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Semi-Stable Markov Processes. I 

John Lamperti* 

1. Introduction 

A real valued random function {x,}, continuous in probability and with x o =0,  
is called semi-stable if there is a constant ~ > 0 (called the order of the process) such 
that for every a>O the random functions {x,t } and {a~x,} have the same joint 
distributions. If {xt} is Markovian with the stationary transition function Pt(x, E), 
it is obvious that this condition holds provided that xo =0  and that 

Pot(x, E) = Pt (a -~ x, a -~ E) (1.1) 

for all a>0 ,  t>0 ,  x ~ R  1, and all measurable sets E. Markov processes whose 
transition probabilities satisfy (1.1), and which fulfill certain regularity conditions 
stated in w 2 below, are the object of study in this paper. 

The term ~ semi-stable" was introduced in [9], and although the present paper 
is very largely independent of that one, motivation, examples, additional facts and 
some alternative methods may be found there. The main point of [9] was to 
show the connection between semi-stable processes and the following common 
and important kind of stochastic limit: Suppose that {Yt} is any real random 
process, and that for some norming function f ( t / )Z  oo we have 

wk lim P [ Y,,1 i Y,,,, ) , ~  k ~ = X l  . . . . .  f(rl ) <=x,, =P(xtl<=x , . . . .  ,x , ,<x, , ) ,  (1.2) 

where {xt} is a non-constant random function, continuous in probability. Then 
f(q)  = t/~ L(~) for some c~ > 0, where L is a slowly varying function, and {x,} is 
semi-stable of order a. Conversely, it is obvious that every semi-stable process 
arises as a limit of this sort. (The process {y,} may be chosen as {x~} itself.) In 
other words, the semi-stable processes form exactly the class of possible "asymp- 
totes" which can be obtained by taking some fixed random process and expanding 
indefinitely the units in which space and time are measured. This is the basic 
reason, in my opinion, why such processes play a very large role in many aspects 
of probability theory and its applications. 

The point of view of this paper is a little different from that of [9]. Of course, 
in the (stationary) Markov case the above theorem applies and (with some regu- 
larity assumptions) yields the condition (1.1). However, in the Markov case it is 
not always desirable to fix the starting state Yo. In the theory of branching processes, 
in particular, interesting limits satisfying (1.1) arise when Yo is allowed to tend to 
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oo as a function of 0; in these cases, the limit process {xt} cannot be started in 
state 0 without remaining there forever, and when Yo is taken as fixed only a trivial 
limit can be obtained (see [12]). Therefore in the present paper the condition (1.1) 
itself seems a more natural starting point than the assumption that {x,t} and 
{a" xt} have the same distribution, and the condition that {xt} can be nontrivially 
started in state 0 may be imposed later if desired. We accordingly will not dwell 
further on the relation between semi-stable processes and limit theorems, although 
it continues to provide the major motivation for this study. 

It should be mentioned that random functions obeying what I have called the 
"semi-stable" condition have attracted attention in other contexts, where different 
names, such as "self-similar", are sometimes used. (See, for example, [73 and [16].) 
The term "semi-stable" was chosen in my former ignorance of some of this other 
work, and in order to reflect the way in which the limit theorems described above 
generalize the role played by stable laws and processes within the limiting theory 
of sums of independent random variables. Both names seem reasonable to me, 
and, with this much apology, I will continue to use the one I have adopted earlier. 
The other works just refered to are not concerned especially with Markov proc- 
esses, and have very little direct connection with the content of the present paper. 

The goal, then, is to study the transition functions and Markov processes 
satisfying (1.1); we consider here only the simplest case in which the state space of 
{x~} is R + =  [0, oo), together with the field ~ +  of its Borel subsets. The main idea 
is as follows 1: Let P~(x, E) satisfy (1.1), and define a corresponding semigroup of 
operators as usual by setting 

oo 

Qtf(x) = ~ Pt(x, dy) f(y) (1.3) 
o 

for f belonging to some space of bounded Borel functions. It is easy to see that 
(1.1) implies 

Q,,t=H,-~QtHa~, all a > 0 ,  (1.4) 

where Hu f (x )=f (u  x) for any u > 0. If A is the generator of the semigroup {Qt}, 
then (1.4) yields 

aA=Ha_~AH,~. (1.5) 

Now suppose we take an initial state Xo>0 and introduce the additive func- 
tional 

opt(co)= I (xt) -1/~ dt, (1.6) 
0 

which is continuous and strictly increasing for ~ < ~--inf{t: xt =0}. (We are now 
assuming {xr is strongly Markov with "nice" paths.) Let T(t)= T(t, co) be the 
inverse function to q~, and set 

y~(o~)=Xr(,.o,)(o3) for o)e{T(t)<~}; (1.7) 

1 This idea has been stated in abstract form in Notices A.M.S. 13, 121 (1966) and in Casopis pro 
P~stov~mi Matematiky 93, 231 (1968). 
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the variable Yt is not defined otherwise, or it may be assigned to a fictitious state. 
Then {Yt} is again a strong Markov process, obtained from {x~} by a random time 
change plus killing at the moment when x t first enters the state 0. Its transition 
probabilities have a generator B which takes the form B = x l / ' d  for functions in 
its domain, where d is the Dynkin "characteristic operator" of {xt}. But sub- 
stituting in (1.5) (which also holds for ~ )  we see that B satisfies the corresponding 
equation without the factor " a "  on the left side. Formally, therefore, the semi- 
group {St} which B generates should be expected to have the property 

St = H,-2 S t Hu, all u > 0, (1.8) 

so that the transition probabilities of {Yt} ought to be homogeneous with respect 
to the action of the multiplicative group of positive reals. 

Finally, the transformation of state space defined by setting 

zt(co)=logyt(~ ) for co~{T(t)< ~} (1.9) 

ought to result in a process {z,} on R 1 with translation independent transition 
probabilities, and hence with independent increments. The nature of {zt} will be 
known, therefore, and this correspondence yields, in principle, a complete de- 
scription of the behavior of {xt} up until its first entry into state 0. Moreover, 
since all possible candidates for {z~} can be represented through the Ldvy- 
Khintchine formula for their characteristic functions, we obtain a promising 
beginning on the problem of constructing all semi-stable Markov processes on R +. 

The plan of this paper is as follows: In w we give precise definitions and 
establish certain elementary properties of a semi-stable Markov process, in 
preparation for carrying out the idea sketched above. In w 3, the functional q)~ 
defined in (1.6) is studied. The main theorem-asser t ing that {zt} is indeed a 
process with independent increments- is  proved in w 4. This theorem is applied 
in w 5 to give a new determination of all the semi-stable diffusion processes on 
[0, Go). In w 6 we present a general formula for the characteristic operator of {xt}, 
while the final w 7 contains a simple application to the study of the local properties 
of {xt}. 

The second part of this paper will deal with the "construction problem". 
Here the idea will be to start with any additive process {zt} on R 1 and reverse the 
procedure outlined above, in order to arrive at one or more semi-stable processes 
on R +. At the time of writing this program is incomplete in certain respects, 
although the overall picture is clear; in particular, the construction of all semi- 
stable Markov processes with non-decreasing paths can be given quite explicitly. 
Certain extensions, including especially that to processes on R 1 (rather than on R +) 
and in higher dimensions, will also be discussed in the future. 

The properties of semi-stable Markov processes have already received some 
attention. Papers by Stone [17-], by Wendel [19] and by Taylor and Wendel [20] 
treat various aspects of the set of zeros of such a process; there is also a study of 
this subject in [9]. In another work of Stone [18], convergence of birth and 
death processes to semi-stable diffusions was studied. Related results can be 
found in [8]. (See w 5 below.) A few other fragments of information about classes of 
semi-stable Markov processes can be found in [9]. There are, of course, many 
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papers showing how particular classes of semi-stable processes arise as limits in 
various contexts, and no attempt will be make to provide a bibliography of these. 
Finally, it may be remarked that the limiting theory of one-dimensional branching 
processes as presented in [12, w [13], and [143 has some overlap with the 
present subject (as already mentioned) and offers as well an interesting overall 
analogy, especially with regard to the use of random time changes, with the method 
of this paper. 

2. General Preliminaries 

Definition 2.1. A function Pt(x, E) is a semi-stable transition function provided 
that (i) it is a conservative Markov transition function in the sense of [2, p. 47] 
with respect to the state space (R +, ~+ )  consisting of [0, ~ )  and its Bore1 subsets; 
that (ii) the semi-stable condition 

P~t(x, E) = Pt(a -= x, a -~ E) (2.1) 

holds for some a > 0 ,  all a>0 ,  t>0 ,  x e R  +, E e l + ;  and that (iii) Pt is uniformly 
stochastically continuous in some neighborhood of x = 0 .  The constant c~ is called 
the order of the function (or associated process). 

Associated with such a transition function is the semi-group of operators {Qt} 
defined by oo 

Q~f(x)= ~ Pt(x, dy) f (y)  (2.2) 
0 

for any bounded, measurable function f We will first derive some simple conse- 
quences of Definition 2.1. Let Co denote the space of continuous real functions 
on [0, oe) which tend to 0 at oe. 

Lemma 2.1. Suppose that Pt is a semi-stable transition function, and that f e Co. 
Then Qt f (x) is continuous in t for each x, while for each t it is continuous in x when 
x > 0 and tends to 0 as x ~ oo. 

Proof. By assumptions (i) and (iii), there is an interval [0, A], A > 0, with the 
property that for any e, 6 > 0 there exists h > 0 such that 

Pt(x , (x-8 ,  x+6))>=l-~ for all x<=A, t<=h. (2.3) 

We note first that the existence of one such A implies that every finite interval 
satisfies (2.3). Indeed, from (2.1) we have 

Pt (x, (x - 8, x + 8)) = P,t (a" x, a ~ (x - 8, x + 8)), (2.4) 

and so changing 8 to 8a ~ and h to ha allows us to replace A by Aa~; thus A can 
be taken as large as desired. In particular, Pt(x, .) is stochastically continuous 
for all x. 

We now assert that Qtf(x)- - , f (x)  uniformly in x as t ~ 0 ,  provided f e C o .  
Take any 0>0 ,  choose A so that If(x)l<~ for x>__A/2 and choose 8 so that 
I f ( x ) - f ( y ) l  <rl whenever I x - y l  <=8. We then write 

oo 

[Qt f ( x ) - f ( x ) l  <= ~ Pt (x, dy) If(Y) - f ( x )  l (2.5) 
0 
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and estimate the right side for small t. If x < A, we have 

x - 6  ~ x + 6  

+ + ~ P~(x, dy) l f(x)-f(y)l<=2emaxlf(o)l+~ (2.6) 
0 x + 6  x - 6  

for all t<h, where h is chosen in accordance with (2.3). To deal with the case 
x > A, note that (2.1) implies 

Pt(x, (x/2, oo))= Ptx-1/,(1, (�89 oo)). (2.7) 

By stochastic continuity, we can find h' such that the right side is greater than 
1 - e  provided t x-1/~< h'. For x > A, therefore, the estimate 

x /2  

+ ; Pt(x, dy)I f (x)- f (y) l  __<2e max If( ')]  +2tl (2.8) 
0 x /2  

certainly holds for all t < A ~/~ h'. Combining (2.5) with (2.6) and (2.8), the assertion 
above is established. The continuity in t of Qt f(x) (for fixed x) is an immediate 
corollary. 

There remains to prove only the continuity of Qt f(x) in x, for x >0. Suppose 
f ~  Co, x, y>0 ,  and write by (2.1) 

oo oo 

Qtf(y)= ~ P,(y, du) f(u)= ~ Pt(,r x/y du) f(u) 
0 0 

(2.9) co 

= ~ Pt(x/,)v~ (x, dr) f(v y/x). 

But since f e  Co it is evident 
fact and the continuity of Qt 

that f(O v) ~f(v)  uniformly in v as 0 ~ 1. Using this 
f(x) in t (in the reverse order), we have 

oo 

Qtf(x)=lim ~ Pt(~/y)v.(x, dr) f  (v) 
y ~ x  0 

co 

Pt(x/,)v, (x, dr) f (v y/x) = lim Qt f (y). 
0 y ~ x  

= lim 
y ~ X  

(2.10) 

This completes the proof of Lemma 2.1. As will be seen later on, under certain 
conditions Qt f(x) may actually be discontinuous at x = 0. 

Lemma 2.2. A semi-stable transition function satisfies the conditions L(F) and 
M (F) of [2, pp. 91, 92]. 

Proof M(F) states that Pt is uniformly stochastically continuous on compact 
sets F; this was shown at the very beginning of the proof of Lemma 2.1. Condition 
L(F) states that 

lim sup Pt(x, F ) = 0  (2.11) 
x ~ c o  t ~ s  

for each compact set F and each s. But, by (2.1) again, 

P f ( X , / ~ ) = P t x  1/~ (1, x-aF), (2.12) 

and the stochastic continuity of Pt at the state 1 thus implies (2.11). 
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Lemma 2.3. Corresponding to each semi-stable transition function there is a 
(simple) Markov process {xt} whose path functions are almost surely right-con- 
tinuous for all t and have no discontinuities other than jumps. I f  {xt} is strong 
Markov, its paths are also quasi-continuous from the left. 

Proof These assertions follow from the general theory, more precisely from 
Theorems 3.2, 3.6 and 3.13 of [2] 2, in view of the properties of Pt established in 
Lemma 2.2 above. 

Definition 2.2. A semi-stable Markov process (ssmp) is a strong Markov process 
with right-continuous paths having no discontinuities except jumps, whose 
transition probabilities are given by a semi-stable transition function. 

Remarks. As we have seen in Lemma 2.3, the possibility of constructing a 
(simple) Markov process with "nice"  paths does not restrict the generality of 
the transition functions of Definition 2.1. This is not true, however, of the strict 
Markov property. For  example, adapting an example of Dynkin, suppose that 
Pt(x, E) is defined as for the reflecting barrier Brownian notion on [0, ~ )  when 
x > 0 ,  but P,(0, {0})=1. It is easy to see that this defines a semi-stable transition 
function, but it is one which does not correspond to a strong Markov process. 
The example is typical, in the sense that difficulty can arise only through bad 
behavior at x = 0. We will explore this point in more detail below. 

From now on, {xt} will always denote a Markov process with a semi-stable 
transition function and with the nice paths guaranteed by Lemma 2.3. We denote 
the space of right-continuous functions with left limits everywhere by (2, the Borel 
field generated by the cylinder sets by ~,  and the probability measures of the 
process {x,}, with Xo = x, by Px. For  the process {x,} we can now define the first 
passage time 

~=inf{ t>O:  xt=O or xt_ =0};  (2.13) 

it is quite possible, of course, that ~ = m. If {x,} is strong Markov and so quasi-left 
continuous, then xt_ =0  implies x t = 0  , but this might not hold in general. In any 
event, as we have defined { the events {{>t} belong to the Borel field ~,  and so 
the law of { is determined by the transition function Pt- We next prove a fact to 
be used several times below: 

Lemma 2.4. Suppose a set F ~  has the property that xt~F implies a -~ xat~F 
for all a>0 .  Then P~(F) is independent of x, x > 0 .  

Proof From the semi-stable condition (2.1), it is very easy to see that 

P~(F)=P~=x({x(.): a -~ xateF}) (2.14) 

for any cylinder set F. Then by the uniqueness of the extension of measures to ~,, 
(2.14) must also hold for all sets F e ~ But if F satisfies the condition of the lemma, 
the right side of (2.14) equals P~.x(F). Since a > 0  is arbitrary, we have the desired 
conclusion., 

Lemma 2.5. Either P~(~ < ~ ) =  1 for all x > O, or else P~ (~ < o0)= 0 for all x > O. 

2 In fact, these theorems are proved in an earlier work of Dynkin's, but [2] is the more convenient 
reference for their statements. 
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Proof The set F={x , :  3ze(0, oo) such that x~=0 or x~_ =0} belongs to ~- 
and satisfies the condition of Lemma 2.4. Accordingly, then, P~ (F)= p independent 
of x, x > 0. For any t > 0 

P~(t<~<oo)=E~(zlt<r or x,_ =0  for some z~(t, oo)1~)), (2.15) 

where XA is the indicator function of A and ~ is the subfield of 5 generated by 
{x~; s<=t}. However, by the (simple) Markov property, with probability one (P~) 
we have (when x, > 0) 

P~(x~ =0  or x~_ =0  for some re(t,  oo)[~)=P~t(~ < oo)=p, (2.16) 

and so for all t 

But then 
P~(t <~ < oo)=ppAt <~). 

p=P~(~<t)+Px(t <~ < oo)=P~(~<t)+pPx(t <~) 

(2.17) 

(2.18) 

so that (1 -p)P~(~<t )=0 .  Thus, unless p = l ,  we have Px(~<t)=0 for all x > 0  
and all t so that there is a.s. no zero; this proves the lemma. 

Theorem 2.1. Let Pt be a semi-stable transition fimction, and {xt} the right 
continuous Markov process corresponding to Pt. Suppose that P~(~<oo)=0 for 
all x>0 .  Then {xt} is a Feller process on (0, oo) and strongly Markov. I f  instead 
P~(~< oo)= 1 for all x>0 ,  then {xt} is a strong markov process if and only if for 
each t > O, f ~ Co, 

lira Qt f(x)  = Qt f(O). (2.19) 
x--+0 

Proof In case Px(~ < oo)=0, the paths of {x~} remain right-continuous even 
when the range space is the open interval (0, oo). It was proved in Lemma2.1 
that Q~f(x) is continuous in x > 0  for feCo; this is sufficient to show the weak 
convergence of the measures P,(y,-) to the limit P~(x,.) as y ~ x > O .  But since 
P~(x, .) has no mass at 0, it is also clear that Qt f  is still continuous even i f f  is 
merely bounded and continuous on the open interval (0, oo). Thus, in this case, 
{x~} is a right-continuous Feller process on (0, oo) and so, by Theorem 3.10 of [2], 
it is also strongly Markov. Moreover, it is easily seen that either Pt(0, {0})= 1 for 
all t, or else {xt}, started at 0, immediately enters the open interval and remains. 
In either case, we may add 0 to the state space without disturbing the strong 
Markov property. (But the Feller property may then fail at x = 0.) 

Now suppose P~(~< oo)=1 for all x>0 ,  and that (2.19) holds. The path func- 
tions are of course again right-continuous, on [0, oo) this time, while (2.19) plus 
the last part of Lemma 2.1 provide a Feller property on [0, oo). It follows by the 
theorem quoted just above that {xt} must be strongly Markov in this case also. 

It remains to show that (2.19) is necessary for the strong Markov property 
(but only when Px(~ < oo)= 1). To do this we first establish the fact that 

l imP~(~>t)=0 for each t > 0 .  (2.20) 
x ~ O  
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To see this, note that (2.14) can be applied with F = { ~ > t } ;  taking a = x  -1/~ the 
result is 

P~(~> t)= P~ (~ > t x-a/~). (2.21) 

But since ~ is a.s. finite (P1), (2.21) obviously implies (2.20). 

Now fix t > 0, and write 

P~ (x~ <y)  = P~(~ >t, x,<y)+P~(~ <t, x, <y). (2.22) 

The first term tends to 0 as x ~ 0 by (2.20). The second can be transformed with 
the aid of the strong Markov property as follows: 

~ ( ~ < t ,  x,____ y) = e~(z~<~ P~(x,_-__ y I ~))  
(2.23) 

= Ex(X~<, P,_~(0, [0, y]). 

But by Lemma 2.1, p~_h(0, [0, y]) has limit p,(0, [0, y]) as h---, 0, for all continuity 
points y of p~(0, [0, y]). Since ~ ~ 0  in law as x---, 0, the integrand in the last ex- 
pression in (2.23) converges in probability to p, (0, [0, y]) and we can conclude by the 
bounded convergence theorem that 

lim Px (x, < y) = Pt (0, [0, y]) (2.24) 
x ~ O  

for all continuity points y of the right-hand side. This is the same as (2.i9) and 
completes the proof of the theorem. 

Remark. The theorems shows that a semi-stable (strong) Markov process {x~} 
always has the Feller property, although it may (when P~ (4 < oo)= 0) be necessary 
to exclude x = 0 from the state space. It is always possible, however, to include the 
point x =  + oo by defining Pt(~, {oo})= 1 for all t. That the Feller property is 
still valid with this extension is an immediate consequence of Lemma 2.1. 

3. The Functional q~t 

In this section {xt} will always denote a semi-stable Markov process (ssmp) 
of order ~ in the sense of Definition 2.2. In order to carry out the program sketched 
in the introduction, it is necessary to establish certain properties of the functional 
which determines the random time substitution. We define 

z 

~o~(~o) = ~ xs(o,) -1/" as,  (3.1) 
0 

which is obviously a continuous and strictly increasing function of z as long as 
z < 4. (We now, as remarked earlier, can use the simpler definition ~. = min {t: xt =0} 
in view of the quasi-left continuity of {xt}.) 

Lemma 3.1. In the case Px(~ < oo)=0 for all x>0 ,  we have 

ex(!im~0~(~o)= +oo)=1 ,  x>O. (3.2) 
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Proof It is very easy to see that the event F~= {co: lim q)~(co)<z} belongs to 

and satisfies the homogeneity condition: xteF~ implies a-~x,,eF~ for a>0 .  By 
Lemma 2.4, therefore, Px (F~) is independent of x for x > 0. But write 

q)oo(co) = -}- f Xs(co)-l/~ d s = X J c  Y, (3 .3 )  
o 1 

and note that for x > 0 

Px(Y <-_z)=Ex (P~ [ ~xs(co)-l/~ ds<z,~])  
(3.4) 

=G (Pxl [ ~o XS(co)-l/~&<=z])=Pd~) 
because of the (simple) Markov property and the fact above. In other words, 
the variable Y in (3.3) has the same distribution as q%o. But since X is positive a. s., 
this is impossible unless Y=~0oo = oo a.s., which proves the lemma. 

To discuss the behavior of q~ when {x~} can reach the state x =0 ,  another 
" 0 - 1 "  distinction is relevant: either the paths are a.s. continuous at t = ~, or else 
they a.s. have a jump there. 

Lemma 3.2. Suppose that P~(~< oo)= 1 for all x >0 .  Then either P~(x~_ = 0 ) =  1 
for all x > 0  or else P~(x~_ > 0 ) = 1  for all x > 0 .  

Proof Let F = {x: tlim x~ = 0}. It is easy to see that F again satisfies the hypoth- 

esis of Lemma 2.4, and so P~ (F) = p is independent of x, x > 0. We must show that 
p =0  or p = 1. Let 

~ = m i n  { t>0:  xt<s } (3.5) 

for any e >0 ;  ~ is of course a Markov time for {xt}. But for x > 0  we have using 
the strong Markov property that 

p = P~ ( f ) =  P~(F n {~.~ < ~})= E~ (P~ (F c~ {~ < ~} I ~o)) 
(3.6) 

= G (z~  < ~ Pxr (F))  = p G (z~  < ~). 

If p # 0 ,  therefore, P x ( ~ < ~ ) = l  for all x > 0  and all e>0.  It follows that a.s. {xt} 
does not jump to 0, so that p = 1 and the proof is complete. 

In the case of continuous approach to 0, the functional q0~ again increases 
continuously to c~ : 

Lemma 3.3. Suppose that Px(~.<oo)=l and P~(xr = 0 ) = 1  for all x >0 .  Then 

Px(fim_c&(co) = + oo)=1, x>O. (3.7) 

Proof We define the event F~= {co: (pc_ =<z}; it follows just as in the proof of 
Lemma 3.1 that Px(F~) is independent of x > 0  for each z. (This is so regardless of 
whether xr = 0 a.s. or not.) Take any y e (0, x) and consider 

~o~_(co)= ~ + j" x~(co)-l,'~&=x+y, (3.8) 
0 ~r 
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where {y is defined by (3.5). We now proceed just as in (3.4), except that ~ ,  is used 
in place of ~ and hence the strong Markov property is required; the hypothesis 
that P~ (xr = 0 ) =  1 also comes in because we need to know that xr > 0 a.s. (Px). 
The conclusion again is that Y has the same probability law as ~0r itself. But 
obviously X > 0  a.s., and the conclusion that q~r oo a.s. follows just as before. 

There remains only the case when {xt} a.s. attains the state x = 0  by jumping 
there. In this situation, the functional q~ always jumps from a finite value to oo : 

Lemma 3.4. Suppose P~(~ < oo)= 1 and Px(xr > 0 ) =  1 .for all x>0 .  Then 

P~ (~r (co)< 0% ~pr (co)= oo) = 1, x > O. (3.9) 

Moreover, the probability distribution of ~pr is independent of x > O. 

Proof It is obvious that q~e_ < oo a.s., since by quasi-left continuity the paths of 
{xt} (a.s.) do not approach 0 prior to t={ ,  at which time they jump there. Also, 
the non-dependence of the law of q~r on the initial state x has already been noted. 
It the only remains to show that cpr +oo a.s., for every e>0. By the strong 
Markov property, we have 

) (3.m) 

But by applying (2.14) to the right side, it is seen that the probability is independent 
of the integration limit e, which is clearly impossible unless the integral is a.s. 
infinite. 

Remark. It is not hard to prove at this point that the random variable q~_ 
must have an exponential distribution. We shall not pause to do so, however, as 
this will be shown automatically during the proof of the main theorem in Section 4 
below. 

4. The Main Theorem 

Again {xt} will always be a semi-stable Markov process as defined in Section 2, 
and cp~ will denote the function (3.1). Let T(t) be the inverse function to cp; that is, 
define the random variables T(t) = T(t, co) as the (unique) solutions of the equation 

T 

t = ~ x~(co) -1/~ ds = cpr, (4.1) 
0 

which exist when t < ~or (We assume x o-- x >0, so that ~ >0  a.s.) Next, define 

y, (co) = Xr(,, ,o)(co) (4.2) 

provided t<~or y, is not defined otherwise. According to a theorem first 
published by Volkonski (see [2, Chapter 10]) the random variables {y,} constitute 
a new strong Markov process whose paths again have the pleasant properties of 
right continuity and absence of discontinuities other than jumps. Finally, we note 
that always y , > 0  if it is defined, so that we can set z ,=log y,; clearly {z,} must be 
a strong Markov process on ( -  o% oo) with nice paths. 
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Theorem 4.1. The process {z~} defined above has stationary independent incre- 
ments. The lifetime of  {zt} is a.s. infinite either if {xt} does not reach O, or if it does 
so by continuous approach. I f  {xt} jumps to O, then {zt} may be considered to be an 
additive process with infinite lifetime which has been killed by an exponentially- 
distributed random variable independent of the process. 

Proof. The essential step to justify the formal arguments given in the intro- 
duction is to show that {y~} is a Feller process on the compact state space [0, ~ ]  ; 
once this is known the characteristic operator of {Yt} can be indentified with the 
generator and the Hille-Yosida theorem applied. The main tools will be the lemmas 
of Sections 2 and 3 and the results of [11]. 

Consider first the case when P~(~< ~ ) = 0  for all x >0 .  Then as we saw in 
Section 2, {xt} is a Feller process on (0, ~ ] ;  by Lemma 3.1, T(t) is a.s. defined for 
all t and so {y~} has an infinite lifetime. The transition function Pt is uniformly 
stochastically continuous with respect to a bounded metric such as 

Ix-yl 
p ( x , Y ) - l + ] x _ y  I , p(x, ~ ) =  1, 

although not in the usual one. The "time change function" v(x)=x  1/~ occuring 
in (4.1) is positive and continuous on (0, co), and the state " ~ "  is never reached 
from x~(0, o9). Under these conditions, Theorem 2 of [11] applies and yields the 
conclusion that {Yt} is Feller on (0, ~) .  

We extend the process {y~} to the closed interval [0, ~ ]  by making 0 and 
stationary points; it must be shown that this does not disturb the Feller property. 
First consider the behavior near 0. We apply (2.14) (extended) to the set F =  
{~o: ~o,>t} and set x =  1; the result is 

111 (r(t) < u) = P~, (T(t) < a u). (4.3) 

From (4.3) it is evident that T ( t ) ~  0 in law for each t as the intitial state ~ 0. 
Combining this with the uniform stochastic continuity of Pt near 0, it is easy to 
see that yt=xr(t) has a law which also tends to concentrate at 0 when Xo is taken 
close to 0, and so the Feller property holds there for the extended process {Yt}. 

The situation is a little different at o% for here the time change has the opposite 
effect of speeding up the process {xt}. Fix t and choose u to make the left side of 
(4.3) at least 1 - e ;  then we have 

P~ (T(t) __< u x 1/~) >= 1 - e. (4.4) 

Thus it is enough to show that 

limP~({xseF for some s<=uxl/~})=O (4.5) 
X ~  oo 

for any compact set F, since (4.4) and (4.5) together yield 

lim sup P~ (Yt e F) <= ~ (4.6) 
X ~ O O  

for any e>0,  which is equivalent to the Feller property at x--oo.  However, by 
(2.14) again we have 

P~({xs~F for some s<ux l / ' } )=Pl ( {x sex -aF  for some s<__u}). (4.7) 
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Since {xt} never attains the state 0 and is quasi-continuous, the paths do not 
approach 0 during [0, u] a.s., and so as x ~ OQ the right side of (4.7) tends to 0. 
This proves (4.5), and finishes the proof that {Yt} is Feller on [0, oo] when ~ =oo a. s. 

Next suppose that P~(~ < oo)= 1 and P~(x~_ = 0 ) =  t, x >0 .  In this case, {x~} is 
Feller on the compact space [0, oo] (Theorem 2.1), and again for x > 0  the func- 
tional q)~ grows continuously to oo and T(t) is defined a.s. (Lemma 3.3). Once 
again, Theorem 2 of [11] yields the result that {Yt} is a Feller process on (0, oo). 
The extension to [-0, oo) preserving the Feller property is justified by the same 
argument as above, but the behavior at oo requires a different discussion. Let ~u 
denote the first passage time to [-0, u] as in (3.5). Applying (2.14) once more, we 
can obtain without difficulty 

/]1 ((P~u > t) = P~ ((P~x, > t). (4.8) 
But clearly 

P~ (q)r > t) = e (r(t) < 4,,) < P~ (Yt > u). (4.9) 

Since 4<  oo and cp~_ = o% we have ~o~, 7 oo as u "~ 0; thus the left side of (4.8) 
will exceed 1 - e  for sufficiently small u>0.  But then combining (4.8) and (4.9) 
gives 

P~(yt>-_xu)>P~(q~r 1 - e  (4.10) 

for all x, which yields the Feller property at x = oo. 

Finally we have the case P~(~ < o% x~_ > 0 ) =  1, x >0, in which {y~} has the 
finite lifetime (pc .  Consider the modified process {y~}, where y~ = Yt if the latter is 
defined (if t <(oe_), but y't=O otherwise; 0 is clearly then an absorbing state. The 
original process {xt} was Feller on [-0, oo], and Theorem 3 of [-11] can be applied 
to obtain the conclusion that {y~} is a Feller process on [0, oo). From this we can 
obtain a Feller property for {y~}. Indeed, since 0 is an absorbing state for {y~}, we 
have P~(ytEE)=P~(y;eE) for every x > 0  and Borel set E not containing 0. The 
Feller property of {y~} thus implies that the distribution of y, in (0, oo) is also 
weakly continuous in x, so {Yt} is Feller in the open interval. 

As before, the endpoints can be included. To do so, we recall that the distribu- 
tion P~(y;>0)=P~(t<q~_) of the killing time for {Yt} is independent of x > 0  
(Lemma 3.4). We therefore define both 0 and oo to be states from which {Yt} can 
not move to other states, and which can not be reached from others, but from which 
killing still occurs with that same distribution. It is rather obvious, as before, that 
the extension to 0 does not disturb the Feller property, and the details can be 
omitted. To handle the extension to oo, first note that 

P~(yte(O, 7])<P~(xse(0, 1']) for some s<~).  (4.11) 

Using (2.14) much as before we transform the right side: 

P~(xs~(0,7] forsomes<~)=P~(x~(O, yx  -~] f o r s o m e s < r  (4.12) 

But because the paths of {xt} a.s. jump to 0, and do not approach 0 before ~ by 
quasi-continuity, it is clear that the right side of (4.12) tends to 0 as x ~oo.  For  
large x, therefore, the law of Yt will have mass Px(T(t) is defined) distributed over 
large states, and since the total mass is independent of x we obtain as x ~ oo the 
limit we have specified; i.e., {Yt} is Feller at oo. 
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It is easy to see that the lifetime distribution is exponential. Indeed, since it is 
independent of x we have by the Markov property 

oo 

P~ (Yt +s defined)= j" P~ (Yt defined) dP~ (ys defined, y~ < u) 
o (4.13) 

= P~ (Yt defined)P~ (y~ defined), 

from which the result follows at once. 

In each of the cases considered above, which include all semi-stable Markov 
processes on R +, we have seem that {Yt} with the natural extension is a Feller 
process on the compact space [0, ~ ] .  Using this result, it is easy to justify the 
formal argument sketched in Section 1. We begin with the fact that the charac- 
teristic operator d of {xt} satisfies 

a d f ( x ) = H , - ~ , ~ H a ~ f ( x ) ,  a, x > 0 ,  (4.14) 

for any f such that d f ( x )  is defined for each x > 0. To see this we consider the 
two Markov processes 

x~=xat; x't'=a~xt, (4.15) 

where {x~} is semi-stable of order ~. By (2.1), these processes have the same transi- 
tion function; both also have nice paths and are strongly Markov. They therefore 
have the same characteristic operator. But it is clear that these operators are 
related to that of {xt} by d ' = a d ,  ~ "  = H . - ~ d H . ~ ,  and the identity of the two 
sides of (4.14)-domains as well as values-follows. 

Let N denote the characteristic operator of {Yt}- By the theory of random time 
substitutions, we know that ~df(x) exists if and only if sdf (x)  does, 0 < x < 0% and 
that in this case 

N f (x) = x 1/~' sd f (x). (4.16) 

For f such that N f ( x )  exists throughout (0, oo), combining (4.16) and (4.14) 
yields at once 

~ f ( x )  = H,,-, ~ H,, f (x) ,  u > 0. (4.17) 

We shall see that (4.17) implies a multiplicative homogeneity property for {yJ. 
Let q,, St denote respectively the transition function and associated semigroup 

of {y,}, and define 
q~(x, E) =qt (u -1 x, u -1E), u >0 .  (4.18) 

Then q~ is a transition function, and the corresponding semigroup is 1-1,-, St H,.  
Both q~ and q~ are Feller functions on the compact space [0, oo], so that their 
(weak or strong) generators coincide with their characteristic operators restricted 
to those f e  Co for which the operator is defined and leads to a function again in 
Co [2, Theorem 5.5]. But it is clear that at 0 and at oo the characteristic operator 
N' of the function q~ is the same as that of q,, while for xe(0, oo) we have ~ ' f ( x ) =  
H , - l N H . f ( x ) .  From (4.17), therefore, q'~ and q, have the same characteristic 
operators and hence the same generators (including the identity of their domains). 
By the Hille-Yosida theorem we conclude that q~ = q't; in other words that 

q t ( x , E ) = q , ( u - ' x , u - l E )  for any u > 0 .  (4.19) 
15 Z. Wahrscheinlichkeitstheorie verw. G-eb., Bd. 22 
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Finally we consider the effect of the transformation z t = log  Yr. (We can let 
log 0 = -  o% log oo = oo, although it is also satisfactory to now consider {Yt} 
only on the open interval.) Defining Qt (z, w) to be the transition function of {zt}, 
we have by (4.19) that 

Or(z, W)=Pe=(yt~eW)=Pe=§ +a, W+a);  

in other words, Qt is translation invariant and hence {z~} has independent incre- 
ments when the lifetime is infinite. In the contrary case, we know that Qt(z, R I) 
= e  -a' for some fl>0. It is then easy to see that Q't(z, W)=e at Qt(z, W) is the tran- 
sition function of a translation invariant process with infinite lifetime, from which 
{zt} can be obtained by killing at a time q independent of the process with P(t /> t) 
= e-Pt. This completes the proof of the theorem. 

Example. A simple example of a semi-stable process on R + arises in studying 
the statistics of extremes [10]. This process has a transition function defined by 

0 if y<x;  (4.20) 
Pt(x,[O,y])= exp(_cty_l/~) if y>x .  

For x > 0, the generator (and the characteristic operator) is given by the formula 
ao  

y l  +1/~ " (4.21) 

It is trivial to introduce the time-change factor x 1/~ and thus obtain a formula for 
the characteristic operator ~ of {Yt}. But then the characteristic operator cg of 
{zt} is obtained by the change of variable 

~ g(z)=Nf(x),  

where z = log x and g(z)=f(x).  We find, therefore, that 

ao  

g (z) = c ~ [g (v + z) -- g (z)] e- vi~ dr. (4.22) 
0~ o 

Formula (4.22) shows that in this case {zt} is a compound Poisson process, with 
jumps having an exponential distribution. That {zt} should be compound Poisson 
is to be expected, of course, since {xt} was a process of the "pure jump"  type. 

5. The Diffusion Case 

In this section we apply and illustrate Theorem 4.1 by specializing to the case 
of diffusion processes on R+; i.e., we assume that the semi-stable process {xt} 
has (a. s.) trajectories which are continuous for all t. It is now very easy to obtain 
a new derivation of the form of the general semi-stable diffusion on R +. It may be 
remarked in this connection that the proof of Theorem 4.1 could have been much 
shorter if attention had been restricted to the diffusion case throughout. 

According to Theorem4.1, the process zt=logxr{~) has independent incre- 
ments; it cannot have finite lifetime since {x,} does not jump to 0. Since {xt} has 
continuous paths, so does {zt}; it follows that {zt} can be nothing other than 
Brownian motion, possibly degenerate and possibly with a constant drift super- 
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imposed. In the degenerate case, {z,} is the deterministic motion zt=b t+Zo. 
It is trivial to reverse the transformations embodied in Theorem 4.1 in this case, 
and the result is 

as long as x t >0,  where ~ >0  is the order of the process and x o = e z~ >0. In case 
b < 0, after reaching 0 the process can only be continued by "sticking" at 0 if path 
continuity is to be maintained. When b >0  and Xo =0,  either x,-=0 or x,=(b t/cO ~ 
are possible choices for completing the definition of {xt}. 

The description of {xt} in all other cases is as follows: 

Theorem 5.1. Any non-degenerate semi-stable Markov process on R + with 
(a. s.) continuous paths has a generator of the form 

A f (x )=bx l -1 /~ f ' ( x )+dx2-1 /~ f " (x ) ,  x > 0 ,  (5.2) 

where d > 0  and b are constants. When b> d, there is a unique process on (0, oo) 
generated by (5.2). This process may be extended to [0, oe) either by making 0 a 
stationary state, or by defining 

Pt(0,-)--wk lim P~(x, .), (5.3) 
x~O+ 

and in either case the resulting process is semi-stable with ~ = co a.s. I f  b < d (1 - l / a ) ,  
(5.2) generates a unique diffusion, it is semi-stable, has ~ < ~ a.s. and 0 is an absorbing 
state. Finally, when d ( 1 - 1 / ~ ) < b < d ,  there are many continuous processes cor- 
responding to (5.2), but among them only those in which the boundary state 0 is 
completely absorbing or completely reflecting are semi-stable. 

Remark. Formula (5.2) was obtained in [9] by a very simple argument, which 
is, however, only valid with unnecessary restrictive assumptions. This class of 
diffusions has been studied by Stone in [18], where there are detailed results 
concerning the convergence of random walks or birth-and-death processes to 
limits satisfying (5.2). Limit theorems leading to such processes (with ~--�89 were 
also given in [8]. 

Proof. As already noted, for the process {xt} considered in the theorem the 
corresponding additive process {zt} must be simply a Wiener process with a 
constant drift. Thus the generator C of {zt} is a differential operator with constant 
coefficients 

C g (z) = c g' (z) + dg" (z), (5.4) 

where d > 0 since the deterministic case is now excluded. 
Let us see what this means for the original process {x,}. First, we return to 

(0, oo) via the transformation yt=exp(zt);  let B again denote the generator of 
{y,}. It is easy to see that a function f on (0, oo) is in the domain of B if and only 
if g ( z ) = f ( e  z) is in the domain of C, and that then Bf (e  z) = C g(z). In this way we 
obtain 

B f (x )  = (c + d) x f '  (x) + dx2 f '' (x). (5.5) 

But since the relation B = xl/=A holds between the generator A of {xt} and that 
of the process {Yt} obtained by time change, (5.2) follows at once with b = c + d. 
15" 
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The interpretation of (5.2) naturally requires more care than is necessary for 
(5.4) and (5.5). The latter correspond to processes which always have natural 
boundaries at the ends of their state-intervals (respectively _+ oe and 0, oo), and 
so there is in each case only one process whose generator takes the form indicated. 
This is no longer true in the case of (5.2), for the boundary at 0 is now attainable 
under certain conditions, and so the domain of A must be restricted by a boundary 
condition, or some other specification imposed, before the process is uniquely 
determined. 

We apply the classification of boundary points given by Feller in [3]. It turns 
out that x = oo is always a natural boundary, while x =0  is entrance, regular or exit 
in ease b >d,  d > b > ( 1 -  l /a)d,  or b < d ( 1 - 1 / ~ )  respectively. In the entrance case 
there is only one process on (0, oe) generated by (5.2). It is easy to see that this 
process can be started at 0, preserving both path continuity and the strong Markov 
property, only in the two ways described in the statement of the theorem. Next, 
in the exit case the process {x,}, started with Xo > 0, must reach 0 in finite time. 
From 0 it can not return by continuous movement into the interior; since in our 
case jumps are excluded, an absorbing state at 0 is the only possibility and a 
unique process results. 

In the regular case, many diffusions correspond to (5.2), even when the require- 
ments of infinite lifetime and continuity at x = 0 are taken into account. But from the 
semi-stable condition (2.1) it is obvious that P~(0, {0}) must be independent of t. 
In fact, it must be 0 or 1, for we have 

p = P,+~ (0, {0}) = ~ P, (0, dy) P~ (y, {0}) + p2. (5.6) 
o+ 

Letting s---, 0, P~ (y, {0})--, 0 for each y > 0 by stochastic continuity and the integral 
term in (5.6) tends to 0 by bounded convergence. Thus p = p2. Hence x = 0 must 
be a completely absorbing state (p= 1) or completely reflecting when p--0;  the 
"st icky" boundary diffusions are not semi-stable. It is also not difficult to obtain 
the same conclusion by a purely analytical argument. 

In each case, the fact that the processes we have selected are actually semi-stable 
is easily seen. If Pt (x, E) is the transition function of {x,}, it is clear that for any a > 0 

qt(x, E)=Pat(a ~ x, a ~ E) (5.7) 

is the transition function of a diffusion whose generator also is given by (5.2), and 
whose behavior at 0 (fully reflecting or absorbing) agrees with that of {xt}. Since 
in each case there is only one such process, q~ =Pt and the semi-stable property 
holds. This completes the proof of the theorem. 

Remark. It is easy to see that for {xt} we will have ~ < oo a.s. if and only if c < 0, 
so that {zt} drifts toward - oo. Thus we could conclude that 0 is an unattainable 
boundary when c > 0, or when b >d,  without appealing to Feller's theory. This 
observation applies even if the paths of {z,} and {xt} are not continuous, when the 
classification is not available. Unfortunately, the distinction between the regular 
and the exit boundary cases does not seem to have any such simple interpretation. 

The above theorem completely describes ssmp's on R + whose paths are 
everywhere continuous. If discontinuities are allowed at x - 0 ,  however, many new 
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possibilities arise. This question will be studied in detail in the second part  of 
this paper; here we will discuss as a suggestive example the case when {xt}, away 
from 0, is the Brownian motion process. The problem is to determine the most 
general way to continue {xt} after the time t = ~ of reaching 0 so that the resulting 
process satisfies the semi-stable condition. This question is easily answered, since 
all extensions of {x~} after t = ~ have been analyzed by Feller, Wentzel and Ito and 
McKean.  

By Theorem 2.1, all of the processes we wish to construct will be Feller proc- 
esses. The domain of the generator, accordingly, will be the space C2 of functions 
twice continuously differentiable on (0, ~) ,  restricted by a boundary condition 
whose most general form (see [-21] or [5]) is 

Pa u (0) - P2 u' (0) + P3 u" (0) = ; [u (x) - u (0)3 P4 (dx). (5.8) 
0 +  

Here PI, P2, P3 > 0  and P4 is a non-negative measure satisfying 

1 

~xp4(dx)<~ and Sp4(dx)<~.  (5.9) 
0 1 

Every choice of such P l - P 4  (not all 0), conversely, determines a domain and 
hence a process; non-proport ional  pi's give different processes. The paths are 
continuous a.s. for all t i f f  P4 = 0. 

If {x,} is semi-stable as we have defined it, the lifetime is infinite. This imme- 
diately gives PI = 0. Moreover,  except in the case of an absorbing boundary, we 
have seen that a semi-stable process must visit x = 0  on a t-set of Lebesgue measure 
0. This implies that either we have the absorbing case, for which the boundary 
condition is u"(0)=0, or else p3=0.  The case p4=0, p2>0 corresponds to the 
reflecting b a r r i e r - t h e  only other possibility for a semi-stable process with 
everywhere continuous paths. It therefore remains to explore the cases where 
p2~0 ,  p4 :~0. 

To continue, we again invoke the fact that when {x,} is semi-stable, the domain 
of its generator A is not altered by the operators Ha, a >0.  (See the proof  of Theo- 
rem 4.1.) In other words, if a function u(x) satisfies (5.8), so does the function u(a x) 
for each a > 0 .  Let V denote the vector space of C2 functions which vanish at 0, 
and define the linear functionals 

fa(u)=pzau'(O)+ ~ u(x)p4 . (5.10) 
0 

Clearly f~(u)=fl(Ha u), and so if (5.8) is the boundary condition for a semi-stable 
process, the functionals f ,  all have the same null space. It follows that they are 
proport ional;  i.e., that 

pzau'(O)+ ~u(x)p 4 =C, pzu'(O)+c,~p4(dx ) (5.11) 
0 0 

for all u~ V. 

It is possible to choose a sequence of functions une V such that u'n(0)= 1, but 
for which the integral terms on both sides of (5.11) tend to 0. As a result we must 
have P2 a = c a P2. This will hold for all a > 0, so that either P2 -- 0 or c a = a. Assume 
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the latter; then 

S u(x) P4 = ~ u(x) p4(dx) (5.12) 
0 0 

for all ueV. This is enough to ensure the identity of the measures p4(E) and 
1 

- - P 4  (E/a); hence P4 ([X, 00))= m/x, where m=p4([1, oo)). But this measure does 
a 

not satisfy (5.9) unless m=0;  thus if {x~} is semi-stable, p4+0 implies p2=0. 
Incidently, a similar argument would have shown that P3--0 without appealing 
to the impossibility of a positive measure for {t: x~ =0}. 

Returning to (5.11) with P2 =0, we see just as above that 

P4 -~, oe =c, p4([x, oe)), x > 0 .  (5.13) 

It is then obvious that C~Cb=Cab, SO that c,=a~ for some real fl, and then that 
P4 (Ix, co)) = m x -~. Condition (5.9) will be satisfied iff 0 < fl < 1, so that these cases, 
finally, do yield a one-parameter family of new semi-stable processes which agree 
with classical Brownian motion in the open interval. We summarize these results: 

Theorem 5.2. The totality of semi-stable Markov processes whose generator 
has the form A u(x)=u"(x)/2 for x > 0  are the classical absorbing and reflecting 
barrier Brownian motions, plus those determined by one of the boundary conditions 

dx 
[u(x)-u(O)]x~g~-=O, 0 < f i < l .  (5.14) 

O+ 

The probabilistic meaning of the processes corresponding to (5.14) is explained 
in [5]; roughly, upon reaching x = 0  the process instantly jumps into the interior 
according to the measure dx/x ~+1. Since this measure puts infinite mass near the 
origin "almost all" of the jumps are very small, and infinitely many occur in a 
finite time once zero is reached. Ito has recently shown how such "jumping in 
processes" can be constructed under very general conditions [4]. His results 
will be applied to the construction of semi-stable processes in the sequel to this 
paper. 

6. The Generator of  a ssmp 

In this section we generalize the first part of Theorem 5.1 to obtain a formula 
for the generator of any ssmp on R + when x>0 .  It is not easy in the general case 
to determine the domain of the generator, however, and the treatment of this 
question will be deferred to the second part of this paper. 

Let {xt} be a ssmp of order c~, and let {zt} be that additive process which 
corresponds to {xt} according to Theorem 4.1. By the theorem of L6vy and 
Khintchine, we have 

E(ei~(zt_zo))=exp{il~t2+t ~ (ei~,_ 1 i2y l + y  2 l + yZ ) ~ f - - d G ( y ) } ,  (6.1) 

where dG is a finite measure uniquely determined by {zt}. More precisely, (6.1) 
holds when {zt} has an infinite lifetime; in the contrary case, when Pz(Z~ is defined) 
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= e -p~ for some fie (0, oo), (6.1) holds for the "unkilled" process from which {z~} is 
obtained as discussed at the end of Section 4. The process {z~} is, of course, a 
Feller process on [ - o %  co]. According to a theorem due to Ito and Neveu (see 
[15], pp. 628-630), the generator C of {z~} has the form 

where 

C g (z)= kt g' 

h(z, Y ) = / [ , , g ( z + y ) - g ( z )  

[ g  (z)/2 

(z) + ; h (z, y) dG (y), (6.2) 
- - o o  

Y g' (z)] 1 d- y2 
1 d-y 2 22 for y4:0;  (6.3) 

for y = 0 .  

where G* (u) = G(log u) and 

h*(x, u)=[  [ f (x  u ) - f (x )  

[ xZ f "  (x)/2 

logu ] l + l o g  2u 
1 + log 2 u x f '  (x)_~ log 2 u for u + 1 ; (6.5) 

for u = l .  

Formula (6.4) holds at least for all f such that f ,  x f '  and x2 f '' are continuous on 
[0, oo], and uniquely determines the process {xt} for all t < ~. Conversely, given {xt}, 
It, G* and fl are determined. 

Proof Formulas (6.4) and (6.5) follow formally from (6.2) and (6.3) in exactly 
the way that (5.2) was derived from (5.4); indeed, the latter is a special case. Since 
ge@c when g, g', g" are continuous on [ - 0 %  oo], we find that f(x)=g(log x)e@n 
(B being the generator of {Yt} = {e~t}) when f x f '  and x 2 f  '' are continuous on 
[0, oo]. For at least these functions, therefore, the characteristic operator of {xt} is 
given by d = x - 1 / ' B .  But the formula for B f  is obtained from (6.2) and (6.3) by 
a change of variable; combining the result with ~ = x-1/~B leads to (6.4) and (6.5). 
The uniqueness assertions are probabilistically obvious, for {z~} completely 
determines the paths of {xt} for all t < ~ and conversely, and it is known that the 
correspondence between unkilled additive processes and the elements (#, G) 
which appear in (6.1) and (6.2) is biunique. The relationship between {zt} and {x~} 
will be discussed much more fully in part II. 

Example. Suppose that a ssmp {xt} is itself an additive process, with increasing 
path functions so that it can be considered as a process on R +. Then {xt} must be 
a stable process of index p =  e - l <  1, and its characteristic function will be o1[ the 

The domain of C contains at least all functions g such that g, g' and g" are con- 
tinuous on [ -  o% oo]. If there is exponential killing, the term - flg (z) must be 
added to the right-hand side of (6.2). Using these facts, it is easy to prove the 
following: 

Theorem 6.1. Let {xt} be a ssmp of order ~, whose corresponding (unkilled) 
additive process {zt} satisfies (6.1). Then the characteristic operator of {xt} has for 
x > 0 the form 

oo 

d f ( x )  = ~ x 1-1/,f, (x) + x-1/, ~ h* (x, u) dG* (u) - fl x-1/~f(x), (6.4) 
0 
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o~ d 
f (e i~'y D Y ]~ form E(eiat~*-~~ c to.~ , - -  J - - y l + l / a  j (6.6) 

(see [9]). According to the result of Ito and Neveu, the generator of {xt} has the 
form 

cdy  =x_X/~ ~ cdu 
AT(x)= o ~ [ f ( x + y ) - f ( x ) - ]  yX+l/~ 1~ [ f ( u x ) - f ( x ) ]  (u_1)1+1/~ . (6.7) 

(The last expression holds for x > 0.) Comparing (6.7) with (6.4), we easily identify 
the canonical measure dG of the corresponding process {zt} : 

1 + z  2 ce~dz 
z2 dG(z)= (e~_ 1)1+1/~, z > 0 .  (6.8) 

Thus {zt} is not again a stable process. On the other hand, if {zt} is a stable process, 
{x~} will not be additive. 

7. Local Properties of a ssmp 

There are many possibilities for exploiting Theorem 4.1 to obtain information 
about {xt} from known results for processes with independent increments. A 
systematic study of these matters will not be made here, but we will mention as 
an illustration one area in which some facts are very easily obtained: local HNder 
conditions. Let {xt} be a semi-stable process with generator (6.4); equivalently, 
the corresponding homogeneous processes {zt} has killing parameter fl and its 
"unkilled" increments satisfy (6.1). Define the constants 

o-a=G(0+)-G(0-); 7=inf ~>0:_~ l l y l ~ - d G ( y ) < o o  . (7.1) 

By applying results of Khintchine and Blumenthal and Getoor on the local 
behavior of additive processes, together with Theorem 4.1, it is easy to prove the 
following: 

Theorem 7.1. For all x>0 ,  0-2 ~_~0, 

P~ [lim sup x t - x  ] 
I_t~o (2tloglogt_a)_ ~ = a x  1-~/2~ =1;  (7.2) 

the same holds for the lim inf. For every e > 0 and all x > O, 

x t - x  = 0 ; l i m s u p  tl/~+~ =oo =1 (7.3) P~ ~im ?/~_~ ,~o 

Proof. For small values of t it is very easy to follow the relationship between 
increments of {z~} and those of {x,}. First, by right continuity we have for Xo =Yo 
= e z~ that 

Y~ - Y o  = eZ~ ( ezt- zo _ 1 )  ,,~ x o (z t - Z o )  (7.4) 

as t ~ 0 .  But from (4.1) we have ~pt=txol/~+o(t) as t ~ 0  for each x>0 ,  and from 
(4.2) x, =Yot. Combining these facts gives 

xt--Xo~Xo(Ze --Zo); r (7.5) 
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where asymptotic equality holds a.s. as t--,0 for each Xo>0. It is now trivial to 
apply Khintchine's local law of the iterated logarithm (Theorems 2 and 3 of [-6]) 
to {z,} in order to obtain (7.2) or to apply theorems 3.1 and 3.3 of [-1] and obtain 
(7.3). 

There are many other results for additive processes which could also yield 
information about the paths of {xt}, including some due to Blumenthal and Getoor 
and included in [,1]. In particular, if {xt} has increasing paths (7.3) can be sharpened. 
More applications will be given in the future. 
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