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Abstract A refracted Lévy process is a Lévy process whose dynamics change by
subtracting off a fixed linear drift (of suitable size) whenever the aggregate process
is above a pre-specified level. More precisely, whenever it exists, a refracted Lévy
process is described by the unique strong solution to the stochastic differential equation

dUt = −δ1{Ut>b}dt + dXt , t ≥ 0

where X = (Xt , t ≥ 0) is a Lévy process with law P and b, δ ∈ R such that the
resulting process U may visit the half line (b,∞) with positive probability. In this
paper, we consider the case that X is spectrally negative and establish a number of
identities for the following functionals

∞∫

0

1{Ut<b}dt,

κ+
c∫

0

1{Ut<b}dt,

κ−
a∫

0

1{Ut<b}dt,

κ+
c ∧κ−

a∫

0

1{Ut<b}dt,
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where κ+
c = inf{t ≥ 0 : Ut > c} and κ−

a = inf{t ≥ 0 : Ut < a} for a < b < c.
Our identities extend recent results of Landriault et al. (Stoch Process Appl 121:2629–
2641, 2011) and bear relevance to Parisian-type financial instruments and insurance
scenarios.

Keywords Occupation times · Fluctuation theory · Refracted Lévy processes

Mathematics Subject Classification (2010) 60G51

1 Introduction and Main Results

Let X = (Xt , t ≥ 0) be a Lévy process defined on a probability space (�,F ,P). For
x ∈ R denote by Px the law of X when it is started at x and write for convenience P

in place of P0. Accordingly, we shall write Ex and E for the associated expectation
operators. In this paper, we shall assume throughout that X is spectrally negative
meaning here that it has no positive jumps and not the negative of a subordinator.
It is well known that the latter allows us to talk about the Laplace exponent ψ(θ) :
[0,∞) → R, i.e.,

E

[
eθXt

]
=: eψ(θ)t , t, θ ≥ 0,

and the Laplace exponent is given by the Lévy-Khintchine formula

ψ(θ) = γ θ + σ 2

2
θ2 +

∫

(−∞,0)

(
eθx − 1 − θx1{x>−1}

)
	(dx), (1.1)

where γ ∈ R, σ 2 ≥ 0 and 	 is a measure on (−∞, 0) called the Lévy measure of X
which satisfies

∫

(−∞,0)

(1 ∧ x2)	(dx) < ∞.

The reader is referred to Bertoin [2] and Kyprianou [10] for a complete introduction
to the theory of Lévy processes.

It is well known that X has paths of bounded variation if and only if σ 2 = 0 and∫
(−1,0) x	(dx) is finite. In this case, X can be written as

Xt = ct − St , t ≥ 0, (1.2)

where c = γ − ∫
(−1,0) x	(dx) and (St , t ≥ 0) is a driftless subordinator. Note that

necessarily c > 0, since we have ruled out the case that X has monotone paths. In this
case, its Laplace exponent is given by
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ψ(λ) = log E

[
eλX1

]
= cλ−

∫

(−∞,0)

(
1 − eλx)	(dx).

In this paper, we study occupation times of a spectrally negative Lévy processes
when its path are perturbed in a simple way. Informally speaking, a linear drift at rate
δ > 0 is subtracted from the increments of X whenever it exceeds a pre-specified
positive level b > 0. More formally, we are interested in the process U which is a
solution to the stochastic differential equation given by

dUt = dXt − δ1{Ut>b}dt, t ≥ 0. (1.3)

In order to work with the above process, we make the following assumption

(H) δ < γ −
∫

(−1,0)

x	(dx) if X has paths of bounded variation.

According to Kyprianou and Loeffen [11], this ensures that a strong solution to (1.3)
exists and the path of U is not monotone.

The special case of X given in (1.2) with compound Poisson jumps may also be seen
as an example of a Cramér-Lundberg process as soon as E(X1) > 0. This provides a
specific motivation for the study of the dynamics of (1.3). Indeed, very recent studies
of problems related to ruin in insurance risk has seen some preference to working with
general spectrally negative Lévy processes in place of the classical Cramér–Lundberg
process (which is itself an example of the former class). See for example [1,4–6,8,
9,12,17,18]. Under such a general model, the solution to the stochastic differential
equation (1.3) may now be thought of as the aggregate of the insurance risk process
when dividends are paid out at a rate δ whenever it exceeds the level b.

In this paper, we consider a number of occupation identities for the refracted process
U , namely the following functionals

∞∫

0

1{Ut<b}dt,

κ+
c∫

0

1{Ut<b}dt,

κ−
a∫

0

1{Ut<b}dt,

κ+
c ∧κ−

a∫

0

1{Ut<b}dt, (1.4)

where

κ+
c = inf{t ≥ 0 : Ut > c} and κ−

a = inf{t ≥ 0 : Ut < a},

for a < b < c. Our identities extend recent results of Landriault et al. [14] where it
is explained how such functionals bear relevance to, so-called, insurance risk models
with Parisian implementing delays. Indeed, suppose that dividends are paid at rate δ
from a surplus process X , modelled as a spectrally negative Lévy process, whenever
the aggregate is positive valued. In that case, the refracted Lévy process, U, given by
(1.3) with b = 0 plays the role of the aggregate surplus process. A Parisian-style ruin
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problem would declare the insurance company ruined if it remained with a negative
surplus for too long. To be specific, at each time, the refracted surplus process goes
negative, an independent exponential clock with rate q is started. If the clock rings
before the refracted surplus becomes positive again, then the insurance company is
ruined. Assuming that the refracted process drifts to +∞, and the initial value of the
surplus is x > 0, the probability of ruin can now be identified as

1 − Ex

⎛
⎝exp

⎧⎨
⎩−

∞∫

0

1{Ut<0}dt

⎫⎬
⎭
⎞
⎠ .

See [13] for further discussion. Associated functionals for spectrally negative Lévy
processes have been studied recently by Loeffen et al. [16]. More precisely, they were
interested in occupation times of intervals until first passage times. Their results also
extend those obtained by Landriault et al. [14].

A key element of the forthcoming analysis relies on the theory of so-called scale
functions for spectrally negative Lévy processes. We therefore devote some time in
this section reminding the reader of some fundamental properties of scale functions
as well as their relevance to refraction strategies.

For each q ≥ 0 define W (q) : R → [0,∞), such that W (q)(x) = 0 for all x < 0
and on (0,∞) is the unique continuous function with Laplace transform

∞∫

0

e−θx W (q)(x)dx = 1

ψ(θ)− q
, θ > �(q), (1.5)

where �(q) = sup{λ ≥ 0 : ψ(λ) = q} which is well defined and finite for all
q ≥ 0, since ψ is a strictly convex function satisfying ψ(0) = 0 and ψ(∞) = ∞. For
convenience, we write W instead of W (0). Associated with the functions W (q) are the
functions Z (q) : R → [1,∞) defined by

Z (q)(x) = 1 + q

x∫

0

W (q)(y)dy, q ≥ 0.

Together, the functions W (q) and Z (q) are collectively known as q-scale functions and
predominantly appear in almost all fluctuations identities for spectrally negative Lévy
processes.

When X has paths of bounded variation, without further assumptions, it can only be
said that the function W (q) is almost everywhere differentiable on (0,∞). However, in
the case that X has paths of unbounded variation, W (q) is continuously differentiable
on (0,∞); cf. Chapter 8 in [10]. Throughout this text, we shall write W (q)′ to mean
the well defined derivative in the case of unbounded variation paths and a version the
density of W (q) with respect to Lebesgue measure in the case of bounded variation
paths. This should cause no confusion as, in the latter case, W (q)′ will only appear
inside Lebesgue integrals.
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We complete this section by stating our main results for the occupation measures
mentioned in (1.4). Let us note that all the identities we present essentially follow
from the first identity in Theorem 1 for occupation up to the stopping time κ+

c ∧ κ−
a ,

where a < b < c, by taking limits as a ↓ −∞ and c ↑ ∞. We present all our results
under the measure Pb, that is to say, when U is issued from the barrier b.

In what follows we recall that, for each q ≥ 0,W (q) is the q-scale function asso-
ciated with X ; however, we shall also write W

(q) for the q-scale function associated
with the spectrally negative Lévy process with Laplace exponent ψ(θ) − δθ, θ ≥ 0.
We shall also write ϕ for the right inverse of this Laplace exponent; that is to say

ϕ(q) = sup{θ > 0 : ψ(θ)− δθ = q},

for q ≥ 0.

Theorem 1 Fix θ ≥ 0. For a < b < c we have

Eb

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩−θ

κ+
c ∧κ−

a∫

0

1{Us<b}ds

⎫⎪⎬
⎪⎭

⎤
⎥⎦

=
1/W(c − b)+ σ

2

2
C(θ)(a, b)+

∞∫

0

∫

(−∞,0)

A(θ)(z, a, b, c, y)	(dz − y)dy

(ψ ′(0+)− δ)+ + σ 2

2
D(θ)(a, b, c)+

∞∫

0

∫

(−∞,0)

B(θ)(z, a, b, c, y)	(dz − y)dy

.

(1.6)

where

A(θ)(z, a, b, c, y) = W(c − b − y)

W(c − b)

(
Z (θ)(z + b − a)− Z (θ)(b − a)

W (θ)(z + b − a)

W (θ)(b − a)

)

×1(a−b,0)(z)1(0,c−b)(y),

B(θ)(z, a, b, c, y) = e−ϕ(0)y − W(c − b − y)

W(c − b)

W (θ)(z + b − a)

W (θ)(b − a)
1(a−b,0)(z)1(0,c−b)(y),

C(θ)(a, b) = Z (θ)(b − a)
W (θ)′(b − a)

W (θ)(b − a)
− θW (θ)(b − a),

D(θ)(a, b, c) = W
′(c − b)

W(c − b)
+ W (θ)′(b − a)

W (θ)(b − a)
− ϕ(0).

Corollary 1 Fix θ ≥ 0.

(i) For c > b,
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Eb

[
exp

{
− θ

κ+
c∫

0

1{Us<b}ds

}]

= 1/W(c − b)

(ψ ′(0+)− δ)++ σ 2

2

(
W

′(c − b)

W(c − b)
+�(θ)−ϕ(0)

)
+

∞∫

0

∫

(−∞,0)

E(θ)(z, b, c, y)	(dz − y)dy

,

where

E (θ)(z, b, c, y) = e−ϕ(0)y − W(c − b − y)

W(c − b)
e�(θ)z1(0,c−b)(y).

(ii) For a < b,

Eb

[
exp

{
− θ

κ−
a∫

0

1{Us<b}ds

}]

=
(ψ ′(0+)− δ)+ + σ 2

2
C(θ)(a, b)+

c−b∫

0

∫

(a−b,0)

G(θ)(z, a, b)e−ϕ(0)y	(dz − y)dy

(ψ ′(0+)− δ)+ + σ 2

2

W (θ)′(b − a)

W (θ)(b − a)
+

∞∫

0

∫

(−∞,0)

H(θ)(z, a, b, y)	(dz − y)dy

,

where

G(θ)(z, a, b) = Z (θ)(z + b − a)− Z (θ)(b − a)
W (θ)(z + b − a)

W (θ)(b − a)
,

H(θ)(z, a, b, y) = e−ϕ(0)y
(

1 − W (θ)(z + b − a)

W (θ)(b − a)
1(a−b,0)(z)

)
. (1.7)

Corollary 2 Fix θ ≥ 0 and assume that ψ ′(0+) > δ. Then

Eb

[
exp

{
− θ

∞∫

0

1{Us<b}ds

}]
= (ψ ′(0+)− δ)�(θ)

θ − δ�(θ)
. (1.8)

Moreover, the occupation time of U below level b has a density which satisfies

Pb

⎛
⎝

∞∫

0

1{Us<b}ds ∈ dx

⎞
⎠ =

(
ψ ′(0+)
δ

− 1

)⎛
⎝ δa

1 − δa
δ0(dx)+ 1{x>0}

∑
n≥1

δnν∗n(dx)

⎞
⎠ ,

where δ0(dx) is the Dirac-delta measure assigning unit mass to the point zero, ν(dx) =
	�([x,∞))dx and necessarily, for θ ≥ 0,
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�(θ) = aθ +
∞∫

0

(1 − e−θx )	�(dx).

Note that, from this last corollary, we easily recover Theorem 1 of Landriault et al.
[14]. Specifically, when there is no refraction, i.e. δ = 0, providing X drifts to +∞,
that is to say ψ ′(0+) > 0, we have the occupation of X below level b,

Eb

[
exp

{
− θ

∞∫

0

1{Xs<b}ds

}]
= ψ ′(0+)�(θ)

θ
,

and its density is given by

Pb

⎛
⎝

∞∫

0

1{Xs<b}ds ∈ dx

⎞
⎠ = ψ ′(0+)(aδ0(dx)+ ν(dx)),

which is nothing more than the Sparre–Andersen identity. Similarly, one easily checks
that by taking δ ↓ 0 in the identity given in part (ii) of Corrollary 1, one recovers the
statement of Theorem 2 in [14].

The method we shall use to prove the above results is somewhat different to the
techniques employed by [14], and we appeal directly to the simple idea of Bernoulli
trials that lies behind the excursion theory of strong Markov process. As we have no
information about the excursion measure of U from b, we initially perform the analysis
for the case that X has paths of bounded variation. In that case, the process U will
almost surely take a strictly positive amount of time before it jumps below b and we
can construct its excursions from piecewise trajectories of spectrally negative Lévy
processes. Kyprianou and Loeffen [11] showed that in the case that X has unbounded
variation, refracted Lévy processes may be constructed as the almost sure uniform
limit of a sequence of bounded variation refracted Lévy processes. Taking account of
the fact that, thanks to the continuity theorem for Laplace transforms, scale functions
are continuous in the Laplace exponent of the underlying Lévy process, which itself
is continuous in the Lévy triplet (γ, σ,	) (where we understand continuity in the
measure 	 to mean in the sense of weak convergence), we use an approximation
procedure to derive our results for the case of unbounded variation paths from the case
of bounded variation paths.

Note that all our results can be established at any starting point x at the cost of
more complicated expressions. Such identities follow from the Markov property at
the hitting times κ+

b or κ−
b , according to whether starting point x is smaller or bigger

than b, and our results, we leave the details to the reader.
The remainder of the paper is structured as follows. In the next chapter, we give

the proof of Theorem 1 for the case that X has paths of bounded variation. Thereafter,
in Sect. 3, by means of an approximation with refracted processes having bounded
variation paths, we derive the identity for the case that X has paths of unbounded
variation, but no Gaussian component. Finally, in Sect. 4, we derive the missing case
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that X has paths of unbounded variation with a Gaussian component, again by an
approximation scheme, this time using a sequence of refracted Lévy processes with
unbounded variation paths and no Gaussian component. In the final section, we give
some remarks about how the Corollaries 1 and 2 can be derived from Theorem 1 by
taking appropriate limits.

2 Proof of Theorem 1: Bounded Variation Paths

Let Y = (Yt , t ≥ 0), where Yt := Xt − δt, for t ≥ 0 and recall that for each
q ≥ 0,W (q) and W

(q) denote the scale functions of the Lévy processes X and Y ,
respectively, with W := W (0) and W = W

(0). Moreover, ϕ is defined as the right
inverse of the Laplace exponent of Y . We define the following first passages times for
X and Y ,

τ−
b = inf{t > 0 : Xt < b}, τ+

a = inf{t > 0 : Xt > a}, (2.1)

ρ−
b = inf{t > 0 : Yt < b}, ρ+

a = inf{t > 0 : Yt > a}. (2.2)

Let a < b < c and recall that

κ−
a = inf{t > 0 : Ut < a} and κ+

c = inf{t > 0 : Ut > c}.

We are interested in the quantity

Eb

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩−θ

κ−
a ∧κ+

c∫

0

1{Us<b}ds

⎫⎪⎬
⎪⎭

⎤
⎥⎦ . (2.3)

A crucial point in our analysis is that b is irregular for (−∞, b) for Y , on account of it
having paths of bounded variation, and, moreover, that Y does not creep downwards.
This means that each excursion of U from b consists of a copy of (Yt , t ≤ ρ−

b ) issued
from b and, on the event {ρ−

b < ∞}, the excursion continues from the time ρ−
b as an

independent copy of (Xt , t ≤ τ+
b ) issued from the randomized initial position Yρ−

b
.

Here, we express (2.3) in terms of the excursions of the process U confined in the
interval [a, c] and, subsequently, the first excursion that exists [a, c]. Let (ξ (i)s , 0 ≤
s ≤ �i ) be the i-th excursion of U away from b that does not exit [a, c], here �i

denotes the length of the excursion at the moment it exits the interval [a, c]. Similarly,
let (ξ∗

s , 0 ≤ s ≤ �∗) be the first excursion of U away from b that exits the interval
[a, c] and �∗ its length. From the strong Markov property, it is clear that the random
variables

∫ �i
0 1{ξ (i)s <b}ds are i.i.d. and independent of

∫ �∗
0 1{ξ∗

s <b}ds. Set ζ = inf{t >
0 : Ut = b}, let E be the event {supt≤ζ Ut ≤ c, inf t≤ζ Ut ≥ a} and p = Pb(E). A
standard description of excursions of U away from b, but confined to the interval [a, c],
dictates that the number of finite excursions is distributed according to an independent
geometric random variable, say G p, (supported on {0, 1, 2, . . .}) with parameter p,

the random variables
∫ �i

0 1{ξ (i)s <b}ds are equal in distribution to
∫ ζ

0 1{Us<b}ds under the
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conditional law Pb(·|E) and the random variable
∫ �∗

0 1{ξ∗
s <b}ds is equal in distribution

to
∫ κ−

a ∧κ+
c

0 1{Us<b}ds but now under the conditional law Pb(·|Ec).
It now follows that

Eb

[
exp

{
− θ

κ−
a ∧κ+

c∫

0

1{Us<b}ds

}]

= Eb

⎡
⎣

G p∏
i=0

exp

⎧⎨
⎩−θ

�i∫

0

1{ξ (i)s <b}ds

⎫⎬
⎭ exp

⎧⎨
⎩−θ

�∗∫

0

1{ξ∗
s <b}ds

⎫⎬
⎭
⎤
⎦

= E

⎡
⎢⎣Eb

⎡
⎣exp

⎧⎨
⎩−θ

�1∫

0

1{ξ (1)s <b}ds

⎫⎬
⎭
⎤
⎦

G p
⎤
⎥⎦Eb

⎡
⎣exp

⎧⎨
⎩−θ

�∗∫

0

1{ξ∗
s <b}ds

⎫⎬
⎭
⎤
⎦ ,

(2.4)

Recall that the generating function of the independent geometric random variable G p

satisfies,

F(s) = q

1 − sp
, |s| < 1

p
,

where q = 1 − p. Therefore, the first term of the right-hand side of the above identity
satisfies

E

⎡
⎢⎣Eb

⎡
⎣exp

⎧⎨
⎩−θ

�1∫

0

1{ξ (1)s <b}ds

⎫⎬
⎭
⎤
⎦

G p
⎤
⎥⎦ = q

1 − pEb

⎡
⎣exp

⎧⎨
⎩−θ

�1∫

0

1{ξ (1)s <b}ds

⎫⎬
⎭
⎤
⎦
.

(2.5)

Moreover, again taking account of the remarks in the previous paragraph, we also have
that

Eb

⎡
⎣exp

⎧⎨
⎩−θ

�1∫

0

1{ξ (1)s <b}ds

⎫⎬
⎭
⎤
⎦= 1

p

∫

(a,b)

Pb

(
Yρ−

b
∈dz, Y ρ−

b
<c

)
Ez

[
e−θτ+

b , τ+
b <τ

−
a

]

= 1

p

∫

(a−b,0)

P

(
Yρ−

0
∈ dz, Y ρ−

0
< c − b

)

× Ez+b−a

[
e−θτ+

b−a , τ+
b−a < τ−

0

]
,
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where Y t = sup0≤s≤t Ys . From the Compensation Formula (see for instance identity
(8.27) in [10]), one can deduce

P

(
Yρ−

0
∈ dz, Y ρ−

0
< c − b

)
= W(0+)

W(c − b)

c−b∫

0

W(c − b − y)	(dz − y)dy, (2.6)

and from identity (8.8) in [10], we have

Ez+b−a

[
e−θτ+

b−a , τ+
b−a < τ−

0

]
= W (θ)(z + b − a)

W (θ)(b − a)
. (2.7)

Therefore, from (2.6) and (2.7), we get for each i

Eb

⎡
⎣exp

⎧⎨
⎩−θ

�i∫

0

1{ξ (i)s <b}ds

⎫⎬
⎭
⎤
⎦

= W(0+)
p

c−b∫

0

∫

(a−b,0)

W(c − b − y)

W(c − b)

W (θ)(z + b − a)

W (θ)(b − a)
	(dz − y)dy.

It is worth noting at this point that W(0+) > 0 precisely because we have restricted
ourselves to the case of bounded variation paths.

The classical ruin problem for Y tells us that

P
(
ρ−

0 < ∞) =
{

1 if ψ ′(0+)− δ ≤ 0,

1 − (ψ ′(0+)− δ)W (0+) if ψ ′(0+)− δ > 0,

see for example formula (8.7) in [10]. Taking limits as c ↑ ∞ the formula with (2.6),
making use of Exercise 8.5 in [10] which tells us that limc↑∞ W(c−b−y)/W(c−b) =
exp{−ϕ(0)y}, we get

1 = W(0+)(ψ ′(0+)− δ)+ + W(0+)
∞∫

0

∫

(−∞,0)

	(dz − y)e−ϕ(0)ydy.

Hence putting all the pieces together in (2.5), we obtain

E

[
Eb

[
exp

{
− θ

�1∫

0

1{ξ (1)s <b}ds

}]G p
]

= q

W(0+)(ψ ′(0+)− δ)+ + W(0+)
∞∫

0

∫

(−∞,0)

B(θ)(z, a, b, c, y)	(dz − y)dy

,

(2.8)
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where

B(θ)(z, a, b, c, y)=e−ϕ(0)y − W(c − b − y)

W(c − b)

W (θ)(z + b − a)

W (θ)(b − a)
1(a−b,0)(z)1(0,c−b)(y).

Next, we compute the Laplace transform of
∫ �∗

0 1{ξ∗
s <b}ds. Recalling that �∗ is equal

in law to κ−
a ∧ κ+

c under Pb(·|Ec) we have two cases to consider. In the first case, the
process Y continuously exits the interval [b, c] at c. In the second case, the process
U exits the interval [b, c] downwards by a jump, if the process jumps into [a, b), it
continues until it jumps again below a. Hence from identities (8.8), (8.9) in [10] and
(2.6), we have

Eb

[
exp

{
− θ

�∗∫

0

1{ξ∗
s <b}ds

}]

= 1

q

(
Pb

(
ρ+

c < ρ−
b

)
+
∫

(a,b)

Pb

(
Yρ−

b
∈ dz, Y ρ−

b
< c

)
Ez

[
e−θτ−

a , τ−
a < τ+

b

])

= 1

q

(
W(0+)

W(c − b)
+

∫

(a−b,0)

P

(
Yρ−

0
∈ dz, Y ρ−

0
< c − b

)
Ez+b−a

[
e−θτ−

0 , τ−
0 < τ+

(b−a)

])

= 1

q

(
W(0+)

W(c − b)
+ W(0+)

c−b∫

0

∫

(a−b,0)

(
Z (θ)(z + b − a)− Z (θ)(b − a)

× W (θ)(z + b − a)

W (θ)(b − a)

)
W(c − b − y)

W(c − b)
	(dz − y)dy

)
. (2.9)

Let

A(θ)(z, a, b, c, y) = G(θ)(z, a, b)
W(c − b − y)

W(c − b)
1(a−b,0)(z)1(0,c−b)(y),

where we recall G(θ)(z, a, b) was defined in (1.7).
Plugging (2.8) and (2.9) back into (2.4), we get the desired identity. �

3 Proof of Theorem 1: Unbounded Variation Paths, σ 2 = 0

In this part of the proof, we extend the previous calculations to unbounded variation
Lévy process with no Gaussian component (σ = 0). There is a very particular reason
why we do not consider the inclusion of the Gaussian component, which is related to
smoothness properties of scale functions. We shall address this issue at the end of the
section.

To start with we recall the following well-established result which can be found
discussed, for example on p. 210 of [2]. For any spectrally negative Lévy process with
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unbounded variation paths X , there exists a sequence of bounded variation spectrally
negative Levy processes Xn = (Xn

t , t ≥ 0), n ≥ 1, such that for each t > 0,

lim
n→∞ sup

s∈[0,t]
∣∣Xn

s − Xs
∣∣ = 0, a.s. (3.1)

Moreover, when Xn is written in the form (1.2) the drift coefficient tends to infinity
as n ↑ ∞. The latter implies that for all n sufficiently large, the sequence Xn will
automatically fulfill condition (H). Such a sequence, Xn will be referred to as strongly
approximating for X . Rather obviously, we may also talk of a strongly approximating
sequence for processes of bounded variation respecting (H).

On the other hand, following Kyprianou and Loeffen [11], we have also have the
following Lemma.

Lemma 1 Suppose that X is a spectrally negative Levy process satisfying (H) and
that (Xn)n≥1 is any strongly approximating sequence. Denote by U n = (U n

t , t ≥
0), n ≥ 1, the sequence of pathwise solutions associated with each Xn. Then there
exists a stochastic process U = (Ut : t ≥ 0) such that for each fixed t > 0,

lim
n→∞ sup

s∈[0,t]
∣∣U n

s − Us
∣∣ = 0, a.s. (3.2)

Let X be a Lévy process of unbounded variation with no Gaussian component and
U the corresponding solution to (1.3). Let us denote by 	n,W (θ)

n , Z (θ)n and ψn for
the corresponding Lévy measure, scale functions and Laplace exponent of a strongly
approximating sequence Xn, n ≥ 1, discussed above. For the corresponding sequences
of strongly approximating refracted Lévy processes U n, n ≥ 1, given by Lemma 1,
define

κ+,n
x = inf{t ≥ 0 : U n

t > x} and κ−,n
x = inf{t ≥ 0 : U n

t < x},

where x ∈ R. We also denote by Wn,W
(θ)
n and ϕn for the scale functions and the

right-continuous inverse of the Laplace exponent associated with the Lévy process Y n

which is defined by Y n
t = Xn

t − δt , for t ≥ 0.
The conclusion of the previous section tells us that

Eb

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩−θ

κ
+,n
c ∧κ−,n

a∫

0

1{U n
s <b}ds

⎫⎪⎬
⎪⎭

⎤
⎥⎦

=

1

Wn(c − b)
+

∞∫

0

∫

(−∞,0)

A(θ),n(z, a, b, c, y)	n(dz − y)dy

(ψ ′
n(0+)− δ)+ +

∞∫

0

∫

(−∞,0)

B(θ),n(z, a, b, c, y)	n(dz − y)dy

, (3.3)
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where A(θ),n(z, a, b, c, y) and B(θ),n(z, a, b, c, y) are obviously defined. Our objec-
tive is to show that both left- and right-hand side above converge to their respective
components of (4.3).

To this end, we shall start by noting that, according to Bertoin [2] (see the comment
on p. 210), the sequence (Xn)n≥1 may be constructed in such a way that its Lévy
measure	n is given by	n(dx) = 1{x<−1/n}	(dx) and accordingly, there is pointwise
convergence of ψn(θ) to ψ(θ), the Laplace exponent of the desired limiting process
X . This construction also ensures the convergence ofψ ′

n(0+) toψ ′(0+). Through the
Continuity Theorem for Laplace transforms, it was also shown in [11] that

lim
n→∞ W (θ)

n (x) = W (θ)(x) for all x ≥ 0, (3.4)

Therefore, as n → ∞, we can ensure with the aforementioned approximating sequence
(Xn)n≥1, we have for all y, z

B(θ),n(z, a, b, c, y) → B(θ)(z, a, b, c, y) and A(θ),n(z, a, b, c, y)

→ A(θ)(z, a, b, c, y).

If we can provide appropriate uniform and integrable bounds on

|B(θ),n(z, a, b, c, y)| and |A(θ),n(z, a, b, c, y)|,

a straightforward argument using dominated convergence will suffice to prove that
the right-hand side of (3.3) converges to the desired limit. To this end, we need the
following helpful result.

Lemma 2 Let x > 0. Suppose that (ψn)n≥1 is a sequence of Laplace exponents of
spectrally negative Lévy processes such thatψn tends pointwise on (0,∞) toψ , which
is also the Laplace exponent of a spectrally negative Lévy process. Denote by (ηn)n≥1
and η the excursion measures of the respective processes associated with (ψn)n≥1 and
ψ , reflected in their supremum. Then, writing ε for the supremum of the canonical
excursion,

ηn(ε̄ ≥ x) → η(ε̄ ≥ x) (3.5)

as n → ∞.

Proof Let x > 0, then by identity Lemma 8.2 in [10] we have that

W ′
n(x) = ηn(ε̄ ≥ x)Wn(x), (3.6)

for almost every x > 0, with a slightly stronger statement holding for X on account
of the fact that it has paths of unbounded variation. Indeed, it is also shown that the
function η(ε̄ ≥ x) is continuous for all x > 0. In that case, W ′ exists for all x > 0
and its continuous.
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Now using Lemma 20 in [11] we know that

Wn(x) → W (x) as n → ∞, for all x > 0,

and also that W ′
n → W ′ as n → ∞ for almost all x > 0. Then by (3.6) we can

conclude that

ηn(ε̄ ≥ x) → η(ε̄ ≥ x) as n → ∞, for almost all x ≥ 0.

Let N = {x > 0 : limn→∞ ηn(ε̄ ≥ x) = η(ε̄ ≥ x)}, and let z > 0 such that z �∈ N .
We consider two sequences (xn)n∈N ⊂ N and (yn)n∈N ⊂ N , such that

xn ↑ z and yn ↓ z as n → ∞.

Then we have that

ηn(ε̄ ≥ ym) ≤ ηn(ε̄ ≥ z) ≤ ηn(ε̄ ≥ xm) and hence

η(ε̄ ≥ ym) ≤ lim sup
n→∞

ηn(ε̄ ≥ z) ≤ η(ε̄ ≥ xm).

Finally taking m → ∞ in the previous inequality, we obtain

η(ε̄ > z) ≤ lim sup
n→∞

ηn(ε̄ ≥ z) ≤ η(ε̄ ≥ z).

Using the fact that z �→ η(ε̄ ≥ z) is continuous, we get that lim supn→∞ ηn(ε̄ ≥ z) =
η(ε̄ ≥ z). Appealing to a similar argument for lim inf ηn(ε ≥ z), we conclude that
limn→∞ ηn(ε̄ ≥ z) = η(ε̄ ≥ z). This implies that z ∈ N , which is a contradiction.
The statement of the lemma now follows.

We return to the proof of Theorem 1. Note that, since the functions Wn,W (θ)
n and

Z (θ)n are strictly increasing, then for y ∈ (0, c − b) and z ∈ (a − b, 0), we have on the
one hand,

∣∣∣A(θ),n(z, a, b, c, y)
∣∣∣ =

∣∣∣∣Wn(c − b − y)

Wn(c − b)

(
Z (θ)n (z + b − a)

−Z (θ)n (b − a)
W (θ)

n (z + b − a)

W (θ)
n (b − a)

)∣∣∣∣

≤
∣∣∣∣∣∣

0∫

−z

(
θW (θ)

n (u + b − a)

−Z (θ)n (b − a)
W (θ)′

n (u + b − a)

W (θ)
n (b − a)

)
du

∣∣∣∣∣ , (3.7)
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where we have used the monotonicity of Wn in the inequality. Next we recall, for
example from formulae (2.18) and (2.19) of [7], that

W (θ)′
n (u)

W (θ)
n (u)

= η�n(θ)
n (ε ≥ u)+�n(θ) (3.8)

almost everywhere, where η�n(θ)
n is the excursion measure of Xn under the exponential

change of measure

dP
�n(θ),n

dP

∣∣∣∣∣Ft

= e�n(θ)Xn
t −θ t , t ≥ 0,

with Ft = σ(Xs : s ≤ t). The right-hand side of (3.8) is a non-increasing function. It
is therefore, straightforward to check, with the help of Lemma 2 (note that the Laplace
exponent of (Xn,P�n(θ),n) is equal to ψn(· + �n(θ)) − θ and this tends pointwise
to ψ(· + �(θ)) − θ on (0,∞)) that the integrand on the right-hand side of (3.7) is
uniformly bounded. Hence, there exists a constant K > 0 such that for all y, z and
sufficiently large n,

∣∣∣A(θ),n(z, a, b, c, y)
∣∣∣ ≤ K |z|1(a−b,0)(z)1(0,c−b)(y) (3.9)

which is integrable with respect to 	(dz − y)dy on (0,∞)2. Indeed, to confirm the
latter, noting that	 is a finite measure away from the origin, it suffices to check, with
the help of Fubini’s Theorem, that for sufficiently small ε > 0,

ε∫

0

∫

(−ε,0)
(−z)	(dz − y)dy =

ε∫

0

∫

(−ε−y,−y)

1(−ε,0)(z)(−y − z)	(dz)dy

=
∫

(−ε,0)

∞∫

0

1(0,ε)(y)1(−z−ε,−z)(y)(−y − z)dy	(dz)

= −1

2

∫

(−ε,0)
(z + y)2

∣∣∣−z

0
	(dz)

= 1

2

∫

(−ε,0)
z2	(dz) < ∞. (3.10)

The Dominated Convergence Theorem now implies that

lim
n→∞

∫

(−∞,0)

∞∫

0

A(θ),n(z, a, b, c, y)	n(dz − y)dy
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=
∫

(−∞,0)

∞∫

0

A(θ)(z, a, b, c, y)	(dz − y)dy.

Now let us check the integral in the denominator of (3.3). Proceeding as before, we
note that the functions Wn,W (θ)

n are strictly increasing. Then we may find an upper
bound for B(θ),n(z, a, b, c, y) as follows

∣∣∣B(θ)(z, a, b, c, y)
∣∣∣=

∣∣∣∣e−ϕn(0)y − Wn(c − b − y)

Wn(c − b)

W (θ)
n (z + b − a)

W (θ)
n (b − a)

1(a−b,0)(z)1(0,c−b)(y)

∣∣∣∣

≤ 1 + Wn(c − b − y)

Wn(c − b)

W (θ)
n (z + b − a)

W (θ)
n (b − a)

≤ 2. (3.11)

It follows that, provided we consider the part of the integral

∞∫

0

∫

(−∞,0)

B(θ),n(z, a, b, c, y)	n(dz − y)dy (3.12)

which concerns values of y and z which are bounded away from zero, we may appeal
to dominated convergence to pass the limit in n through the integral in the obvious
way.

Let us therefore turn our attention to the part of (3.12) which concerns small values
of y and z. First note that we can write for ε sufficiently small,

ε∫

0

∫

(−ε,0)
B(θ),n(z, a, b, c, y)	n(dz − y)dy

=
ε∫

0

∫

(−ε−y,−y)

B(θ),n(z + y, a, b, c, y)	n(dz)dy.

In the spirit of (3.7), we can write

B(θ),n(z + y, a, b, c, y)− B(θ),n(z, a, b, c, 0) =
y∫

0

∂

∂u
B(θ),n(z + u, a, b, c, u)du,

where the derivative is understood as a density with respect to Lebesgue measure
(on account of the fact that scale functions only have, in general, a derivative almost
everywhere). Using similar reasoning to the derivation of the inequality (3.9), we may
also deduce that, for 0 < y, |z| < ε and ε sufficiently small,
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∣∣∣B(θ),n(z + y, a, b, c, y)− B(θ),n(z, a, b, c, 0)
∣∣∣ ≤ K1 y

for some constant K1 > 0. With similar reasoning, we can also check that, within the
same regime of y and z,

∣∣∣B(θ),n(z, a, b, c, 0)
∣∣∣ ≤ K2|z|,

where K2 > 0 is a constant. We now claim that K1 y + K2|z| is a suitable dominating
function on 0 < y, |z| < ε. Taking account of the computations in (3.10), to verify
the last claim, it suffices to check that for ε sufficiently small,

ε∫

0

∫

(−ε−y,−y)

1(−ε,0)(z)y	n(dz)dy =
∫

(−ε,0)

∞∫

0

y1(0,−z)(y)dy	n(dz)

= 1

2

∫

(−ε,0)
z2	n(dz) < ∞.

Thus far, we have shown that the right-hand side of (3.3) converges to the desired
expression. To deal with the left hand side of (3.3), let us note that, according to the
proof of Lemma VII.23 in [2], we have that P-a.s.

lim
n→∞ κ

+,n
a = κ+

a , and lim
n→∞ κ

−,n
c = κ−

c .

Finally, using the uniform convergence of U n to U on fixed, bounded intervals of time
together with the dominated convergence Theorem, we obtain

lim
n→∞ Eb

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩−θ

κ
+,n
a ∧κ−,n

c∫

0

1{U n
s <b}ds

⎫⎪⎬
⎪⎭

⎤
⎥⎦ = Eb

⎡
⎢⎣exp

⎧⎪⎨
⎪⎩−θ

κ+
a ∧κ−

c∫

0

1{Us<b}ds

⎫⎪⎬
⎪⎭

⎤
⎥⎦ .

Hence taking limits in both sides of (3.3) give us the desired result. ��
Let us conclude this section by commenting on why we have excluded the case

σ 2 > 0. As we have seen above, we have taken account of the continuity of scale
functions with respect to the underlying Lévy triplet in taking limits through an approx-
imating sequence of processes. Had the target Lévy process X included a Gaussian
component, then, as we shall see in the next section, we would have found the appear-
ance of derivatives of scale functions in the limit on the right-hand side of (3.3).
Whilst scale functions are continuous, they do not in general have continuous deriva-
tives. Indeed, for processes of bounded variation, in the case that the Lévy measure has
atoms, the associated scale functions are at best almost everywhere differentiable. For
spectrally negative Lévy processes of unbounded variation, however, scale functions
are continuously differentiable suggesting that it would be more convenient to deal the
case of σ 2 > 0 by working with an approximating sequence of unbounded variation
processes. This is precisely what we do in the next section.
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4 Proof of Theorem 1: Unbounded Variation Paths, σ 2 > 0

We now consider the case when the driving Lévy process X has a Gaussian compo-
nent, i.e., σ 2 > 0. We will strongly approximate X by a sequence of Lévy process
of unbounded variation (Xn)n≥1 with no Gaussian component. Again following the
discussion on p. 210 of Bertoin [2], we may construct the sequence (Xn)n≥1 in such
a way their Lévy measures 	n satisfy

	n(dx) = n2σ 2δ− 1
n
(dx)+ 1{x<−1/n}	(dx), (4.1)

where δz(dx) is the Dirac measure at z. In order to obtain this case, we first prove a
series of useful Lemmas.

Lemma 3 Let x > 0 and let (xn)n≥1 be a sequence of positive real numbers such that
limn→∞ xn = x. Then

W (θ)
n (xn) −−−→

n→∞ W (θ)(x).

Proof First note from Lemma 8.4 in [10] that we can write

W (θ)
n (x) = e�n(θ)x W�n(θ)(x), x ≥ 0, (4.2)

where W�n(θ) is the scale function of the process (X,P�n(θ),n). As earlier noted,
Lemma 8.2. of [10] tells us that we may further write

W�n(θ)(xn) = W�n(θ)(a) exp

⎧⎨
⎩−

a∫

xn

ηn(ε̄ ≥ t)dt

⎫⎬
⎭ .

Now appealing to Lemma 2 and (3.4), it is straightforward to show with the help
of dominated convergence that

lim
n→∞ W�n(θ)(xn) = lim

n→∞ W�n(θ)(a) exp

⎧⎨
⎩−

a∫

xn

ηn(ε̄ ≥ t)dt

⎫⎬
⎭

= W�(θ)(a) exp

⎧⎨
⎩−

a∫

x

η(ε̄ ≥ t)dt

⎫⎬
⎭

= W�(θ)(x).

Applying this limit to (4.2) completes the proof.

Lemma 4 Let x > 0 and let (xn)n≥1 be a sequence of positive real numbers such that
limn→∞ xn = x. Then for any θ > 0

W (θ)′
n (xn) −−−→

n→∞ W (θ)′(x).
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Proof From (3.8) and the previous lemma, it suffices to show that

η�n(θ)
n (ε > xn) −−−→

n→∞ η�(θ)(ε > x).

However, this follows from Lemma 2.

Let us return to the proof of Theorem 1 for the case of unbounded variation paths
with σ 2 > 0 using the approximating sequence of bounded variation spectrally nega-
tive Lévy processes constructed with Lévy measure given by (4.1). Starting from (3.3)
and taking account of the reasoning in the previous section, it suffices to show that the
right-hand side of (3.3) converges to the ratio

1

W(c − b)
+ σ 2

2
C(θ)(a, b)+

0∫

−∞

∞∫

0

A(θ)(z, a, b, c, y)	(dz − y)dy

(ψ ′(0+)− δ)+ + σ 2

2
D(θ)(a, b, c)+

0∫

−∞

∞∫

0

B(θ)(z, a, c, y)	(dz − y)dy

.

(4.3)

Proceeding exactly as in the proof of Theorem 6, it is easy to see that

lim
n→∞

0∫

−∞

∞∫

0

A(θ),n(z, a, b, c, y)	n(dz − y)dy =
0∫

−∞

∞∫

0

A(θ)(z, a, b, c, y)	(dz − y)dy.

and

lim
n→∞

0∫

−∞

∞∫

0

B(θ),n(z, a, b, c, y)	n(dz − y)dy =
0∫

−∞

∞∫

0

A(θ)(z, a, b, c, y)	(dz − y)dy.

To obtain the terms σ 2C(θ)(a, b)/2 in the numerator, consider the integral in the
numerator of the right-hand side of (4.3). We have

n2σ 2

∞∫

0

∫

(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= n2σ 2

∞∫

0

∫

(−∞,−y)

Aθ,n(z + y, a, b, c, y)δ−1/n(dz)dy
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= n2σ 2

1/n∫

0

Wn(c − b − y)

Wn(c − b)

(
Z (θ)n (y − 1/n + b − a)

−Z (θ)n (b − a)
W (θ)

n (y − 1/n + b − a)

W (θ)
n (b − a)

)
dy.

It follows that

n2σ 2

∞∫

0

∫

(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= n2σ 2

1/n∫

0

Wn(c − b − y)

Wn(c − b)

(
Z (θ)n (y − 1/n + b − a)

−Z (θ)n (b − a)
W (θ)

n (y − 1/n + b − a)

W (θ)
n (b − a)

)
dy

= n2σ 2

1/n∫

0

y
W

′
n(c − b − y)

Wn(c − b)

(
Z (θ)n (y − 1/n + b − a)

−Z (θ)n (b − a)
W (θ)

n (y − 1/n + b − a)

W (θ)
n (b − a)

)
dy

−n2σ 2

1/n∫

0

y
Wn(c − b − y)

Wn(c − b)

(
θW (θ)

n (y − 1/n + b − a)

−Z (θ)n (b − a)
W (θ)′

n (y − 1/n + b − a)

W (θ)
n (b − a)

)
dy

= σ 2

1∫

0

u
W

′
n(c − b − u/n)

Wn(c − b)

(
Z (θ)n ((u − 1)/n + b − a)

−Z (θ)n (b − a)
W (θ)

n ((u − 1)/n + b − a)

W (θ)
n (b − a)

)
du

−σ 2

1∫

0

y
Wn(c − b − u/n)

Wn(c − b)

(
θW (θ)

n ((u − 1)/n + b − a)

−Z (θ)n (b − a)
W (θ)′

n ((u − 1)/n + b − a)

W (θ)
n (b − a)

)
du,
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where in the second equality we have integrated by parts and in the third equality we
have made the change of variable u = ny.

Appealing to the Dominated Convergence Theorem, it now follows that

lim
n↑∞ n2σ 2

∞∫

0

∫

(−∞,0)

A(θ),n(z, a, b, c, y)δ−1/n(dz − y)dy

= σ 2

(
Z (θ)(b − a)

W (θ)′(b − a)

W (θ)(b − a)
− θW (θ)(b − a)

) 1∫

0

ydy

= σ 2

2

(
Z (θ)(b − a)

W (θ)′(b − a)

W (θ)(b − a)
− θW (θ)(b − a)

)

= σ 2

2
C(θ)(a, b).

A similar computation, left to the reader, will reveal

lim
n→∞ n2σ 2

∞∫

0

∫

(−∞,0)

Bθ,n(z, a, b, c, y)δ−1/n(dz − y)dy

= σ 2

2

(
W

′(c − b)

W(c − b)
+ W (θ)′(b − a)

W (θ)(b − a)
− ϕ(0)

)
.

This concludes the proof of Theorem 1. ��

5 Proofs of Corollaries 1 and 2

These corollaries are the result of taking limits as c ↑ ∞ and a ↓ −∞ in the expression
(4.3). In dealing with the left hand side of (4.3), one appeals to dominated convergence
and the monotonicity of the stopping times κ+

c and κ−
a in their respective parameters.

For the right-hand side, one may make use of the limits given below, together with
dominated convergence. The implementation of the Dominated Convergence Theorem
is similar to the arguments used above, and we omit them for the sake of brevity, leaving
the details to the reader.

We first note that for all z ∈ (−∞, 0),

lim
a↓−∞ Z (θ)(z + b − a)− Z (θ)(b − a)

W (θ)(z + b − a)

W (θ)(b − a)

= lim
a↓−∞ Ez+b

[
e−θτ−

a ; τ−
a < τ+

b

]
= 0,
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which implies

lim
a↓−∞ A(θ)(z, a, b, c, y) = 0.

On the other hand, recall

lim
a↓−∞

W (θ)(z + b − a)

W (θ)(b − a)
= e�(θ)z,

and from (3.8)

lim
a↓−∞

W (θ)′(b − a)

W (θ)(b − a)
= �(θ).

Hence

lim
a↓−∞ B(θ)(z, a, b, c, y) = e−ϕ(0)y − e�(θ)z

W(c − b − y)

W(c − b)
1(a−b,0)(z)1(0,c−b)(y).

lim
a↓−∞ D(θ)(a, b, c) = W

′(c − b)

W(c − b)
+�(θ)− ϕ(0).

Moreover, appealing to Theorem 2.8 (ii) in [7], we have

lim
a↓−∞ C(θ)(a, b) = lim

a↓−∞ E0(e
−θσb−a ) = 0,

where σa = inf{t > 0 : Xt − Xt > a}. From these limits, we can easily deduce the
statement in part (i) of Corollary 1.

Next recall, see for instance Exercise 8.5 in [10], that

lim
z↑∞

W(z − x)

W(z)
= e−ϕ(0)x .

From identity (8.7) in [10], we deduce

W(∞) =
⎧⎨
⎩

1

ψ ′(0+)− δ
if ψ ′(0+) > δ,

∞ if ψ ′(0+) ≤ δ.

Moreover, from the relation for W
′(z)/W(z) that is analogous to (3.8), we have

lim
z↑∞

W
′(z)

W(z)
= ϕ(0).
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Hence, when c goes to ∞, we get

lim
c↑∞ A(θ)(z, a, b, c, y)= e−ϕ(0)y

(
Z (θ)(z + b − a)− Z (θ)(b − a)

W (θ)(z + b − a)

W (θ)(b − a)

)

×1(a−b,0)(z)

lim
c↑∞ B(θ)(z, a, b, c, y)= eϕ(0)y

(
1 − W (θ)(z + b − a)

W (θ)(b − a)
1(a−b,0)(z)

)

and

lim
c↑∞ D(θ)(a, b, c) = W (θ)′(b − a)

W (θ)(b − a)
.

From these limits, we can deduce the statement in part (ii) of Corollary 1.
Finally, for the proof of Corollary 2, one may proceed as above, taking limits in

either of the two expressions given in Corollary 1 (respectively as c ↑ ∞ in part (i)
or a ↓ −∞ in part (ii)); however, one may also recover the identity by revisiting the
proof of Theorem 1. Indeed, setting c = +∞ and a = −∞, in which case one should
understand p = Eb(ζ < ∞), the proof goes through verbatim for the case that X has
bounded variation paths. Appealing to the approximation (3.1), the identity (1.8) can
easily be shown to be valid in the case that X has unbounded variation case.

In order to obtain the density of
∫∞

0 1{Us<b}ds, we first recall that� is the Laplace
exponent of the ascending ladder time of X , which is a subordinator (see Theorem
VII.1 in [2]). Therefore, � respects the relation

�(θ)

θ
= a+

∞∫

0

e−θx	�(x)dx,

where a ≥ 0,	�(x) = 	�([x,∞)) and 	� is the underlying Lévy measure asso-
ciated with �. Said in another way, the quantity �(θ)/θ , for θ ≥ 0 is the Laplace
transform of the measure

μ(dx) = aδ0(dx)+	�(x)dx, x ≥ 0,

where δ0(dx) is the Dirac-delta measure which places an atom at zero.
Now rewriting (1.8) and noting that, under the assumption ψ ′(0+) > δ, we neces-

sarily have δ�(θ) < θ , we get

Eb

[
exp

{
− θ

∞∫

0

1{Us<b}ds

}]
= (ψ ′(0+)− δ)

�(θ)

θ
× 1

1 − δ�(θ)

θ

=
(
ψ ′(0+)
δ

− 1

)∑
n≥1

δn
(
�(θ)

θ

)n

.
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We deduce that
∫∞

0 1{Us<b}ds has a density which is given by

(
ψ ′(0+)
δ

− 1

)∑
n≥1

δnμ∗n(dx), x ≥ 0,

where μ∗n is the n-fold convolution of μ. Note that μ∗n({0}) = an and hence, with
ν(dx) = 	�(x)dx , we finally come to rest at

Pb

⎛
⎝

∞∫

0

1{Us<b}d ∈ dx

⎞
⎠=

(
ψ ′(0+)
δ

−1

)⎛
⎝ δa

1 − δa
δ0(dx)+1{x>0}

∑
n≥1

δnν∗n(dx)

⎞
⎠ ,

where ν∗n is the n-fold convolution of ν. ��
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