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4, place Jussieu - Case 188 - 75 252 Paris cedex 05

http://www.proba.jussieu.fr



Self-similar fragmentations

J. BERTOIN

SEPTEMBRE 2000
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Summary. We introduce a probabilistic model that is meant to describe an object that falls apart

randomly as time passes and fulfills a certain scaling property. We show that the distribution of such a

process is determined by its index of self-similarity α ∈ R, a rate of erosion c ≥ 0, and a so-called Lévy

measure that accounts for sudden dislocations. The key of the analysis is provided by a transformation

of self-similar fragmentations which enables us to reduce the study to the homogeneous case α = 0

which is treated in [6].
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1 Introduction

Informally, imagine an object with total unit mass that falls apart randomly as time passes. The
state of the system at some given time consists in the sequence of the masses of the fragments.
Suppose that its evolution is Markovian and obeys the following rule. There is a parameter
α ∈ R, called the index, such that given that the system at time t ≥ 0 consists in the ranked
sequence of masses m1 ≥ m2 ≥ . . . ≥ 0, the system at time t + r is obtained by dislocating
every mass mi independently of the other fragments to obtain a family of sub-masses, say
(mi,j, j ∈ N), where the sequence of the ratios (mi,j/mi, j ∈ N) has the same distribution as
the sequence resulting from a single unit mass fragmented up to time mα

i r. Such a random
process will be referred to as a self-similar fragmentation with index α.

Here is a simple example that is closely connected to Kingman’s coalescent [13]. Consider
a stick of length 1, which can be identified as the unit interval, and U1, . . ., a sequence of
i.i.d. uniformly distributed variables. For n = 1, . . ., cut the stick at the location Un at
the instant of the n-th jump of some Poisson process which is independent of the sequence
U1, . . .. Then the process giving the lengths of the fragments of the stick as a function of
time is easily seen to be a self-similar fragmentation with index α = 1. Related examples
based on binary splitting of intervals have been considered by Brennan and Durrett [7, 8] (in
this direction, it may be interesting to recall that the case α = 2/3 arises in a model for
polymer degradation). More recently, Aldous and Pitman [3] have constructed a self-similar
fragmentation with index 1/2 which has a central role in the study of the standard additive
coalescent, by cutting randomly the continuum random tree along its skeleton (see also [5] for
an alternative construction based on the Brownian excursion). We also refer to Aldous’ survey
[2] for more literature on fragmentation processes.

Roughly, the key result of this work is that the distribution of a self-similar fragmentation
is characterized by its index α ∈ R, a coefficient c ≥ 0 that measures the rate of erosion, and a
so-called Lévy measure ν which accounts for the sudden dislocations. More precisely, introduce
the natural state-space S↓ for the ranked sequence of sub-masses resulting from the dislocation
of a unit mass, i.e. S↓ denotes the space of decreasing numerical sequences s = (s1, s2, . . .) with
∑

si ≤ 1. A Lévy measure ν on S↓ is a measure that gives no mass to the sequence (1, 0, . . .)
and fulfills the requirement

∫

S↓
(1 − s1) ν(ds) < ∞ .

Conversely, given arbitrary numbers α ∈ R and c ≥ 0 and a measure ν on S↓ that verifies
the preceding integral condition, one can construct a self-similar fragmentation with index α,
erosion rate c and Lévy measure ν.

Our approach relies on a recent related work [6] which focuses on the so-called homogeneous
case α = 0 where the fragmentation rate does not depend of the mass of the fragments.
More precisely, the characterization alluded above has been established there for homogeneous
fragmentations, and the first purpose of this work is to extend this to the self-similar case. This
extension will be obtained by introducing a kind of random time-transformation that enables
us to change the index in a self-similar fragmentation process, and hence to reduce the study
to the homogeneous case.

This classical idea of transforming a Markov process into a simpler one by a suitable time-
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substitution raises important technical difficulties in the present setting. Specifically, it has been
pointed out by Pitman [15] that in the homogeneous case α = 0, it is much easier to analyze
fragmentations as processes with values in the space of partitions of N = {1, 2, . . .}, and this is
the key to the results in [6]. This trick is not so useful in the self-similar case α 6= 0, because
if one works in the space of partition of N, the dynamics of the fragmentation depend on the
so-called asymptotic frequencies of blocks (which correspond to the masses of the fragments),
and the latter are not continuous functionals of partitions. As a consequence, it seems hopeless
to prove the Feller property by this approach, and a fortiori, to develop techniques of random
time substitutions.

We shall circumvent this difficulty by discussing two different aspects of fragmentation. We
first consider fragmentation of the unit interval ]0, 1[ induced by a nested family of open sets, this
framework being well-suited for establishing the Feller property in the self-similar case. Then
we will turn our attention to a more general setting involving random exchangeable partitions
of N. We shall see that these two aspects are in fact essentially equivalent. This allows us
to shift the time-substitution results established for interval-fragmentations to partition-valued
fragmentations and to establish the desired characterization of self-similar fragmentations.

As an example of application, we consider the evolution as time passes of the size of the
fragment that contains a tagged point picked randomly at the initial time, independently of
the fragmentation process. We identify this process as a semi-stable Markov process in the
terminology of Lamperti [14], and its distribution is made explicit in terms of the characteristics
of the fragmentation. In some cases, such as for instance that considered by Aldous and Pitman
[3], one can recover the characteristics of the fragmentation from the law of the mass of the
tagged fragment.

2 Interval fragmentation

2.1 Definition

We write V for the space of open subsets V ⊆]0, 1[. Each V ∈ V is determined by the continuous
function χV :

χV (x) = min {|x − y| : y ∈ V c} , x ∈ [0, 1] ,

where V c = [0, 1]\V . Define the distance between two open sets U and V as the uniform
distance between the functions χU and χV , i.e.

dist(U, V ) = ||χU − χV ||∞ = max
x∈[0,1]

|χU(x) − χV (x)| .

This coincides with the Hausdorff distance between the closed complementary sets Uc and V c,
and V a compact metric space. For instance, a sequence of open intervals, say ]an, bn[ for
n = 1, . . ., converges to ]a, b[ where 0 ≤ a < b ≤ 1 if and only if lim an = a and lim bn = b, and
converges to ∅ if and only if lim(bn − an) = 0. We point out the following elementary lemma
that will be useful for our future purpose.
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Lemma 1 For every i ∈ N, let (Vn,i, n ∈ N) be a sequence in V that converges to Vi. Assume
that for each fixed n ∈ N, the open sets Vn,1, Vn,2, . . . are disjoint and that the sequence Vn,i

converges in V as i → ∞ to ∅, uniformly in n ∈ N. Then

lim
n→∞

⋃

i∈N

Vn,i =
⋃

i∈N

Vi in V.

Proof: It follows from the assumptions that the open sets V1, V2, . . . are disjoint and a fortiori
converge to ∅ as i → ∞. Set

Wn =
⋃

i∈N

Vn,i , W =
⋃

i∈N

Vi ,

and note that

χWn
=

∞
∑

i=1

χVn,i
, χW =

∞
∑

i=1

χVi
.

To complete the proof, note that by the triangular inequality, we have for every k ∈ N

||χWn
− χW ||∞ ≤

k
∑

i=1

||χVn,i
− χVi

||∞ + ||
∞
∑

i=k+1

χVn,i
||∞ + ||

∞
∑

i=k+1

χVi
||∞

=
k
∑

i=1

||χVn,i
− χVi

||∞ + sup
i≥k+1

||χVn,i
||∞ + sup

i≥k+1
||χVi

||∞ ,

where the identity stems from the fact that the open sets Vn,k+1, . . . (respectively Vk+1, . . .) are
disjoint). For every ε > 0, we can choose k large enough (independently of n) such that the
last two terms in the sum in the right-hand side are both less than ε/3. The integer k being
fixed, we can bound the first term by ε/3 whenever n is sufficiently large. 2

Next, each open set V ∈ V can be expressed as the union of disjoint open intervals, and we
call interval decomposition of V any infinite sequence (Ii, i ∈ N) of disjoint open intervals such
that V =

⋃

Ii. Of course, some of the Ii’s may be empty, and any permutation of an interval
decomposition is again an interval decomposition. We state the following simple connexion
linking convergence in V and interval decompositions.

Lemma 2 Let (Vn, n ∈ N) be a sequence of open sets that converges to V in V. Then there
exists interval decompositions (In,i, i ∈ N) and (Ii, i ∈ N) of Vn and V , respectively, such that

(i) limn→∞ In,i = Ii in V for each i ∈ N,

(ii) limi→∞ In,i = ∅ in V, uniformly in n ∈ N.

Proof: Let (Ii, i ∈ N) be an interval decomposition of V such that the sequence of the lengths
|Ii| of these intervals is non-increasing. For every i ∈ N such that Ii 6= ∅, let mi denote the
mid-point of Ii. Set dn = dist(Vn, V ) for n ∈ N, so the sequence dn converges to 0. For every
n ∈ N, set i(n) = max {i ∈ N : |Ii| > 4dn}. For every i ≤ i(n), we have χV (mi) > 2dn, and
hence χVn

(mi) > dn. Thus mi ∈ Vn, and we denote by In,i the interval component of Vn that
contains mi. It is immediate that

|In,i| > 2dn and dist(Ii, In,i) ≤ dn , i ≤ i(n) . (1)
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Note that this entails that In,i ∩ In,j = ∅ whenever i 6= j ≤ i(n), since otherwise we would
have In,i = In,j and by the triangular inequality dist(Ii, Ij) ≤ 2dn, which is absurd (recall that
χIi

(mi) > 2dn and χIj
(mi) = 0 since mi /∈ Ij).

Observe also that if J is an interval component of Vn with |J | > 6dn, then J = In,i for some
i ≤ i(n). More precisely, consider the mid-point m of J . Since χVn

(m) > 3dn, we have χV (m) >
2dn, so m ∈ V and the interval component Ii of V that contains m has length |Ii| > 4dn, that
is i ≤ i(n). The same argument as that used previously shows that dist(Ii, J) ≤ dn, and by (1)
and the triangular inequality, this forces In,i = J .

Next, we consider for every n the interval decomposition (In,i, i ∈ N) of Vn obtained by
adding to the finite sequence (In,i, i ≤ i(n)) the infinite sequence (In,i, i > i(n)) of the remaining
intervals components of Vn, where the latter are ranked according to the decreasing order of
their lengths. We see from (1) that as n → ∞, In,i converges in V to Ii provided that Ii 6= ∅.
The same holds in the case when Ii = ∅, because then i(n) < i for every n and we have pointed
out that this entails |In,i| ≤ 6dn. So all that we need is to verify the requirement (ii) of the
statement.

Fix ε > 0, take i > 3/ε, and let n be an arbitrary integer. Note that |Ii| < ε/3 (because
|I1| ≥ |I2| ≥ . . . and |I1| + . . . ≤ 1), so dist(Ii, ∅) < ε/6. First, if dn < ε/3 and i ≤ i(n), then
by (1) dist(Ii, In,i) < ε/3, and it follows from the triangular inequality that dist(In,i, ∅) < ε/2.
Second, if dn < ε/3 and i > i(n), then we have already pointed out that |In,i| ≤ 6dn, and
hence dist(In,i, ∅) ≤ 3dn < ε. Third, if dn ≥ ε/3, then i(n) ≤ 3/4ε (because |Ii| > 4ε/3 when
i ≤ i(n)), and i− i(n) > 9/4ε. This implies that there are more than 9/4ε interval components
of Vn with length at least |In,i|, so |In,i| ≤ 4ε/9 and hence dist(In,i, ∅) < 2ε/9. We have checked
(ii) and the proof is complete. 2

Finally, we introduce the space of numerical sequences

S↓ =

{

(s1, . . .) : s1 ≥ s2 ≥ . . . ≥ 0 and
∞
∑

n=1

sn ≤ 1

}

,

which is endowed with the topology of pointwise convergence. There is a natural map s : V →
S↓, where s(V ) = (s1(V ), . . .) is given by the sequence of the lengths of the component intervals
of V , ranked in the decreasing order, and it is readily checked from Lemma 2 that V → s(V )
is continuous. We are now able to introduce the deterministic notion of fragmentation of ]0, 1[.

Definition 1 (Interval fragmentation) A family F = (F (t), t ≥ 0) in V is called an interval
fragmentation if it is nested , i.e. if F (t) ⊆ F (r) whenever 0 ≤ r ≤ t. The compound process
(s ◦ F (t), t ≥ 0) given by the decreasing sequence of the lengths of the interval components, is
called the ranked fragmentation associated with F .

It is easily checked that an interval fragmentation possesses a right-limit at any t ≥ 0 and a
left-limit at any t′ > 0 which are given respectively by

F (t+) := lim
r→t+

F (r) =
⋃

r>t

F (r) , F (t′−) := lim
r→t′−

F (r) =





⋂

r<t′
F (r)





i

, (2)
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where Ai denotes the interior of A. Note that by the continuity of the map s : V → S↓, we
have

lim
r→t+

s ◦ F (r) = s ◦ F (t+) , lim
r→t′−

s ◦ F (r) = s ◦ F (t′−) .

In the converse direction, it is easily seen that an interval fragmentation F is continuous at t if
and only if its associated ranked fragmentation s ◦ F is continuous at t.

Our next purpose is to define random self-similar fragmentations. To that end, our basic
data consist in a family (pt(]0, 1[), t ≥ 0) of probability measures on V, where pt(]0, 1[) is meant
to describe the distribution of the random open set resulting from the fragmentation at time t
of the unit interval. We shall assume that the map t → pt(]0, 1[) is continuous and we construct
a family of probability kernel on V as follows.

First, recall that we are given a real number α, the index of self-similarity. For every open
interval I ⊆]0, 1[, we introduce the law p

(α)
t (I) of the fragmentation of I observed at time t by an

obvious affine transformation. More precisely, p
(α)
t (∅) is always the Dirac point mass at ∅. When

I =]a, b[ is non-void, introduce the affine function gI :]0, 1[→ I given by gI(x) = a+x(b−a). By
a slight abuse of notation, we still denote by gI the induced map on V, so that gI(V ) is an open

subset of I. We then define the probability measure p
(α)
t (I) as the image of pr(]0, 1[) by gI , with

r = t|I|α = t(b − a)α. Finally, if V ∈ V is an arbitrary open set with interval decomposition

(Ii, i ∈ N), we denote by p
(α)
t (V ) the distribution of

⋃

Xi where X1, . . . are independent random

variables distributed according to law p
(α)
t (I1), . . ., respectively. We thus have defined for each

t ≥ 0 a kernel p
(α)
t of probability measures on V.

Definition 2 (Self-similar interval fragmentation) A random interval fragmentation F = (F (t),
t ≥ 0) is called self-similar with index α ∈ R if F is a time-homogeneous Markov process which
fulfills the following conditions:

(i) F is continuous in probability and starts from F (0) =]0, 1[ a.s.

(ii) If pt(]0, 1[) denotes the law of F (t) for t ≥ 0, then the transition semigroup of F is given

by the kernels
(

p
(α)
t , t ≥ 0

)

in the notation introduced above.

Informally, (ii) means that disjoint intervals fall apart independently, which is a kind of
branching property. In the sequel, this will be referred to as the (simple) fragmentation property.
By (2), F possesses a càdlàg version given by (F (t+), t ≥ 0), where F (t+) =

⋃

ε>0 F (t + ε)
for every t ≥ 0. We shall implicitly work with that version from now on, i.e. we assume that
F (t) = F (t+) in the sequel. We shall also suppose that the fragmentation is not trivial, i.e.
F 6≡]0, 1[ with positive probability; and it is then easy to see that F (t) converges to ∅ a.s.
Therefore we shall agree that F (∞) = ∅; in this direction note that ∅ can be viewed as a
cemetery point in the terminology of the theory of Markov processes.

2.2 First properties

Throughout the rest of this section, F = (F (t), t ≥ 0) will denote some (non-trivial, càdlàg)
self-similar interval fragmentation, and P will stand for its distribution on Skorohod’s space of
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paths with values in the compact metric space V. For every open set V ∈ V, we write PV for
the fragmentation process started from V , in particular, P = P]0,1[.

The next two statements are devoted to the scaling and the Feller properties respectively,
which are most useful tools in this work. Recall the notation gI : V → V introduced above for
a generic non-void interval I, and agree that g∅(V ) = ∅ for every V ∈ V. First, the scaling
property is an immediate consequence of the very definition of a self-similar fragmentation.

Lemma 3 (Scaling property) For every open interval I ⊆]0, 1[, the distribution of the process
(gI ◦ F (t|I|α), t ≥ 0) under P is PI .

Note that more generally, the combination of the scaling and the simple fragmentation prop-
erties entails that for every V ∈ V, the law PV of the fragmentation started at V can be
constructed as follows. Introduce a sequence F1, F2, . . . of independent copies of F (started
from ]0, 1[), and pick an interval decomposition (Ii, i ∈ N) of V . Next define for every t ≥ 0
the random open set

Xt =
⋃

i∈N

gIi
◦ Fi (t|Ii|

α) . (3)

Then the distribution of the process X = (Xt, t ≥ 0) is PV .

Lemma 4 (Feller property) The semigroup
(

p
(α)
t , t ≥ 0

)

of F fulfills the Feller property, that

is for each fixed t ≥ 0 the map V → p
(α)
t (V ) is continuous on V and for each fixed V ∈ V,

p
(α)
t (V ) converges to the Dirac point mass at V when t → 0.

Proof: Let (Vn, n ∈ N) be a sequence in V converging to V , and pick interval decompositions
(In,i, i ∈ N) and (Ii, i ∈ N) of Vn and of V respectively, that fulfill the conclusions (i) and (ii)
of Lemma 2. For simplicity, we write gn,i and gi for gI when I = In,i and I = Ii, respectively.
Finally, fix t ≥ 0 and set tn,i = t|In,i|

α and ti = t|Ii|
α. Following (3), let F1, F2, . . . be a sequence

of independent copies of F , and introduce

Yn =
⋃

i∈N

gn,i ◦ Fi(tn,i) , Y =
⋃

i∈N

gi ◦ Fi(ti) .

For every i ∈ N, we have that limn→∞ tn,i = ti and it is immediate to check that limn→∞ gn,i = gi

in the sense of uniform convergence of functions on the compact metric space V. On the other
hand, recall that F is continuous in probability. Provided that ti < ∞, Fi(tn,i) converges in
probability to Fi(ti), and hence gn,i ◦ Fi(tn,i) converges in probability to gi ◦ Fi(ti). The latter
assertion also holds in the case ti = ∞ because it only occurs when Ii is empty and α < 0.
As In,i converges to ∅ as i → ∞, uniformly in n ∈ N, we have automatically that gn,i ◦ Fi(tn,i)
converges to ∅ as i → ∞, uniformly in n ∈ N.

Applying Lemma 1, we conclude that Yn converges in probability to Y . On the other hand,
we know from (3) that Yn and Y have the law p

(α)
t (Vn) and p

(α)
t (V ) respectively, and therefore

the map V → p
(α)
t (V ) is continuous. This proves the first part of the statement; the argument

for the second is similar (and easier). 2

The Feller property ensures that the (simple) fragmentation property holds more generally
for stopping times; this can be viewed as the strong fragmentation property. Our next purpose
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is to present a different extension of the simple fragmentation property which will play an
important role in our analysis.

For every x ∈]0, 1[ and every t ≥ 0, denote by Ix(t) the interval component of F (t) that
contains x if x ∈ F (t), and set Ix(t) = ∅ otherwise. Recall that the ultimate fragmentation

F (∞) is empty a.s., so we also agree that Ix(∞) = ∅. We write
(

F
(x)
t

)

t≥0
for the natural

filtration (completed by null sets) generated the process (Ix(t), t ≥ 0). We are now able to
introduce the notion of frost for an interval fragmentation, which bears roughly the same role
as stopping times for Markov processes. It is also a close relative to the so-called stopping lines
for branching processes; see Chauvin [10].

Definition 3 (Frost) A random function T :]0, 1[→ [0,∞] is called a frost for the interval
fragmentation F if the following two conditions are satisfied:

(i) For every x ∈]0, 1[, T (x) is an
(

F
(x)
t

)

-stopping time.

(ii) For x ∈]0, 1[ and y ∈ Ix(T (x)), it holds that T (x) = T (y).

Of course, a deterministic constant function is a frost. To present a non-trivial example, we
may consider T (x) = inf {t ≥ 0 : |Ix(t)| < ℓ}, the first instant at which the length of the interval
component of F containing x is less than some fixed ℓ ∈]0, 1[.

When T is a frost, note from (ii) that for every x, y ∈]0, 1[, we have either Ix(T (x)) = Iy(T (y))
or Ix(T (x))

⋂

Iy(T (y)) = ∅. This incites us to introduce the random open set

F (T ) =
⋃

x∈]0,1[

Ix(T (x)) ,

which will be referred to as the fragmentation frozen at T . On the other hand, it is immediately
seen that if T and T ′ are two frosts, then T∧T ′ is again a frost, and moreover F (T ) ⊆ F (T∧T ′).
Similarly, for every deterministic t > 0, T + t is also a frost and F (T + t) ⊆ F (T ). These
observations enable us to define the fragmentation terminated at T

F ◦ τT = (F (t ∧ T ), t ≥ 0)

and the resumed fragmentation

F ◦ θT = (F (T + t), t ≥ 0) .

The notation τ and θ refer to the classical stop and shift operators in the canonical notation
for Markov processes.

Theorem 1 (Extended fragmentation property) Let T be a frost for F . For every open set
V ∈ V, under the conditional law PV (· | F (T ) = V ′) of the fragmentation started from V and
conditioned on the frozen fragmentation F (T ) = V ′, the fragmentation terminated at T , F ◦ τT ,
and the resumed fragmentation, F ◦ θT , are independent and the latter has the law PV ′.

Proof: We shall first check by induction Theorem 1 in the case when T only takes finitely
many values. The statement is trivial when T is a deterministic constant, so let us assume
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that the extended fragmentation property has been proved for every frost taking at most n
values, and consider a frost T taking values in {t1, · · · , tn+1} where 0 ≤ t1 < · · · < tn+1 ≤ ∞.
We may apply the extended fragmentation property to the frost T ∧ tn, so conditionally on
F (T ∧ tn) = V ′, F ◦ τT∧tn and F ◦ θT∧tn are independent and F ◦ θT∧tn has the law PV ′.

We next assign a mark M(I) to each non-void interval component I of V ′ as follows: if
T (x) ≤ tn for some (and then all) x ∈ I, the mark M(I) is 0 (stop); otherwise M(I) = 1
(continue). We stress that the random mark M is measurable with respect to the sigma-
field generated by the stopped fragmentation F ◦ τT∧tn , and hence the preceding extended
fragmentation property can be reinforced as follows. Write V0 ⊆ V ′ for the open set obtained
from the interval components of V ′ having mark 0 and V1 = V ′\V (0) for that obtained from
the intervals having mark 1, and denote by F0 and F1 the resumed fragmentation F ◦ θT∧tn

restrained to V0 and V1, respectively. Then conditionally on F (T ∧ tn) = V ′ and M , F ◦ τT∧tn ,
F0 and F1 are independent, F0 has the law PV0 and F1 has the law PV1. By an application
the simple fragmentation property for F1 at time tn+1 − tn, we now easily conclude that the
extended fragmentation property holds for T .

It is now straightforward to complete the proof for a general frost T . We may approximate
T by a decreasing sequence (Tn, n ∈ N) of frosts taking only finitely many values. For instance,
one may consider

Tn(x) =
{

2−n[2nT (x) + 1] if T (x) ≤ 2n ,
∞ otherwise.

By a standard argument based on the right-continuity of the paths and the Feller property
stated in Lemma 4, we see that the extended fragmentation property at Tn propagates to T . 2

Recall that we are working with the right-continuous version of the fragmentation F . Turning
our attention to left-continuity, we conclude this section with the following property.

Corollary 1 (Quasi-left-continuity) Let (Tn, n ∈ N) be an increasing sequence of frosts, and
set T = limn→∞ Tn. Then T is a frost and limn→∞ F (Tn) = F (T ) a.s.

Proof: That the increasing limit of a sequence of frosts is again a frost is immediate. The
second assertion is established by the same argument based on the right-continuity of the path,
the Feller property, and the extended fragmentation property as in the proof of the quasi-left-
continuity for Feller processes. See for instance Proposition I.7 in [4]. 2

2.3 Changing the index of self-similarity

The purpose of this section is to present a simple transformation based on the extended frag-
mentation property which allows us to change the index of self-similarity. Recall that |Ix(t)|
denotes the length of the interval component of F (t) that contains x (with the convention that
|Ix(t)| = 0 when x /∈ F (t)), and introduce for an arbitrary β ∈ R and t ≥ 0

T
(β)
t (x) = inf

{

u ≥ 0 :
∫ u

0
|Ix(r)|

−βdr > t
}

, x ∈]0, 1[ .

It should be plain that each T
(β)
t is a frost for F . This enables us to introduce the process of

frozen fragmentations
F (β)(t) := F (T

(β)
t ) , t ≥ 0.
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Theorem 2 The process of frozen fragmentations F (β) =
(

F (β)(t), t ≥ 0
)

is a self-similar in-
terval fragmentation with index α + β.

Proof: As the function t → T
(β)
t is right-continuous and increasing, F (β) is a right-continuous

interval fragmentation; and it is clear that F (β)(0) =]0, 1[, P-a.s. Also for each t > 0, one has

T (β)
r (x) < T

(β)
t (x) whenever r < t and T (β)

r (x) < ∞, and limr↑t T
(β)
r = T

(β)
t . It follows from the

quasi-left-continuity property as stated in Corollary 1 that F (β) is continuous in probability.

Next, for every open set V ⊆]0, 1[, write QV for the distribution of F (β) under PV . On the
one hand, for u < t, the frozen fragmentation F (β)(u) = F (T (β)

u ) is measurable with respect to

the fragmentation terminated at T
(β)
t , F ◦ τ

T
(β)
t

. On the other hand, if we write F̃ = F ◦ θ
T

(β)
t

for the resumed fragmentation, then we have in the obvious notation that

T
(β)
t+r(x) − T

(β)
t (x) = T̃ (β)

r (x) whenever T
(β)
t (x) < ∞ .

Applying the extended fragmentation property at T
(β)
t , we now see that the conditional dis-

tribution of
(

F (β)(t + r), r ≥ 0
)

under PV given
(

F (β)(u), 0 ≤ u ≤ t
)

is QV ′ with V ′ = F
(β)
t .

Hence F (β) is a Markov process, and more precisely, it enjoys the fragmentation property.

Finally, we have to check the self-similarity property, which relies on the scaling property.
In this direction, let I ⊆]0, 1[ be an arbitrary non-void open interval, and recall the notation gI

introduced before Definition 2. Applying Lemma 3, we see that the distribution of F
(β)
t under

PI is the same as that of gI ◦ F (|I|αT ′
t ) under P with

T ′
t (y) = inf

{

u ≥ 0 :
∫ u

0
|Jy (|I|αr) |−βdr > t

}

,

where Jy(·) denotes the interval component of gI ◦ F (·) that contains y ∈]0, 1[. In other words,
for y = gI(x), we have Jy(·) = gI (Ix(·)) and in particular |Jy (|I|αr) | = |I||Ix (|I|αr) |. It then
follows from a few lines of elementary calculations that

|I|αT ′
t (y) = T

(β)

t|I|α+β(x) ,

and we conclude that the law of F (β)(t) under PI is the same as that of gI ◦ F (β)
(

t|I|α+β
)

under P. This shows that F (β) is a self-similar fragmentation with index α + β, and the proof
of Theorem 2 is now complete. 2

We stress that F can be recovered from F (β), more precisely we have F = (F (β))(−β) in the
obvious notation.

3 Partition-valued fragmentation

Informally, focusing on interval fragmentation may appear as a rather restrictive point of view,
and it could be more natural to consider fragmentation of abstract sets. In this direction, we
first introduce some material on partitions of integers which are mostly lifted from Evans and
Pitman [11].
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3.1 Definition

An equivalence relation Γ on N = {1, . . .} can be identified as a partition of N into a sequence
(Bn, n ∈ N) of disjoint blocks. It is convenient to agree that the indexation of blocks obeys the
following rule: Bn is the block of Γ that contains n provided that n is the smallest element in
its block, otherwise Bn = ∅. The partition that has a unique non-void block, B1 = N, will be
referred to as the trivial partition. The space of partitions of N is denoted by P; recall there
is a natural metric making P compact, which can be described as follows: for every Γ, Γ′ ∈ P,
dist(Γ, Γ′) = 2−n where n is the smallest integer such that the partitions induced by Γ and Γ′ on
{1, . . . , n} differ. Next, for every C ⊆ N and every partition Γ ∈ P, we may define a partition
Γ ◦ C of C, called the partition of C induced by Γ, as follows. We rank the elements of C in
the increasing order, i.e. C = {c1, . . .} with c1 < . . ., and we denote by Γ ◦ C the partition of
C defined by

Γ ◦ C = ({cj : j ∈ Bi} , i = 1, . . .) , (4)

where B1, . . . are the blocks of Γ. Of course Γ ◦ ∅ = (∅, . . .).

A P-valued fragmentation is a family of partitions (Π(t), t ≥ 0) such that for every 0 ≤ r ≤ t,
the partition Π(t) is finer than Π(r), in the sense that each block of Π(t) is contained into some
block of Π(r). A random P-valued fragmentation is called exchangeable if for every finite
permutation σ of N, the processes (σ ◦Π(t), t ≥ 0) and (Π(t), t ≥ 0) have the same distribution,
where σ ◦Π(t) is the random partition whose blocks are the images by σ of the blocks of Π(t).

By a fundamental result of Kingman [13] (see also Aldous [1] for a simpler proof), for each
t ≥ 0, the blocks of Π(t) have asymptotic frequencies a.s., in the sense that the limits

lim
n→∞

1

n
Card {k ≤ n : k ∈ Bi(t)} := λi(t)

exist with probability one for i = 1, . . .. We write λ↓(t) =
(

λ↓
1(t), . . .

)

for the decreasing

rearrangement of the λi(t)’s. The S↓-valued process λ↓ =
(

λ↓(t), t ≥ 0
)

will be referred to

as the ranked fragmentation corresponding to Π. We stress that λ↓(t) is not a continuous
functional of the exchangeable partition Π(t).

We call an exchangeable P-valued fragmentation Π nice if it fulfills the (apparently) stronger
assumption that with probability one, Π(t) has asymptotic frequencies for all t ≥ 0 simultane-
ously. Evans and Pitman [11] have pointed out that this requirement is always fulfilled whenever
Π has proper frequencies, in the sense that

∑∞
i=1 λi(t) = 1 a.s. for every t > 0. Similarly, it

has been observed in Section 5 of [5] that so-called homogeneous P-valued fragmentations are
always nice, and we are not aware of any exchangeable P-valued fragmentation which is not
nice.

Finally, we define self-similar P-valued fragmentation. Recall the notation (4).

Definition 4 (Self-similar P-valued fragmentation) A nice exchangeable P-valued fragmenta-
tion Π = (Π(t), t ≥ 0) is called self-similar with index α ∈ R if Π is a time-homogeneous Markov
process which fulfills the following conditions:

(i) Π starts a.s. from the trivial partition.
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(ii) The ranked fragmentation λ↓ associated to Π is continuous in probability.

(iii) For every t, r ≥ 0, the conditional distribution of Π(t + r) given Π(t) = (B1, . . .) is the law
of the random partition whose blocks are those of the partitions Π(i)(ri)◦Bi for i = 1, . . ., where
Π(1), . . . is a sequence of independent copies of Π and ri = rλi(t)

α (recall that λi(t) denotes the
asymptotic frequency of the block Bi).

3.2 Connection with interval fragmentation

Here is a prototype of an exchangeable P-valued fragmentation. Let E be an abstract space
endowed with a sigma-field E and a probability measure ρ. Consider for each t ≥ 0 a sequence
(En(t), n ∈ N) of disjoint measurable sets such that for every 0 ≤ s ≤ t and every i ∈ N there
is some j ∈ N such that Ei(t) ⊆ Ej(s). So informally we may think of E as an object that
falls apart as time runs, and of the family (En(t), n ∈ N) as the sequence of fragments at time
t. Next, pick a sequence U1, . . . of random points in E such that each Ui has the law ρ, and
U1, . . . are independent. For each t ≥ 0, consider Π(t), the random partition of N such that two
distinct integers i and j belong to the same block of Π(t) if and only if the points Ui and Uj

both belong to En(t) for some n ∈ N. It should be plain that Π is an exchangeable P-valued
process. Moreover, it follows from the strong law of large numbers that for each t ≥ 0,

lim
n→∞

1

n
Card {i ≤ n : Ui ∈ Ek(t)} = ρ(Ek(t)) , a.s.

so the ranked fragmentation λ↓ is the process that describes the ranked sequence of masses of
the fragments in the dislocation process of the space E.

We may of course apply the construction above in the special case when E =]0, 1[, ρ is the
Lebesgue measure and for each t ≥ 0, (En(t) = In(t), n ∈ N) is an interval decomposition
of F (t), where F = (F (t), t ≥ 0) is some interval fragmentation. In that case, we write
Π(t) = ΠF (t) and refer to (ΠF (t), t ≥ 0) as the P-valued fragmentation associated with the
interval fragmentation F . (To be completely rigorous, we should rather call this a version
as this process also depends on the uniform random variables U1, . . .; but since we are only
interested in the law of such P-valued fragmentation, we will not indicate the dependency on
the Ui’s). Note that the Glivenko-Cantelli theorem enables us to assert that ΠF is nice.

The following lemma is essentially straightforward.

Lemma 5 If F = (F (t), t ≥ 0) is a self-similar interval fragmentation with index α, then the
associated P-valued fragmentation (ΠF (t), t ≥ 0) is self-similar with index α, and has the same
ranked fragmentation as F , i.e. s ◦ F (t) = λ↓(t) a.s. for each t ≥ 0.

Proof: We have already observed that ΠF is a nice exchangeable P-valued fragmentation. As
F (0) =]0, 1[ a.s., the partition ΠF (0) is trivial a.s. Moreover, F is continuous in probability, and
this entails that the corresponding ranked fragmentation s◦F is also continuous in probability.
By the strong law of large numbers, s ◦ F coincides with the ranked fragmentation λ↓ of the
P-valued process ΠF , so (i) and (ii) of Definition 4 have been checked.

Next, fix t > 0 and consider an interval decomposition (In(t), n ∈ N) of F (t) (for instance
we may rank the interval components of F (t) in the decreasing order of their lengths and
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from the left to the right in the case of intervals with the same length); it is convenient to set
I0(t) = F (t)c. Introduce for n = 0, 1, . . .

βn = {k ∈ N : Uk ∈ In(t)} ,

so β0 is the set of indices corresponding to singletons in the partition ΠF (t), and the blocks of
ΠF (t) which are neither empty nor reduced to singletons coincide with the βn’s for n = 1, . . . and
In(t) 6= ∅. Whenever Ii(t) is not empty, we index the elements of βi according to the increasing
order, βi,1 < βi,2 < . . ., and set for simplicity Ui,j = Uβi,j

. It is easily seen that conditionally on
the In(t)’s and βn’s, the families of variables (Ui,1, . . .) for i = 1, . . . are independent, and more
precisely, provided that Ii(t) is not empty, Ui,1, Ui,2 . . . is a sequence of i.i.d. variables that are
uniformly distributed on Ii(t). As for r ≤ t, the partition Π(r) can be recovered from F (r), the
sequence of blocks (βn, n ∈ N), and the variables (Uj , j ∈ β0), the preceding observations easily
entail that ΠF is a Markov process, and the self-similarity property derives from that for F . 2

In the converse direction 1, we first show that given a nice exchangeable P-valued fragmen-
tation Π, we can construct an interval fragmentation (FΠ(t), t ≥ 0) having the same ranked
fragmentation as Π. For every t ≥ 0 and k ∈ N, let Bk(t) denote the block of the partition Π(t)
that contains k provided that k is the least element of its block, and Bk(t) = ∅ otherwise. Let
λk(t) be the asymptotic frequency of Bk(t), and define the instant when the k-th block appears,

tk = inf {t ≥ 0 : Bk(t) 6= ∅} .

Next, for k ≥ 2, call j ∈ N the father of k if k was an element of the j-th block immediately
before Bk emerges, that is if k ∈ Bj(tk−). Define by induction the notion of ancestor of k ≥ 1,
so that k is an ancestor of k, and the father of an ancestor of k is again an ancestor of k. Call
k′ ≥ 2 a twin brother of k if tk = tk′ and k and k′ have the same father. Finally, define for every
k ≥ 2 the predecessor p(k) of k as the largest twin brother k′ of k such that k′ < k whenever
such k′ exists, and otherwise define p(k) as the father of k. Plainly, p(k) < k for all k ≥ 2.

We then introduce for every t ≥ 0 and k ∈ N the open interval

Ik(t) = ]xk, xk + λk(t)[⊆]0, 1[ ,

where x1 = 0 and for k ≥ 2
xk = xp(k) + λp(k)(tk) .

The following properties are clear from this very construction. First Ik(t) = ∅ if t < tk and
Ik(t

′) ⊆ Ik(t) if tk ≤ t < t′. Second, if k′ 6= k is either the father of k or one of its twin brothers,
then Ik(tk) ∩ Ik′(tk) = ∅. Third, if j is the father of k ≥ 2, then Ik(t) ⊆ Ij(tk−).

Combining these elementary observations, we now see that we have Ii(t)∩Ij(t) = ∅ whenever
i 6= j (consider the largest common ancestor of i and j and the last instant when i and j
are in the same block), so the sequence of intervals (Ii(t), i ∈ N) can be viewed as interval
decomposition of an open set in ]0, 1[ which we denote by FΠ(t). It is also easy to check that
the family (FΠ(t), t ≥ 0) is nested. Indeed, let 0 ≤ r < t. We already known that if r ≥ tk,
then Ik(t) ⊆ Ik(r), and if t < tk, then Ik(t) is empty. So suppose that r < tk ≤ t and consider

1We stress that the notation ΠF and FΠ is not meant to suggest that one could be viewed as the inverse of
the other.
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the largest ancestor i of k with ti ≤ r. It is immediate that Ik(t) ⊆ Ii(r). We conclude that
(FΠ(t), t ≥ 0) is an interval fragmentation. Finally, we have by construction that the length
λk(t) of Ik(t) coincides with the asymptotic frequency of the block Bk(t).

We now state the following counterpart of lemma 5

Lemma 6 Let Π be a self-similar P-valued fragmentation with index α. Then the following
assertions hold:

(i) The interval fragmentation FΠ = (FΠ(t), t ≥ 0) constructed above is also self-similar with
index α.

(ii) The P-valued fragmentation ΠFΠ
associated to FΠ (cf. Lemma 5) has the same distribution

as Π.

Proof: (i) The statement is intuitively obvious, however making the intuition rigorous is
somewhat heavy. For every t ≥ 0, the sequence of intervals (Ik(t), k ∈ N) are constructed from
the family of partitions (Π(u), 0 ≤ u ≤ t). Choose an integer k such that Ik(t) 6= ∅ and recall
that the k-th block Bk(t) of the partition Π(t) has asymptotic frequency |Ik(t)|. Recall also from
the fragmentation property (iii) in Definition 4 that the partition Π(t + r) restricted to Bk(t)
can be expressed in the form Π̃(r|Ik(t)|

α) ◦ Bk(t), where Π̃ is independent of (Π(u), 0 ≤ u ≤ t)
and has the same distribution as Π. We shall now see that this entails that the interval
fragmentation FΠ is self-similar with index α.

Write for simplicity g = gIk(t) for the affine function that maps ]0, 1[ to Ik(t), and let k1 =
k < k2 < . . . be the ordered sequence of the elements of the block Bk(t). We claim that the
family (Iki

(t + r), i ∈ N) of intervals that result at time t + r from Ik(t) can be expressed in

the form
(

g(Ĩi), i ∈ N
)

, where the family
(

Ĩi, i ∈ N
)

is independent of (Π(u), 0 ≤ u ≤ t) and

has the same law as (Ii(r|Ik(t)|
α), i ∈ N). More precisely, denote by Ĩi(u) =]x̃i, x̃i + λ̃i(u)[ for

i = 1, . . ., the family of intervals obtained from the P-valued fragmentation Π̃ at time u. By
construction, the instant tki

at which emerges the ki-th block in the fragmentation Π can be
expressed as

tki
= tk + |Ik(t)|

αt̃i ,

where t̃i is the instant at which emerges the i-th block in the fragmentation Π̃. Also, the
asymptotic frequency of Bki

(t + u) is clearly given by

λki
(t + u) = λk(t)λ̃i (u|Ik(t)|

α) ,

It follows readily that xki
= g(x̃i) and hence

Iki
(t + r) = g (Ii (r|Ik(t)|

α)) .

This establishes our claim; more generally, a variation of this argument that now fully exploits
the fragmentation property of the P-valued process Π shows that disjoint intervals in the
interval-fragmentation FΠ fall apart independently. Putting the pieces together, this completes
the proof of (i).

(ii) For simplicity, write Π′ for ΠFΠ
. We know from Lemma 5 that Π′ a self-similar P-valued

fragmentation with index α, which has the same ranked fragmentation as Π. According to

14



Kingman [13], two exchangeable partitions with the same ranked asymptotic frequencies have
the same distribution, so the one-dimensional distributions of Π and Π′ are the same. Because
Π and Π′ both are self-similar, their semigroups are the same, and we conclude that they have
the same law. 2

3.3 Characteristics of self-similar fragmentations

We are now able to tackle the problem that motivated this work, that is the characterization of
self-similar P-valued fragmentations. In this direction, we start by recalling the results obtained
in [6] in the homogeneous case α = 0.

First, recall that S↓ denotes the natural state-space for ranked fragmentations, i.e. the space
of decreasing numerical sequences s = (s1, . . .) with

∑∞
i=1 si ≤ 1. Following Kingman [13], we

can associate to each s ∈ S↓ a unique exchangeable probability measure µs on P such that the
ranked sequence of the asymptotic frequencies of the blocks of the generic partition is λ↓ = s,
µs-a.s. Finally, call a measure ν on the space S↓ a Lévy measure if ν has no atom at (1, 0, . . .)
and verifies the integral condition

∫

S↓
(1 − s1)ν(ds) < ∞ , (5)

where s = (s1, s2, . . .) denotes a generic sequence in S↓. The mixture

µν =
∫

S↓
µsν(ds)

is a sigma-finite measure on P, called the dislocation measure corresponding to the Lévy mea-
sure ν. Next, for every integer k, denote by δk the measure on P given by the Dirac point mass
at the partition that has only two non-void blocks, {k} and N\{k}. For every c ≥ 0, call

µc = c
∞
∑

k=1

δk

the erosion measure with rate c.

Given an erosion measure µc and a dislocation measure µν , one can construct a homogeneous
P-valued fragmentation as follows. First, one considers ((∆t, kt), t ≥ 0), a Poisson point process
with values in P × N with characteristic measure M := (µc + µν)⊗ #, where # stands for the
counting measure on N. This means that for every measurable set A ⊆ P×N with M(A) < ∞,
the counting process

NA(t) = Card (u ∈ [0, t] : (∆u, ku) ∈ A) , t ≥ 0

is a Poisson process with intensity M(A), and to disjoint sets correspond independent counting
processes. One can then construct a unique P-valued process Πc,ν = (Π(t), t ≥ 0) started from
the trivial partition and with càdlàg sample paths such that Πc,ν only jumps at times t when
a point (∆t, kt) occurs in the Poisson point process, and in that case, Π(t) is the partition
obtained from Π(t−) as follows. In the notation (4), consider the partition ∆t ◦Bkt

(t−) of the
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kt-th block 2 of Π(t−) induced by ∆t. The blocks of the partition Π(t) are formed by the blocks
of ∆t◦Bkt

(t−) and the blocks Bi(t−) of Π(t−) for i 6= kt. Then Πc,ν is a homogeneous P-valued
fragmentation. Conversely, any homogeneous P-valued fragmentation Π has the same law as
Πc,ν for some unique c ≥ 0 and Lévy measure ν, see [6] for details.

It might be useful to further explain this construction. A point (∆t, kt) in the Poisson point
process affects the fragmentation if and only if the kt-th block of Π(t−) is neither empty nor
reduced to a singleton, which we shall assume in the sequel. Points in the Poisson point process
can be of two types. First, the partition ∆t may have trivial asymptotic frequencies, which
occurs if and only if ∆t has exactly two non-void blocks, say {j} and N\{j}. The effect of the
occurrence of such a point is that at time t, the kt-block of Π(t−) splits into two, more precisely
its j-th element becomes a singleton (and the other blocks are unchanged). This alone does
not affect the ranked fragmentation, in the sense that the asymptotic frequencies of Π(t−) and
Π(t) are the same; however the accumulation of such points (note that µc has an infinite total
mass when c > 0) in the Poisson point process induces a continuous erosion for the blocks of Π.
Second, ∆t may have non-trivial asymptotic frequencies, say s ∈ S↓\{(1, 0 . . .)}. When such
point (∆t, kt) occurs, the kt-block of Π(t−) is dislocated into smaller blocks, more precisely the
ranked sequence of the asymptotic frequencies of these blocks is λkt

(t−)s, where λkt
(t−) is the

asymptotic frequency of the kt-th block of Π(t−).

Recall from Theorem 2 that one can change the index in a self-similar interval fragmentation
by a suitable time-substitution. It is therefore natural to look for a similar result for P-valued
self-similar fragmentations, in order to reduce their construction to the construction described
above in the homogeneous case. In this direction, for every i ∈ N and r ≥ 0, denote by ℓi(r)
the asymptotic frequency of block of Π(r) that contains i (so that ℓi(r) = λj(r) where j is the
least element of the block that contains i at time r). Then introduce for an arbitrary β ∈ R

T
(β)
i (t) = inf

{

u ≥ 0 :
∫ u

0
ℓi(r)

−β dr > t
}

, t ≥ 0 ,

and consider the random partition Π(β)(t) of N such that i, j ∈ N are in the same block of

Π(β)(t) if and only if there are in the same block of Π
(

T
(β)
i (t)

)

(or equivalently in the same

block of Π
(

T
(β)
j (t)

)

). We are now able to state the main result of this work.

Theorem 3 (i) If Π is a self-similar P-valued fragmentation with index α, then the process

Π(β) =
(

Π(β)(t), t ≥ 0
)

is a self-similar P-valued fragmentation with index α + β. Moreover Π

can be recovered from Π(β), more precisely Π = (Π(β))(−β) in the obvious notation.

(ii) As a consequence, the law of a self-similar P-valued fragmentation is determined by its index
α ∈ R, and by the erosion coefficient c ≥ 0 and the Lévy measure ν on S↓ of the homogeneous
P-valued fragmentation Π(−α). We call (α, c, ν) the characteristics of Π.

Proof: (i) Denote by F = FΠ the interval fragmentation associated with Π and Π̃ = ΠF

the P-valued fragmentation associated to F , so that Π̃ and Π have the same law by Lemma
6(ii). Next, consider the interval fragmentation F (β) constructed from F as in Theorem 2. A

2In [6], we used a different convention to enumerate the blocks of a partition; however it is easy to check
that these two conventions yield two homogeneous fragmentations with the same distribution.
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(short) moment of reflection shows that the P-valued fragmentation ΠF (β) associated to F (β)

coincides with Π̃(β) in the obvious notation, and thus has the same distribution as Π(β). We
know from Lemma 6(i) that F is self-similar with index α, we deduce from Theorem 2 that
F (β) is self-similar with index α + β, and conclude by Lemma 5 that Π(β) is self-similar with
index α + β. Finally the identity Π = (Π(β))(−β) is immediate.

(ii) follows from (i) and the characterization of homogeneous fragmentations recalled at the
beginning of this section. 2

For instance, recall from the Introduction the example obtained by cutting the interval ]0, 1[
at i.i.d. points picked according to the uniform distribution, that arrive at the jump times of
a Poisson process, say with parameter 1. One can check that this fragmentation is self-similar
with index α = 1 and its erosion rate is c = 0. Moreover it is binary, in the sense with probability
one, when a fragment with mass m splits, it gives rises to exactly two fragments with masses
say m1 and m2 and such that m1 + m2 = m. It follows that the Lévy measure ν is carried by
the subset of S↓ consisting of decreasing sequences (s1, s2, . . .) such that s1 +s2 = 1 and s2 > 0,
and therefore is completely by the obvious identity ν(s1 ∈ dx) = 2dx for x ∈ [1/2, 1[.

We conclude this section by noting that the following construction of a self-similar P-valued
fragmentation Π with characteristics (α, c, ν) is implicit in Theorem 3: one first constructs a
homogeneous P-valued fragmentation Π̃ with erosion rate c and Lévy measure ν as in [6], and
then one takes Π = Π̃(α). In particular, this yields an interesting probabilistic interpretation for
the Lévy measure ν in terms of the evolution of the first block B1(·). More precisely, suppose
for simplicity that the erosion coefficient is c = 0, and consider the point process Σ = (Σt, t ≥ 0)
with values in S↓\{(1, 0 . . .)} defined as follows. If the asymptotic frequency λ1(·) of the first
block B1(·) is continuous at time t, then Σt = (1, 0 . . .). Otherwise, the ranked sequence of
the asymptotic frequencies of the blocks resulting at time t from the dislocation of the block
B1(t−) can be expressed in the form λ1(t−)s for some s ∈ S↓\{(1, 0 . . .)}, and we set Σt = s.
We claim that the intensity of the point process Σ (see Jacod [12]) is given by

1{λ1(t−)>0}λ1(t−)αν(ds)dt , s ∈ S↓\{(1, 0 . . .)} and t ≥ 0 . (6)

To see this, consider first the homogeneous case α = 0, and recall the construction of the
fragmentation from a Poisson point process ((∆t, kt), t ≥ 0). Then introduce the S↓-valued
Poisson point process D = (Dt, t ≥ 0) where the points Dt occur at instants t when kt = 1 and
are then given by the ranked asymptotic frequencies of the blocks of the partition ∆t. On the
one hand, by construction, the characteristic measure of Φ coincides with the Lévy measure
ν. On the other hand, a moment of reflection shows that Σt = Dt provided that λ1(t−) > 0.
This establishes (6) in the homogenenous case. The self-similar case α 6= 0 now follows from
Theorem 3.

4 Mass of a tagged fragment

In this section, we consider a self-similar fragmentation with characteristics (α, c, ν), and at the
initial time, we tag a point picked at random according to the mass distribution. Our purpose
is to describe the evolution as time passes of mass λ(·) of the tagged fragment, i.e. that contains
the tagged point. Equivalently, we may identify λ(·) = λ1(·) as the process of the asymptotic
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frequencies of the first block B1(·) in a P-valued self-similar fragmentation. In the case of an
interval fragmentation, this simply means that we introduce a random variable U uniformly
distributed on ]0, 1[ which is independent of the fragmentation process, and aim at studying
the process

λ(t) := |IU(t)| , t ≥ 0 ,

where |Ix(t)| denotes the length of the interval component of F (t) that contains x.

On the one hand, it follows from Theorem 2 that if we define

λ(−α)(t) := λ
(

T (−α)(t)
)

, t ≥ 0 , (7)

where

T (−α)(t) = inf
{

u ≥ 0 :
∫ u

0
λ(r)αdr > t

}

, t ≥ 0 ,

then the process λ(−α) =
(

λ(−α)(t), t ≥ 0
)

can be viewed as the process of the mass of the

tagged fragment in a homogeneous fragmentation with characteristics (0, c, ν).

On the other hand, we recall from Section 5 in [6] that in the homogeneous case, if we set

ξt = − log λ(−α)(t) , t ≥ 0 ,

then the process ξ = (ξt, t ≥ 0) is a subordinator, that is an increasing Lévy process, and its
law can be specified in terms of the erosion rate c and the Lévy measure ν. More precisely, its
drift coefficient coincides with the erosion coefficient c, its killing rate is

k = c +
∫

S↓



1 −
∞
∑

j=1

sj



 ν(ds) ,

and its Lévy measure

L(dx) = e−x
∞
∑

j=1

ν(− log sj ∈ dx) , x ∈]0,∞[ . (8)

Equivalently, the Laplace exponent Φ of ξ, which is determined by the identity

E ((exp(−qξt)) = exp(−tΦ(q)) , q ≥ 0 ,

is given by the Lévy-Khintchine formula

Φ(q) = c(q + 1) +
∫

S↓

(

1 −
∞
∑

n=1

sq+1
n

)

ν(ds) . (9)

Putting the pieces together, we obtain at the following description of the process of the mass
of a tagged fragment.

Corollary 2 Let Π be a self-similar fragmentation with characteristics (α, c, ν), and let ξ =
(ξt, t ≥ 0) be a subordinator with Laplace exponent Φ given by (9). Introduce the time-change

ρ(t) = inf
{

u :
∫ u

0
exp(αξr)dr > t

}

, t ≥ 0 ,

and set Zt = exp(−ξρ(t)) (with the convention that Zt = 0 if ρ(t) = ∞). Then the processes
(Zt, t ≥ 0) and (λ(t), t ≥ 0) have the same law.
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The representation of Corollary 2 can be viewed as a special case of the construction by Lam-
perti [14] of so-called semi-stable Markov processes (more precisely, Lamperti has considered
the same transformation in the more general case where ξ is a Lévy process, not necessarily a
subordinator).

It is interesting to point out that the first instant when the mass of the marked fragment
vanished (which can be thought as the time when this fragment is reduced to dust),

ζ = inf {t ≥ 0 : λ(t) = 0} ,

has the same distribution as the so-called exponential functional
∫∞
0 exp(αξr)dr, which has been

studied by Carmona et al. [9]. In particular Proposition 3.3 there shows that for α < 0, the
integral moments of ζ determine its distribution and are given in terms of the Laplace exponent
Φ by the formula

E
(

ζk
)

=
k!

Φ(−α) · · ·Φ(−kα)
, k ∈ N . (10)

To conclude this work, let us discuss two related examples. First, let us consider the fragmen-
tation introduced by Aldous and Pitman [3] in the study of the standard additive coalescent.
This is a self-similar fragmentation with index 1/2, and it has been proved in Theorem 6 of [3]
that the mass λ(t) of the tagged fragment at time t fulfills the following identity in distribution:

(λ(t), t ≥ 0)
d
= (1/(1 + σ(t)), t ≥ 0) ,

where σ(·) = inf {u ≥ 0 : Wu > ·} is the first passage process of a standard Brownian motion
(Wu, u ≥ 0). Combining this with Corollary 2, we obtain that the subordinator ξ can be taken
in the form

ξt = log (1 + σ(γt)) ,

with

γt = inf







u ≥ 0 :
∫ u

0

dr
√

1 + σ(r)
> t







.

Using the well-known fact that σ(·) is a stable subordinator with index 1/2, and more precisely
with no drift, no killing, and Lévy measure (2πx3)−1/2dx on ]0,∞[, it is easy to deduce that
the subordinator ξ has no drift, no killing rate and Lévy measure

LAP(dx) =
ex

√

2π(ex − 1)3
dx , x > 0 . (11)

Equivalently, the Laplace exponent ΦAP of ξ is given by

ΦAP(q) =
∫ ∞

0

(

1 − e−qx
) ex

√

2π(ex − 1)3
dx

= q

√

2

π

∫ ∞

0
e−qx(ex − 1)−1/2dx (integration by parts)

= q

√

2

π

∫ 1

0
tq−1/2(1 − t)−1/2dt (t = e−x) ,
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so finally

ΦAP(q) = q

√

2

π
B(q + 1/2, 1/2) . (12)

Comparing (11) with (8) readily yields the following formula for the distribution of the first
term s1 of the generic sequence s = (s1, . . .) under the Lévy measure νAP of the Aldous-Pitman
fragmentation:

νAP(s1 ∈ dx) =
(

2πx3(1 − x)3
)−1/2

dx , x ∈ [1/2, 1[ (13)

(note that all the other terms s2, s3, . . . must be less than 1/2). Identity (13) is essentially a vari-
ation of formula (39) in section 4.1 of [3]. On the other hand, it is seen from the construction of
the Aldous-Pitman fragmentation based on the continuum random tree (cf. [3]) that this frag-
mentation is binary, i.e. the Lévy measure νAP is carried by the subset of sequences (s1, s2, . . .)
with s1 > s2 > 0, s1 + s2 = 1, s3 = s4 = . . . = 0. In particular νAP(s1 < 1/2) = 0 and (13)
completely determines the Lévy measure νAP. On the other hand, we already know that the
index of self-similarity is α = 1/2, and it is clear that the erosion coefficient is c = 0 (because
the drift coefficient of ξ is zero), so we have specified the characteristics of the Aldous-Pitman
fragmentation.

Our second example is based on the Brownian excursion with unit duration, e = (e(r), 0 ≤
r ≤ 1), and is a close relative to the alternative construction of the Aldous-Pitman fragmenta-
tion in [5]. Specifically, let us consider the interval fragmentation

F (t) = {r ∈]0, 1[: e(r) > t} , t ≥ 0.

That F = (F (t), t ≥ 0) is a nested family of open sets is trivial, and it follows from standard
arguments of excursion theory (for details, see [5]) that F is self-similar with index α = −1/2. In
this framework, we see that the instant ζ when the tagged fragment vanishes is simply ζ = e(U),
where U is the tagged point. Since U is uniformly distributed on [0, 1] and independent of the
excursion, it is well-known that 2e(U) follows the Rayleigh distribution, i.e.

P (2ζ ∈ dr) = P (2e(U) ∈ dr) = r exp(−r2/2)dr , r ≥ 0 ,

and the integral moments of ζ are thus given by

E
(

ζk
)

= 2−k/2Γ(1 + k/2) , k ∈ N .

Using the identity (10), we deduce that the Laplace exponent Φe of the subordinator ξ (cf.
Corollary 2) is given by

Φe(k) = 23/2k
Γ(k + 1/2)

Γ(k + 1)
= 2k

√

2

π

Γ(k + 1/2)Γ(1/2)

Γ(k + 1)
= 2k

√

2

π
B(k + 1/2, 1/2) .

Comparing with the formula (12), we arrive at the striking identity

Φe = 2ΦAP .

This enables us to determine the characteristics of the present fragmentation. More precisely,
as Φe has zero drift, the erosion coefficient is zero, and we have already observed that the index
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is α = −1/2. On the other hand, it follows from the fact that the values of the local minima
of the Brownian path are all distinct a.s. that the present fragmentation is binary, and hence
its Lévy measure νe is again determined by Φe. More precisely, using the identity (13), we see
that

νe(s1 ∈ dx) = 2
(

2πx3(1 − x)3
)−1/2

dx , x ∈ [1/2, 1[ ,

and this completely determines νe.
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for exponential functionals of Lévy processes. In M. Yor (editor):Exponential function-
als and principal values related to Brownian motion. Biblioteca de la revista Matematica
Iberoamericana, 73–126.

[10] B. Chauvin (1991). Product martingales and stopping lines for branching Brownian motion.
Ann. Probab. 19, 1195–1205.

[11] S. N. Evans and J. Pitman (1998). Construction of Markovian coalescents. Ann. Inst. H.
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