A stochastic control problem for SNLPs

Ronnie Loeffen
University of Bath

19-4-2007

Overview

- Introduction/History
- Formulating the control problem
- Verification theorem/HJB-equation
- Value of the barrier strategy - brief review of scale functions
- Verifying optimality
- Examples

De Finetti's (1957) (discrete) model
$\left\{X_{t}: t=0,1,2, \ldots\right\}$ is a random walk w.p. $p>1 / 2$.
$\left\{L_{t}: t=0,1, \ldots\right\}$ represents the total paid out dividends at time t, where $L_{0}=0$ and $\Delta L_{t}:=$ $L_{t+1}-L_{t}$ should be chosen at time t.

Dividends can be paid out until the first time the surplus U becomes negative (ruin time), where

$$
U_{t}=X_{t}-L_{t}, \quad t \in\{0,1,2, \ldots\}
$$

L should be chosen such that the expected discounted dividends paid out up until ruin are maximized.

Optimal strategy is a barrier strategy, i.e. there exists a^{*} s.t. $L_{t+1}^{*}=\left(\sup _{0 \leq s \leq t} X_{s}-a^{*}\right) \vee 0$ or $\Delta L_{t}^{*}=\left(U_{t}-a^{*}\right) \vee 0$.

Economic survival games

$$
\begin{aligned}
& \Delta X_{t}:=X_{t+1}-X_{t} \in\{\ldots,-2,-1,0,1,2, \ldots\} \\
& \sum_{j=-\infty}^{j=\infty} j p_{j}>0, \text { where } p_{j}=\mathbb{P}\left(\Delta X_{t}=j\right)
\end{aligned}
$$

Optimal strategy is a band strategy, i.e. there exists $2 n+1$ integers $a_{0}<b_{1}<a_{2}<b_{2} \ldots a_{n-1}<$ $b_{n}<a_{n}$, such that

$$
\begin{array}{llr}
\Delta L_{t}^{*}=0 & \text { if } & U_{t} \leq a_{0} \\
\Delta L_{t}^{*}=U_{t}-a_{k} & \text { if } & a_{k}<U_{t} \leq b_{k} \\
\Delta L_{t}^{*}=0 & \text { if } & b_{k}<U_{t} \leq a_{k} \\
\Delta L_{t}^{*}=U_{t}-a_{n} & \text { if } & U_{t}>a_{n}
\end{array}
$$

If $p_{-2}=p_{-3}=\ldots=0$, then the optimal band strategy is a barrier strategy.

If $p_{2}=p_{3}=\ldots=0$, then X can be used as a discrete approximation of the CramérLundberg model,

$$
X_{s}=c s-\sum_{i=1}^{N_{s}} C_{i} \quad s \in[0, \infty)
$$

where $c>0$ is the premium rate and C_{i} are iid positive r.v. representing the claims.

Continuous time models

Gerber (1969) 'proved' by using this approximation that a band strategy is optimal for the Cramér-Lundberg model. When the claims are exponential distributed, Gerber showed that a barrier strategy is optimal.

Radner \& Shepp (1996), Jeanblanc-Shiryaev (1995), Asmussen \& Taksar (1997) proved that a barrier strategy is optimal when X is a Brownian motion with drift.

Azcue \& Muler (2005) reproved Gerber's results and gave an example for which the optimal strategy is not a barrier strategy.

Avram, Palmowski \& Pistorius (2007) considered the case when X is a spectrally negative Lévy process.

- $X=\left\{X_{t}: t \geq 0\right\}$ is a spectrally negative Lévy process on $\left(\Omega, \mathcal{F}, \mathbb{F}=\left\{\mathcal{F}_{t}: t \geq 0\right\}, \mathbb{P}\right)$, with Lévy triplet $(\gamma, \sigma, \nu(\mathrm{d} x))$. X represents the risk process before dividends are deducted.
- π is a dividend/control strategy, i.e. $\pi=$ $\left\{L_{t}^{\pi}: t \geq 0\right\}$ is a non-decreasing, caglad \mathbb{F} adapted process which starts at zero. L_{t}^{π} represents the cumulative dividends paid up until time t.
- $U^{\pi}=\left\{U_{t}^{\pi}: t \geq 0\right\}$, where $U_{t}^{\pi}=X_{t}-L_{t}^{\pi}$, is the controlled risk process under the strategy π.
- $\sigma^{\pi}=\inf \left\{t>0: U_{t}^{\pi}<0\right\}$ is the ruin time.
- $q>0$ is the discount rate.
- v^{π} is the value function when using the strategy π, i.e.

$$
v^{\pi}(x)=\mathbb{E}_{x}\left[\int_{0}^{\sigma^{\pi}} \mathrm{e}^{-q t} \mathrm{~d} L_{t}^{\pi}\right]
$$

- A strategy π is called admissible if ruin does not occur by a dividend payout. Let Π be the set of all admissible dividend policies.
- v_{*} is the value function of the optimal control problem, i.e.

$$
v_{*}(x)=\sup _{\pi \in \Pi} v^{\pi}(x)
$$

The control problem consists of finding the optimal value function v_{*} and an optimal policy $\pi_{*} \in \Pi$ such that

$$
v^{\pi_{*}}(x)=v_{*}(x) \quad \text { for all } x \geq 0
$$

This is an example of a singular stochastic control problem.

Definition $1 f$ belongs to the domain of the extended generator if there exists a function g with $\int_{0}^{t}\left|g\left(X_{s}\right)\right| \mathrm{d} s<\infty$ for each t, a.s. and

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} g\left(X_{s}\right) \mathrm{d} s
$$

is a local martingale.
Proposition 2 Let Γ be the operator acting on smooth functions f, defined by

$$
\begin{aligned}
\ulcorner f(x)= & \gamma f^{\prime}(x)+\frac{\sigma^{2}}{2} f^{\prime \prime}(x)+\int_{(-\infty, 0)}[f(x+y) \\
& \left.-f(x)-f^{\prime}(x) y 1_{\{-1<y<0\}}\right] \nu(\mathrm{d} y) .
\end{aligned}
$$

Then $f\left(X_{t}\right)-\int_{0}^{t} \Gamma f\left(X_{s}\right) \mathrm{d}$ s is a local martingale. Hence the domain of the extended generator contains $C^{1}(0, \infty)$ when X is of bounded variation and contains $C^{2}(0, \infty)$ when X is of unbounded variation.

Need to prove $f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \Gamma f\left(X_{s}\right) \mathrm{d} s$ is a local martingale, where

$$
\begin{aligned}
\Gamma f(x)= & \gamma f^{\prime}(x)+\frac{\sigma^{2}}{2} f^{\prime \prime}(x)+\int_{(-\infty, 0)}[f(x+y) \\
& \left.-f(x)-f^{\prime}(x) y \mathbf{1}_{\{-1<y<0\}}\right] \nu(\mathrm{d} y)
\end{aligned}
$$

From the Lévy-Itô decomposition it follows that we can write X as

$$
X_{t}=\gamma t+\sigma B_{t}+X_{t}^{(2)}+X_{t}^{(3)}
$$

where
$X_{t}^{(2)}=\int_{[0, t]} \int_{y \leq-1} y N(\mathrm{~d} s \times \mathrm{d} y)$
$X_{t}^{(3)}=\int_{[0, t]} \int_{-1<y<0} y N(\mathrm{~d} s \times \mathrm{d} y)-t \int_{-1<y<0} y \nu(\mathrm{~d} y)$.
Here N is the Poisson random measure with intensity $\mathrm{d} t \times \nu(\mathrm{d} y)$ corresponding to the jumps of X.

Verification theorem/HJB-equation

Theorem 3 (Verification theorem) Suppose $w:[0, \infty) \rightarrow[0, \infty)$ is sufficiently smooth and extend w to the negative half-line by putting $w(x)=0$ for $x<0$. Suppose further that $\max \left\{\Gamma w(x)-q w(x), 1-w^{\prime}(x)\right\} \leq 0$. (HJB-equation) Then $w(x) \geq v_{*}(x)$ for all $x \in \mathbb{R}$.

Barrier strategy

Let $\pi_{a}=\left\{L_{t}^{a}: t \geq 0\right\}$ denote the barrier strategy at level a, i.e. $L_{0}^{a}=0$ and for $t>0$

$$
L_{t}^{a}:=\left(\sup _{0 \leq s<t} X_{s}-a\right) \vee 0
$$

Let U^{a}, σ^{a} and v_{a} be resp. the controlled risk process, ruin time and value function when using the dividend policy π_{a}.

Theorem 4 Assume $W^{(q)} \in C^{1}(0, \infty)$. For $x \leq a$ we have

$$
v_{a}(x)=\frac{W^{(q)}(x)}{W^{(q)^{\prime}}(a)}
$$

For $x>a, v_{a}(x)=x-a+\frac{W^{(q)}(a)}{W^{(q)^{\prime}}(a)}$.
Define the optimal barrier level by $a^{*}=\sup \left\{a \geq 0: W^{(q)^{\prime}}(a) \leq W^{(q)^{\prime}}(x)\right.$ for all $\left.x \geq 0\right\}$. Note that $a^{*}<\infty$, because $\lim _{x \rightarrow \infty} W^{(q)^{\prime}}(x)=$ ∞.

Review scale functions

For each $q \geq 0$ there exists a function $W^{(q)}$: $\mathbb{R} \rightarrow[0, \infty)$, such that $W^{(q)}(x)=0$ for $x<$ 0 and on $[0, \infty), W^{(q)}$ is continuous, strictly increasing and
$\int_{0}^{\infty} \mathrm{e}^{-\beta x} W^{(q)}(x) \mathrm{d} x=\frac{1}{\psi(\beta)-q} \quad$ for $\beta>\Phi(q)$,
where $\psi(\beta)=\log \mathbb{E}\left(\mathrm{e}^{\beta X_{1}}\right)$ and $\Phi(q)=\sup \{\beta$: $\psi(\beta)=q\}$.

Further we have for $x \leq a$ and $q \geq 0$

$$
\mathbb{E}_{x}\left(\mathrm{e}^{-q \tau_{a}^{+}} 1_{\left\{\tau_{a}^{+}<\tau_{0}^{-}\right\}}\right)=\frac{W^{(q)}(x)}{W^{(q)}(a)}
$$

Also we have $W^{(q)}(0)=0, W^{(q)^{\prime}}(0)>0$ if X is of UBV and $W^{(q)}(0)=1 / c, W^{(q)^{\prime}}(0)=$ $(\nu(-\infty, 0)+q) / c^{2}$ when X is of BV .

Theorem 5 Suppose $\nu(\mathrm{d} x) \ll \mathrm{d} x$ or $\sigma>0$ and

$$
W^{(q)^{\prime}}(a) \leq W^{(q)^{\prime}}(b) \quad \text { for all } a^{*} \leq a \leq b
$$

Then the barrier strategy with barrier at a^{*} is an optimal strategy and hence $v_{*}=v_{a^{*}}$.

Proof By Chan \& Kyprianou (2007) $W^{(q)}$ is sufficiently smooth when $\nu(\mathrm{d} x) \ll \mathrm{d} x$ or $\sigma>$ 0 . It follows that $v_{a^{*}}$ is sufficiently smooth, since $v_{a^{*}}$ is sufficiently smooth at a^{*} (smooth pasting).

Further, by definition of a^{*}, we have $v_{a^{*}}^{\prime}(x) \geq 1$ for $x \leq a^{*}$. For $x>a^{*}$, we have $v_{a^{*}}^{\prime}(x)=1$.

Let $a>0$. Since

$$
\begin{aligned}
& \mathbb{E}_{x}\left(\mathrm{e}^{-q \tau_{a}^{+}} \mathbf{1}_{\left\{\tau_{a}^{+}<\tau_{0}^{-}\right\}} \mid \mathcal{F}_{t}\right) \\
& \quad=\mathrm{e}^{-q\left(t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}\right)} \frac{W^{(q)}\left(X_{t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}}\right)}{W^{(q)}(a)}
\end{aligned}
$$

it follows that $\mathrm{e}^{-q\left(t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}\right)} v_{a}\left(X_{t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}}\right)$is a \mathbb{P}_{x}-martingale. But by Itô's formula

$$
\begin{aligned}
& \mathrm{e}^{-q\left(t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}\right)} v_{a^{*}}\left(X_{t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}}\right)-v\left(X_{0}\right)= \\
& \int_{0}^{t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}} \mathrm{e}^{-q s}\left[\left\ulcorner v_{a}\left(X_{s}\right)-q v_{a}\left(X_{s}\right)\right] \mathrm{d} s+M_{t \wedge \tau_{0}^{-} \wedge \tau_{a}^{+}}\right.
\end{aligned}
$$

This implies $\Gamma v_{a}(x)-q v_{a}(x)=0$ for $0 \leq x \leq a$. In particular this holds for $a=a^{*}$.

Let $a^{*} \geq 0$. Suppose there exist $x>a^{*}$ such that $\Gamma v_{a^{*}}(x)-q v_{a^{*}}(x)>0$. Then by the next lemma we have $(\Gamma-q) v_{x}(x)>0$, which is a contradiction.

We have now shown that $v_{a^{*}}$ satisfies the conditions of the verification theorem and hence $v_{a^{*}} \geq v_{*}$. Because $\pi_{a^{*}}$ is an admissible strategy, we also have $v_{a^{*}} \leq v_{*}$. Hence $v_{a^{*}}=v_{*}$ and $\pi_{a^{*}}$ is an optimal strategy.

Lemma 6 Under the conditions of the above theorem, let $x \geq a^{*} \geq 0$. Then

$$
(\Gamma-q) v_{a^{*}}(x) \leq(\Gamma-q) v_{x}(x)
$$

Proof Because $x \geq a^{*}$, we have $v_{x}^{\prime}(x)=v_{a^{*}}^{\prime}(x)=$ 1 and therefore

$$
\begin{aligned}
& (\Gamma-q)\left(v_{a^{*}}-v_{x}\right)(x)=-\frac{\sigma^{2}}{2}\left(v_{x}^{\prime \prime}(x)-v_{a^{*}}^{\prime \prime}(x)\right) \\
& \int_{-\infty}^{0}\left[\left(v_{a^{*}}-v_{x}\right)(x+z)-\left(v_{a^{*}}-v_{x}\right)(x)\right] \nu(\mathrm{d} z) \\
& -q\left(v_{a^{*}}-v_{x}\right)(x)
\end{aligned}
$$

Since $v_{x}^{\prime \prime}(x) \geq 0=v_{a^{*}}^{\prime \prime}(x),\left(v_{a^{*}}^{\prime}-v_{x}^{\prime}\right)(y) \geq 0$ for $y \in[0, x]$ and $v_{a^{*}}\left(a^{*}\right) \geq v_{x}\left(a^{*}\right)$, the conclusion of the lemma follows.

Examples

Let $X_{t}=c t-\sum_{i=1}^{N_{t}} C_{i}$, where N is a poisson process with parameter λ and C_{i} are iid positive hyperexponential distributed random variables $P\left(C_{1}>x\right)=\sum_{j=1}^{n} A_{j} \mathrm{e}^{-\alpha_{j} x}, \quad \alpha_{j}, A_{j}>0, \sum_{j=1}^{n} A_{j}=1$.
The Laplace exponent is given by

$$
\psi(u)=c u-\lambda+\lambda \sum_{j=1}^{n} A_{j} \frac{\alpha_{j}}{\alpha_{j}+u}
$$

It can be shown (by partial fraction expansion) that the scale function is given by

$$
W^{(q)}(x)=\sum_{j=0}^{n} D_{j} \mathrm{e}^{\theta_{j} x}
$$

where $\left(\theta_{j}\right)_{j=0}^{n}$ are the roots of $\psi(u)=q$ and where $\theta_{0}, D_{0}>0$ and $\theta_{j}, D_{j}<0$ for $j>0$.

It follows that $W^{(q)^{\prime \prime \prime}}(x)=\sum_{j=0}^{n} D_{j} \theta_{j}^{3} \mathrm{e}^{\theta_{j} x}>0$ and hence a barrier strategy is optimal for the control problem.

Azcue-Muler example

Again let $X_{t}=c t-\sum_{i=1}^{N_{t}} C_{i}$, but now the claims have a Gamma($2, \alpha$)-distribution. Let $c=21.4$, $\lambda=10, \alpha=1$ and $q=0.1$.

Same as the previous example, but now a Brownian motion is added in, i.e.

$$
X_{t}=c t-\sum_{i=1}^{N_{t}} C_{i}+\sigma B_{t} .
$$

In the first example $\sigma=1.4$, in the second $\sigma=2$.

