Spines, backbones and orthopedic surgery.

Simon Harris, Marion Hesse and Andreas Kyprianou

Department of Mathematical Sciences, University of Bath
Motivation
Motivation

- Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.
Motivation

- Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

- Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.
Motivation

- Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

- Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.

- It is also a natural question to ask how such a process behaves as the strip becomes thinner.
Motivation

- Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers branching Brownian motion with a near critical drift towards an absorbing barrier at the origin.

- Their analysis revolves around the behaviour of branching Brownian motion conditioned to stay in a strip next to the origin.

- It is also a natural question to ask how such a process behaves as the strip becomes thinner.

- Specifically, is there a critical width below which there is no possibility of surviving and how does the process behave at criticality?
Branching Brownian motion in a strip \((0, K)\)

Particles execute Brownian motion with killing on exiting \((0, K)\).

Particles undergo dyadic branching at constant rate \(\beta > 0\).
Branching Brownian motion in a strip \((0, K)\)

\[
\mathbb{P}_x^K \text{ denotes the law of the process with one initial ancestor issued from } x \in (0, K).
\]
Branching Brownian motion in a strip \((0, K)\)

\(\mathbb{P}^K_x\) denotes the law of the process with one initial ancestor issued from \(x \in (0, K)\).

Particles execute Brownian motion with killing on exiting \((0, K)\).
Branching Brownian motion in a strip \((0, K)\)

- \(\mathbb{P}_x^K\) denotes the law of the process with one initial ancestor issued from \(x \in (0, K)\).
- Particles execute Brownian motion with killing on exiting \((0, K)\).
- Particles undergo dyadic branching at constant rate \(\beta > 0\).
Branching Brownian motion in a strip \((0, K)\)

- \(\mathbb{P}_x^K\) denotes the law of the process with one initial ancestor issued from \(x \in (0, K)\).
- Particles execute Brownian motion with killing on exiting \((0, K)\).
- Particles undergo dyadic branching at constant rate \(\beta > 0\).
- \(Z = \{Z_t(\cdot) : t \geq 0\}\), where \(Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot)\), is the sequence of random measures which describes the evolution of particles.
Branching Brownian motion in a strip \((0, K)\)

- \(\mathbb{P}^K_x\) denotes the law of the process with one initial ancestor issued from \(x \in (0, K)\).
- Particles execute Brownian motion with killing on exiting \((0, K)\).
- Particles undergo dyadic branching at constant rate \(\beta > 0\).
- \(Z = \{Z_t(\cdot) : t \geq 0\}\), where \(Z_t(\cdot) = \sum_{i=1}^{N_t} \delta_{x_i(t)}(\cdot)\), is the sequence of random measures which describes the evolution of particles.
- The process becomes extinct at time \(\zeta^K := \inf\{t > 0 : Z_t(0, K) = 0\}\).
Criticality: What can we say about $\phi_K(x) := \mathbb{P}^K_x(\zeta^K < \infty)$?
Criticality: What can we say about $\phi_K(x) := \mathbb{P}_x^K(\zeta^K < \infty)$?

- The Engländler-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.
Criticality: What can we say about $\phi_K(x) := \mathbb{P}_x^K(\zeta^K < \infty)$?

- The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.

- Critical width: K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2} \Delta + \beta$ on $(0, K)$.
Critically: What can we say about $\phi_K(x) := \mathbb{P}_x^K(\zeta^K < \infty)$?

- The Engländler-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.

- Critical width: K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2} \Delta + \beta$ on $(0, K)$.

- A straightforward exercise to show that $\lambda_c(K) = \beta - \pi^2/2K^2$ [coming from the ‘ground state’ positive eigen-function $\sin(\pi x/K)$] and hence $K^* = \pi/\sqrt{2\beta}$.
Criticality: What can we say about $\phi_K(x) := \mathbb{P}_x^K(\zeta^K < \infty)$?

- The Engländer-Pinsky local extinction criterion hints that we should expect to see $\mathbb{P}_x^K(\zeta^K < \infty) = 1$ for all K sufficiently small.

- **Critical width:** K^* such that $\lambda_c(K^*) = 0$ where $\lambda_c(K)$ is the generalised principle eigen-value of the operator $\frac{1}{2}\triangle + \beta$ on $(0, K)$.

- A straightforward exercise to show that $\lambda_c(K) = \beta - \pi^2/2K^2$ [coming from the ‘ground state’ positive eigen-function $\sin(\pi x/K)$] and hence $K^* = \pi/\sqrt{2\beta}$.

- **Theorem:** (i) When $K > K^*$ then $\phi_K \in (0, 1)$ on $(0, K)$ and is the unique solution to the ODE

\[
\frac{1}{2}f'' + \beta(f^2 - f) = 0 \text{ on } (0, K) \text{ and } f(0) = f(K) = 1. \tag{1}
\]

(ii) When $K \leq K^*$ then $\phi_K \equiv 1$ and the ODE (1) has no solutions valued in $[0, 1]$ other than the trivial ones.
Intuition: finding a spine is equivalent to survival.
Intuition: finding a spine is equivalent to survival.

- Martingale density to condition a Brownian motion \(\{B_t : t \geq 0\} \) to stay in the interval \((0, K)\) is

\[
e^{\frac{\pi^2 t}{2K^2}} \sin\left(\frac{\pi B_t}{K}\right) 1_{\{t < \tau(0, K)\}}, \quad t \geq 0.
\]
Intuition: finding a spine is equivalent to survival.

- Martingale density to condition a Brownian motion \(\{B_t : t \geq 0\} \) to stay in the interval \((0, K)\) is
 \[
e^{\frac{\pi^2 t}{2K^2}} \sin(\frac{\pi B_t}{K}) \mathbf{1}_{\{t < \tau(0, K)\}}, \quad t \geq 0.
\]

- Martingale density to condition \(Z \) to survive
 \[
 M_t := \int_{(0, K)} e^{(\frac{\pi^2}{2K^2} - \beta)t} \sin(\frac{\pi x}{K}) Z_t(dx), \quad t \geq 0,
 \]
 induces a spine decomposition:
Intuition: finding a spine is equivalent to survival.

- Martingale density to condition a Brownian motion \(\{B_t : t \geq 0\} \) to stay in the interval \((0, K)\) is

 \[e^{\frac{\pi^2 t}{2K^2}} \sin(\frac{\pi B_t}{K}) \mathbf{1}_{\{t < \tau(0, K)\}}, \quad t \geq 0. \]

- Martingale density to condition \(Z \) to survive

 \[M_t := \int_{(0, K)} e^{\left(\frac{\pi^2}{2K^2} - \beta\right)t} \sin(\frac{\pi x}{K}) Z_t(dx), \quad t \geq 0, \]

 induces a spine decomposition:

- (i) Run a Brownian motion conditioned to stay in \((0, K)\) - the spine.
- (ii) At rate \(2\beta\) dress the path of the spine with independent copies of \(\mathbb{P}^K\)-BBMs.
Intuition: finding a spine is equivalent to survival.

- M is $L^1(\mathbb{P}^K)$-convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
Intuition: finding a spine is equivalent to survival.

- M is $L^1(\mathbb{P}^K)$-convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.
Intuition: finding a spine is equivalent to survival.

- M is $L^1(\mathbb{P}^K)$-convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.
- Both

 $$
 \phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty) \text{ and } \psi_K(x) = \mathbb{P}_x^K(M_\infty = 0)
 $$

 have the property that for $x \in (0, K)$

 $$
 \prod_{i=1}^{N_t} \phi_K(x_i(t)) \text{ and } \prod_{i=1}^{N_t} \psi_K(x_i(t))
 $$

 are bounded martingales and hence both ϕ_K and ψ_K solve (1).
Intuition: finding a spine is equivalent to survival.

- M is $L^1(\mathbb{P}^K)$-convergent if and only if $K > K^*$ and if this condition fails then $M_\infty \equiv 0$ a.s.
- Clearly $\{\zeta^K < \infty\} \subseteq \{M_\infty = 0\}$, but in fact they are equivalent events.
- Both

 \[\phi_K(x) = \mathbb{P}_x^K (\zeta^K < \infty) \text{ and } \psi_K(x) = \mathbb{P}_x^K (M_\infty = 0) \]

 have the property that for $x \in (0, K)$

 \[\prod_{i=1}^{N_t} \phi_K(x_i(t)) \text{ and } \prod_{i=1}^{N_t} \psi_K(x_i(t)) \]

 are bounded martingales and hence both ϕ_K and ψ_K solve (1).
- Conversely, for any solution f to (1),

 \[\prod_{i=1}^{N_t} f(x_i(t)) \]

 is a bounded martingale with limit $1_{\{\zeta^K < \infty\}}$.
What happens at criticality?
What happens at criticality?

- When $K = K^*$ we have $\{M_\infty = 0\} = \{\zeta^K < \infty\}$ almost surely \Rightarrow cannot condition on survival and get a spine decomposition.
What happens at criticality?

- When $K = K^*$ we have $\{M_\infty = 0\} = \{\zeta^K < \infty\}$ almost surely \Rightarrow cannot condition on survival and get a spine decomposition.

- Look instead for a quasi-stationary type result and try to understand if there is any meaning to the limit

$$\lim_{K \downarrow K^*} \mathbb{P}_x^K (\cdot | \zeta^K = \infty)$$
Blue and Red for $K > K^*$
Blue and Red for $K > K^*$

- Colour in blue, all genealogical lines of decent which do not touch the side of the interval.
Blue and Red for $K > K^*$

- Colour in blue, all genealogical lines of decent which do not touch the side of the interval.
- Colour in red, all remaining life histories.
Blue and Red for $K > K^*$

- Colour in blue, all genealogical lines of decent which do not touch the side of the interval.
- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?
Blue and Red for $K > K^*$

- Colour in blue, all genealogical lines of decent which do not touch the side of the interval.
- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?
- Do the red subtrees describe branching diffusions?
Blue and Red for $K > K^*$

- Colour in blue, all genealogical lines of decent which do not touch the side of the interval.
- Colour in red, all remaining life histories.
- Does the blue tree describe a branching diffusion?
- Do the red subtrees describe branching diffusions?
- What happens if there is no blue tree?
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K (\zeta^K < \infty)$:
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

\[
\frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \left(= L^w_0 := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K \right)
\]
Blue and Red for $K > K^*$

Recall $\phi_K(x) = P^K_x(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \left(= L^w_0 := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)
 \]

- This is **NOT** the generator of a Brownian motion conditioned to remain in $(0, K)$.
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle - \frac{\phi_K'}{1 - \phi_K} \frac{d}{dx} \left(= L^w_0 := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K \right)
 \]

- This is **NOT** the generator of a Brownian motion conditioned to remain in $(0, K)$.

- **Red:**
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator

$$
\frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \left(L^w_0 := L^w - \frac{Lw}{w} \right) \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K.
$$

- This is **NOT** the generator of a Brownian motion conditioned to remain in $(0, K)$.

- **Red:**
 - Branch dyadically at rate $\beta \phi_K(\cdot)$
Blue and Red for \(K > K^* \)

Recall \(\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty) \):

Blue:
- Branch dyadically at rate \(\beta(1 - \phi_K(\cdot)) \)
- Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)
 \]

This is **NOT** the generator of a Brownian motion conditioned to remain in \((0, K)\).

Red:
- Branch dyadically at rate \(\beta \phi_K(\cdot) \)
- Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{d}{dx} \left(= L_0^{\phi_K} := L^{\phi_K} - \frac{L\phi_K}{\phi_K}. \right)
 \]
Blue and Red for $K > K^*$

Recall $\phi_K(x) = \mathbb{P}_x^K(\zeta^K < \infty)$:

- **Blue:**
 - Branch dyadically at rate $\beta(1 - \phi_K(\cdot))$
 - Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \left(= L_0^w := L^w - \frac{Lw}{w} \text{ where } L = \frac{1}{2} \triangle \text{ and } w = 1 - \phi_K. \right)
 \]

- This is **NOT** the generator of a Brownian motion conditioned to remain in $(0, K)$.

- **Red:**
 - Branch dyadically at rate $\beta \phi_K(\cdot)$
 - Diffuse according to the Markov process with generator
 \[
 \frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{d}{dx} \left(= L_0^\phi := L^\phi_K - \frac{L\phi_K}{\phi_K}. \right)
 \]

- Can be shown that **Red** describes $\mathbb{P}^K(\cdot|\zeta^K < \infty)$.
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:
- Flip a coin with probability $\phi_K(x)$ of ‘heads’.
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:
- Flip a coin with probability $\phi_K(x)$ of ‘heads’.
- If ‘heads’ then grow a Red tree.
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:
- Flip a coin with probability $\phi_K(x)$ of ‘heads’.
- If ‘heads’ then grow a Red tree.
- If ‘tails’ then grow a Blue tree and with rate $2\beta \phi_K(\cdot)$ ‘dress’ the spatial paths of the Blue tree with independent Red trees.
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}_x^K has the same law as a colour blind view of:
- Flip a coin with probability $\phi_K(x)$ of ‘heads’.
- If ‘heads’ then grow a Red tree.
- If ‘tails’ then grow a Blue tree and with rate $2\beta\phi_K(\cdot)$ ‘dress’ the spatial paths of the Blue tree with independent Red trees.

A significance convenience from this construction:
Backbone decomposition for $K > K^*$

Theorem. For $x \in (0, K)$, \mathbb{P}^K_x has the same law as a colour blind view of:

- Flip a coin with probability $\phi_K(x)$ of ‘heads’.
- If ‘heads’ then grow a **Red** tree.
- If ‘tails’ then grow a **Blue** tree and with rate $2\beta\phi_K(\cdot)$ ‘dress’ the spatial paths of the **Blue** tree with independent **Red** trees.

A significance convenience from this construction:

- $\mathbb{P}^K_x (\cdot | \zeta^K = \infty)$ has the same law as observing a dressed **Blue** tree.
Backbone decomposition for \(K > K^* \)

Theorem. For \(x \in (0, K) \), \(\mathbb{P}_x^K \) has the same law as a colour blind view of:
- Flip a coin with probability \(\phi_K(x) \) of ‘heads’.
- If ‘heads’ then grow a Red tree.
- If ‘tails’ then grow a Blue tree and with rate \(2\beta\phi_K(\cdot) \) ‘dress’ the spatial paths of the Blue tree with independent Red trees.

A significance convenience from this construction:
- \(\mathbb{P}_x^K (\cdot | \zeta^K = \infty) \) has the same law as observing a dressed Blue tree.
- Equivalently \(\mathbb{P}_x^K (\cdot | \zeta^K = \infty) \) has the same law as the backbone construction conditioned on throwing a ’tail’.
Orthopedic surgery \((K > K' > K^*)\)
Orthopedic surgery ($K > K' > K^*$)
Quasi-stationary limit as $K \downarrow K^*$
Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$
Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$

- (Blue motion) $\frac{1}{2} \Delta - \frac{\phi_K'}{1-\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \Delta + \frac{(\sin \frac{\pi x}{K^*})'}{\sin \frac{\pi x}{K^*}} \frac{d}{dx}$
Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$
- (Blue motion) $\frac{1}{2} \Delta - \frac{\phi_K'}{1-\phi_K} \frac{d}{dx} \quad \rightarrow \quad \frac{1}{2} \Delta + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{d}{dx}$
- (Blue branching rate) $\beta(1 - \phi_K) \rightarrow 0$
Spines, backbones and orthopedic surgery.

Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$
- **(Blue motion)** $\frac{1}{2} \Delta - \frac{\phi_K'}{1-\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \Delta + \frac{(\sin \frac{\pi x}{K^*})'}{\sin \frac{\pi x}{K^*}} \frac{d}{dx}$
- **(Blue branching rate)** $\beta(1 - \phi_K) \rightarrow 0$
- **(Red motion)** $\frac{1}{2} \Delta + \frac{\phi_K'}{\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \Delta$
Spines, backbones and orthopedic surgery.

Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$
- **(Blue motion)** $\frac{1}{2} \Delta - \frac{\phi_K'}{1-\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \Delta + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{d}{dx}$
- **(Blue branching rate)** $\beta(1 - \phi_K) \rightarrow 0$
- **(Red motion)** $\frac{1}{2} \Delta + \frac{\phi_K'}{\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \Delta$
- **(Red branching rate)** $\beta \phi_K \rightarrow \beta$

Theorem.
The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

$$\lim_{K \downarrow K^*} P_K x(\cdot|\zeta_K = \infty) = P^* x(\cdot),$$

for $x \in (0, K^*)$ where $P^* x$ is the law of a particle system consisting of a spine behaving as a Brownian motion conditioned to stay in the interval $(0, K^*)$, dressing of the spine at rate 2β with $P_K \cdot$ branching diffusions.
Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$
- **(Blue motion)** $\frac{1}{2} \triangle - \frac{\phi'_K}{1-\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \triangle + \frac{(\sin \pi x/K^*)'}{\sin \pi x/K^*} \frac{d}{dx}$
- **(Blue branching rate)** $\beta(1 - \phi_K) \rightarrow 0$
- **(Red motion)** $\frac{1}{2} \triangle + \frac{\phi'_K}{\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \triangle$
- **(Red branching rate)** $\beta \phi_K \rightarrow \beta$
- **(rate of dressing Red on to Blue)** $2\beta \phi_K \rightarrow 2\beta$.

Theorem.

The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

$$\lim_{K \downarrow K^*} P_K X(\cdot|\zeta_K = \infty) = P^* X(\cdot),$$

for $x \in (0, K^*)$ where P^*_x is the law of a particle system consisting of a spine behaving as a Brownian motion conditioned to stay in the interval $(0, K^*)$, dressing of the spine at rate 2β with $P_K \cdot$ branching diffusions.
Quasi-stationary limit as \(K \downarrow K^* \)

- \(\phi_K(\cdot) \uparrow 1 \)
- **(Blue motion)** \(\frac{1}{2} \Delta - \frac{\phi'_K}{1-\phi_K} \frac{d}{dx} \rightarrow \) \(\frac{1}{2} \Delta + \frac{\sin \pi x/K^*}{\sin \pi x/K^*} \frac{d}{dx} \)
- **(Blue branching rate)** \(\beta(1-\phi_K) \rightarrow 0 \)
- **(Red motion)** \(\frac{1}{2} \Delta + \frac{\phi'_K}{\phi_K} \frac{d}{dx} \rightarrow \frac{1}{2} \triangle \)
- **(Red branching rate)** \(\beta \phi_K \rightarrow \beta \)
- **(rate of dressing Red on to Blue)** \(2\beta \phi_K \rightarrow 2\beta. \)

Theorem. The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

\[
\lim_{K \downarrow K^*} \mathbb{P}_x^K (\cdot | \zeta^K = \infty) = P^*_x(\cdot),
\]

for \(x \in (0, K^*) \) where \(P^*_x \) is the law of a particle system consisting of
- a spine behaving as a Brownian motion conditioned to stay in the interval \((0, K^*)\),
- dressing of the spine at rate \(2\beta \) with \(\mathbb{P}^{K^*} \) branching diffusions.
Quasi-stationary limit as $K \downarrow K^*$

- $\phi_K(\cdot) \uparrow 1$: $1 - \phi_K(x) \sim c_K \sin(\pi x / K)$ as $K \downarrow K^*$.
- (Blue motion) $\frac{1}{2} \Delta - \frac{\phi'_K}{1 - \phi_K} \frac{d}{dx} \xrightarrow{\sim} \frac{1}{2} \Delta + \frac{(\sin \pi x / K^*)'}{\sin \pi x / K^*} \frac{d}{dx}$
- (Blue branching rate) $\beta(1 - \phi_K) \to 0$
- (Red motion) $\frac{1}{2} \Delta + \frac{\phi'_K}{\phi_K} \frac{d}{dx} \xrightarrow{\sim} \frac{1}{2} \Delta$
- (Red branching rate) $\beta \phi_K \to \beta$
- (rate of dressing Red on to Blue) $2\beta \phi_K \to 2\beta$.

Theorem. The backbone becomes a spine through orthopedic surgery and gives the quasi-stationary result:

$$\lim_{K \downarrow K^*} \mathbb{P}^K_x (\cdot | \zeta^K = \infty) = P^*_x (\cdot),$$

for $x \in (0, K^*)$ where P^*_x is the law of a particle system consisting of

- a spine behaving as a Brownian motion conditioned to stay in the interval $(0, K^*)$,
- dressing of the spine at rate 2β with \mathbb{P}^{K^*} branching diffusions.