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De Finetti’s (1957) (discrete) model

{Xt : t = 0,1,2, . . .} is a random walk w.p.

p > 1/2.

{Lt : t = 0,1, . . .} represents the total paid out

dividends at time t, where L0 = 0 and ∆Lt :=

Lt+1 − Lt should be chosen at time t.

Dividends can be paid out until the first time

the surplus U becomes negative (ruin time),

where

Ut = Xt − Lt, t ∈ {0,1,2, . . .}

L should be chosen such that the expected dis-

counted dividends paid out up until ruin are

maximized.

Optimal strategy is a barrier strategy, i.e. there

exists a∗ s.t. L∗
t+1 = (sup0≤s≤tXs − a∗) ∨ 0 or

∆L∗
t = (Ut − a∗) ∨ 0.
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Economic survival games

∆Xt := Xt+1 − Xt ∈ {. . . ,−2,−1,0,1,2, . . .}
∑j=∞
j=−∞ jpj > 0, where pj = P(∆Xt = j)

Optimal strategy is a band strategy, i.e. there

exists 2n+1 integers a0 < b1 < a2 < b2 . . . an−1 <
bn < an, such that

∆L∗
t = 0 if Ut ≤ a0

∆L∗
t = Ut − ak if ak < Ut ≤ bk

∆L∗
t = 0 if bk < Ut ≤ ak

∆L∗
t = Ut − an if Ut > an

If p−2 = p−3 = . . . = 0, then the optimal band

strategy is a barrier strategy.

If p2 = p3 = . . . = 0, then X can be used

as a discrete approximation of the Cramér-

Lundberg model,

Xs = cs−
Ns
∑

i=1

Ci s ∈ [0,∞),

where c > 0 is the premium rate and Ci are iid

positive r.v. representing the claims.
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Continuous time models

Gerber (1969) ’proved’ by using this approxi-

mation that a band strategy is optimal for the

Cramér-Lundberg model. When the claims are

exponential distributed, Gerber showed that a

barrier strategy is optimal.

Radner & Shepp (1996), Jeanblanc-Shiryaev

(1995), Asmussen & Taksar (1997) proved that

a barrier strategy is optimal when X is a Brow-

nian motion with drift.

Azcue & Muler (2005) reproved Gerber’s re-

sults and gave an example for which the opti-

mal strategy is not a barrier strategy.

Avram, Palmowski & Pistorius (2007) consid-

ered the case when X is a spectrally negative

Lévy process.
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• X = {Xt : t ≥ 0} is a spectrally negative

Lévy process on (Ω,F ,F = {Ft : t ≥ 0},P),

with Lévy triplet (γ, σ, ν(dx)). X represents

the risk process before dividends are de-

ducted.

• π is a dividend/control strategy, i.e. π =

{Lπt : t ≥ 0} is a non-decreasing, caglad F-

adapted process which starts at zero. Lπt
represents the cumulative dividends paid up

until time t.

• Uπ = {Uπt : t ≥ 0}, where Uπt = Xt − Lπt , is

the controlled risk process under the strat-

egy π.

• σπ = inf{t > 0 : Uπt < 0} is the ruin time.

• q > 0 is the discount rate.
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• vπ is the value function when using the

strategy π, i.e.

vπ(x) = Ex

[

∫ σπ

0
e−qtdLπt

]

,

• A strategy π is called admissible if ruin does

not occur by a dividend payout. Let Π be

the set of all admissible dividend policies.

• v∗ is the value function of the optimal con-

trol problem, i.e.

v∗(x) = sup
π∈Π

vπ(x).

The control problem consists of finding the op-

timal value function v∗ and an optimal policy

π∗ ∈ Π such that

vπ∗(x) = v∗(x) for all x ≥ 0.

This is an example of a singular stochastic con-

trol problem.
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Definition 1 f belongs to the domain of the

extended generator if there exists a function g

with
∫ t
0 |g(Xs)|ds <∞ for each t, a.s. and

f(Xt) − f(X0) −
∫ t

0
g(Xs)ds

is a local martingale.

Proposition 2 Let Γ be the operator acting

on smooth functions f , defined by

Γf(x) =γf ′(x) +
σ2

2
f ′′(x) +

∫

(−∞,0)
[f(x+ y)

− f(x) − f ′(x)y1{−1<y<0}]ν(dy).

Then f(Xt)−
∫ t
0 Γf(Xs)ds is a local martingale.

Hence the domain of the extended generator

contains C1(0,∞) when X is of bounded vari-

ation and contains C2(0,∞) when X is of un-

bounded variation.
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Need to prove f(Xt)− f(X0)−
∫ t
0 Γf(Xs)ds is a

local martingale, where

Γf(x) =γf ′(x) +
σ2

2
f ′′(x) +

∫

(−∞,0)
[f(x+ y)

− f(x) − f ′(x)y1{−1<y<0}]ν(dy).

From the Lévy-Itô decomposition it follows that

we can write X as

Xt = γt+ σBt +X
(2)
t +X

(3)
t ,

where

X
(2)
t =

∫

[0,t]

∫

y≤−1
yN(ds× dy)

X
(3)
t =

∫

[0,t]

∫

−1<y<0
yN(ds× dy) − t

∫

−1<y<0
yν(dy).

Here N is the Poisson random measure with

intensity dt×ν(dy) corresponding to the jumps

of X.
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Verification theorem/HJB-equation

Theorem 3 (Verification theorem) Suppose

w : [0,∞) → [0,∞) is sufficiently smooth and

extend w to the negative half-line by putting

w(x) = 0 for x < 0. Suppose further that

max{Γw(x)−qw(x), 1−w′(x)} ≤ 0. (HJB-equation)

Then w(x) ≥ v∗(x) for all x ∈ R.
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Barrier strategy

Let πa = {Lat : t ≥ 0} denote the barrier strat-

egy at level a, i.e. La0 = 0 and for t > 0

Lat :=

(

sup
0≤s<t

Xs − a

)

∨ 0

Let Ua, σa and va be resp. the controlled risk

process, ruin time and value function when us-

ing the dividend policy πa.

Theorem 4 Assume W (q) ∈ C1(0,∞). For

x ≤ a we have

va(x) =
W (q)(x)

W (q)′(a)
.

For x > a, va(x) = x− a+ W (q)(a)

W (q)′(a)
.

Define the optimal barrier level by

a∗ = sup
{

a ≥ 0 : W (q)′(a) ≤W (q)′(x) for all x ≥ 0
}

.

Note that a∗ < ∞, because limx→∞W (q)′(x) =

∞.
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Review scale functions

For each q ≥ 0 there exists a function W (q) :

R → [0,∞), such that W (q)(x) = 0 for x <

0 and on [0,∞), W (q) is continuous, strictly

increasing and
∫ ∞

0
e−βxW (q)(x)dx =

1

ψ(β) − q
for β > Φ(q),

where ψ(β) = logE

(

eβX1
)

and Φ(q) = sup{β :

ψ(β) = q}.

Further we have for x ≤ a and q ≥ 0

Ex

(

e−qτ
+
a 1

{τ+a <τ
−
0 }

)

=
W (q)(x)

W (q)(a)
.

Also we have W (q)(0) = 0, W (q)′(0) > 0 if

X is of UBV and W (q)(0) = 1/c, W (q)′(0) =

(ν(−∞,0) + q)/c2 when X is of BV.
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Theorem 5 Suppose ν(dx) ≪ dx or σ > 0 and

W (q)′(a) ≤ W (q)′(b) for all a∗ ≤ a ≤ b.

Then the barrier strategy with barrier at a∗ is

an optimal strategy and hence v∗ = va∗.

Proof By Chan & Kyprianou (2007) W (q) is

sufficiently smooth when ν(dx) ≪ dx or σ >

0. It follows that va∗ is sufficiently smooth,

since va∗ is sufficiently smooth at a∗ (smooth

pasting).

Further, by definition of a∗, we have v′a∗(x) ≥ 1

for x ≤ a∗. For x > a∗, we have v′a∗(x) = 1.
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Let a > 0. Since

Ex

(

e−qτ
+
a 1

{τ+a <τ
−
0 }

∣

∣

∣

∣

Ft

)

= e−q(t∧τ
−
0 ∧τ+a )

W (q)
(

X
t∧τ−0 ∧τ+a

)

W (q)(a)
,

it follows that e−q(t∧τ
−
0 ∧τ+a )va(Xt∧τ−0 ∧τ+a

) is a

Px-martingale. But by Itô’s formula

e−q(t∧τ
−
0 ∧τ+a )va∗(Xt∧τ−0 ∧τ+a

) − v(X0) =

∫ t∧τ−0 ∧τ+a

0
e−qs[Γva(Xs)−qva(Xs)]ds+M

t∧τ−0 ∧τ+a
.

This implies Γva(x)− qva(x) = 0 for 0 ≤ x ≤ a.

In particular this holds for a = a∗.
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Let a∗ ≥ 0. Suppose there exist x > a∗ such

that Γva∗(x) − qva∗(x) > 0. Then by the next

lemma we have (Γ − q)vx(x) > 0, which is a

contradiction.

We have now shown that va∗ satisfies the con-

ditions of the verification theorem and hence

va∗ ≥ v∗. Because πa∗ is an admissible strategy,

we also have va∗ ≤ v∗. Hence va∗ = v∗ and πa∗

is an optimal strategy. �

14



Lemma 6 Under the conditions of the above

theorem, let x ≥ a∗ ≥ 0. Then

(Γ − q)va∗(x) ≤ (Γ − q)vx(x).

Proof Because x ≥ a∗, we have v′x(x) = v′a∗(x) =

1 and therefore

(Γ − q)(va∗ − vx)(x) = −
σ2

2
(v′′x(x) − v′′a∗(x))

∫ 0

−∞
[(va∗ − vx)(x+ z) − (va∗ − vx)(x)]ν(dz)

− q(va∗ − vx)(x).

Since v′′x(x) ≥ 0 = v′′a∗(x), (v′a∗ − v′x)(y) ≥ 0 for

y ∈ [0, x] and va∗(a
∗) ≥ vx(a∗), the conclusion

of the lemma follows. �
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Examples

Let Xt = ct −
∑Nt
i=1Ci, where N is a poisson

process with parameter λ and Ci are iid positive

hyperexponential distributed random variables

P(C1 > x) =
n
∑

j=1

Aje
−αjx, αj, Aj > 0,

n
∑

j=1

Aj = 1.

The Laplace exponent is given by

ψ(u) = cu− λ+ λ
n
∑

j=1

Aj
αj

αj + u
.

It can be shown (by partial fraction expansion)

that the scale function is given by

W (q)(x) =
n
∑

j=0

Dje
θjx,

where (θj)
n
j=0 are the roots of ψ(u) = q and

where θ0, D0 > 0 and θj, Dj < 0 for j > 0.

It follows that W (q)′′′(x) =
∑n
j=0Djθ

3
j e
θjx > 0

and hence a barrier strategy is optimal for the

control problem.
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Azcue-Muler example

Again let Xt = ct−
∑Nt
i=1Ci, but now the claims

have a Gamma(2, α)-distribution. Let c = 21.4,

λ = 10, α = 1 and q = 0.1.
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Same as the previous example, but now a Brow-

nian motion is added in, i.e.

Xt = ct−
Nt
∑

i=1

Ci + σBt.

In the first example σ = 1.4, in the second

σ = 2.
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