A stochastic control problem for SNLPs

Ronnie Loeffen University of Bath

19-4-2007

Overview

- Introduction/History
- Formulating the control problem
- Verification theorem/HJB-equation
- Value of the barrier strategy brief review of scale functions
- Verifying optimality
- Examples

De Finetti's (1957) (discrete) model

 ${X_t : t = 0, 1, 2, ...}$ is a random walk w.p. p > 1/2.

 $\{L_t : t = 0, 1, ...\}$ represents the total paid out dividends at time t, where $L_0 = 0$ and $\Delta L_t := L_{t+1} - L_t$ should be chosen at time t.

Dividends can be paid out until the first time the surplus U becomes negative (ruin time), where

$$U_t = X_t - L_t, \quad t \in \{0, 1, 2, \ldots\}$$

L should be chosen such that the expected discounted dividends paid out up until ruin are maximized.

Optimal strategy is a barrier strategy, i.e. there exists a^* s.t. $L_{t+1}^* = (\sup_{0 \le s \le t} X_s - a^*) \lor 0$ or $\Delta L_t^* = (U_t - a^*) \lor 0$.

Economic survival games

$$\Delta X_t := X_{t+1} - X_t \in \{\dots, -2, -1, 0, 1, 2, \dots\}$$

$$\sum_{j=-\infty}^{j=\infty} j p_j > 0, \text{ where } p_j = \mathbb{P}(\Delta X_t = j)$$

Optimal strategy is a band strategy, i.e. there exists 2n+1 integers $a_0 < b_1 < a_2 < b_2 \dots a_{n-1} < b_n < a_n$, such that

$\Delta L_t^* = 0$	if	$U_t \leq a_0$
$\Delta L_t^* = U_t - a_k$	if	$a_k < U_t \le b_k$
$\Delta L_t^* = 0$	if	$b_k < U_t \le a_k$
$\Delta L_t^* = U_t - a_n$	if	$U_t > a_n$

If $p_{-2} = p_{-3} = \ldots = 0$, then the optimal band strategy is a barrier strategy.

If $p_2 = p_3 = \ldots = 0$, then X can be used as a discrete approximation of the Cramér-Lundberg model,

$$X_s = cs - \sum_{i=1}^{N_s} C_i \quad s \in [0, \infty),$$

where c > 0 is the premium rate and C_i are iid positive r.v. representing the claims.

Continuous time models

Gerber (1969) 'proved' by using this approximation that a band strategy is optimal for the Cramér-Lundberg model. When the claims are exponential distributed, Gerber showed that a barrier strategy is optimal.

Radner & Shepp (1996), Jeanblanc-Shiryaev (1995), Asmussen & Taksar (1997) proved that a barrier strategy is optimal when X is a Brownian motion with drift.

Azcue & Muler (2005) reproved Gerber's results and gave an example for which the optimal strategy is not a barrier strategy.

Avram, Palmowski & Pistorius (2007) considered the case when X is a spectrally negative Lévy process.

- $X = \{X_t : t \ge 0\}$ is a spectrally negative Lévy process on $(\Omega, \mathcal{F}, \mathbb{F} = \{\mathcal{F}_t : t \ge 0\}, \mathbb{P})$, with Lévy triplet $(\gamma, \sigma, \nu(dx))$. X represents the risk process before dividends are deducted.
- π is a dividend/control strategy, i.e. $\pi = \{L_t^{\pi} : t \ge 0\}$ is a non-decreasing, caglad \mathbb{F} -adapted process which starts at zero. L_t^{π} represents the cumulative dividends paid up until time t.
- $U^{\pi} = \{U_t^{\pi} : t \ge 0\}$, where $U_t^{\pi} = X_t L_t^{\pi}$, is the controlled risk process under the strategy π .
- $\sigma^{\pi} = \inf\{t > 0 : U_t^{\pi} < 0\}$ is the ruin time.
- q > 0 is the discount rate.

• v^{π} is the value function when using the strategy π , i.e.

$$v^{\pi}(x) = \mathbb{E}_x \left[\int_0^{\sigma^{\pi}} \mathrm{e}^{-qt} \mathrm{d}L_t^{\pi} \right],$$

- A strategy π is called admissible if ruin does not occur by a dividend payout. Let Π be the set of all admissible dividend policies.
- v_{*} is the value function of the optimal control problem, i.e.

$$v_*(x) = \sup_{\pi \in \Pi} v^{\pi}(x).$$

The control problem consists of finding the optimal value function v_* and an optimal policy $\pi_* \in \Pi$ such that

$$v^{\pi_*}(x) = v_*(x)$$
 for all $x \ge 0$.

This is an example of a singular stochastic control problem. **Definition 1** f belongs to the domain of the extended generator if there exists a function g with $\int_0^t |g(X_s)| ds < \infty$ for each t, a.s. and

$$f(X_t) - f(X_0) - \int_0^t g(X_s) \mathrm{d}s$$

is a local martingale.

Proposition 2 Let Γ be the operator acting on smooth functions f, defined by

$$\Gamma f(x) = \gamma f'(x) + \frac{\sigma^2}{2} f''(x) + \int_{(-\infty,0)} [f(x+y) - f(x) - f'(x)y \mathbf{1}_{\{-1 < y < 0\}}] \nu(dy).$$

Then $f(X_t) - \int_0^t \Gamma f(X_s) ds$ is a local martingale. Hence the domain of the extended generator contains $C^1(0,\infty)$ when X is of bounded variation and contains $C^2(0,\infty)$ when X is of unbounded variation. Need to prove $f(X_t) - f(X_0) - \int_0^t \Gamma f(X_s) ds$ is a local martingale, where

$$\Gamma f(x) = \gamma f'(x) + \frac{\sigma^2}{2} f''(x) + \int_{(-\infty,0)} [f(x+y) - f(x) - f'(x)y \mathbf{1}_{\{-1 < y < 0\}}] \nu(dy).$$

From the Lévy-Itô decomposition it follows that we can write X as

$$X_t = \gamma t + \sigma B_t + X_t^{(2)} + X_t^{(3)},$$

where

$$X_t^{(2)} = \int_{[0,t]} \int_{y \le -1} y N(ds \times dy)$$

$$X_t^{(3)} = \int_{[0,t]} \int_{-1 < y < 0} y N(ds \times dy) - t \int_{-1 < y < 0} y \nu(dy)$$

Here N is the Poisson random measure with intensity $dt \times \nu(dy)$ corresponding to the jumps of X.

Verification theorem/HJB-equation

Theorem 3 (Verification theorem) Suppose $w : [0, \infty) \rightarrow [0, \infty)$ is sufficiently smooth and extend w to the negative half-line by putting w(x) = 0 for x < 0. Suppose further that $\max\{\Gamma w(x) - qw(x), 1 - w'(x)\} \le 0$. (HJB-equation) Then $w(x) \ge v_*(x)$ for all $x \in \mathbb{R}$.

Barrier strategy

Let $\pi_a = \{L_t^a : t \ge 0\}$ denote the barrier strategy at level a, i.e. $L_0^a = 0$ and for t > 0

$$L_t^a := \left(\sup_{0 \le s < t} X_s - a\right) \lor 0$$

Let U^a, σ^a and v_a be resp. the controlled risk process, ruin time and value function when using the dividend policy π_a .

Theorem 4 Assume $W^{(q)} \in C^1(0,\infty)$. For $x \leq a$ we have

$$v_a(x) = \frac{W^{(q)}(x)}{W^{(q)'}(a)}.$$

For
$$x > a$$
, $v_a(x) = x - a + \frac{W^{(q)}(a)}{W^{(q)'}(a)}$.

Define the optimal barrier level by $a^* = \sup \left\{ a \ge 0 : W^{(q)'}(a) \le W^{(q)'}(x) \text{ for all } x \ge 0 \right\}.$ Note that $a^* < \infty$, because $\lim_{x \to \infty} W^{(q)'}(x) = \infty.$

Review scale functions

For each $q \ge 0$ there exists a function $W^{(q)}$: $\mathbb{R} \to [0,\infty)$, such that $W^{(q)}(x) = 0$ for x < 0 and on $[0,\infty)$, $W^{(q)}$ is continuous, strictly increasing and

$$\int_0^\infty e^{-\beta x} W^{(q)}(x) dx = \frac{1}{\psi(\beta) - q} \quad \text{for } \beta > \Phi(q),$$

where $\psi(\beta) = \log \mathbb{E}\left(e^{\beta X_1}\right)$ and $\Phi(q) = \sup\{\beta : \psi(\beta) = q\}.$

Further we have for $x \leq a$ and $q \geq 0$

$$\mathbb{E}_x\left(e^{-q\tau_a^+}\mathbf{1}_{\{\tau_a^+ < \tau_0^-\}}\right) = \frac{W^{(q)}(x)}{W^{(q)}(a)}.$$

Also we have $W^{(q)}(0) = 0$, $W^{(q)'}(0) > 0$ if X is of UBV and $W^{(q)}(0) = 1/c$, $W^{(q)'}(0) = (\nu(-\infty, 0) + q)/c^2$ when X is of BV. **Theorem 5** Suppose $\nu(dx) \ll dx$ or $\sigma > 0$ and

 $W^{(q)'}(a) \leq W^{(q)'}(b)$ for all $a^* \leq a \leq b$.

Then the barrier strategy with barrier at a^* is an optimal strategy and hence $v_* = v_{a^*}$.

Proof By Chan & Kyprianou (2007) $W^{(q)}$ is sufficiently smooth when $\nu(dx) \ll dx$ or $\sigma >$ 0. It follows that v_{a^*} is sufficiently smooth, since v_{a^*} is sufficiently smooth at a^* (smooth pasting).

Further, by definition of a^* , we have $v'_{a^*}(x) \ge 1$ for $x \le a^*$. For $x > a^*$, we have $v'_{a^*}(x) = 1$.

Let
$$a > 0$$
. Since

$$\mathbb{E}_x \left(e^{-q\tau_a^+} \mathbf{1}_{\{\tau_a^+ < \tau_0^-\}} \middle| \mathcal{F}_t \right)$$

$$= e^{-q(t \wedge \tau_0^- \wedge \tau_a^+)} \frac{W^{(q)} \left(X_{t \wedge \tau_0^- \wedge \tau_a^+} \right)}{W^{(q)}(a)},$$

it follows that $e^{-q(t\wedge\tau_0^-\wedge\tau_a^+)}v_a(X_{t\wedge\tau_0^-\wedge\tau_a^+})$ is a \mathbb{P}_x -martingale. But by Itô's formula

$$e^{-q(t\wedge\tau_{0}^{-}\wedge\tau_{a}^{+})}v_{a^{*}}(X_{t\wedge\tau_{0}^{-}\wedge\tau_{a}^{+}}) - v(X_{0}) = \int_{0}^{t\wedge\tau_{0}^{-}\wedge\tau_{a}^{+}}e^{-qs}[\Gamma v_{a}(X_{s}) - qv_{a}(X_{s})]ds + M_{t\wedge\tau_{0}^{-}\wedge\tau_{a}^{+}}.$$

This implies $\Gamma v_a(x) - qv_a(x) = 0$ for $0 \le x \le a$. In particular this holds for $a = a^*$. Let $a^* \ge 0$. Suppose there exist $x > a^*$ such that $\Gamma v_{a^*}(x) - qv_{a^*}(x) > 0$. Then by the next lemma we have $(\Gamma - q)v_x(x) > 0$, which is a contradiction.

We have now shown that v_{a^*} satisfies the conditions of the verification theorem and hence $v_{a^*} \ge v_*$. Because π_{a^*} is an admissible strategy, we also have $v_{a^*} \le v_*$. Hence $v_{a^*} = v_*$ and π_{a^*} is an optimal strategy.

Lemma 6 Under the conditions of the above theorem, let $x \ge a^* \ge 0$. Then

$$(\Gamma - q)v_{a^*}(x) \le (\Gamma - q)v_x(x).$$

Proof Because $x \ge a^*$, we have $v'_x(x) = v'_{a^*}(x) = 1$ and therefore

$$(\Gamma - q)(v_{a^*} - v_x)(x) = -\frac{\sigma^2}{2}(v_x''(x) - v_{a^*}''(x))$$
$$\int_{-\infty}^0 [(v_{a^*} - v_x)(x+z) - (v_{a^*} - v_x)(x)]\nu(dz)$$
$$-q(v_{a^*} - v_x)(x).$$

Since $v''_x(x) \ge 0 = v''_{a^*}(x)$, $(v'_{a^*} - v'_x)(y) \ge 0$ for $y \in [0, x]$ and $v_{a^*}(a^*) \ge v_x(a^*)$, the conclusion of the lemma follows.

Examples

Let $X_t = ct - \sum_{i=1}^{N_t} C_i$, where N is a poisson process with parameter λ and C_i are iid positive hyperexponential distributed random variables

$$P(C_1 > x) = \sum_{j=1}^{n} A_j e^{-\alpha_j x}, \quad \alpha_j, A_j > 0, \sum_{j=1}^{n} A_j = 1.$$

The Laplace exponent is given by

$$\psi(u) = cu - \lambda + \lambda \sum_{j=1}^{n} A_j \frac{\alpha_j}{\alpha_j + u}$$

It can be shown (by partial fraction expansion) that the scale function is given by

$$W^{(q)}(x) = \sum_{j=0}^{n} D_j \mathrm{e}^{\theta_j x},$$

where $(\theta_j)_{j=0}^n$ are the roots of $\psi(u) = q$ and where $\theta_0, D_0 > 0$ and $\theta_j, D_j < 0$ for j > 0.

It follows that $W^{(q)'''}(x) = \sum_{j=0}^{n} D_j \theta_j^3 e^{\theta_j x} > 0$ and hence a barrier strategy is optimal for the control problem.

Azcue-Muler example

Again let $X_t = ct - \sum_{i=1}^{N_t} C_i$, but now the claims have a Gamma(2, α)-distribution. Let c = 21.4, $\lambda = 10, \alpha = 1$ and q = 0.1.

Same as the previous example, but now a Brownian motion is added in, i.e.

$$X_t = ct - \sum_{i=1}^{N_t} C_i + \sigma B_t.$$

In the first example $\sigma = 1.4$, in the second $\sigma = 2$.

