## Hartmut Schwetlick / Publications |

*Travelling waves for a Frenkel-Kontorova chain*(with Boris Buffoni and Johannes Zimmer). Journal of Differential Equations. (2017) 263(4): 2317-2342 @*A convergent string method: Existence and approximation for the Hamiltonian boundary-value problem*(with Johannes Zimmer). Dynamical Systems, Number Theory and Applications. World Sci. Publ., Hackensack, NJ, (2016), p. 221-254 @*The second-order L2-flow of inextensible elastic curves with hinged ends in the plane*(with Chun-Chi Lin and Y-K Lue). Journal of Elasticity. (2015) 119 (1): 263-291. @*On the Γ-limit for a non-uniformly bounded sequence of two-phase metric functionals*(with Daniel C. Sutton and Johannes Zimmer). Discrete and Continuous Dynamical Systems - Series A (2015) 35 (1), pp. 411-426. @*Subsonic phase transition waves in bistable lattice models with small spinodal region*(with Michael Herrmann, Karsten Matthies, and Johannes Zimmer). SIAM Journal on Mathematical Analysis (SIMA) (2013) 45(5):2625-2645. @*Nonexistence of Slow Heteroclinic Travelling Waves for a Bistable Hamiltonian Lattice Model*(with Daniel C. Sutton and Johannes Zimmer). J. Nonlinear Sci. (2012) 22(6):917-934. @*Kinetic Relations for a Lattice Model of Phase Transitions*(with Johannes Zimmer). Arch. Rational Mech. Anal. (2012) 206:707-724. @*On selection criteria for problems with moving inhomogeneities*(with Michael Herrmann and Johannes Zimmer). Continuum Mech. Thermodyn. (2012) 24:21-36. @*Minimizers of a weighted maximum of the Gauss curvature*(with Roger Moser). Ann Glob Anal Geom. (2012) 41:199-207. @*On a flow to untangle elastic knots*(with Chun-Chi Lin). J. Calc. Var. PDE (2010) 39:621-647. @*Existence of Dynamic Phase Transitions in a One-Dimensional Lattice Model with Piecewise Quadratic Interaction Potential*(with Johannes Zimmer). SIAM J. Math. Anal. (2009) 41:1231-1271. @*Calculation of long time classical trajectories: Algorithmic treatment and applications for molecular systems*(with Johannes Zimmer). J. Chem. Phys. (2009) 130:124106. @*Evolving a Kirchhoff elastic rod without self-intersection*(with Chun-Chi Lin). J. Mathematical Chemistry (2009) 45:748-768. @*Analysis and Stochastics of Growth Processes and Interface Models*(Editors: Peter Mörters and Roger Moser and Mathew Penrose and Hartmut Schwetlick and Johannes Zimmer). Oxford University Press, 2008. @*Solitary waves for nonconvex FPU lattices*(with Johannes Zimmer). J. Nonlinear Science (2007) 17:1-12. @*Higher order Curvature flows on Surfaces.*Ann. Global Ana. Geo. (2006) 29:333-342. @*On the geometric flow of Kirchhof elastic rods.*(with Chun-Chi Lin). SIAM J. Appl. Math. (2005) 65:720-736. @*Translating solutions for Gauss Curvature flows with Neumann boundary condition*(with Oliver Schnürer). Pacific J. Math. (2004) 213:89-109. @*Convergence of the Yamabe flow for ``large'' energies*(with Michael Struwe). J. Reine Ang. Math. (2003) 562:59-100. @*Limit sets for multidimensional nonlinear transport equations.*J. Differential Equations (2002) 179:356-368. @*Travelling fronts for multidimensional nonlinear transport equations.*Ann. Inst. H. Poincaré Anal. Non Linéaire (2000) 17:523-550. @*Reaction-Transport-Equations*(in german), Dissertation thesis, University of Tübingen, Germany, 1998*On the minimal wave speed of a semilinear reaction transport equation in dimension n.*SFB 382 Report (1997) 73. @

*A variational approach to the Hamiltonian boundary value problem: existence and approximation*(with Johannes Zimmer). Oberwolfach Reports 7, (2010), no. 1, pp. 792-794. @*Finding the elasticae by means of geometric gradient flows*(with Chun-Chi Lin). pp. 189--196 in Recent advances in elliptic and parabolic problems, World Sci. Publ., Hackensack, NJ, 2005. @*Traveling waves for chemotaxis-systems.*pp. 476-478 in Proc. Appl. Math. Mech. 3 (2003), no. 1, Wiley-VCH, Weinheim. @*Existence of Travelling Fronts for Nonlinear Transport Equations.*pp. 841-850 in Hyperbolic Problems: Theory, Num., Appl., Int. Ser. Num. Math. 141 (2001), Birkhäuser, Basel. @

[ Hartmut Schwetlick's homepage ] [ Department of Mathematical Sciences]

Mar-2018 / Author : H. Schwetlick