Law of the time to absorption at zero of a (not-necessarily) symmetric stable Lévy process

Alexey Kuznetsov1 Andreas E. Kyprianou2
Juan-Carlos Pardo3 Alex Watson2

1York University, Toronto, Canada.
2University of Bath, UK.
3CIMAT, Mexico.
Stable processes

Definition I

A Lévy process X is called (strictly) α-stable if it satisfies the scaling property

$$(cX_{c^{-\alpha}t})_{t\geq 0}\bigg|_{P_x} \overset{d}{=} X|_{P_{cx}}, \quad c > 0.$$

Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow$ BM, exclude this.]

The quantity $\rho = P_0(X_t \geq 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.
Stable processes

Definition I

A Lévy process X is called (strictly) α-stable if it satisfies the scaling property

$$
(cX_{c^{-\alpha}t})_{t \geq 0} \overset{d}{\rightarrow} X_{P_{cx}}, \quad c > 0.
$$

Necessarily $\alpha \in (0, 2]$. [$\alpha = 2 \rightarrow$ BM, exclude this.]

The quantity $\rho = P_0(X_t \geq 0)$ will frequently appear as will $\hat{\rho} = 1 - \rho$.

Definition II

Let α, ρ be admissible parameters, X the Lévy process with Lévy density

$$
c_+ x^{-(\alpha+1)} \mathbb{1}_{x > 0} + c_- |x|^{-(\alpha+1)} \mathbb{1}_{x < 0}, \quad x \in \mathbb{R},
$$

no Gaussian part.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Tools</th>
<th>The symmetric case</th>
<th>The non-symmetric case</th>
<th>The law of T_0</th>
<th>Applications</th>
</tr>
</thead>
</table>

Stable processes

Additional notes:

- X does not have one-sided jumps,
- We assume that $\alpha \in (1, 2)$, in which case X is point-recurrent.
The problem

Let

$$T_0 = \inf\{ t > 0 : X_t = 0 \}$$

be the first hitting time of \{0\}. Can we find an explicit expression for

$$p(t)dt := P_1(T_0 \in dt)?$$
Problem: history

Positive, self-similar Markov processes

α-pssMp

$[0, \infty)$-valued Markov process, equipped with initial measures P_x, $x > 0$, with 0 an absorbing state, satisfying the scaling property

$$(cX_{c^{-\alpha}t})_{t \geq 0} \bigg|_{P_x} \overset{d}{=} X|_{P_{cx}}, \quad x, c > 0$$
Lamperti transform

\[(X, P_x)_{x>0} \text{ pssMp} \quad \leftrightarrow \quad (\xi, P_y)_{y \in \mathbb{R}} \text{ killed Lévy} \]

\[X_t = \exp(\xi S(t)), \quad \xi_s = \log(X_{T(s)}), \]

\[S \text{ a random time-change} \quad T \text{ a random time-change} \]
Lamperti transform

\[(X, P_x)_{x > 0} \text{ pssMp} \quad \leftrightarrow \quad (\xi, P_y)_{y \in \mathbb{R}} \text{ killed Lévy} \]

\[X_t = \exp(\xi S(t)), \quad \xi_s = \log(X_{T(s)}), \quad S \text{ a random time-change} \]

\[T \text{ a random time-change} \]

\[\begin{align*}
X \text{ never hits zero} & \quad \leftrightarrow \quad \xi \to \infty \text{ or } \xi \text{ oscillates} \\
X \text{ hits zero continuously} & \quad \leftrightarrow \quad \xi \to -\infty \\
X \text{ hits zero by a jump} & \quad \leftrightarrow \quad \xi \text{ is killed}
\end{align*} \]
Example 1

Let X be a stable process, and define $X^* t = X_t 1(t < \tau - 0)$, $t \geq 0$, where $\tau - 0 = \inf\{t > 0 : X_t < 0\}$.

Then X^* is a pssMp, with Lamperti transform ξ^*. ξ^* has Lévy density $c + e^x (e^x - 1)^{\alpha + 1} 1(x > 0) + c - e^x (1 - e^x)^{\alpha + 1} 1(x < 0)$, and is killed at rate $c - \alpha/\alpha = \Gamma(\alpha) / \Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})$.
Example 1

Let X be a stable process, and define

$$X_t^* = X_t 1_{(t < \tau_0^-)}, \quad t \geq 0,$$

where

$$\tau_0^- = \inf\{t > 0 : X_t < 0\}.$$
Example 1

Let X be a stable process, and define

$$X_t^* = X_t \mathbb{1}_{(t<\tau^-_0)}, \quad t \geq 0,$$

where

$$\tau^-_0 = \inf\{t > 0 : X_t < 0\}.$$

Then X^* is a pssMp, with Lamperti transform ξ^*.
Example 1

Let X be a stable process, and define

$$X^*_t = X_t \mathbb{1}_{(t<\tau^-)} , \quad t \geq 0,$$

where

$$\tau^- = \inf \{ t > 0 : X_t < 0 \}.$$

Then X^* is a pssMp, with Lamperti transform ξ^*. ξ^* has Lévy density

$$c_+ \frac{e^x}{(e^x - 1)^{\alpha+1}} \mathbb{1}_{(x>0)} + c_- \frac{e^x}{(1 - e^x)^{\alpha+1}} \mathbb{1}_{(x<0)},$$

and is killed at rate $c_- / \alpha = \frac{\Gamma(\alpha)}{\Gamma(\alpha \hat{\rho}) \Gamma(1 - \alpha \hat{\rho})}$.
Example 2

Let X be a symmetric α-stable process with $\alpha \in (1, 2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t< T_0)}, \quad t \geq 0.$$
Example 2

Let X be a **symmetric** α-stable process with $\alpha \in (1, 2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t < T_0)}, \quad t \geq 0.$$

Then R is a pmM with Lamperti-transform $\xi = \xi^L \oplus \xi^C$, such that

(i) The Lévy process ξ^L has characteristic exponent

$$\Psi^*(\theta) - k/\alpha, \quad \theta \in \mathbb{R},$$

where Ψ^* is the characteristic exponent of the process ξ^*.

(ii) The process ξ^C is a compound Poisson process whose jumps occur at rate k/α, whose Lévy density is

$$\pi^C(y) = k \frac{e^y}{(1 + e^y)^{\alpha+1}}, \quad y \in \mathbb{R}.$$
Example 2

Let X be an α-stable process with $\alpha \in (1, 2)$, and define

$$R_t = |X_t| \mathbb{1}_{(t<T_0)}, \quad t \geq 0.$$

Then R is a pssMp with Lamperti-transform $\xi = \xi^L \oplus \xi^C$, such that

(i)

$$\psi(\theta) = 2^{\alpha} \frac{\Gamma(\alpha/2 - i\theta/2)}{\Gamma(-i\theta/2)} \frac{\Gamma(1/2 + i\theta/2)}{\Gamma((1-\alpha)/2 + i\theta/2)}, \quad \theta \in \mathbb{R}.$$

(ii) For later convenience we also note $\psi(z) := \log \mathbb{E} e^{-z\alpha \xi_1}$ is given by

$$\psi(z) = -2^{\alpha} \frac{\Gamma(1/2 - \alpha z/2)}{\Gamma(1/2 - \alpha(1+z)/2)} \frac{\Gamma(\alpha(1+z)/2)}{\Gamma(\alpha z/2)}, \quad \text{Re } z \in (-1, 1/\alpha).$$
Standard theory for pssMp

(i) \((T_0, P_1)\) has the same law as \((I(\alpha \xi), \mathbb{P}_0)\), where

\[I(\alpha \xi) = \int_0^\infty e^{\alpha \xi t} \, dt\]
Standard theory for pssMp

(i) (T_0, P_1) has the same law as $(I(\alpha \xi), P_0)$, where

\[I(\alpha \xi) = \int_0^\infty e^{\alpha \xi t} \, dt \]

(ii) If $\mathcal{M}(s) := \mathbb{E}_0[I(\alpha \xi)^{s-1}]$, $s \in \mathbb{C}$, then when the right hand side is well defined,

\[\mathcal{M}(s + 1) = -\frac{s}{\psi(-s)} \mathcal{M}(s), \]
Standard theory for pssMp

(i) (T_0, P_1) has the same law as $(I(\alpha \xi), \mathbb{P}_0)$, where

$$I(\alpha \xi) = \int_0^\infty e^{\alpha \xi t} \, dt$$

(ii) If $\mathcal{M}(s) := \mathbb{E}_0[I(\alpha \xi)^{s-1}]$, $s \in \mathbb{C}$, then when the right hand side is well defined,

$$\mathcal{M}(s + 1) = -\frac{s}{\psi(-s)} \mathcal{M}(s),$$

(iii) Because of the explicit form of ψ, we can guess (and then prove) that

$$\mathbb{E}_1[T_0^{s-1}] = \sin(\pi/\alpha) \frac{\cos\left(\frac{\pi \alpha}{2}(s - 1)\right)}{\sin\left(\pi(s - 1 + \frac{1}{\alpha})\right)} \frac{\Gamma(1 + \alpha - \alpha s)}{\Gamma(2 - s)},$$

for $\text{Re} \, s \in (-\frac{1}{\alpha}, 2 - \frac{1}{\alpha})$.
Markov additive processes (MAPs)

Let E be a finite state space and $(\mathcal{G}_t)_{t \geq 0}$ a standard filtration. A càdlàg process (ξ, J) in $\mathbb{R} \times E$ with law \mathbb{P} is called a **Markov additive process (MAP)** with respect to $(\mathcal{G}_t)_{t \geq 0}$ if $(J(t))_{t \geq 0}$ is a continuous-time, irreducible Markov chain in E, and the following property is satisfied, for any $i \in E$, $s, t \geq 0$:

Given $\{J(t) = i\}$, the pair $(\xi(t + s) - \xi(t), J(t + s))$ is independent of \mathcal{G}_t, and has the same distribution as $(\xi(s) - \xi(0), J(s))$ given $\{J(0) = i\}$.

Pathwise description of a MAP

The pair \((\xi, J)\) is a Markov additive process if and only if, for each \(i, j \in E\), there exist a sequence of iid Lévy processes \((\xi^n_i)_{n \geq 0}\) and a sequence of iid random variables \((U^n_{ij})_{n \geq 0}\), independent of the chain \(J\), such that if \(T_0 = 0\) and \((T_n)_{n \geq 1}\) are the jump times of \(J\), the process \(\xi\) has the representation

\[
\xi(t) = \mathbb{1}_{(n>0)}(\xi(T_n^-) + U^n_{J(T_n^-), J(T_n)} + \xi^n_{J(T_n)}(t - T_n)),
\]

for \(t \in [T_n, T_{n+1})\), \(n \geq 0\).
Take the statespace of the MAP to be $E = \{1, 2\}$.
Take the statespace of the MAP to be $E = \{1, 2\}$.

Let

$$X_t = x \exp \{ \xi(\tau(t)) + i\pi(J(\tau(t)) + 1) \quad 0 \leq t < T_0, \}$$

where

$$\tau(t) = \inf \left\{ s > 0 : \int_0^s \exp(\alpha \xi(u)) du > t|x|^{-\alpha} \right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$
Take the statespace of the MAP to be $E = \{1, 2\}$.

Let

$$X_t = x \exp \{ \xi(\tau(t)) + i\pi (J(\tau(t)) + 1) \} \quad 0 \leq t < T_0,$$

where

$$\tau(t) = \inf \left\{ s > 0 : \int_0^s \exp(\alpha \xi(u)) du > t|x|^{-\alpha} \right\}$$

and

$$T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du.$$

Then X_t is a real-valued self-similar Markov process in the sense that the law of $(cX_{tc^{-\alpha}} : t \geq 0)$ under P_x is P_{cx}.
rssMps, MAPs, Lamperti-Kiu (Chaumont, Panti, Rivero)

- Take the statespace of the MAP to be $E = \{1, 2\}$.
- Let
 \[X_t = x \exp \{ \xi(\tau(t)) + i\pi(J(\tau(t))) + 1 \} \quad 0 \leq t < T_0, \]
 where
 \[\tau(t) = \inf \left\{ s > 0 : \int_0^s \exp(\alpha \xi(u)) du > t|x|^{-\alpha} \right\} \]
 and
 \[T_0 = |x|^{-\alpha} \int_0^\infty e^{\alpha \xi(u)} du. \]
- Then X_t is a real-valued self-similar Markov process in the sense that the law of $(cX_{tc^{-\alpha}} : t \geq 0)$ under P_x is P_{cx}.
- The converse (within a special class of rssMps) is also true.
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write $G(z)$ for the $N \times N$ matrix whose (i, j)th element is $G_{ij}(z)$.
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write $G(z)$ for the $N \times N$ matrix whose (i,j)th element is $G_{ij}(z)$.
- Let
 \[F(z) = \text{diag}(\psi_1(z), \ldots, \psi_N(z)) + Q \circ G(z), \]
 where \circ indicates elementwise multiplication. (1)
Characteristics of a MAP

- Denote the transition rate matrix of the chain J by $Q = (q_{ij})_{i,j \in E}$.
- For each $i \in E$, the Laplace exponent of the Lévy process ξ_i will be written ψ_i (when it exists).
- For each pair of $i, j \in E$, define the Laplace transform $G_{ij}(z) = \mathbb{E}(e^{zU_{ij}})$ of the jump distribution U_{ij} (when it exists).
- Write $G(z)$ for the $N \times N$ matrix whose (i,j)th element is $G_{ij}(z)$.
- Let
 \[F(z) = \text{diag}(\psi_1(z), \ldots, \psi_N(z)) + Q \circ G(z), \]
 \[\text{(1)} \]
 (when it exists), where \circ indicates elementwise multiplication.
- The matrix exponent of the MAP (ξ, J) is given by
 \[\mathbb{E}_i(e^{z \xi(t)}; J(t) = j) = (e^{F(z)t})_{i,j}, \]
 \[i, j \in E, \]
 (when it exists).
An α-stable process is a rssMp. Remarkably (thanks to work of Chaumont, Panti and Rivero) we can compute precisely its matrix exponent explicitly.
An α-stable process is a rssMp

- An α-stable process is a rssMp. Remarkably (thanks to work of Chaumont, Panti and Rivero) we can compute precisely its matrix exponent explicitly.

- Denote the underlying MAP (ξ, J), we prefer to give the matrix exponent of $(-\alpha \xi, J)$ as follows:

$$F(z) = \begin{pmatrix}
\frac{\Gamma(\alpha(1 + z))\Gamma(1 - \alpha z)}{\Gamma(\alpha\hat{\rho} + \alpha z)\Gamma(1 - \alpha\hat{\rho} - \alpha z)} & \frac{\Gamma(\alpha(1 + z))\Gamma(1 - \alpha z)}{\Gamma(\alpha\hat{\rho})\Gamma(1 - \alpha\hat{\rho})} \\
-\frac{\Gamma(\alpha(1 + z))\Gamma(1 - \alpha z)}{\Gamma(\alpha\hat{\rho} + \alpha z)\Gamma(1 - \alpha\hat{\rho} - \alpha z)} & -\frac{\Gamma(\alpha(1 + z))\Gamma(1 - \alpha z)}{\Gamma(\alpha\rho + \alpha z)\Gamma(1 - \alpha\rho - \alpha z)}
\end{pmatrix}$$

for $\text{Re } z \in (-1, 1/\alpha)$.
Cramér condition for a MAP

Proposition

(i) Suppose that $z \in \mathbb{C}$ is such that $F(z)$ is defined. Then, the matrix $F(z)$ has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of \mathbb{R}. Then, the leading eigenvalue κ of F is smooth and convex on D.

Cramér condition for a MAP

Proposition

(i) Suppose that $z \in \mathbb{C}$ is such that $F(z)$ is defined. Then, the matrix $F(z)$ has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of \mathbb{R}. Then, the leading eigenvalue κ of F is smooth and convex on D.

Assumption (Cramér condition for a MAP)

There exists $z_0 < 0$ such that $F(s)$ exists on $(z_0, 0)$, and some $\theta \in (0, -z_0)$, called the Cramér number, such that $\kappa(-\theta) = 0$.
Cramér condition for a MAP

Proposition

(i) Suppose that $z \in \mathbb{C}$ is such that $F(z)$ is defined. Then, the matrix $F(z)$ has a real simple eigenvalue $\kappa(z)$, which is larger than the real part of all its other eigenvalues.

(ii) Suppose that F is defined in some open interval D of \mathbb{R}. Then, the leading eigenvalue κ of F is smooth and convex on D.

Assumption (Cramér condition for a MAP)

There exists $z_0 < 0$ such that $F(s)$ exists on $(z_0, 0)$, and some $\theta \in (0, -z_0)$, called the Cramér number, such that $\kappa(-\theta) = 0$.

Note that this dictates “$\kappa'(0) > 0$” which ensures that $\lim_{t \uparrow \infty} \frac{\xi_t}{t} = \kappa'(0) > 0$.
For a MAP \(\xi \), let

\[I(-\xi) = \int_0^\infty \exp(-\xi(t)) \, dt. \]
Integrated exponential MAPs

For a MAP ξ, let

$$I(-\xi) = \int_0^\infty \exp(-\xi(t)) \, dt.$$

One way to characterise the law of $I(-\xi)$ is via its Mellin transform, which we write as $\mathcal{M}(s)$. This is the vector in \mathbb{R}^N whose ith element is given by

$$\mathcal{M}_i(s) = \mathbb{E}_i[I(-\xi)^{s-1}], \quad i \in E.$$
Proposition

Suppose that ξ satisfies the Cramér condition with Cramér number $\theta \in (0, 1)$. Then, $\mathcal{M}(s)$ is finite and analytic when $\Re s \in (0, 1 + \theta)$, and we have the following vector-valued functional equation:

$$\mathcal{M}(s + 1) = -s(F(-s))^{-1}\mathcal{M}(s), \text{ for } s \in (0, \theta).$$
Back to the case of an α-stable process, $\alpha \in (1, 2)$

- Suffices to consider the case that the stable process starts from $|x| = 1$.

Back to the case of an α-stable process, $\alpha \in (1, 2)$

- Suffices to consider the case that the stable process starts from $|x| = 1$.
- Recall that $T_0 = \int_0^{\infty} \exp\{-(-\alpha \xi(u))\} du$ and that $E = \{1, 2\}$
Back to the case of an \(\alpha \)-stable process, \(\alpha \in (1, 2) \)

- Suffices to consider the case that the stable process starts from \(|x| = 1 \).
- Recall that \(T_0 = \int_0^\infty \exp\{-(-\alpha \xi(u))\}du \) and that \(E = \{1, 2\} \).
- It is obvious (using asymmetry) that \(\mathbb{E}_1(T_0^{s-1}) \) is the same expression as \(\mathbb{E}_2(T_0^{s-1}) \) modulo interchanging the roles of \(\rho \) and \(\hat{\rho} \).
Back to the case of an \(\alpha \)-stable process, \(\alpha \in (1, 2) \)

- Suffices to consider the case that the stable process starts from \(|x| = 1 \).
- Recall that \(T_0 = \int_0^\infty \exp\{-(-\alpha \xi(u))\} du \) and that \(E = \{1, 2\} \)
- It is obvious (using asymmetry) that \(E_1(T_0^{s-1}) \) is the same expression as \(E_2(T_0^{s-1}) \) modulo interchanging the roles of \(\rho \) and \(\hat{\rho} \).
- Easy to check that \(\kappa(1/\alpha - 1) = 0 \), i.e. \(\theta = 1 - 1/\alpha < 1 \).
Back to the case of an α-stable process, $\alpha \in (1, 2)$

- Suffices to consider the case that the stable process starts from $|x| = 1$.
- Recall that $T_0 = \int_0^\infty \exp\{-(-\alpha \xi(u))\}du$ and that $E = \{1, 2\}$
- It is obvious (using asymmetry) that $E_1(T_0^{s-1})$ is the same expression as $E_2(T_0^{s-1})$ modulo interchanging the roles of ρ and $\hat{\rho}$.
- Easy to check that $\kappa(1/\alpha - 1) = 0$, i.e. $\theta = 1 - 1/\alpha < 1$.
- **Guess** a solution to the vector-valued functional equation and then **verify uniqueness**

Theorem

For $-1/\alpha < \text{Re}(s) < 2 - 1/\alpha$ we have

$$E_1[T_0^{s-1}] = \frac{\sin\left(\frac{\pi}{\alpha}\right) \sin\left(\pi \hat{\rho}(1 - \alpha + \alpha s)\right)}{\sin(\pi \hat{\rho}) \sin\left(\frac{\pi}{\alpha}(1 - \alpha + \alpha s)\right)} \frac{\Gamma(1 + \alpha - \alpha s)}{\Gamma(2 - s)}.$$
Inversion (rational $\alpha \in (1, 2)$): $p(t) = dP_1(T_0 \leq t)/dt$

If $\alpha = m/n$ (where m and n are coprime natural numbers) then for all $t > 0$ we have

$$p(t) = \frac{\sin \left(\frac{\pi}{\alpha} \right)}{\pi \sin(\pi \hat{\alpha})} \sum_{k \geq 1, \atop k \neq -1 \mod m} \sin(\pi \hat{\alpha}(k + 1)) \frac{\sin \left(\frac{\pi k}{\alpha} \right)}{\sin \left(\frac{\pi}{\alpha} (k + 1) \right)} \frac{\Gamma \left(\frac{k}{\alpha} + 1 \right)}{k!} (-1)^{k-1} t^{1 - \frac{k}{\alpha}}$$

$$- \frac{\sin \left(\frac{\pi}{\alpha} \right)^2}{\pi \sin(\pi \hat{\alpha})} \sum_{k \geq 1, \atop k \neq 0 \mod n} \sin(\pi \alpha \hat{\alpha}k) \frac{\Gamma \left(k - \frac{1}{\alpha} \right)}{\sin(\pi \alpha k) \Gamma (\alpha k - 1)} t^{-k + 1 + \frac{1}{\alpha}}$$

$$- \frac{\sin \left(\frac{\pi}{\alpha} \right)^2}{\pi^2 \alpha \sin(\pi \hat{\alpha})} \sum_{k \geq 1} (-1)^{km} \frac{\Gamma \left(kn - \frac{1}{\alpha} \right)}{(km - 2)!} R_k(t) t^{-kn + 1 + \frac{1}{\alpha}},$$

where

$$R_k(t) := \pi \alpha \hat{\alpha} \cos(\pi \hat{\alpha} km)$$

$$- \sin(\pi \hat{\alpha} km) \left[\pi \cot \left(\frac{\pi}{\alpha} \right) - \psi(kn - \frac{1}{\alpha}) + \alpha \psi(km - 1) + \ln(t) \right].$$

The three series converge uniformly for $t \in [\varepsilon, \infty)$ and any $\varepsilon > 0$.
Inversion (almost every irrational $\alpha \in (1, 2)$)

Define $||x|| = \min_{n \in \mathbb{Z}} |x - n|$, and

$$\mathcal{L} = \mathbb{R} \setminus (\mathbb{Q} \cup \{ x \in \mathbb{R} : \lim_{n \to \infty} \frac{1}{n} \ln ||nx|| = 0 \}).$$

If $\alpha \notin \mathcal{L} \cup \mathbb{Q}$ then

$$p(t) = \frac{\sin \left(\frac{\pi}{\alpha} \right)}{\pi \sin(\pi \hat{\rho})} \sum_{k \geq 1} \sin(\pi \hat{\rho}(k + 1)) \frac{\sin \left(\frac{\pi}{\alpha} k \right)}{\sin \left(\frac{\pi}{\alpha} (k + 1) \right)} \frac{\Gamma \left(\frac{k}{\alpha} + 1 \right)}{k!} (-1)^{k-1} t^{-1 - \frac{k}{\alpha}}$$

$$- \frac{\sin \left(\frac{\pi}{\alpha} \right)^2}{\pi \sin(\pi \hat{\rho})} \sum_{k \geq 1} \frac{\sin(\pi \alpha \hat{\rho}k)}{\sin(\pi \alpha k)} \frac{\Gamma \left(\frac{k - 1}{\alpha} \right)}{\Gamma(\alpha k - 1)} t^{-k - 1 + \frac{1}{\alpha}}.$$

The two series in the right-hand side of the above formula converge uniformly for $t \in [\varepsilon, \infty)$ and any $\varepsilon > 0$.
Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an α stable process with $\alpha \in (1, 2)$ and let h the function

$$h(x) = -\Gamma(1 - \alpha) \frac{\sin(\pi \alpha \hat{\rho})}{\pi} x^{\alpha - 1}, \quad x > 0,$$

and the same expression with $\hat{\rho}$ replaced by ρ when $x < 0$.

- The function h is invariant for the stable process killed on hitting 0, that is,

$$E_x[h(X_t), t < T_0] = h(x), \quad t > 0, \ x \neq 0. \quad (2)$$

Therefore, we may define a family of measures P_X^\uparrow by

$$P_X^\uparrow(\Lambda) = \frac{1}{h(x)} E_x[h(X_t) \mathbb{1}_\Lambda, t < T_0], \quad x \neq 0, \ \Lambda \in \mathcal{F}_t,$$

for any $t \geq 0$.
Conditioning to avoid zero (Chaumont, Panti, Rivero)

Let X be an α stable process with $\alpha \in (1, 2)$ and let h the function

$$h(x) = -\Gamma(1 - \alpha) \frac{\sin(\pi \alpha \hat{\rho})}{\pi} x^{\alpha-1}, \quad x > 0,$$

and the same expression with $\hat{\rho}$ replaced by ρ when $x < 0$.

- The function h can be represented as

$$h(x) = \lim_{q \downarrow 0} \frac{P_x(T_0 > e_q)}{n(\zeta > e_q)}, \quad x \neq 0,$$

where e_q is an independent exponentially distributed random variable with parameter q. Furthermore, for any stopping time T and $\Lambda \in \mathcal{F}_T$, and any $x \neq 0$,

$$\lim_{q \downarrow 0} P_x(\Lambda, T < e_q | T_0 > e_q) = P_x^\uparrow(\Lambda).$$
Another representation of P

- $P_x(T_0 > t) = P_1(T_0 > x^{-\alpha} t), \text{ for } x > 0, t \geq 0.$
Another representation of P:

- $P_x(T_0 > t) = P_1(T_0 > x^{-\alpha} t)$, for $x > 0$, $t \geq 0$.
- The density of T_0

$$p(t) = -\frac{\sin^2(\pi/\alpha) \sin(\pi\alpha \rho) \Gamma(1 - 1/\alpha)}{\pi \sin(\pi\bar{\rho}) \sin(\pi\alpha) \Gamma(\alpha - 1)} t^{1/\alpha - 2} + O(t^{-1/\alpha - 1}).$$
Another representation of P

- $P_x(T_0 > t) = P_1(T_0 > x^{-\alpha}t)$, for $x > 0$, $t \geq 0$.
- The density of T_0

$$p(t) = -\frac{\sin^2(\pi/\alpha) \sin(\pi \alpha \rho) \Gamma(1 - 1/\alpha)}{\pi \sin(\pi \bar{\rho}) \sin(\pi \alpha) \Gamma(\alpha - 1)} t^{1/\alpha - 2} + O(t^{-1/\alpha - 1}).$$

- Stable (inverse) local time at zero:

$$n(\zeta \in dt) = \frac{\alpha - 1}{\Gamma(1/\alpha)} \frac{\sin(\pi / \alpha)}{\cos(\pi (\rho - 1/2))} t^{1/\alpha - 2} dt, \quad t \geq 0.$$
Another representation of P

- \(P_x(T_0 > t) = P_1(T_0 > x^{-\alpha} t) \), for \(x > 0, \ t \geq 0 \).
- The density of \(T_0 \)
 \[
p(t) = -\frac{\sin^2(\pi/\alpha) \sin(\pi \alpha \rho) \Gamma(1 - 1/\alpha)}{\pi \sin(\pi \bar{\rho}) \sin(\pi \alpha)} \frac{\Gamma(\alpha - 1)}{t^{1/\alpha - 2}} + O(t^{-1/\alpha - 1}).
\]
- Stable (inverse) local time at zero:
 \[
n(\zeta \in dt) = \frac{\alpha - 1}{\Gamma(1/\alpha)} \frac{\sin(\pi/\alpha)}{\cos(\pi (\rho - 1/2))} t^{1/\alpha - 2} dt, \quad t \geq 0.
\]
- Verify directly
 \[
h(x) = \lim_{s \to \infty} \frac{P_x(T_0 > s)}{n(\zeta > s)}.
\]
Another representation of P^\uparrow

- For any a.s. finite stopping time T and $\Lambda \in \mathcal{F}_T$,

$$P_x(\Lambda | T_0 > T + s)$$

$$= E_x \left[\frac{P_x(1_\Lambda, T_0 > T + s | \mathcal{F}_T)}{P_x(T_0 > T + s)} \right]$$

$$= E_x \left[1_\Lambda 1(T_0 > T) \frac{P_{X_T}(T_0 > s)}{P_x(T_0 > T + s)} \right]$$

$$= E_x \left[1_\Lambda 1(T_0 > T) \frac{h(X_T)}{h(x)} \frac{P_{X_T}(T_0 > s)}{h(X_T)n(\zeta > s)} \frac{n(\zeta > s)}{n(\zeta > T + s)} \frac{h(x)n(\zeta > T + s)}{P_x(T_0 > T + s)} \right].$$

- For any a.s. stopping time T, $\Lambda \in \mathcal{F}_T$,

$$P_x^\uparrow(\Lambda) = \lim_{s \to \infty} P_x(\Lambda | T_0 > T + s).$$