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Abstract

The movement of landmarks on the human face can be recorded in 3D using motion capture
equipment. We describe methods for the analysis of data collected on groups of subjects with
a view to describing and assessing the differences between the facial motions of those groups.
We focus on the smile motion in particular. The methods presented can be used more generally
for continuous shape change data.

We introduce a novel parameterization of shape change that allows the parsimonious de-
scription of facial motion. We allow for a distinction between static facial shape and dynamic
facial motion. We describe statistical methods for modeling differences in facial motion in-
cluding a comparison of mean motions, principal components for describing the variation in
motion and linear models for describing the effects of predictors.

keywords: functional data analysis, shape data, registration, B-splines

1 Introduction

Surgical procedures for repairing and correcting facial injuries and defects have advanced consid-
erably in recent years. Surgeons are able to make impressive improvements to facial appearance.
However, more than just a pretty face is needed — the face must function well too. Eating, speak-
ing and facial gestures are an essential part of life. Function, as well as form, must be considered
when evaluating surgical outcomes.

Cleft lip or palate is a relatively common birth defect. The standard treatment involves a series
of surgeries through childhood to correct the problem. The incremental improvements in facial
form tend to decrease with each successive surgery while increasing the risk of scarring and nerve
damage that can degrade facial function. Decisions need to be made by the surgeon and parents
about whether to continue. Aesthetic considerations tend to have greater weight than they perhaps
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deserve and small improvements in form may be obtained at the cost of function. The full quan-
tification of facial function that would allow for more informed decisions has not been available.
In earlier work - Trotman, Faraway, and Essick (2000), we proposed some measures but the ones
presented here represent a full step beyond to represent the full dynamic motion of the face.

Another type of surgery where additional understanding of facial function is needed involves
persons with unusually small (retrognathic) or large (prognathic) jaws. Surgical techniques have
been developed to modify jaw size closer to the norm but less is understood about how the move-
ment of persons with retrognathic or prognathic jaws differs from the the norm and how surgery
affects this movement. The data we analyze below is drawn from a study investigating these issues.

The methods we shall present below are useful for quantizing and modeling facial motion for
clinical purposes. They also have some application to non-clinical applications in animation and
in modeling shape change in general. We discuss these possibilities in the conclusion.

Three dimensional motion cannot be satisfactorily represented statically on a page. To appreci-
ate our motion models, they must be seen in action. We have developed standalone viewer software
that must be seen to understand the outcomes of our analyses.

2 Data

The sample analyzed below consisted of 48 healthy subjects recruited from the University of North
Carolina School of Dentistry Orthodontic and Dentofacial Clinics. Some of the subjects had ret-
rognathic and prognathic jaws. The extent of these variations in facial form can be quantified in
various ways. We will use a measure called MFLF which represents the ratio of a midface distance
(nasion to anterior nasal spine) to a lower face distance (anterior nasal spine to menton). There
are other measures that would be considered in a full analysis including age and gender, but we
aim to present only the method of analysis here. Subjects were asked to perform various standard
facial motions — eye open, eye close, cheek puff, lip purse, grimace and smile. We shall focus
on the smile only here although a full analysis would study the other animations. Subjects were
instructed to bite on the back teeth and smile as much as possible. This is artificial but a previous
study indicated that this smile had similar characteristics to natural smiles — see Mendez (1999).
Each animation was repeated 3 times.

Data may be collected on facial motion using motion capture equipment. Twenty four retro-
reflective markers, each with a diameter of 2mm were attached using eyelash adhesive to specific
sites on the face shown in Figure 1.

Some markers can be placed quite consistently. For example, the position of the commissures
(lip corners — markers 16 and 19) is well defined. Other markers are placed on landmarks that
are less well defined — for example, markers 13 and 14 on the upper lip. This is important in our
choice of measures in the data analysis to follow.

The Motion Analysis video tracking system used four cameras to track the motion at a rate
of 60 frames per second. All the motions were recorded for 3 seconds for a total of 180 frames
per motion. At least two cameras must have a line of sight to a given marker for its position in
three dimensions to be recorded. Due to the redundancy of having four cameras, missing data
was relatively rare although occasional outliers are generated due to problems with tracking the
data were encountered. Note that the head was not constrained so that the motion of face was
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Figure 1: Schematic of facial marker placement.
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confounded with motion of the whole head.
Each motion is represented by 24x3x180=12960 numbers and there were 144 smiles observed

for a total of around 1.9 million numbers in the complete dataset. The size of the dataset has
implications for the types of analysis that are computationally feasible and appropriate.

We show two smiles by the same person in Exhibit 1. (Please see Appendix for description of
how to obtain and operate the viewing software. It’s important to view the motion from the side
as well as the front). In just these two observations, we see several important characteristics of the
data. The head is not constrained. The initial positions are not exactly (nor could they be) aligned.
The smiles take place at different times during the 3 second period. A small amount of noise due
to measurement error is visible.

We have presented only a representative selection of analyses of this data. Our purpose is just
to describe what is possible in a concrete manner but without attempting a comprehensive analysis
of the data.

3 Methods

3.1 Shape

The configuration of the 24 markers constitute a shape. See Dryden and Mardia (1998), Bookstein
(1991) and Small (1996) for introductions to statistical shape analysis. However, we are not so
much interested in the shape of the face itself, but rather in how this shape changes when the face
moves. We already know that facial shapes differ from person to person and what distinguishes
those with retrognathic jaws from those with the normal jaws. Our interest is in the motion itself
independent of the shape — essentially the derivative of the shape as it changes over time. This
explains the necessity of developing new techniques.

We choose to base our analysis on the following type of measure: Let di j
�
t � be the (Euclidean)

distance between marker i and j at time t. Now let

ri j
�
t ��� di j

�
t �

di j
�
0 ��� 1 �

which represents the relative change in the distance from rest. This measure has several desirable
properties:

1. It is invariant to whole head motion.

2. It is approximately invariant to small variations in marker placement. As we mentioned
above, the landmarks for several of the markers are not precisely defined. Because of the
relative scaling, small variations in placement will only have a second order effect.

3. It is not dependent on local shape. For example, consider the distance between the com-
missures, 16-19. Of course, some people have bigger mouths than others but we have little
interest in this. We are more concerned with how this distance changes during, say, a smile.
By scaling using the initial distance, we remove much of the this effect.
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In Lele and Richtsmeier (2000) and other research articles, an approach to statistical shape anal-
ysis based on di j over all pairs of distances called EDMA (Euclidean Distance Matrix Analysis) is
developed. Given the matrix di j, it is possible to reconstruct the shape (up to rotation, translation
and reflection). The important difference in our analysis is that we observe that not all pairs of
distances are needed to reconstruct the shape. This is important because there are n

�
n � 1 ��� 2 pairs

of distances given n markers. For n of any size, this is a substantial number of measures which is
increasingly cumbersome for the types of analyses we demonstrate below. For the n � 24 in this
example, there are 276 total pairwise distances for just a single frame of one motion.

We now describe how we reconstruct the face (shape) given only a subset of the pairwise
distances:

1. Choose four landmarks. Given the six pairwise distances, we can reconstruct the position
of these landmarks up to rotation and translation. Of the two possible reflections, we shall
be able to choose the correct one given our knowledge of the relative positions of these
landmarks on the face. The translation is irrelevant and the rotation, although arbitrary, can
be chosen to place the face in, perhaps, an upright position for viewing.

2. Choose a new landmark and obtain the three pairwise distances of this landmark to 3 of
the already positioned landmarks. Given this information, we can reconstruct the (irregular)
tetrahedron of the one new and three old landmarks. Two possible tetrahedra satisfy the
distance requirements. We shall rely on knowledge of the general shape of the face to select
the correct one.

3. Keep adding new landmarks in the same manner until the face is complete.

The procedure is illustrated in Figure 2.

Initial
Tetrahedron

Added
Tetrahedron

Figure 2: Six distances are required to construct the initial tetrahedron. Three additional distances
are required to place each subsequent tetrahedron.

The particular order of reconstruction can be encapsulated in a matrix Ci j where i � 1 ������� � n � 3
and j � 1 � 2 � 3 � 4. The first row of C indicates which four landmarks form the initial tetrahedron
while successive rows indicate which 3 now known landmarks should be used to reconstruct the
fourth new landmark. A total of 3n � 6 pairwise distances are needed. If we subtract an additional
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parameter for a size factor we have 3n � 7 parameters — the same number that would be required
if the usual shape coordinates were used. So we see that this is an alternative choice of coordinates
adapted to the particular requirements of this type of data. Furthermore, we can be sure that no
reconstruction would be possible with fewer pairwise distances.

This reconstruction algorithm has a speed advantage over that used on the full pairwise distance
matrix. The latter requires a singular value decomposition on an n2 matrix while only tetrahedra
need to be reconstructed in our approach. Given that the algorithm will need to be applied re-
peatedly to reconstruct motion, this speed difference is magnified. Note also that the amount of
computation and storage grows only linearly (compared to quadratically) in n for our method.

There are many possible choices of the reconstruction rule, C. Three considerations drive the
particular choice:

1. The fourth point of each tetrahedron should not tend to be close to collinear with the other
three points. Given the pairwise distances, there are two possible tetrahedra and we rely on
our knowledge of facial shape to make the correct choice. In cases of near collinearity, the
choice might become ambiguous.

2. We prefer to use pairwise distances between landmarks that are close because these will
better preserve the objective of local shape invariance. Furthermore, some pairwise distances
between adjacent landmarks represent particular muscles so it is natural to work with these.

3. We prefer that the tetrahedra be close to regular. If the pairwise distances become rather un-
equal, it is possible that it may not be possible to reconstruct a tetrahedron (the 3-D analogue
of the triangle inequality is violated).

Even so, further refinement of the choice will be necessary. A selection of candidate recon-
struction rules were evaluated for stability under random perturbations of the shape and a choice
made.

3.2 Registration

The subjects are instructed to start from a neutral facial pose, assume the required pose, such as
“smile”, and then relax. This should be completed within 3 seconds starting from a cue to the
subject that the cameras are recording. Subjects are given the opportunity to practice and if they
miss the 3 second time slot, they have the opportunity to repeat the animation.

There are five phases to the motion:

1. Neutral pose

2. Assume the required pose

3. Hold

4. Relax from the required pose

5. Neutral pose
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This means there are 4 transition times. These times will vary from animation to animation so
it would not make sense simply to average several motions cross-sectionally in time. Motions need
to be “registered” with each other so that comparable points in the motion are averaged. A further
difficulty is that it is difficult to precisely identify these transition times.
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Figure 3: Selected relative change from rest for a smile. Left - 13-17 (Upper Lip). Center - 4-5
(Eyebrow). Right - mean. Selected transitions shown

We illustrate the issues in Figure 3, where information from a smile is depicted. The first panel
shows a Lowess-smoothed r13 � 17

�
t � which represents a distance on the upper lip. The five phases

of the motion are clearly identifiable although the precise transitions are not unambiguous. The
center panel shows r4 � 5

�
t � which represents a distance above the eye. In this case the phases are

not identifiable, not perhaps unsurprisingly as movement during a smile is confined to the lower
part of the face while other unrelated activity may take place above the eyes. Clearly, we’d prefer
to use the first plot to choose the transitions in this example. Unfortunately, patterns will differ
from animation to animation and from individual to individual. What may be a good pair for one
motion might not be for another. For this reason, we compute the average ri j

�
t � over all 66 pairwise

distances as shown in the right panel and use this to select the transitions.
Various methods for automatically registering curves have been developed — see for example

Ramsay and Li (1998). The drawback of automatic methods in our experience is that, although
good ones may work well enough most of the time, they can fail badly when confronted with
unexpected features. Given the outliers and missing values in the data, such anomalous cases are
not uncommon. For this reason, we manually identify the transitions in the data. This was done
anonymously to avoid bias in the selection. It would have been necessary to manually check the
selections even had an automatic method been used so little time was lost and many errors avoided.

3.3 B-Spline representation

The curves shown in Figure 3 can be approximated by B-splines. We use standard cubic B-
splines. We represent the angle curves as linear combinations of these basis functions, B j

�
t � for
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j � 1 ������� � m. The ith curve ri
�
t � is represented as

ri
�
t ���

m

∑
j � 1

Ri jB j
�
t � � ε

�
t �

where the coefficients Ri j are found by minimizing a least squares criterion

� 1

0

�
ri
�
t � �

m

∑
j � 1

Ri jB j
�
t � � 2dt

Perhaps another more robust criterion could be used be we chose to remove outliers and other
aberrant points earlier in the process and so our earlier smoothing makes this unnecessary in this
case. The particular B-spline basis is determined by the choice of knot location. We evenly space
our knots within the five phases described above. Furthermore, we know that ri

�
0 � � ri

�
end � � 0.

We can impose this restriction directly by omitting the first and last B-spline basis functions. The
B-spline basis functions corresponding to Figure 3 with just one interior knot for each phase are
shown in Figure 4.

0 50 100 150

0.
0

0.
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0.
4

0.
6

Frame Number

Figure 4: B-spline basis functions corresponding to transitions in Figure 3. Knot locations are
shown on the horizontal axis. Note the zero values at the two endpoints.

Because the transition points will differ from motion to motion, the placement of the knots will
also differ. However, we will be able to directly compare and compute statistics on the coefficients
R with the assurance that Ri1 j and Ri2 j represent the same part of the motion. The knot positioning
ensures the appropriate registration.

We chose m=16. This allows for 6 knots at the endpoints and transitions and two interior knots
in the phases. Note that the choice of the number of knots is now an approximation rather than
a smoothing issue. The observed data has already been smoothed — see Figure 3. We simply
need enough knots to adequately approximate the curves without using more than necessary which
would increase the computational and storage burden.
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4 Statistics

For convenience, we unroll the matrix Ri j into a vector Rk where k � 1 ������� � m � 3n � 6 � which
represents one complete motion. For our choices of m � 16 and n � 24, we have a vector of length
1056. What follows are essentially statistical methods for such a multivariate response with some
special adaptations and interpretations for this particular use.

Also, we have the distance between markers at rest di j
�
0 � which can also be unrolled into a

vector dk where k � 1 ��� ��� � � 3n � 6 � which represents the face at rest.
We can compute

di j
�
t ��� di j

�
0 � � 1 �

Ri j
�
t � �

and thereby reconstruct the whole motion.
Most of the intermarker pairs used in the reconstruction rule C have a symmetric counterpart

on the other side of the face. We have chosen to symmetrize the facial shape and motion by
averaging these pairs in the examples that follow. Note that such symmetrization will not always
be appropriate.

4.1 Means

It is straightforward to compute means within different subgroups in the data. For example, we
may compute the average smile on the average face by simply averaging Rk and dk over all the
observed smiles. To compute the resulting motion, we must also specify the 4 transitions. We
could compute the means of the observed transitions but for ease of comparison between different
displays, we have set these transitions at t � 1 � 6 � 2 � 6 � 4 � 6 � 5 � 6. Such a smile is shown in Exhibit
2.

It is not necessary to use the same subgroups for computation of the motion and the static face.
We could compute

di j
�
t ��� dA

i j
�
0 � � 1 �

RB
i j
�
t � �

where A and B represent means computed over different groups of individuals or even just a
single individual. For example, we can impose the group average smile on the face of any given
individual. Within this particular application, this would be useful for comparing the actual motion
of a patient with what might considered normal motion.

We can also decompose the effects of static shape and dynamic motion. We might ask whether
a particular subgroup differs from another because the motion or the shape or both are different.
To illustrate this idea consider a division of our subjects into two groups based on their MFLF
score. One group consists of subjects considered normal and the other with higher scores generally
tending to indicate smaller jaws. We call the higher MFLF group, “patient” for ease of reference.

In Exhibit 3, we show a comparison of average smiles of normal subjects on the average normal
face with the average smile of the patient subjects on the average patient face. We observe some
clear differences in these motions (ignoring questions of statistical significance for now). But is the
difference because the patient group have different shaped faces or because they smile differently?
In Exhibit 4, we show a comparison of average smiles of normal subjects on the average normal
face with the average smile of the patient subjects on the average normal face. The differences we
now see are just those of motion which are far less substantial.
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This observation has some practical significance since surgical techniques exist for extending
the jaws of retrognathic patients. One might be concerned that altering the shape of the face would
not be sufficient if the motion were abnormal. However, our exhibits suggest that the differences
are due to abnormalities in shape, not in motion and that provided the surgery did not alter the
motion of the patient, the outcome would be normal shape and motion. However, since this con-
clusion is derived from just a single type of motion (a smile) and a single measure of facial shape
(MFLF) it is just speculation. A broader analysis is under way.

4.2 Variance

Of course, there is substantial natural variation in facial motion. We can describe the nature of
this variation with a principal components analysis on the Rk. In this case, we have 1056 variables
but even counting all the smiles separately, we have only 145 cases. Nevertheless, we may still
compute the principal components. We find the percentage of variation explained by the first 5
components are 32.9, 11.1, 6.8, 5.7 and 5.0% respectively. We compute

R̄ � 2 � sivi

where si and vi are the ith eigenvalue and eigenvector respectively. We have applied these motions
for the first principal component to the average face as shown in Exhibit 5. We see that the first
principal component reflects the variation between people who tend to open their mouth when
smiling as opposed to those who tend to keep their mouths closed.

The principal component scores are useful to identify to unusual motions. These can be used to
detect faulty or exceptional motions that were not found at an earlier stage. Furthermore, these can
be used to rate new patients with respect to a standard group. This provides a quantitative measure
of abnormality and could also be used to objectively assess any changes due to surgery.

4.3 Inference

We could simply apply the standard techniques of multivariate analysis (see for example Johnson
and Wichern (1992)) to the Rk. However, the dimension is large (1056 in our example) and so
the power of such tests would be poor in that they would reflect unimportant differences between
the groups arising in the smaller principal components. A similar problem of dimensionality with
functional data was observed in Faraway (1997). Instead, we contend that it is both better and
simpler to perform the inference on the first few principal component scores.

In Figure 5, we show the first three principal component scores plotted against MFLF. No
relationship is apparent although some groupings of the three replicates per subject can be seen.
We can fit a linear mixed effects model for the jth replicate of subject i:

pci j � β0
� β1MFLFi

� γi
� εi j

where γi is the random subject effect with variance σ2
γ while within subject variation εi j has vari-

ance σ2
ε .

As might be expected, the test H0 : β1 � 0 is not rejected (p=0.34). This confirms our earlier
observation about the small difference in the two motions. We find σ̂γ � 7 � 7 while σ̂ε � 6 � 9. This
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Figure 5: First three principal components of the smile against MFLF

indicates that while there is some consistency in smiles of the same subject, there is also a fair
amount of variation in those smiles.

More extensive modeling and inference is possible but not explored here.

5 Discussion

For this particular application and other similar clinical problems, we have developed methods for
� Comparing and testing the dynamic motion of groups of subjects independent of their static

facial shape.

� Describing and visualizing variation within the facial motions of groups of subjects

� Scoring the difference between individual subjects and the population motion

We also believe the analysis presented here has application to fields beyond facial modeling
in clinical applications. Any data on continuously changing shapes might be modeled in a simi-
lar manner. However, some modification would be required for shapes that change substantially
because of the necessity of being able to definitively choose between the two valid tetrahedra dur-
ing the reconstruction process. For example, instead of using distances to three known landmarks
for the reconstruction of each new point, four or more might be considered. This might reduce
potential ambiguities and at the cost of some additional computation.
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Appendix

Motion Viewer
Facial motions are difficult to represent statically and in two dimensions so they are best viewed

dynamically. We have constructed a viewer that can display these motions that can be view at any
angle. The viewer may be downloaded from

http://www.stat.lsa.umich.edu/˜faraway/face/

The viewer keyboard commands are

� Function keys F1-F5 - Load Exhibit 1-5 respectively

� Arrow keys rotate the view

� a - show first (or only) face moving

� b - show second (if available) face moving

� c - show both (if available) faces moving

� </> - increase/decrease face size

List of Exhibits

1. Two smiles by the same individual.

2. The average smile.

3. Average face/smile of normal MFLF group compared with average face/smile of patient MFLF
group.

4. Average face/smile of normal MFLF group compared with average face of normal with average
smile of the patient MFLF group.

5. Smiles two standard deviations above and below the average in the direction of the first principal
component.
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