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Motivation

m Recent work (B-boys & Schweinsberg, Aidekon-Harris) considers
branching Brownian motion with a near critical drift towards an absorbing
barrier at the origin.

m Their analysis revolves around the behaviour of branching Brownian
motion conditioned to stay in a strip next to the origin.

m It is also a natural question to ask how such a process behaves as the strip
becomes thinner.

m Specifically, is there a critical width below which there is no possibility of
surviving and how does the process behave at criticality?
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Branching Brownian motion in a strip (0, K)

K

m PX denotes the law of the process with one initial ancestor issued from
z € (0, K).

Particles execute Brownian motion with killing on exiting (0, K).

Particles undergo dyadic branching at constant rate 8 > 0.

Z ={Z(-) : t > 0}, where Z;(-) = S, 8,.(1)("), is the sequence of
random measures which describes the evolution of particles.

m The process becomes extinct at time ¢¥ :=inf{t > 0: Z;(0, K) = 0}.
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Criticality: What can we say about ¢ (z) := PX((K < 00)?
m The Englander-Pinsky local extinction criterion hints that we should
expect to see PX(¢¥ < 00) =1 for all K sufficiently small.
m Critical width: K™ such that A\.(K*) = 0 where \.(K) is the generalised
principle eigen-value of the operator %A + B on (0,K).

m A straightforward exercise to show that \.(K) = 8 — 72/2K? [coming
from the ‘ground state’ positive eigen-function sin(wz/K)] and hence

K* =n//285.
m Theorem: (i) When K > K™ then ¢k € (0,1) on (0, K) and is the
unique solution to the ODE

%f”Jrﬁ(fsz):Oon (0,K) and f(0) = f(K) = 1. (1)

(i1) When K < K™ then ¢ = 1 and the ODE (1) has no solutions valued
in [0, 1] other than the trivial ones.
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Intuition: finding a spine is equivalent to survival.

m Martingale density to condition a Brownian motion {B; : t > 0} to stay in
the interval (0, K) is

2 2
eTr t/2K SiIl(ﬂ-Bt/K)l{t<.,.(0,K)}7 t 2 0.
m Martingale density to condition Z to survive

M, ;:/ 2B G (e [K) Ze(de), €20,
(0,K)

induces a spine decomposition:

m (i) Run a Brownian motion conditioned to stay in (0, K) - the spine.
(ii) At rate 2[3 dress the path of the spine with independent copies of
PX-BBMs.
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Intuition: finding a spine is equivalent to survival.

m M is L' (PX)-convergent if and only if K > K* and if this condition fails
then Mo =0 ass.

m Clearly {¢¥ < 00} C {Mu = 0}, but in fact they are equivalent events.

m Both
¢x () = Py (¢ < 0) and Y (x) = Py (Moo = 0)

have the property that for = € (0, K)

N¢ Nt
H¢K($i(t)) and [ ] vx(zi(t))

=1

are bounded martingales and hence both ¢x and ¥ solve (1).

m Conversely, for any solution f to (1),

N
[ 7(e:®)

is a bounded martingale with limit 1.k ;.
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What happens at criticality?
m When K = K* we have {M+ = 0} = {¢¥ < oo} almost surely = cannot
condition on survival and get a spine decomposition.

m Look instead for a quasi-stationary type result and try to understand if
there is any meaning to the limit

. K/ | +K _
Aim Pz (¢% = o)
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Blue and Red for K > K*

X§

Colour in blue, all genealogical lines of decent which do not touch the side
of the interval.

Colour in red, all remaining life histories.
Does the blue tree describe a branching diffusion?

Do the red subtrees describe branching diffusions?

What happens if there is no blue tree?
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Blue and Red for K > K*

Recall ¢x (z) = PE(¢¥ < o0):
m Blue:

m Branch dyadically at rate 3(1 — ¢ (+))
m Diffuse according to the Markov process with generator

oo % d(_ L= e - L
2 1—¢x dx

w

1
where L = §A and w =1 — @K-)

0 K

m This is NOT the generator of a Brownian motion conditioned to remain in
(0, K).

m Red:

m Branch dyadically at rate B¢k (-)
m Diffuse according to the Markov process with generator

1 7 @l ) ) Lbw
Ing P d LY .= [k — 22K
2 oK dx bx

m Can be shown that Red describes PE (-|¢% < o0).
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Backbone decomposition for K > K*

x

K

Theorem. For x € (0, K), PX has the same law as a colour blind view of:
m Flip a coin with probability ¢« () of 'heads’.

m If 'heads’ then grow a Red tree.

m If ‘tails’ then grow a Blue tree and with rate 28¢x(-) ‘dress’ the spatial
paths of the Blue tree with independent Red trees.

A significance convenience from this construction:

m PX(-|¢" = o) has the same law as observing a dressed Blue tree.

m Equivalently PX(-|¢® = c0) has the same law as the backbone
construction conditioned on throwing a 'tail’.
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for z € (0, K*) where P} is the law of a particle system consisting of
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for z € (0, K*) where P} is the law of a particle system consisting of
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