the times of a Poisson process at rate λ > 0 that wait in line to be served on
a sequential basis in order of arrival. The i-th customer comes with a workload
for the server given by the random variable ξi. The quantities {ξi : i ≥ 1} are
i.i.d. The server processes incoming work at a constant (unit) rate as long as
the queue is not empty. When all work has been processes and there are no
customers, the server remains idle until the next arrival of a customer.

It turns out that one can model the workload of the server via a Lévy process.
Indeed, suppose that

Xt = t−
Nt∑
i=1

ξi

where {Nt : t ≥ 0} is the Poisson process of arrivals. We know that the process
X has Laplace exponent

ψ(β) = β −
∫

(0,∞)

(1− e−βx)λF (dx), β ≥ 0,

where F is the distribution function of ξ1. For this elementary example of a
spectrally negative Lévy process, by writing St =

∑Nt
i=1 ξi, t ≥ 0, we have that

Xt =

∫ t

0

1(Xs=Xs)
dXs

=

∫ t

0

1(Xs=Xs)
ds−

∫ t

0

1(Xs=Xs)
dSs

=

∫ t

0

1(Xs=Xs)
ds

almost surely where the final equality follows as a consequence of the fact that∫ t

0

1(Xs=Xs)
dSs ≤

∫ t

0

1(∆Ss=0)dSs = 0.
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Then writing W y
t for the workload at time t ≥ 0 when the initial workload

is y ≥ 0. It is straightforward to check that

W y
t = (y ∨Xt)−Xt, t ≥ 0,

where Xt = sups≤tXs.
Let us introduce the parameter

ρ := λE(ξ1),

also known as the traffic intensity. Note that regimes 0 < ρ < 1, ρ = 1 and ρ > 1
correspond precisely to the regimes ψ′(0+) > 0, ψ′(0+) = 0 and ψ′(0+) < 0,
respectively. The first two of these cases thus imply that Φ(0) = 0 and the third
case implies Φ(0) > 0 where we recall that, for q ≥ 0,

Φ(q) = sup{θ ≥ 0 : ψ(θ) = q}.

We are interested in characterising two main quantities associated with the
workload; that is, where appropriate, the distribution of the idle period and the
stationary distribution of the workload.

Theorem 1.1 Fix y ≥ 0. Suppose that ρ > 1 then the total time that the
M/G/1 queue spends idle,

I :=

∫ ∞
0

1(Wy
t =0)dt,

has the following distribution

P (I ∈ dx) = (1− e−Φ(0)y)δ0 (dx) + Φ(0)e−Φ(0)(y+x)dx.

Otherwise if 0 < ρ ≤ 1 then I is infinite with probability one.

Proof. Now recall that X∞ is exponentially distributed with parameter
Φ(0). When Φ(0) = 0 then the previous statement is understood to mean that
P(X∞ =∞) = 1. When y = 0 we have that

X∞ =

∫ ∞
0

1(Xs=Xs)
ds =

∫ ∞
0

1(W 0
s=0)ds. (1.1)

Hence we see that I is exponentially distributed with parameter Φ(0). Recalling
which values of ρ imply that Φ(0) > 0 we see that the statement of the theorem
follows for the case y = 0.

In general however, when y > 0 the equality (1.1) is not valid. Instead we
have that ∫ ∞

0

1(Wy
s =0)ds =

∫ τ+
y

0

1(Wy
s =0)ds+

∫ ∞
τ+
y

1(Wy
s =0)ds

= 1(τ+
y <∞)

∫ ∞
τ+
y

1(Wy
s =0)ds

= 1(X∞≥y)I
∗, (1.2)
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where I∗ is independent of Fτ+
y

on {τ+
y < ∞} and equal in distribution to∫∞

0
1(Wy

s =0)ds with y = 0. Note that the first integral in the right-hand side of
the first equality disappears on account of the fact that W y

s > 0 for all s < τ+
y .

The statement of the theorem now follows for 0 < ρ ≤ 1 by once again recalling
that in this regime Φ(0) = 0 and hence from (1.2)X∞ =∞ with probability one,
which, in turn, implies that I = I∗. This quantity has previously been shown
to be infinite with probability one. On the other hand, when ρ > 1, we see from
(1.2) that there is an atom at zero corresponding to the event {X∞ < y} with
probability 1 − e−Φ(0)y. Otherwise, with independent probability e−Φ(0)y, the
integral I has the same distribution as I∗. Again from previous calculations for
the case w = 0 we have seen that this is exponential with parameter Φ(0) and
the proof is complete.

The next result looks at the stationary distribution of the workload. To
this end, let us note from the Wiener-Hopf factorisation that, since Xeq is
exponentially distributed with parameter Φ(q) when q > 0, we have for θ ∈ R

q

q + Ψ(θ)
= E(eiθXeq )

= E(eiθXeq )E(e
iθXeq )

=
Φ(q)

Φ(q)− iθ
E(e

iθXeq ).

where we recall that Ψ(θ) is the characteristic exponent of X. Rewriting we
have

E(e
iθXeq ) =

q

Φ(q)

Φ(q)− iθ

q + Ψ(θ)
.

Note that both left and right hand sides of the above identity can be analytically
extended to the complex half plane which admits a non-negative real part.
Indeed, for the right hand side, the existence of a Laplace exponent ψ(β) for
β ≥ 0 means that we can identify ψ(β) = −Ψ(−iβ) and moreover,

E(e
βXeq ) =

q

Φ(q)

Φ(q)− β
q − ψ(β)

. (1.3)

Assuming that E(X1) > 0 so that Φ(0) = 0 we have, noting that ψ(Φ(q)) = q,

E(eβX∞) = lim
q↓0

q

Φ(q)

Φ(q)− β
q − ψ(β)

= ψ′(0+)
β

ψ(β)
= E(X1).

β

ψ(β)
(1.4)

On the other hand, suppose that E(X1) ≤ 0 so that Φ(0) > 0. In that case it is
trivial to see that

E(eβX∞) = 0

showing that
P(−X∞ =∞) = 1.

These results lead us to the following conclusion.
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Theorem 1.2 Fix y ≥ 0.

(i) Suppose that E(X1) > 0 then W y has a stationary distribution equal to
that of the random variable W y

∞ with Laplace transform

E(e−βW
y
∞) = E(X1)

β

ψ(β)

(ii) Suppose that E(X1) ≤ 0 then W y does not converge in distribution.

Proof. First suppose that E(X1) > 0 which implies that Φ(0) = 0. This implies
that P(X∞ = ∞) = 1 and accordingly P(τ+

y < ∞) = 1. It follows that for all

sufficiently large t, W y
t = Xt−Xt and hence, for β ≥ 0, by the Duality Lemma,

lim
t↑∞

E(e−βW
y
t ) = lim

t↑∞
E(e−β(Xt−Xt)) = lim

t↑∞
E(eβXt) = E(X1)

β

ψ(β)
.

A similar argument establishes the second part of the theorem.

It is worth noting that the previous theorem does not require the underlying
spectrally negative Lévy process to have paths with a compound Poisson jump
structure. The computations work verbatim for any spectrally negative Lévy
process. It is on this basis that we move forward to the theory of scale functions
and exit problems.

2 Scale functions and insurance risk

Consider the following model of the revenue of an insurance company as a
process in time proposed by [8]. The insurance company collects premiums at a
fixed rate c > 0 from its customers. At times of a Poisson process, a customer
will make a claim causing the revenue to jump downwards. The size of claims is
independent and identically distributed. If we call Xt the capital of the company
at time t, or the surplus process, then the above description amounts to

Xt = x+ ct−
Nt∑
i=1

ξi, t ≥ 0,

where x > 0 is the initial capital of the company, N = {Nt : t ≥ 0} is a Poisson
process with rate λ > 0, and {ξi : i ≥ 1} is a sequence of positive, independent
and identically distributed random variables also independent of N . The process
X = {Xt : t ≥ 0} is nothing more than a compound Poisson process with drift
of rate c, initiated from x ≥ 0. Denote its law by Px and for convenience write
P instead of P0.

Financial ruin in this model (or just ruin for short) will occur if the surplus of
the insurance company drops below zero. Since this will happen with probability
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one if P(lim inft↑∞Xt = −∞) = 1, an additional assumption imposed on the
model is that

lim
t↑∞

Xt =∞.

A sufficient condition to guarantee this is that the distribution of ξ has finite
mean, say µ > 0, and that

λµ

c
< 1,

the so-called net profit condition. To see why this presents a sufficient condition,
note that the Strong Law of Large Numbers, limt↑∞Nt/t = λ, and the obvious
fact that limt↑∞Nt =∞ imply that

lim
t↑∞

Xt

t
= lim
t↑∞

(
x

t
+ c− Nt

t

∑Nt
i=1 ξi
Nt

)
= c− λµ > 0,

Under the net profit condition it follows that ruin will occur only with probabil-
ity less than one. Fundamental quantities of interest in this model thus become
the distribution of the time to ruin and the deficit at ruin; otherwise identified
as

τ−0 := inf{t > 0 : Xt < 0} and Xτ−0
on {τ−0 <∞}

when the process X drifts to infinity.
Of course the surplus process is nothing more than a spectrally negative Lévy

process and it therefore makes sense to look at similar problems for the general
class of spectrally negative processes. Therefore we shall henceforth understand
X to be a spectrally negative Lévy process.

In this section we shall develop semi-explicit identities concerning exiting
from a half line and a strip. Recall that Px and Ex are shorthand for P(·|X0 = x)
and E(·|X0 = x) and for the special case that x = 0 we keep with our old
notation, so that P0 = P and E0 = E, unless we wish to emphasise the fact that
X0 = 0. Recall also

τ+
x = inf{t > 0 : Xt > x} and τ−x = inf{t > 0 : Xt < x}

for all x ∈ R.
A key element of our analysis will be the following change of measure. it

is easy to deduce under this assumption that E(β) = {Et(β): t ≥ 0} is a P-
martingale with respect to F where

Et(β) = eβXt−ψ(β)t, t ≥ 0. (2.1)

Since it has mean one, it may be used to perform a change of measure via

dPβ

dP

∣∣∣∣
Ft

= Et(β), (2.2)

for any β ≥ 0. The change of measure above, known as the Esscher transform,
is a natural generalisation of the Cameron–Martin–Girsanov change of measure.
The proof of the following result is left as an exercise.
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Theorem 2.1 Fix β ≥ 0. Under Pβ, X remains within the class of spectrally
negative Lévy processes. The Laplace exponent ψβ of X under Pβ satisfies

ψβ(θ) = ψ(θ + β)− ψ(β) (2.3)

for all θ ≥ −β.

The main results of this section are the following.

Theorem 2.2 (One- and two-sided exit formulae) Assume that X is a spec-
trally negative Lévy process that satisfies ψ′(0+) > 0.1 There exist a family of
functions W (q) : R→ [0,∞) and

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy, for x ∈ R

defined for each q ≥ 0 such that the following hold (for short we shall write
W (0) = W ).

(i) For any q ≥ 0, we have W (q)(x) = 0 for x < 0 and W (q) is characterised
on [0,∞) as a non-decreasing function whose Laplace transform satisfies∫ ∞

0

e−βxW (q)(x)dx =
1

ψ (β)− q
for β > Φ (q) . (2.4)

(ii) For any x ∈ R and q ≥ 0,

Ex
(

e−qτ
−
0 1(τ−0 <∞)

)
= Z(q)(x)− q

Φ (q)
W (q)(x) , (2.5)

where we understand q/Φ (q) in the limiting sense for q = 0, so that

Px(τ−0 <∞) = 1− ψ′(0+)W (x) (2.6)

(iii) For any x ≤ a and q ≥ 0,

Ex
(

e−qτ
+
a 1(τ−0 >τ

+
a )

)
=
W (q)(x)

W (q)(a)
, (2.7)

and

Ex
(

e−qτ
−
0 1(τ−0 <τ

+
a )

)
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
. (2.8)

1This condition is unnecessary and in fact the theorem holds for any spectrally negative
Lévy process. It has been imposed for convenience.
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In keeping with existing literature we will refer to the functions W (q) and
Z(q) as the q-scale functions.

Proof of Theorem 2.2 (i). Define

W (x) =
1

ψ′(0+)
Px(X∞ ≥ 0) =

1

ψ′(0+)
P(−X∞ ≤ x), (2.9)

which, as a distribution function, is right continuous and non-decreasing Recall
from (1.4)

E
(
eβX∞

)
= ψ′(0+)

β

ψ (β)

for β > 0. Integrating by parts, we also see that

E
(
eβX∞

)
=

∫
[0,∞)

e−βxP (−X∞ ∈ dx)

= P (−X∞ = 0) +

∫
(0,∞)

e−βx dP (−X∞ ∈ (0, x])

=

∫ ∞
0

P (−X∞ = 0)β e−βx dx+ β

∫ ∞
0

e−βxP (−X∞ ∈ (0, x]) dx

= β

∫ ∞
0

e−βxP (−X∞ ≤ x) dx

= β

∫ ∞
0

e−βxPx (X∞ ≥ 0) dx,

and hence ∫ ∞
0

e−βxW (x) dx =
1

ψ (β)
(2.10)

for all β > 0 = Φ(0).
Now for the case that q > 0 take as before W (q)(x) = eΦ(q)xWΦ(q)(x). As

remarked earlier, X under PΦ(q) drifts to infinity and hence using the conclusion
from the previous paragraph together with (2.3) we have∫ ∞

0

e−βxW (q)(x)dx =

∫ ∞
0

e−(β−Φ(q))xWΦ(q)(x)dx

=
1

ψΦ(q) (β − Φ (q))

=
1

ψ (β)− q
(2.11)

provided β − Φ (q) > 0.
It is not immediately clear that W (q) is non-decreasing, however this will

transpire in the proof of the remaining parts of the theorem.
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Proof of Theorem 2.2 (iii) equation (2.7). A simple argument using
the law of total probability and the Strong Markov Property now yields for
x ∈ [0, a)

Px(X∞ ≥ 0) = Ex
(
Px(X∞ ≥ 0|Fτ+

a
)
)

= Ex
(
1(τ+

a <τ
−
0 )Pa(X∞ ≥ 0)

)
+ Ex

(
1(τ+

a >τ
−
0 )PXτ−0

(X∞ ≥ 0)
)

= Pa(X∞ ≥ 0)Px(τ+
a < τ−0 ).

To justify that the second term in the second equality disappears we have to
use the following subtle facts that we have note proved. If X has no Gaussian
component then it cannot cross below zero continuously, i.e. Xτ−0

< 0, and then

we use that Px(X∞ ≥ 0) = 0 for x < 0. If X has a Gaussian component then
Xτ−0

≤ 0 and we need to know that W (0) = 0. However, in the presence of

a Gaussian component, the Lévy process will be visit either side of the origin
instantaneously and consequently we have that X∞ < 0 P-almost surely which
is the same as W (0) = 0.

We now have

Px(τ+
a < τ−0 ) =

W (x)

W (a)
. (2.12)

It is trivial, but nonetheless useful for later use, to note that the same equality
holds even when x < 0 since both sides are equal to zero.

Now assume that q > 0. In this case, by the convexity of ψ, we know
that Φ (q) > 0 and hence ψ′Φ(q) (0) = ψ′ (Φ (q)) > 0 (again by convexity) which

implies that under PΦ(q), the process X drifts to infinity. For (X,PΦ(q)) we have

already established the existence of a 0-scale function WΦ(q)(x) = PΦ(q)
x (X∞ ≥

0) which fulfils the relation

PΦ(q)
x (τ+

a < τ−0 ) =
WΦ(q)(x)

WΦ(q)(a)
. (2.13)

However by definition of PΦ(q), we also have that

PΦ(q)
x (τ+

a < τ−0 ) = Ex(e
Φ(q)(X

τ
+
a
−x)−qτ+

a 1(τ+
a <τ

−
0 ))

= eΦ(q)(a−x)Ex(e−qτ
+
a 1(τ+

a <τ
−
0 )). (2.14)

Combining (2.13) and (2.14) gives

Ex
(

e−qτ
+
a 1(τ+

a <τ
−
0 )

)
= e−Φ(q)(a−x)WΦ(q)(x)

WΦ(q)(a)
=
W (q)(x)

W (q)(a)
, (2.15)

where W (q)(x) = eΦ(q)xWΦ(q)(x). Clearly W (q) is identically zero on (−∞, 0)
and non-decreasing.
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Note that the definition of W (q) we have given above may be taken up to
any multiplicative constant without affecting the validity of the arguments. This
also justifies the terminology ‘scale function’.

Proof of Theorem 2.2 (ii). As W (q) is non-decreasing we may also treat
it as a distribution function of a measure, in which case, integrating (2.11) we
find ∫

[0,∞)

e−βxW (q)(dx) =
β

ψ(β)− q
(2.16)

Using the Laplace transform of W (q)(x) (given in (2.4)) as well as the Laplace–
Stieltjes transform (2.16), we can interpret the Wiener–Hopf factor in (1.3) as
saying that for x ≥ 0,

P(−Xeq ∈ dx) =
q

Φ (q)
W (q)(dx)− qW (q)(x)dx, (2.17)

and hence for x ≥ 0,

Ex
(

e−qτ
−
0 1(τ−0 <∞)

)
= Px(eq > τ−0 )

= Px(Xeq < 0)

= P(−Xeq > x)

= 1− P(−Xeq ≤ x)

= 1 + q

∫ x

0

W (q)(y)dy − q

Φ (q)
W (q)(x)

= Z(q)(x)− q

Φ (q)
W (q)(x). (2.18)

Note that since Z(q)(x) = 1 and W (q)(x) = 0 for all x ∈ (−∞, 0), the statement
is valid for all x ∈ R. The proof is now complete for the case that q > 0.

Finally we have that limq↓0 q/Φ (q) = limq↓0 ψ(Φ(q))/Φ(q) which equal to
ψ′(0+). The proof is thus completed by taking the limit in q in (2.5).

Proof of Theorem 2.2 (iii) equation (2.8). Fix q > 0. We have for
x ≥ 0,

Ex(e−qτ
−
0 1(τ−0 <τ

+
a )) = Ex(e−qτ

−
0 1(τ−0 <∞))− Ex(e−qτ

−
0 1(τ+

a <τ
−
0 )).

Applying the Strong Markov Property at τ+
a and using the fact that X creeps

upwards, we also have that

Ex(e−qτ
−
0 1(τ+

a <τ
−
0 )) = Ex(e−qτ

+
a 1(τ+

a <τ
−
0 ))Ea(e−qτ

−
0 1(τ−0 <∞)).
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Appealing to (2.5) and (2.7) we now have that

Ex(e−qτ
−
0 1(τ−0 <τ

+
a )) = Z(q)(x)− q

Φ(q)
W (q)(x)

−W
(q)(x)

W (q)(a)

(
Z(q)(a)− q

Φ(q)
W (q)(a)

)
and the required result follows in the case that q > 0. The case that q = 0 is
again dealt with by taking limits as q ↓ 0.

These identities would carry much greater practical value if they the Laplace
transform (2.4) could be inverted. In general this a much more difficult problem
than one might imagine. This has been a topic of recent interest. Below we
describe a method that can be used to generate examples of the scale function.
Unfortunately it has its limitations and it is quite hard to generate examples of
W (q).

An auxiliary result we need first is the following. We remind the reader that
the Laplace exponent of a spectrally negative Lévy process takes the form

ψ(λ) = −aλ+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx1(|x|<1))Π(dx).

for λ ≥ 0.

Lemma 2.1 Suppose that X is a spectrally negative Lévy process such that
ψ′(0+) > 0. Then we may always write for λ ≥ 0,

ψ(λ) = λφ(λ),

where

φ(λ) = κ+ δλ+

∫
(0,∞)

(1− e−λx)Υ(dx)

such that κ = ψ′(0+), δ = σ2/2 and

Υ(dx) = Π(−∞,−x)dx,

for x > 0.

Proof. Since E(X1) = ψ′(0+) > 0, then necessarily it must also be finite.
In that case it is a straightforward exercise to show that we can re-write

ψ(λ) = ψ′(0+)λ+
1

2
σ2λ2 +

∫
(−∞,0)

(eλx − 1− λx)Π(dx).

A straightforward integration by parts now yields

ψ(λ) = ψ′(0+)λ+
1

2
σ2λ2 + λ

∫ ∞
0

(1− e−λx)Π(−∞,−x)dx (2.19)

10



and the result follows.

There are two immediate consequences we should note from the above lemma.
The first is that the factor φ(λ) is the Laplace exponent of a killed subordinator.
In fact digging a little deeper into the Wiener-Hopf factorisation one will dis-
cover that this is the Laplace exponent of the descending ladder height process!

The second thing to notice is that from (2.16) that finding W now boils
down to inverting 1/φ(λ).

Hubalek and Kyprianou [5] have the idea of choosing φ such that the inver-
sion can be performed. This would yield an explicit example of a scale function
so long as the product λφ(λ) corresponds to the Laplace exponent of a spectrally
negative Lévy process satisfying ψ′(0+) > 0. Inspection of (2.19) tells us that
it would suffice for us to choose φ(λ) such that κ > 0 and the jump measure Υ
to be absolutely continuous with non-increasing density, say υ, which satisfies

υ(x) < ∞ for all x > 0 and
∫ 1

0
υ(x)dx < ∞. In that case we would necessarily

have
Π(−∞,−x) = υ(x)

and the last two conditions would be ensure that Π(−∞,−x) <∞ for all x > 0
and (after an integration by parts)

∫
(0,1)

x2Π(dx) < ∞. Said another way, we

have the following result.

Lemma 2.2 Suppose that

φ(λ) = κ+ δλ+

∫
(0,∞)

(1− e−λ)Υ(dx)

is the Laplace exponent of a killed subordinator. Then λφ(λ) is the Laplace
exponent of a spectrally negative Lévy process for λ ≥ 0 satisfying E(X1) > 0 if
and only if κ > 0 and Υ is absolutely continuous with non-increasing density,
υ. In that case we have σ =

√
2δ and Π(−∞,−x) = υ(x).

For any subordinator with Laplace exponent φ(λ) satisfying the conditions
given in the above lemma, we say that the spectrally negative Lévy process with
Laplace exponent ψ(λ) = λφ(λ) is called the parent process to the subordinator

It turns out that there is something called the potential analysis of subordina-
tors which is rich in examples of subordinators, equivalently Laplace exponents
φ(λ), for which the inversion 1/φ(λ) can be performed thereby offering new ex-
amples of scale functions for their parent processes. We give one such example
below, however the interested reader can find out more about the robustness of
this method in [5, 7, 6]; see also [1].

In this example we take

φ(λ) = κ+ (λ+ γ)α − γα,
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where α ∈ (0, 1). That is to say the descending ladder height process will be a
tempered stable subordinator killed at rate κ > 0. 2

The parent process has no Gaussian component, has a Lévy measure that
satisfies

Π(dx) =
1

−Γ(−α)

(
γ

(−x)α+1
eγx +

(α+ 1)

(−x)α+2
eγx
)

dx

and Laplace exponent

ψ(λ) = λκ+ λ(λ+ γ)α − λγα.

To compute the scale function we recall the definition of a Mittag-Leffler function

Eα,β(x) :=

∞∑
n=0

xn

Γ(αn+ β)
,

for α, β > 0, a natural generalisation of the exponential function. This family
of special functions has a large base of analytical properties, one of which is the
following. For α > 0,∫ ∞

0

e−θxxα−1Eα,α(λxα)dx =
1

θα − λ
.

Using this transform, it is a straightforward exercise to deduce that

W (x) =

∫ x

0

e−γyyα−1Eα,α ((γα − κ)yα) dy.

Exercises

Exercise 1 Suppose that X is a spectrally negative stable process with index
α ∈ (1, 2).

(i) Show that, up to a multiplicative constant, its Laplace exponent is given by
ψ(θ) = θα, θ ≥ 0.

(ii) Show that for q > 0 and β > q1/α,∫ ∞
0

e−βxW
(q)

(x)dx =
1

β(βα − q)
=
∑
n≥1

qn−1β−αn−1,

where W
(q)

(x) =
∫ x

0
W (q)(y)dy.

2Note that tempered stable subordinators can be derived from stable subordinators by
exponential tilting in the spirit of (2.2). In this case one uses the change of measure

dPβ

dP

∣∣∣∣
Ft

= e−γHt+γ
αt,

where {Ht : t ≥ 0} is a stable subordinator with index α ∈ (0, 1).
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(iii) Deduce that for x ≥ 0

Z(q)(x) =
∑
n≥0

qn
xαn

Γ(1 + αn)
.

Note that the right-hand side above is also equal to Eα(qxα) where Eα(·)
is the Mittag–Leffler function of parameter α (a generalisation of the ex-
ponential function with parameter α).

(iv) Deduce that for q ≥ 0,

W (q)(x) = αxα−1E′α(qxα)

for x ≥ 0.

(v) Show that for standard Brownian motion that

W (q)(x) =

√
2

q
sinh(

√
2qx) and Z(q)(x) = cosh(

√
2qx)

for x ≥ 0 and q ≥ 0.

(vi) Suppose now that X is a tempered stable spectrally negative Lévy process
with Laplace exponent given by ψ(θ) = (θ + c)α − cα where c ≥ 0 and
α ∈ (1, 2). Show that for q ≥ 0,

W (q)(x) = e−cxαxα−1E′α((q + cα)xα).

Exercise 2 Suppose that X is a spectrally negative Lévy process of bounded
variation such that limt↑∞Xt =∞. For convenience, write Xt = δt− St where
S = {St : t ≥ 0} is a subordinator with jump measure Π.

(i) Show that necessarily δ−1
∫∞

0
Π(y,∞)dy < 1.

(ii) Show that the scale function W satisfies∫
[0,∞)

e−βxW (dx) =
1

δ −
∫∞

0
e−βyΠ(y,∞)dy

and deduce that

W (dx) =
1

δ

∑
n≥0

ν∗n(dx),

where ν(dx) = δ−1Π(x,∞)dx and as usual we understand ν∗0(dx) =
δ0(dx).

(iii) Suppose that S is a compound Poisson process with rate λ > 0 and jump
distribution which is exponential with parameter µ > 0. Show that

W (x) =
1

δ

(
1 +

λ

δµ− λ
(1− e−(µ−δ−1λ)x)

)
.
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Exercise 3 Let X be any spectrally negative Lévy process with Laplace expo-
nent ψ.

(i) Use (2.8) and (2.5) to establish that for each q ≥ 0,

lim
x↑∞

Z(q)(x)

W (q)(x)
=

q

Φ(q)
,

where the right-hand side is understood in the limiting sense when q = 0.
In addition, show that

lim
a↑∞

W (q)(a− x)

W (q)(a)
= e−Φ(q)x.

(ii) Taking account of a possible atom at the origin, write down the Laplace
transform of W (q)(dx) on [0,∞) and show that if X has unbounded vari-
ation then W (q)′(0) = 2/σ2 where σ is the Gaussian coefficient in the
Lévy–Itô decomposition and it is understood that 1/0 = ∞. If however,
X has bounded variation then

W (q)′(0) =
Π(−∞, 0) + q

δ2
,

where δ is the drift coefficient and it is understood that the right hand
side is infinite if Π(−∞, 0)=∞.

Exercise 4 This exercise deals with first hitting of points below zero of spec-
trally negative Lévy processes following the work of [3]. For each x > 0 define

T (−x) = inf{t > 0 : Xt = −x},

where X is a spectrally negative Lévy process with Laplace exponent ψ and
right inverse Φ.

(i) Show that for all c ≥ 0 and q ≥ 0,

Φc(q) = Φ(q + ψ(c))− c.

(ii) Show for x > 0, c ≥ 0 and p ≥ ψ(c) ∨ 0,

E(e
−pτ−−x+c(X

τ
−
−x

+x)
1(τ−−x<∞)) = ecx

(
Z(q)
c (x)− q

Φc(q)
W (q)
c (x)

)
,

where q = p − ψ(c). Use analytic extension to justify that the above
identity is in fact valid for all x > 0, c ≥ 0 and p ≥ 0.

(iii) By noting that T (−x) ≥ τ−−x, condition on Fτ−−x to deduce that for p,

u ≥ 0,

E(e−pT (−x)−u(T (−x)−τ−−x)1(T (−x)<∞)) = E(e
−pτ−−x+Φ(p+u)(X

τ
−
−x

+x)
1(τ−−x<∞)).
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(iv) By taking a limit as u ↓ 0 in part (iii) and making use of the identity in
part (ii) deduce that

E(e−pT (−x)1(T (−x)<∞)) = eΦ(p)x − ψ′(Φ(p))W (p)(x)

and hence by taking limits again as x ↓ 0,

E
(

e−pT (0)1(T (0)<∞)

)
=

{
1− ψ′(Φ(p)) 1

δ if X has bounded variation
1 if X has unbounded variation,

where δ is the drift term in the Laplace exponent if X has bounded vari-
ation.

Exercise 5 Again relying on [3] we shall make the following application of
part (iii) of the previous exercise. Suppose that B = {Bt : t ≥ 0} is a Brownian
motion. Denote

σ = inf{t > 0 : Bt = Bt = t}.

(i) Suppose that X is a descending stable- 1
2 subordinator with upward unit

drift. Show that
P(σ <∞) = P(T (0) <∞),

where T (0) is defined in Exercise 4.

(ii) Deduce from part (i) that P(σ <∞) = 1
2 .

Exercise 6 This exercise is based on the results of [4]. Suppose that X is any
spectrally negative Lévy process with Laplace exponent ψ, satisfying limt↑∞Xt =
∞. Recall that this necessarily implies that ψ′(0+) > 0. Define for each x ∈ R,

Λ0 = sup{t > 0 : Xt < 0}.

Here we work with the definition sup ∅ = 0 so that the event {Λ0 = 0} corre-
sponds to the event that X never enters (−∞, 0).

(i) Using the equivalent events {Λ0 < t} = {Xt ≥ 0, infs≥tXs ≥ 0} and the
Markov Property, show that for each q > 0 and y ∈ R

Ey(e−qΛ0) = q

∫ ∞
0

θ(q)(x− y)Px(X∞ ≥ 0)dx,

where θ(q) is the q-potential density of X.

(ii) Hence show that for y ≤ 0,

Ey(e−qΛ0) = ψ′(0+)Φ′(q)eΦ(q)y,

where Φ is the right inverse of ψ and in particular

P(Λ0 = 0) =

{
ψ′(0+)/δ if X has bounded variation with drift δ
0 if X has unbounded variation.
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(iii) Suppose now that y > 0. Use again the Strong Markov Property to deduce
that for q > 0,

Ey(e−qΛ01(Λ0>0)) = ψ′(0+)Φ′(q)Ey(e
−qτ−0 +Φ(q)X

τ
−
0 1(τ−0 <∞)).

(iv) Deduce that for y > 0 and q > 0,

Ey(e−qΛ01(Λ0>0)) = ψ′(0+)Φ′(q)eΦ(q)y − ψ′(0+)W (q)(y).
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http://arxiv.org/submit/226724

[7] Kyprianou, A.E. and Rivero, V. (2008) Special, conjugate and complete
scale functions for spectrally negative Lvy processes. Electronic Journal
of Probability Paper no 57, 167–1701.

[8] Lundberg, F. (1903) Approximerad framställning av sannolikhetsfunktio-
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