Travelling waves for fragmentation processes.

J. Berestycki, A. E. Kyprianou and S.C. Harris.

Department of Mathematical Sciences, University of Bath
Motivation
Motivation

- **Super-diffusions**: Markov process $X = \{X_t : t \geq 0\}$ such that X_t is a measure on \mathbb{R}, its probabilities denoted by \mathbb{P}_μ for measures μ on \mathbb{R} where $X_0 = \mu$.

Branching property: For two initial measures μ_1, μ_2, $\mathbb{P}_{\mu_1} + \mathbb{P}_{\mu_2} = \mathbb{P}_{\mu_1} \star \mathbb{P}_{\mu_2}$.

Non-linear semi-group: "Infinite divisibility" in the branching property suggests the natural object to describe the semi-group is the Laplace functional $\exp\{-u f(x,t)\} = E_\delta x (\exp\{-\langle f, X_t \rangle\})$ where $f : \mathbb{R} \rightarrow [0, \infty)$, $\langle f, X_t \rangle = \int f(y) X_t(dy)$ and one finds $\partial \partial_t u f(x,t) = Lu f(x,t) - \psi(u f(x,t))$ with $u f(x,0) = f(x)$, where L is the infinitesimal generator of the "underlying motion" and ψ necessarily respects the Lévy-Khintchine formula, $\psi(\lambda) = \alpha \lambda + \beta \lambda^2 + Z(0,\infty)(e^{-\lambda x} - 1 + \lambda x I\{x<1\}) \nu(dx)$ for $\lambda \geq 0$ where $\alpha \in \mathbb{R}$, $\beta \geq 0$ and ν is a measure concentrated on $(0,\infty)$ which satisfies $\int (0,\infty)(1 \wedge x^2) \nu(dx) < \infty$.

Motivation

- **Super-diffusions:** Markov process $X = \{X_t : t \geq 0\}$ such that X_t is a measure on \mathbb{R}, its probabilities denoted by \mathbb{P}_μ for measures μ on \mathbb{R} where $X_0 = \mu$.
- **Branching property:** For two initial measures μ_1, μ_2, $\mathbb{P}_{\mu_1 + \mu_2} = \mathbb{P}_{\mu_1} \ast \mathbb{P}_{\mu_2}$.

Motivation

- **Super-diffusions**: Markov process $X = \{X_t : t \geq 0\}$ such that X_t is a measure on \mathbb{R}, its probabilities denoted by \mathbb{P}_μ for measures μ on \mathbb{R} where $X_0 = \mu$.

- **Branching property**: For two initial measures μ_1, μ_2, $\mathbb{P}_{\mu_1} \ast \mathbb{P}_{\mu_2} = \mathbb{P}_{\mu_1 + \mu_2}$.

- **Non-linear semi-group**: “Infinite divisibility" in the branching property suggests the natural object to describe the semi-group of is the Laplace functional

\[
\exp\{-u_f(x,t)\} = \mathbb{E}_{\delta_x}(\exp\{-\langle f, X_t \rangle\})
\]

where $f : \mathbb{R} \to [0, \infty)$, $\langle f, X_t \rangle = \int_{\mathbb{R}} f(y)X_t(dy)$ and one finds

\[
\frac{\partial}{\partial t} u_f(x,t) = Lu_f(x,t) - \psi(u_f(x,t)) \quad \text{with} \quad u_f(x,0) = f(x),
\]

where L is the infinitesimal generator of the “underlying motion" and ψ necessarily respects the Lévy-Khintchine formula,

\[
\psi(\lambda) = \alpha \lambda + \beta \lambda^2 + \int_{(0,\infty)} (e^{-\lambda x} - 1 + \lambda x 1_{\{x<1\}}) \nu(dx)
\]

for $\lambda \geq 0$ where $\alpha \in \mathbb{R}$, $\beta \geq 0$ and ν is a measure concentrated on $(0, \infty)$ which satisfies $\int_{(0,\infty)} (1 \wedge x^2) \nu(dx) < \infty$.
Linear semi-group:
\[v_g(x,t) = E_{\delta x}(\langle g, X_t \rangle) \]
and it solves
\[\frac{\partial}{\partial t} v_g(x,t) = L v_g(x,t) - \psi'(0) v_g(x,t) \]
with \(v_g(x,0) = g(x) \).

Multiplicative martingales:
Look for positive monotone "travelling" solutions with speed \(c \in \mathbb{R} \), i.e.
\[u_f(x,t) = f(x - ct) \]
and consequently
\[Lf + cf' - \psi(f) = 0 \].

Let \(X_c \) be the super-diffusion with added linear drift \(c \) to the support, then the associated motion operator is \(L + cd\frac{d}{dx} \) and
\[e^{-f(x)} = E_{\delta x}(e^{-\langle f, X_c t \rangle}) \Rightarrow e^{-\langle f, X_c t \rangle} \text{is a martingale.} \]

Additive martingales:
Look for "travelling" solutions of the form \(v_g(x,t) = g(x - ct) \), i.e.
\[Lg + cg' - \psi'(0) g = 0 \].
Then,
\[g(x) = E_{\delta x}(\langle g, X_c t \rangle) \Rightarrow \langle g, X_c t \rangle \text{is a martingale.} \]

Martingale limits:
Positive martingales have limits so what does the relation between
\[\lim_{t \to \infty} \langle f, X_c t \rangle, \lim_{t \to \infty} \langle g, X_c t \rangle \]
tell us (about \(f \) and \(g \))??
Motivation ctd.....

- **Linear semi-group:** Set \(v_g(x, t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle) \) and it solves

\[
\frac{\partial}{\partial t} v_g(x, t) = Lv_g(x, t) - \psi'(0)v_g(x, t) \quad \text{with} \quad v_g(x, 0) = g(x).
\]
Motivation ctd.....

- **Linear semi-group:** Set $v_g(x, t) = \mathbb{E}\delta_x(\langle g, X_t \rangle)$ and it solves
 \[\frac{\partial}{\partial t} v_g(x, t) = Lv_g(x, t) - \psi'(0)v_g(x, t) \quad \text{with} \quad v_g(x, 0) = g(x). \]

- **Multiplicative martingales:** Look for positive monotone "travelling" solutions with speed $c \in \mathbb{R}$, i.e. $u_f(x, t) = f(x - ct)$ and consequently $Lf + cf' - \psi(f) = 0$. Let X^c be the super-diffusion with added linear drift c to the support, then the associated motion operator is $L + c \frac{d}{dx}$ and
 \[e^{-f(x)} = \mathbb{E}\delta_x(e^{-\langle f, X^c_t \rangle}) \Rightarrow e^{-\langle f, X^c_t \rangle} \text{ is a martingale.} \]
Motivation ctd.....

- **Linear semi-group:** Set \(v_g(x, t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle) \) and it solves
 \[
 \frac{\partial}{\partial t} v_g(x, t) = L v_g(x, t) - \psi'(0) v_g(x, t) \quad \text{with} \quad v_g(x, 0) = g(x).
 \]

- **Multiplicative martingales:** Look for positive monotone “travelling” solutions with speed \(c \in \mathbb{R} \), i.e. \(u_f(x, t) = f(x - ct) \) and consequently \(Lf + cf' - \psi(f) = 0 \). Let \(X^c \) be the super-diffusion with added linear drift \(c \) to the support, then the associated motion operator is \(L + c \frac{d}{dx} \) and
 \[
 e^{-f(x)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X^c_t \rangle}) \Rightarrow e^{-\langle f, X^c_t \rangle} \text{ is a martingale.}
 \]

- **Additive martingales:** Look for “travelling” solutions of the form \(v_g(x, t) = g(x - ct) \), i.e. \(Lg + cg' - \psi'(0)g = 0 \). Then,
 \[
 g(x) = \mathbb{E}_{\delta_x}(\langle g, X^c_t \rangle) \Rightarrow \langle g, X^c_t \rangle \text{ is a martingale.}
 \]
Motivation ctd…..

- **Linear semi-group:** Set \(v_g(x, t) = \mathbb{E}_{\delta_x}(\langle g, X_t \rangle) \) and it solves
 \[
 \frac{\partial}{\partial t} v_g(x, t) = L v_g(x, t) - \psi'(0)v_g(x, t) \quad \text{with} \quad v_g(x, 0) = g(x).
 \]

- **Multiplicative martingales:** Look for positive monotone “travelling” solutions with speed \(c \in \mathbb{R} \), i.e. \(u_f(x, t) = f(x - ct) \) and consequently \(Lf + cf' - \psi(f) = 0 \). Let \(X^c \) be the super-diffusion with added linear drift \(c \) to the support, then the associated motion operator is \(L + c \frac{d}{dx} \) and
 \[
 e^{-f(x)} = \mathbb{E}_{\delta_x}(e^{-\langle f, X^c_t \rangle}) \Rightarrow e^{-\langle f, X^c_t \rangle} \text{ is a martingale.}
 \]

- **Additive martingales:** Look for “travelling” solutions of the form \(v_g(x, t) = g(x - ct) \), i.e. \(Lg + cg' - \psi'(0)g = 0 \). Then,
 \[
 g(x) = \mathbb{E}_{\delta_x}(\langle g, X^c_t \rangle) \Rightarrow \langle g, X^c_t \rangle \text{ is a martingale.}
 \]

- **Martingale limits:** Positive martingales have limits so what does the relation between \(\lim_{t \to \infty} \langle f, X^c_t \rangle \), \(\lim_{t \to \infty} \langle g, X^c_t \rangle \) tell us (about \(f \) and \(g \))?
BBM and BRW

Travelling waves for fragmentation processes.

\[\psi(\lambda) = -a\lambda + b\lambda^2, \]

in which case we see that for \(\lambda \in \mathbb{R} \), one may take

\[g(x) = e^{-\lambda x} \]

and

\[c_\lambda = \frac{c}{\lambda} = \frac{\lambda}{2} + \frac{a}{\lambda}. \]

Monotone travelling waves exist uniquely up to linear shift in the argument if and only if

\[|c_\lambda| \geq \sqrt{2a}, \]

in which case, when

\[|\lambda| < \sqrt{2a} \]

(\(\Rightarrow |c_\lambda| > \sqrt{2a} \)),

\[\lim_{t \to \infty} \langle f, X_{c_\lambda t} \rangle = \lim_{t \to \infty} \langle e^{-\lambda \cdot}, X_{c_\lambda t} \rangle \preceq 0 \]

and

\[f(x) \sim e^{-\lambda x}. \]

(Durrett/Liggett/Biggins/K./Liu) For BRW, if positions at generation \(n \) are given by

\[\{ \zeta_n^i : i \geq 1 \} \]

then a "travelling wave" \(\phi : \mathbb{R} \to [0,1] \) is a solution to the functional equation

\[\phi(x) = E Y_i \phi(x + \zeta_n^i + cn) \]

and can be similarly analysed by comparing against the behaviour of Biggins' martingale

\[W_n(\lambda) := P_i e^{-\lambda \zeta_n^i / m(\lambda)} n. \]
Travelling waves for fragmentation processes.

BBM and BRW

(McKean/Neveu/Chauvin/Lalley-Sellke/Harris/K./Murillo/Liu/Ren) All this works for branching Brownian motion/super-Brownian motion \((\psi(\lambda) = -a\lambda + b\lambda^2)\), in which case we see that for \(\lambda \in \mathbb{R}\), one may take \(g(x) = e^{-\lambda x}\) and \(c = c_\lambda = \lambda/2 + a/\lambda\). Monotone travelling waves exist uniquely up to linear shift in the argument if and only if \(|c_\lambda| \geq \sqrt{2a}\) in which case, when \(|\lambda| < \sqrt{2a}\) (\(\Rightarrow |c_\lambda| > \sqrt{2a}\)),

\[
\lim_{t \uparrow \infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t \uparrow \infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geq 0 \text{ and } f(x) \sim e^{-\lambda x}.
\]

and when \(|\lambda| = \sqrt{2a}\) (\(\Rightarrow c_\lambda = \sqrt{2a}\)),

\[
\lim_{t \uparrow \infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t \uparrow \infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geq 0 \text{ and } f(x) \sim xe^{-\lambda x}.
\]
BBM and BRW

- (McKean/Neveu/Chauvin/Lalley-Sellke/Harris/K./Murillo/Liu/Ren) All this works for branching Brownian motion/super-Brownian motion \((\psi(\lambda) = -a\lambda + b\lambda^2) \), in which case we see that for \(\lambda \in \mathbb{R} \), one may take \(g(x) = e^{-\lambda x} \) and \(c = c_\lambda = \lambda/2 + a/\lambda \). Monotone travelling waves exist uniquely up to linear shift in the argument if and only if \(|c_\lambda| \geq \sqrt{2a} \) in which case, when \(|\lambda| < \sqrt{2a} \) (\(\Rightarrow |c_\lambda| > \sqrt{2a} \)),

\[
\lim_{t \uparrow \infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t \uparrow \infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geq 0 \text{ and } f(x) \sim e^{-\lambda x}.
\]

and when \(|\lambda| = \sqrt{2a} \) (\(\Rightarrow c_\lambda = \sqrt{2a} \)),

\[
\lim_{t \uparrow \infty} \langle f, X_t^{c_\lambda} \rangle = \lim_{t \uparrow \infty} \langle e^{-\lambda \cdot}, X_t^{c_\lambda} \rangle \geq 0 \text{ and } f(x) \sim xe^{-\lambda x}.
\]

- (Durrett/Liggett/Biggins/K./Liu) For BRW, if positions at generation \(n \) are given by \(\{\zeta_i^n : i \geq 1\} \) then a “travelling wave” \(\phi : \mathbb{R} \rightarrow [0, 1] \) is a solution to the functional equation

\[
\phi(x) = \mathbb{E} \prod_i \phi(x + \zeta_i^n + cn)
\]

and can be similarly analysed by comparing against the behaviour of Biggins’ martingale \(W_n(\lambda) := \sum_i e^{-\lambda \zeta_i^n}/m(\lambda)^n \).
(Homogenous) Fragmentation Processes
(Homogenous) Fragmentation Processes

- **State space:** Let $\nabla = \{s = (s_1, s_2, \cdots) : s_1 \geq s_2 \geq \cdots \text{ and } \sum_i s_i = 1\}$.

 - **Mass fragmentation:** $\mathcal{X} = \{\mathcal{X}(t) : t \geq 0\}$ is a ∇-valued Markov process with $\mathcal{X}(0) = (1, 0, 0, \cdots)$ and otherwise we write $\mathcal{X}(t) = (\mathcal{X}_1(t), \mathcal{X}_2(t), \cdots)$.

 - Think of an object of unit mass falling apart into pieces such that the total mass is preserved.

 - **Notation:** Its probabilities are denoted by $\{P_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation P_s as short hand for $P(s, 0, \cdots)$ and in particular write P for P_1.

 - **Markov (fragmentation) property:** Given that $\mathcal{X}(t) = (s_1, s_2, \cdots)$, where $t \geq 0$, then for $u > 0$, $\mathcal{X}(t + u)$ has the same law as the variable obtained by ranking in decreasing order the sequences $\mathcal{X}_1(u)$, $\mathcal{X}_2(u)$, \cdots where the latter are independent, random mass partitions with values in ∇ having the same distribution as $\mathcal{X}(u)$ under P_{s_1}, P_{s_2}, \cdots respectively.

 - **Rate of fragmentation:** Fragmentation is governed by a measure ν on ∇ such that an individual block of mass $s \leq 1$ in the process \mathcal{X} at time t will dislocate into an array of fragments $s \times s$ with rate $\nu(ds) \times dt + o(dt)$.

(Homogenous) Fragmentation Processes

- **State space:** Let $\nabla = \{s = (s_1, s_2, \cdots) : s_1 \geq s_2 \geq \cdots \text{ and } \sum_i s_i = 1\}$.

- **Mass fragmentation:** $X = \{X(t) : t \geq 0\}$ is a ∇-valued Markov process with $X(0) = (1, 0, 0, \cdots)$ and otherwise we write $X(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.
(Homogenous) Fragmentation Processes

- **State space:** Let $\nabla = \{s = (s_1, s_2, \cdots) : s_1 \geq s_2 \geq \cdots \text{ and } \sum_i s_i = 1\}$.

- **Mass fragmentation:** $\mathbf{X} = \{\mathbf{X}(t) : t \geq 0\}$ is a ∇-valued Markov process with $\mathbf{X}(0) = (1, 0, 0, \cdots)$ and otherwise we write $\mathbf{X}(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.

- **Notation:** Its probabilities are denoted by $\{\mathbb{P}_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation \mathbb{P}_s as short hand for $\mathbb{P}_{(s,0,\cdots)}$ and in particular write \mathbb{P} for \mathbb{P}_1.
(Homogenous) Fragmentation Processes

- **State space:** Let $\nabla = \{ s = (s_1, s_2, \cdots) : s_1 \geq s_2 \geq \cdots \text{ and } \sum_i s_i = 1 \}$.

- **Mass fragmentation:** $X = \{ X(t) : t \geq 0 \}$ is a ∇-valued Markov process with $X(0) = (1, 0, 0, \cdots)$ and otherwise we write $X(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.

- **Notation:** Its probabilities are denoted by $\{ \mathbb{P}_s : s \in \nabla \}$ and, for $s \in (0, 1]$, we shall reserve the special notation \mathbb{P}_s as short hand for $\mathbb{P}(s, 0, \cdots)$ and in particular write \mathbb{P} for \mathbb{P}_1.

- **Markov (fragmentation) property:** Given that $X(t) = (s_1, s_2, \cdots)$, where $t \geq 0$, then for $u > 0$, $X(t + u)$ has the same law as the variable obtained by ranking in decreasing order the sequences $X^{(1)}(u), X^{(2)}(u), \cdots$ where the latter are independent, random mass partitions with values in ∇ having the same distribution as $X(u)$ under $\mathbb{P}_{s_1}, \mathbb{P}_{s_2}, \cdots$ respectively.
(Homogenous) Fragmentation Processes

- **State space:** Let $\nabla = \{s = (s_1, s_2, \cdots) : s_1 \geq s_2 \geq \cdots \text{ and } \sum_i s_i = 1\}$.

- **Mass fragmentation:** $X = \{X(t) : t \geq 0\}$ is a ∇-valued Markov process with $X(0) = (1, 0, 0, \cdots)$ and otherwise we write $X(t) = (X_1(t), X_2(t), \cdots)$. Think of an object of unit mass falling apart into pieces such that the total mass is preserved.

- **Notation:** Its probabilities are denoted by $\{P_s : s \in \nabla\}$ and, for $s \in (0, 1]$, we shall reserve the special notation P_s as short hand for $P_{(s,0,\cdots)}$ and in particular write P for P_1.

- **Markov (fragmentation) property:** Given that $X(t) = (s_1, s_2, \cdots)$, where $t \geq 0$, then for $u > 0$, $X(t + u)$ has the same law as the variable obtained by ranking in decreasing order the sequences $X^{(1)}(u), X^{(2)}(u), \cdots$ where the latter are independent, random mass partitions with values in ∇ having the same distribution as $X(u)$ under P_{s_1}, P_{s_2}, \cdots respectively.

- **Rate of fragmentation:** Fragmentation is governed by a measure ν on ∇ such that an individual block of mass $s \leq 1$ in the process X at time t will dislocate into an array of fragments $s \times s$ with rate $\nu(ds) \times dt + o(dt)$.

Travelling waves for fragmentation processes.
Travelling wave equation for fragmentation

\[
\text{u}(x,t) := \mathbb{E} \left[Y_i \text{u}(x - \log X_i(t), t) \right] = \mathbb{E} \left[\text{u}(x, t) \right] - \mathbb{E} \left[\nabla \left(Y_i \text{u}(x - \log s_i(t), t) - \text{u}(x, t) \right) \right] \nu(ds) \frac{1}{h} + o(h).
\]

As \(h \downarrow 0 \)
Travelling waves for fragmentation processes.

Travelling wave equation for fragmentation

- Natural analogue of \(\exp\{-u(x,t)\} = \mathbb{E}_{\delta_x} \left(\exp\{-\langle f, X_t \rangle\} \right) \):

\[
u(x, t) := \mathbb{E} \left(\prod_{i} g(x - \log X_i(t)) \right)
\]

with initial condition \(u(x, 0) = g(x) \).
Travelling wave equation for fragmentation

- Natural analogue of \(\exp \{-u(x, t)\} = \mathbb{E}_{\delta_x} (\exp \{-\langle f, X_t \rangle\}) \):

\[
 u(x, t) := \mathbb{E} \left(\prod_i g(x - \log X_i(t)) \right)
\]

with initial condition \(u(x, 0) = g(x) \).

- Apply Markov (fragmentation) property:

\[
 u(x, t + h) = \mathbb{E} \left(\prod_i u(x - \log X_i(h), t) \right).
\]
Travelling wave equation for fragmentation

- Natural analogue of “\(\exp\{-u(x, t)\} = \mathbb{E}_{\delta_x} (\exp\{-\langle f, X_t \rangle\})\)":

\[
 u(x, t) := \mathbb{E} \left(\prod_i g(x - \log X_i(t)) \right)
\]

with initial condition \(u(x, 0) = g(x)\).

- Apply Markov (fragmentation) property:

\[
 u(x, t + h) = \mathbb{E} \left(\prod_i u(x - \log X_i(h), t) \right).
\]

- As \(h \downarrow 0\)

\[
 u(x, t + h) - u(x, t) = \mathbb{E} \left(\prod_i u(x - \log X_i(h), t) \right) - u(x, t)
\]

\[
 = \int \nabla \left\{ \prod_i u(x - \log s_i, t) - u(x, t) \right\} \nu(ds) h + o(h).
\]
Travelling waves for fragmentation processes.

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

\[
\frac{\partial u}{\partial t}(x, t) = \int \left\{ \prod_i u(x - \log s_i, t) - u(x, t) \right\} \nu(ds)
\]
Travelling wave equation for fragmentation ctd...

- This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

\[\frac{\partial u}{\partial t}(x, t) = \int_\nabla \left\{ \prod_i u(x - \log s_i, t) - u(x, t) \right\} \nu(ds) \]

- Hence a travelling wave \(\psi : \mathbb{R} \to [0, 1] \) with wave speed \(c \in \mathbb{R} \) solves the equation

\[-c\psi'(x) + \int_\nabla \left\{ \prod_i \psi(x - \log s_i) - \psi(x) \right\} \nu(ds) = 0 \]
Travelling waves for fragmentation processes.

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

\[
\frac{\partial u}{\partial t}(x, t) = \int \nabla \left\{ \prod_i u(x - \log s_i, t) - u(x, t) \right\} \nu(ds)
\]

Hence a travelling wave \(\psi : \mathbb{R} \rightarrow [0, 1] \) with wave speed \(c \in \mathbb{R} \) solves the equation

\[
-c\psi'(x) + \int \nabla \left\{ \prod_i \psi(x - \log s_i) - \psi(x) \right\} \nu(ds) = 0
\]

We look for monotone waves satisfying \(\psi(-\infty) = 0 \) and \(\psi(\infty) = 1 \).
Travelling waves for fragmentation processes.

This suggestively leads us to the integro-differential equation, the KPP equation for fragmentation processes:

\[
\frac{\partial u}{\partial t}(x, t) = \int \nabla \left(\prod_{i} u(x - \log s_i, t) - u(x, t) \right) \nu(ds)
\]

Hence a travelling wave \(\psi : \mathbb{R} \rightarrow [0, 1] \) with wave speed \(c \in \mathbb{R} \) solves the equation

\[
-c\psi'(x) + \int \nabla \left(\prod_{i} \psi(x - \log s_i) - \psi(x) \right) \nu(ds) = 0
\]

We look for monotone waves satisfying \(\psi(-\infty) = 0 \) and \(\psi(\infty) = 1 \).

With some further restriction on the class in which \(\psi \) sits, one can show through stochastic calculus for semi-martingales (Poisson random fields) that \(\psi \) is a travelling wave with speed \(c \) iff

\[
M_t(c) := \prod_{i} \psi(x - \log X_i(t) - ct), \ t \geq 0
\]

is a martingale.
Spine
For each $t \geq 0$, $X(t)$ is a (random) probability distribution,

$$
\mathbb{E}\left(\sum_i X_i(t)g(- \log X_i(t)) \right) = E(g(\xi_t))
$$

where $\{\xi_t : t \geq 0\}$ under P is a pure jump subordinator with Laplace exponent

$$
-\frac{1}{t} \log \mathbb{E}(e^{-q\xi_t}) = \Phi(q) = \int_\nabla_1 \left(1 - \sum_{i=1}^{\infty} s_i^{q+1} \right) \nu(ds), \quad q > p,
$$

where

$$
p := \inf \left\{ p \in \mathbb{R} : \int_\nabla_1 \sum_{i=2}^{\infty} s_i^{p+1} \nu(ds) < \infty \right\} \leq 0.
$$
For each $t \geq 0$, $X(t)$ is a (random) probability distribution,

$$
\mathbb{E} \left(\sum_i X_i(t) g(-\log X_i(t)) \right) = E(g(\xi_t))
$$

where $\{\xi_t : t \geq 0\}$ under P is a pure jump subordinator with Laplace exponent

$$
-\frac{1}{t} \log \mathbb{E}(e^{-q\xi_t}) = \Phi(q) = \int_{\nabla 1} \left(1 - \sum_{i=1}^{\infty} s_i^{q+1} \right) \nu(ds), \quad q > p,
$$

where

$$
p := \inf \left\{ p \in \mathbb{R} : \int_{\nabla 1} \sum_{i=2}^{\infty} s_i^{p+1} \nu(ds) < \infty \right\} \leq 0.
$$

Without major restriction, we assume $p < 0$ and that $\Phi(p) = -\infty$.
Permitted wave speeds
Permitted wave speeds

- **Range of speeds**: Let $c_p = \Phi(p)/(p + 1)$. There exists a unique solution to the equation $(p + 1)\Phi'(p) = \Phi(p)$, denoted by \bar{p}. Then wave speeds exist for $c \in (c_p, c_\bar{p}]$.

Note

$$\lim_{t \uparrow \infty} \frac{-\log X_1(t)}{t} = c_\bar{p}, \text{ a.s.}$$
Travelling waves for fragmentation processes.

Permitted wave speeds

- **Range of speeds:** Let $c_p = \Phi(p)/(p + 1)$. There exists a unique solution to the equation $(p + 1)\Phi'(p) = \Phi(p)$, denoted by \bar{p}. Then wave speeds exist for $c \in (c_p, \bar{p}]$.

 Note

 $$\lim_{t \uparrow \infty} -\log X_1(t) \cdot t = c_{\bar{p}}, \ a.s.$$

- **Supercritical speeds:** Note that if ψ for speeds $c > c_{\bar{p}}$,

 $$\prod_i \psi(x - \log X_i(t) - ct) \leq \psi(x - \log X_1(t) - ct) \xrightarrow{t \uparrow \infty} \psi(-\infty) = 0. (!)$$
Permitted wave speeds

- **Range of speeds**: Let \(c_p = \Phi(p)/(p + 1) \). There exists a unique solution to the equation \((p + 1)\Phi'(p) = \Phi(p)\), denoted by \(\overline{p} \). Then wave speeds exist for \(c \in (c_p, c_{\overline{p}}) \).

 Note

 \[
 \lim_{t \uparrow \infty} -\log \frac{X_1(t)}{t} = c_{\overline{p}}, \text{ a.s.}
 \]

- **Supercritical speeds**: Note that if \(\psi \) for speeds \(c > c_p \),

 \[
 \prod_i \psi(x - \log X_i(t) - ct) \leq \psi(x - \log X_1(t) - ct) \xrightarrow{t \uparrow \infty} \psi(-\infty) = 0. (!)
 \]

- **Subcritical speeds**: Biggins’ martingale convergence theorem (Bertoin-Rouault) for additive martingales, \(p \in (p, \overline{p}) \),

 \[
 W(t, p) := \sum_i X_i(t)^{p+1} e^{\Phi(p)t} \xrightarrow{t \uparrow \infty} W(\infty, p), \text{ a.s., } L^1.
 \]

 \[
 \psi(x) = \mathbb{E}(\exp\{-e^{-(p+1)x}W(\infty, p)\}) \text{ is a travelling wave.}
 \]

- **Critical speeds**: Replace \(W(\infty, p) \) by \(-\partial W(\infty, p)/\partial p\).
Asymptotics and Uniqueness: basic ideas $p \in (p, \bar{p})$
Asymptotics and Uniqueness: basic ideas \(p \in (p, \bar{p}) \)

- Let \(L_p(x) = e^{(p+1)x}(1 - \psi(x)) \). As \(-\log \psi(z) \sim 1 - \psi(z) \) when \(z \uparrow \infty \) and \(-\log X_1(t) - c_p t \to +\infty \),

\[
-\log M_t(c_p) \sim e^{- (p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct)
\]
Asymptotics and Uniqueness: basic ideas $p \in (p, \bar{p})$

Let $L_p(x) = e^{(p+1)x}(1 - \psi(x))$. As $-\log \psi(z) \sim 1 - \psi(z)$ when $z \uparrow \infty$ and $-\log X_1(t) - c_p t \to +\infty$,

$$-\log M_t(c_p) \sim e^{-(p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct)$$

Naively: Show that

$$\sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct) \sim L_p(\alpha t) \sum_i X_i(t)^{p+1} e^{\Phi(p)t}$$

for some α, then $-\log M_t(c_p)/W(t, p) \sim L(\alpha t) \Rightarrow L_p \sim k_p \in (0, \infty)$ and uniqueness follows.
Asymptotics and Uniqueness: basic ideas $p \in (p, \bar{p})$

- Let $L_p(x) = e^{(p+1)x}(1 - \psi(x))$. As $-\log \psi(z) \sim 1 - \psi(z)$ when $z \uparrow \infty$ and $-\log X_1(t) - c_p t \to +\infty$,

\[-\log M_t(c_p) \sim e^{-(p+1)x} \sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct) \]

- Naively: Show that

\[\sum_i X_i(t)^{p+1} e^{\Phi(p)t} L_p(x - \log X_i(t) - ct) \sim L_p(\alpha t) \sum_i X_i(t)^{p+1} e^{\Phi(p)t} \]

for some α, then $-\log M_t(c_p)/W(t, p) \sim L(\alpha t) \Rightarrow L_p \sim k_p \in (0, \infty)$ and uniqueness follows.

- Problem:

"$-\log X_i(t) - ct$" behaves like a Lévy process with no positive jumps drifting to $+\infty$. Too difficult to control all of them uniformly.
Stopping lines

Figure: Freeze fragments as soon as $-\log X(t) - c_p t \geq z$ with $p \in (0, \bar{p})$. Collection of block sizes and their “freezing time” denoted $\{(B_i(z), \ell_i(z)) : i \geq 1\}$.

[Diagram showing stopping lines and freezing times]
Stopping lines

Figure: Freeze fragments as soon as $-\log X(t) - c_p t \geq z$ with $p \in (0, p)$. Collection of block sizes and their “freezing time” denoted $\{ (B_i(z), \ell_i(z)) : i \geq 1 \}$.
Working with stopping lines

\[M_\ell(z)(c_p) := Y_i \psi(x - \log B_i(z) - c_p \ell_i(z)) \]

and

\[W(\ell z, p) := X_i B_i(z)^{(p+1)} e^{\Phi(p) \ell_i(z)} \]

Now much easier to compare

\(-\log M_\ell z(c_p) \text{ against } W(\ell z, p)\)

\(-\log B_i(z) - c_p \ell_i(z) \geq x + z \text{ uniformly in } i\)

and deduce that, as \(z \uparrow \infty\),

\[-\log M_\ell z(c_p) W(\ell z, p) \sim e^{-(p+1)x} X_i B_i(z)^{(p+1)} e^{\Phi(p) \ell_i(z)} W(\ell z, p) \sim e^{-(p+1)x} L_p(x + z)\]

and our naive argument can be made rigorous.
Working with stopping lines

- All martingales concerned are uniformly integrable and their limits can be "projected back" on to the stopping lines to give "stopped" versions of martingales. For $z \geq 0$

$$M_{\ell_z}(c_p) := \prod_i \psi(x - \log B_i(z) - c_p \ell_i(z)) \quad \text{and} \quad W(\ell_z, p) := \sum_i B_i(z)^{(p+1)} e^{\Phi(p) \ell_i(z)}.$$
Working with stopping lines

- All martingales concerned are uniformly integrable and their limits can be "projected back" on to the stopping lines to give "stopped" versions of martingales. For $z \geq 0$

$$M_{\ell z}(c_p) := \prod_i \psi(x - \log B_i(z) - c_p\ell_i(z)) \text{ and } W(\ell_z, p) := \sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)}.$$

- Now much easier to compare $-\log M_{\ell z}$ against $W(\ell_z, p)$

$(x - \log B_i(z) - c_p\ell_i(z) \geq x + z \text{ uniformly in } i)$ and deduce that, as $z \uparrow \infty$,

$$\frac{-\log M_{\ell z}(c_p)}{W(\ell_z, p)} \sim e^{-(p+1)x} \sum_i \frac{B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)}}{W(\ell_z, p)} L_p(x - \log B_i(z) - c_p\ell_i(z))$$

$$\sim e^{-(p+1)x} L_p(x + z)$$

and our naive argument can be made rigorous.
Final technical note

To asymptotically replace

\[P_i B_i(z) (p+1) e^{\Phi(p)} \ell_i(z) L_p(x - \log B_i(z) - c_p \ell_i(z)) \]

by

\[L_p(x + z) W(\ell z, p) \]

we need the following technical lemma which echoes Nerman's classical strong law of large numbers for CMJ processes.

For all exponentially bounded positive functions \(f\) and \(p \in (p_L, p_U]\),

\[X_i B_i(z) (p+1) e^{\Phi(p)} \ell_i(z) f(x - \log B_i(z) - c_p \ell_i(z)) \sim Q_p(f) W(\infty, p) \]

where \(Q_p(f)\) is the expectation of \(f\) with respect to the stationary overshoot distribution of a subordinator.

When \(p \in (0, p)\) this result can in fact be deduced from Nerman's classical strong law.
Final technical note

To asymptotically replace
\[\sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)} L_p(x - \log B_i(z) - c_p\ell_i(z)) \]
by \[L_p(x + z) W(\ell_z, p) \]
we need the following technical lemma which echoes Nerman’s classical
strong law of large numbers for CMJ processes.
Final technical note

To asymptotically replace
\[\sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)} L_p(x - \log B_i(z) - c_p\ell_i(z)) \]
by \(L_p(x + z)W(\ell_z, p) \)
we need the following technical lemma which echoes Nerman’s classical strong law of large numbers for CMJ processes.

For all exponentially bounded positive functions \(f \) and \(p \in (p, \bar{p}] \),

\[\sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)} f(x - \log B_i(z) - c_p\ell_i(z)) \sim Q_p(f)W(\infty, p) \]

where \(Q_p(f) \) is the expectation of \(f \) with respect to the stationary overshoot distribution of a subordinator.
Final technical note

- To asymptotically replace
 \[\sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)} L_p(x - \log B_i(z) - c_p\ell_i(z)) \text{ by } L_p(x + z)W(\ell_z, p) \]
 we need the following technical lemma which echoes Nerman’s classical strong law of large numbers for CMJ processes.

- For all exponentially bounded positive functions \(f \) and \(p \in (p, \bar{p}] \),
 \[\sum_i B_i(z)^{(p+1)} e^{\Phi(p)\ell_i(z)} f(x - \log B_i(z) - c_p\ell_i(z)) \sim Q_p(f)W(\infty, p) \]
 where \(Q_p(f) \) is the expectation of \(f \) with respect to the stationary overshoot distribution of a subordinator.

- When \(p \in (0, \bar{p}) \) this result can in fact be deduced from Nerman’s classical strong law.