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Abstract. Complementing Rukhin’s [5] investigations, the mean squared error of members of a
family of preliminary-test estimators and members of the basic family of shrinkage estimators are
compared. The reference point is Stein’s [6] estimator that is contained in both classes. It turns
out that Stein’s estimator has certain qualitative optimality properties among the preliminary-test
estimators. But it also turns out that, while Rukhin’s 4% maxim in the minimax shrinkage class
is well known and frequently cited, without minimaxity greater improvements can be achieved
in his local sense by estimators coming from the preliminary-test class. This underlines another
aspect of Stein’s original insight. Most of our findings are presented graphically.

1. Introduction

Let Xy, Xs,..., X, beindependent observations from a normal distribution with unknown mean
i € IR and unknown variance 0> >0, n =2,3,.... Let X, := > r_; Xi/n be the sample mean,
and, with any po € IR, put

(1.1) 52::55(X¢-5Y'f S%ﬂo)::ﬁé(xy-uof 52 .= S 52;:.£§_
n kIl i3 ? i3 kIl ? n n_|_17 n n_17

so that 52 = S2(X,). The equivariant estimator 2 of o has desirable properties (cf. [3]
and [4]). However, Stein [6] proved that it is inadmissible with respect to squared error loss.
Specifically, he has shown that for the scaled squared error risk of the minimax estimator

2 2 2
(1.2) O'gtein , ‘= min 5,(0) , S = min 5,(0) ,5%
’ n+2 n+1 n+ 2

one has, for every n > 2,
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no matter what the true values of u and o? are, where the value of the scaled squared error of G2
on the right side is well known. Stein’s proof is also recorded in [7], pp. 396397, and is accoladed
and analyzed in [4].

Using a version of Stein’s idea, Brown [2] has extended Stein’s inadmissibility result for the
problem of estimation of powers of scale parameters in general location-scale models, where the
location parameter is also unknown, under a very general class of loss functions. When specialized
to the normal case above, and understanding that I(A) is the indicator of the event A, Brown’s
estimator is

(14) E]%rown,n = E]%rown,n(t) = I(ﬁ‘yn‘ < t8n>0n8721 —I_ I(ﬁ‘yn‘ Z t‘sn)&i ?

where, under the scaled squared error loss, 6,, = 6,,(¢) € (0,1) for ¢ > 0 is given by
Jo7 (2@(ta) — 1)a™ e” T

n—1

[7 (29(t2) — 1)art2 e 7 P da ’

n o+

where, and in what follows, ®(:) and ¢(-) = ®'(-) denote the standard normal distribution and
density functions. Brown [2] has presented a limited calculation of the risk of @y, ,(f) under the
scaled squared error and another loss function. Under the scaled squared error loss, for appropriate
choices of ¢t > 0, he found 1.6% and 1.2% “maximal improvements” over o2 for sample sizes n = 2
and n = 10, respectively.

Stein’s estimator is a member of the family of scale-equivariant shrinkage estimators 7>,
given in Rukhin’s [5] notation by

1.5 G, =0, (¢n) = |1l =0, | ——= 0, = |1 — ¢, —_— )
(:5) (on) [ (\/nXZ—I-S% ( Z’“IIX’“) nr

where ¢, : [0,1) — [0,1] is a Borel measurable function. It belongs to the choice

n+1 1
n+21—z2

¢n($) = ¢Stein,n($) = maX{07 1-—- } , 0<a<l.

As easy considerations show, Brown’s estimator is also a member of this shrinkage family.

Brewster and Zidek [1] have constructed a minimax member E]%—Z,n of the shrinkage family
and proved that their estimator is admissible within the class of all scale-equivariant estimators.
Later Proskin proved that 3_ , is admissible in general. (See [4] for the exact reference.) The
function ¢p_yz ,(-) that produces the admissible minimax Brewster-Zidek estimator has been
explicitly described by Rukhin [5].

Rukhin [5] has derived a general integral formula that can be used in principle to evaluate
the scaled squared error loss of any estimator @-(¢,) in the shrinkage family as a function of

Vn|p|/o. In this way he was able to calculate the improvement of the Brewster—Zidek estimator

2

2 numerically. Furthermore, for any value of 1 := 7, := /n|u|/o, he determined

Th_z., OVer @
an explicit function Gruknin,n,n(-) that gives the locally optimal shrinkage estimators @, pin ., (7)
that provide the greatest possible improvement at 7 within the whole shrinkage class. Rukhin’s [5]
frequently cited result is that for any values of the parameters, the greatest relative improvement
over G2 that is possible in the whole subclass of shrinkage estimators that are minimax, is less

than 4%. We have Eﬁukhin’n(O) = U%tein’n, and Rukhin determined a critical value 7, > 0 such
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that E%{ukhinm(n) is minimax for n < 7, and not minimax for » > 7,. In the latter case, the
local improvements may be greater than 4%; the precise statements are in Section 3 below.

Let us introduce the general families of preliminary-test estimators 52 (o) = 72 (uo; t, mo, m),
indexed by pug, given as

(B )

m

where g € R, t > 0, mg > 0, m > 0, and s,, 52 and SZ(uy) are as in (1.1). No members
of the class o (,uo) are scale-equivariant if yy # 0. However, all members of the class 52(0) are
scale-equivariant. Moreover, Ugtein,n can be identified as

(1.7) Ugtein,n = G2(03tstein,n > m+ 2, m+ 1) where tspinn = /(n—1)/(n+1).

This is indicated by Stein [6] himself, and can be found explicitly in [3], pp. 274-275. Thus Ugtein,n
results from performing a preliminary test, using Student’s test with critical value ¢ = tstein,n,
for the null hypothesis that g = 0, and using o2 or S2(0)/(n + 2), depending upon whether
this hypothesis is rejected or accepted. In case of the latter, S2(0)/(n + 2) is the admissible
estimator of o under the squared error loss when u = 0. (Although Brown’s estimator is also
based on a preliminary-test of the hypothesis ;1 = 0, upon acceptance it does not use the value 0.
Hence 73.own . s mot in the above class &2 (0) of scale-equivariant preliminary-test estimators.)
Of course, no member of the class G2 (jo;t, mg, m) can be admissible, whether © = 0 or not. The
formal choice ¢ = oo results in the estimator &2 (uo; 00, mo) = SZ(1o)/mo -

In the recent overview of Maatta and Casella [4], the focus of attention is the shrinkage class
G2 ($,) as far as point estimation goes. Most of the discussants also concentrate on this class.
This is, of course, natural in view of the main developments following Stein’s [6] paper. Readers
interested in interval estimation, conditional properties, directions of multivariate extensions and
other aspects of the problem (in all of which the above results in univariate point estimation serve
as basic motivation and guideline) are referred to this excellent review that, taken together with
the discussions, explores the whole literature to date.

The aim of the present paper is to calculate the scaled mean squared error of 72(ug) =
52 (o3 t, mg, m) in (1.6) for all values of the parameters. A formula for this is derived in the next
section. Since the formula obtained is very complicated, its analysis has become possible only by
the use of today’s computers. This is done in the third section, where we try to see what are the
choices of the parameters that give the best improvements relative to 2 and each other, and in
relationship with Rukhin’s locally optimal shrinkage estimators. Thus our investigations parallel
and complement Rukhin’s [5] original numerical investigations. It turns out that Stein’s estimator
has certain qualitative optimality properties among the preliminary-test estimators. However, it
also turns out that the preliminary-test aspect of Stein’s basic insight also deserves some attention:
in Rukhin’s local sense, far greater improvements are possible within this class if minimaxity is
not required. Since Rukhin’s estimator is minimax only for the limited interval [0,7,] of n values,
this is of some interest: 73 = 1.38,7, = 1.34,...; 7}, decreases as n grows.

Stein [6] himself expressed skepticism concerning the use of quadratic loss when estimating
a variance, a point dealt with by Brown [2] extensively in the general context of estimating a
scale parameter and again by him and others in the discussion of [4]. But as [4] itself and many
of its references show, there is still an interest in quadratic loss. This must be partly due to its
general theoretical importance and its mathematical tractability. Whether the local improvements
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indicated in Section 3 can motivate ideas in multivariate and other settings remains to be seen.
Most of our findings are presented in a graphical form.

2. The mean squared error of preliminary-test estimators

For w,v» € R and k£ =0,1,2,..., consider the functions
Li(u,v) = / ®(uzx + v)zk e~ 2 dy  and Myp(u,v) = / o(ux 4 v)a* e
0 0

The following theorem determines the scaled squared error risk
~2 2 ~4 ~2
(2.1)  Ru(A,t,mg,m) = E([—U”(’;O) = 1] ) = E(L(ffo)) = 2E(—U”(’;°)) +1
o o o

in terms of the scaled first moment E(E%/(ﬂ) and the scaled second moment E( 4/0t ) by
evaluating the functions Ly(u,v) and My(u,v) at u = ¢ and v = +d, and using a constant ¢, ,
where

I — o l
2.9 A = , €= , d:= \/EA and fn = — =
(22) o N 25 (551

and where I'(a) := fooo z*"te " dx, a > 0,is the usual gamma function.

THEOREM. Forn=2,3,... and 0 <t < 0o we have

E(@%(MO)) _ % [Ln(c,d) + Lo(c.—d) + (14 d*) {Ln—z(c,d) + Ln_s(c,—d)}

—e{M,_1(c,d)+ My_1(c,—d)} + d{M,_>(c,d) — M, _5(c,—d)}

an[ n—1 n d?

— Ln(cv d) + Ln(cv _d) +2

E(ﬁ;‘;(uo)) 273.? [Lm(c d) + Dnyo(c,—d)+2(1 + &) { L(c,d) + Lo(c, —d)}

+ (3+6d +d"){L,_2(c,d)+ L_s(c,—d)}
( —|—20){Mn+1 (c,d) + Myy1(c, —d)}
b (e 4 2) (Mol d) — Moo, —d)}
—c(d2—|—3){Mn 1(e,d)+ My_1(c, —d)}

(@ £ 5d) { My _s(c,d) — My _s(c, —d>}]

2n n?—1 n®>+2n42nd> +4d> + d*
5 Ln+2(c d) + Ln_|_2(C —d):| + 2 m2 - m2 .
0

Furthermore, for every v € R and k£ =0,1,2,...,

k-1 .
_ (2h) (26)1 (= j)!
Lay(c,v) = SR Lo(e,v) + C]Z::O m Mag—gj-1(c,v),

(2.3)
Mgk_gj (C, ?J)

2%k 1(C,?]) (?J) Cj O(k‘ ])’
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and, with G®) (1) denoting the k'™ derivative of G(t) = GO(t) = ¢ /2 (1), t € R,

e—4?/2 c
- = ak
(2.4) My(c, £d) = (1 + &)/ @ ($ = n C2) ‘

The formulae in (2.3) and (2.4) imply that, besides the values of @, the only integral in the
resulting expression for R, (A, mo, m m) in (2.1) that has to be computed by numerical integration
is Lo(c,xtd) = [;7 ®(cx £ d)e™" 2y = V27 7 ®(cx £ d)o(x)dr. 1t is absent when n is odd.
Using Leibniz’s binomial rule for successive differentiation of a product, it is possible to give
a (complicated) closed formula for the derivatives in (2.4) in terms of rational and exponential
functions and values of ®.

PROOF. Using the notation in (1.1) and (2.2) and setting Z, = /n (X, — p)/o and x2_; =
52 /0%, simple algebra gives

6721(5'[;0) = I(—c X, —d< Z,< C\/E_d)mi()hi_l +Zi+2dZn+d2:|
i (T

and, denoting the two indicator values here by I(Zn € ) and I(Zn ¢ ),

4
1

n(,uo) = I<Zn € ) ) {Xiq + Z;i + 2X721—1Z721 + 4d{X721—1Zn + Zi} + 24 {Xi—l + Z?z}
0

ot

o

+4d* 7 + 4d*Z, + dﬂ +1(Z, ¢) %Xi—l :

Since Z, and x2_, are independent, with Z, standard normal for each n and y2_, having the
\?-distribution with n — 1 degrees of freedom, conditioning on x%_; we obtain

~2 0 ce/y—d e y
E(L(’;O)) = 5—”/ {/ {y—l—d2—|—2dw—|-$2}99($)dx}y7 e~ T dy
g mo Jo —c/y—d

4.%/0Oo {(I)(—c\/y—d)—|—1—<I)(c\/§—d)}yyn7_3€_%d3/a

since for y > 0, the density function of x2_, is hp_1(y) = & y" /2 e7¥/2  and

~4 00 ce/y—d
E(UH(ZO)) - 5_712/ {/ 7 4 2Py + &+ Adya + 4dn + 250 + 6%
a My Jo —cy/y—d

+ 4daz® + xﬂcp(x) dyc}ynz;g) e 7 dy
—I—%/O {@(—c\/@—d)—|—1—<I)(c\/§—d)}y2yn7_36_%dy.

In both formulae, all the inner integrals can be integrated out by using as many integrations
by parts as dictated by the exponent of x. We also use the obvious symmetry properties of ¢
and ¢, and the facts that fooo Yhn_1(y)dy = n —1 and fooo Y2 h,_1(y)dy = n* — 1. The latter
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yield some trivial terms that are integrated out completely. Disregarding the coefficients of the
non-trivial terms, two types emerge. One is

/ P (ey/y £ d)y' g7 e Edy = 2/ O(cx £ d)a" 2 e~ de = 2L, _o42:(c, d)
0 0

for [ =0,1,2, and the other is

/ pleyitd)yt y" T ety =2 / plea + d)a" " e=F da = 2M, sy (e, +d)
0 0

for » = 0,1,2,3. The rest is just tedious bookkeeping of the terms and their coefficients, and both
formulae for the scaled first and second moments follow.

To prove the formulae in (2.3), for k= 1,2,... we set

k—1
f2k($): — e |: 2k—1 -|-Z Qk—l 2k—3)"‘(2k—2j+1)x2k—2j_1:|
j=1

+[(2k = 1)(2k = 3) - 1]V21 ®(2), =€ R,

and for £k =0,1,2,...,
k .
Forgr(z) = —e=F [ L (2k)(2k - 2) - (2k - 25 + 2)#’“‘2]] , zeR.
j=1

Then it is easy to check that f),(z) = 2?* e~/ and [Hegr (@) = x2k+16_x2/2, z € IR. Hence,
for all n € IN and v € IR,

=00

z=0

L,(c,v) = /000 b(cx 4 v)a" e g = fu(z)®(ca + v)} —c /000 plex +v)fo(z)da

Substituting now n =2k, k=1,2,...,and n =2k+1, £ =0,1,2,..., separately, both formulae
in (2.3) follow by straightforward work.

Finally, to show (2.4), for £ =0,1,2,... and v € R,

My (c,v) I/ olex + v)a” e 2 g k o= 3[(catv)®+a®] 4
0

T
\/27r/
_ —cvz ,— % ViteZz)’ _ e - k _1/1%621/

—v2/2 v
- (1—|—c2)(k+1)/2 Gk(_ 1/1_|_C2) ’

where Gy(t) = [}~ 2k ' p(a) da = G( )( t), and where Go(t) = [~ e p(x)dx, t € IR, afunction
related to the moment generatmg function of the standard normal distribution. It is routine to
see that Go(t) = G (1) = e 2 ®(t) = GO (¢) = G(1), t € R. O

We note that for Brown’s estimator E%rown’n in (1.4), with the adjusted notation ¢ :=
t/v/n—1, A := pj/o and d := /nA, and with the notation at the beginning of the proof,

we have L,

UrOWnn 077/
et = 1(Z, €)

(Zn é)

1
_|_1Xn 1>



CSORGO - FARAWAY

and as easy special case of the above calculation we obtain En(t) = E([(E%rown’n — 0‘2)/0'2]2 —
(UBrown Wfot ) - QE(UBrOWn n/a2) — 1, where
E(LMW“’”) = 2&[ b 1 ] [Ln(c d)+ Ly(c —d)] nol g,
o? n—1 n+1 ’ ’ n+1 )
E(M) :%n[ 1 ][Ln+2(c Dt Loalc _d)] Lol _pntl
ol (n=1) (n+1)? ’ ’ T

3. Analysis of the quadratic risk formulae

The mean squared error R,(A,t,mg,m) in (2.1) with A as in (2.2), given by the theorem,
can be calculated to any required accuracy using a symbolic mathematics package. The one
numerical integration required for Lg(c, £d) when n is even may be computed accurately without
great computational expense. The veracity of the formula was checked independently for n = 2
by direct numerical integration in the defining formula (2.1) and less precisely by simulation for
larger sample sizes. While on issues of computation, we correct the following two misprints in
[5]: the index n» — 3 in equation (3.3) should be n + 3, and in the second line of the equation
for Are(mo) on p. 927 replace vy by v in the integrand only. Also, the function Ap(79) is not
monotonically increasing in #g.

Simple inspection shows that for the risk formula of the theorem we have R, (A,t,mg,m) =
R.(|Al,t,mg, m) for any values of the other three parameters. So, unifying our notation with
Rukhin’s [5], we write i = |d| below when py = 0, i.e. in the scale-equivariant case, when making
comparisons with shrinkage estimators.

The choice of m = n 4+ 1 in Stein’s estimate of the normal variance in (1.7), or in any
other estimator 2 (po) = 2 (po; 1, mo,n + 1) given in (1.6) is guided by the fact that the limit
lima|—oo Bn(A,t,mo,m) is minimized by m =n + 1 at 2/(n + 1) of the right side of (1.3), and
so any other choice of m would result in an estimator whose risk exceeds that of the estimator
o2 for all A with |A| large enough. Although the risk may be smaller at small values of |A] for
other m, and this is why we included the possibility of choices different from n + 1, we shall stay
with m = n+1 from now on. Accordingly, we drop the dependence on m = n+1 in the notation:
from now on G2 (uo;t,mo) 1= 52(po;t,mo,n + 1) and R, (A, t,mg) := R, (A, t,me,n+ 1).

If mog <n+1,then R,(0,7,mg) > 2/(n+ 1) for any ¢t > 0, so from now on we deal only
with the case when my > n + 1. Also we note the phenomenon that the special preliminary-test
estimator @§;.;, ,(0) in (1.7) can be written as a simple minimum as in (1.2) can be extended
for general mg > n + 1. Indeed, if we define t(mg) = /(mo —n —1)(n —1)/(n + 1), so that
tr(n42) = tstein,n > With tstein n = \/(n —1)/(n+1) asin (1.7), then for all mg > n+1 we have

(31) % sty oo o) = mind 22000 S f5a000) G

mo n+1 mo

This follows by a straightforward extension of the second statement of Problem 4.3.7 in [3],
p. 315. Although Stein [6] considered only the scale-equivariant case py = 0, we continue to
call @ (,uo, Stein,n >+ 2) as Stein’s estimator since the idea of a preliminary test is the same for
all po and, in general, the risk depends only on the distance between pg and p.

The complexity of the analytic formula for the risk precludes definitive mathematical state-
ments. The statements below are based on clear numerical evidence; as mathematical statements
they should be viewed as conjectures.
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First we indicate that, in a certain sense, the Stein choices of mg and t are best among the
preliminary-test estimators. First, consider the choice of ¢ with mg = n + 1 fixed at the Stein
choice. Then computation for small n suggests the following:

(1) For 0 < t < tstein,n, the estimator o2(uo;t,n + 2) dominates the estimator o2 but is
dominated by Stein’s estimator E% (,uo; Stein,ns M+ 2) , i.e. the inequalities R, (A, IStein,n, 1+ 2) <
Ro(At,n+2) < Ry(A,0,n+2)=2/(n+1) hold for all A € IR.

(ii) For t > fstein n, the risk of the estimator G2(uo;t,n + 2) exceeds that of the estimator
o2 for some A, i.e. there exists a A such that R,(A,t,n+2)> R,(A,0,n+2)=2/(n+1).

This is demonstrated in Figure 1, n = 2 and mg = n + 2 = 4, where t is varied. The
Stein estimate, ¢ = tgein,2 = 1/\/5, is best. Other choices of n exhibited similar behavior, only

the differences are more pronounced when n = 2. In all six figures below, the percentage risk
improvement over 2 is plotted on the vertical axes.

=
] o
E <
(O]
>
o
Q -~
£ o e lTmee
L O
0.0 0.5 1.0 15 2.0 2.5 3.0

% improvement

0.0 0.5 1.0 1.5 2.0 2.5

Figure 2. Varying mgo from Stein’s mo =4: n =2 and t = t5(mg).

Next we investigated varying myg, for which computation for small n suggests the following:
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(iii) For n + 1 < mg < n + 2, the estimator 02 (po;t5(mg), mo) is dominated by Stein’s
estimator ff% (Mo;tStein,n LT+ 2) , i.e. the inequality R, (A,té(mo),mo) > R, (A,tSteinm,n + 2)
holds for all A € IR.

(iv) The risk when A = 0, that is when the preliminary test hypothesis is true, is minimized
by mog=n+2.

In Figure 2 above, n = 2, t = t3(mg) and myg is varied. The Stein choice of mg = 4 is best
in the sense described above but larger choices of mgy can result in a smaller quadratic risk for
some values of A. Again, other choices of n tell the same story.

Uncertain knowledge of the value of u can motivate the use of a preliminary-test estimator, so
we should require its best performance when A = i — g = 0. The Stein choice of the parameters
minimizes the risk at A = 0 while still dominating the estimator 2. However, the risk of Stein’s
estimator is at best 1.44% smaller than the risk of &2 for n = 2. The improvement drops off to
1.30% for n = 10.

Since, as explained in [4], the starting point for the development of the admissible estimator
of Brewster and Zidek [1] is Brown’s [2] modification of Stein’s idea, it is of some historical interest
to consider a comparison of Brown’s estimator and our general class of preliminary-test estimators
separately before we go over to more general shrinkage estimators.

If the parameter K :=1/y/n of Tf oy, (1) in (1.4) is adjusted in a manner to minimize the
risk at A = 0, the improvement over 52 is only 1.36% for n = 2, obtained at K = 0.31. Brown’s
estimator achieves its maximum improvement over o> at values of A # 0, claiming gains of 1.6%
and 1.2% for sample sizes 2 and 10, respectively. It is possible to adjust mg to obtain gains of
1.93% and 1.66%, respectively, using the minimax preliminary-test estimator with ¢ = ¢ (mg).
Figure 3 compares the performance of Brown’s estimator against the preliminary-test estimator
for » = 2. If minimizing the risk at A = 0 is the objective, then Brown’s best choice of K = 0.31
is dominated by the Stein estimator, but if minimizing the risk for any A while still dominating
72 is the aim, then Brown’s best choice of K = 0.55 is beaten by the preliminary-test estimator
with mg = 5.11.

2
o) —
=
)
>
o
o
E
o o
0.0 0.5 1.0 1.5 2.0 2.5 3.0

n

Figure 3. Comparing Brown’s estimator to the preliminary-test estimator: n = 2, Stein’s
estimate, Brown’s estimate with &K' = 0.31 and K = 0.55, and the minimax preliminary-test (PT')
estimate with mg = 5.11.

The preliminary-test estimator should be compared to those of Brewster—Zidek and Rukhin
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under the same rules. If we restrict ourselves to minimax estimators, the Stein estimate, which is
a special case of both the preliminary-test and Rukhin’s locally optimal estimators Eﬁukhin’n(n),
achieves its minimum risk at 7 = 0. If the game is to achieve the minimum risk for any value
of 1, then the Rukhin estimator is superior, followed by the Brewster—Zidek estimator. Since
the preliminary-test estimator falls in the shrinkage class when it is expressed in the form of a
minimum as in (3.1), Rukhin’s considerations show that it will be inferior in the locally optimal
sense. A comparison of the estimators under this minimax restriction is shown in Figure 4.

o
- ™
[
(D)
£ o
Q@ «
(@]
S
e ©
=
o
>
o
o

Figure 4. A comparison of Rukhin’s locally best minimax estimator Eﬁukhin’n(ﬁn), the
Brewster—Zidek estimator (B-Z), the Stein estimator and the locally best minimax preliminary-
test estimator (PT) for n = 3.

The most improvement we can hope for using Rukhin’s minimax estimator E%{ukhinm(ﬁn) is
less than 4% and that will only occur when the true value of 5 is where the minimum risk occurs.
Here 7,, is Rukhin’s critical value of n = v/n|u|/o, such that &F pi, (1) is minimax for 5 < 7,
and not minimax for n > 7, . According to Rukhin’s Table 3, 77, = 1.38,7, = 1.34,...,7s = 1.27,
so that 7, is a decreasing function of n. If we happened to have prior information about the value
of n and this is away from the minimum risk, we might hope to realize the maximum possible
gain by shifting the location of the observations so that the new, shifted value of 5 is at the
minimum. Unfortunately, to determine the right amount of location shifting required, we would
need to know o, so such location shifting is not realizable. Moreover, it seems more likely that
the prior information will be about the mean, in which case the Stein estimate will be the best
realizable minimax choice.

If we do happen to have prior information about 1 we may not care about minimaxity —
local optimality will be the primary goal. In this situation, the preliminary-test estimator can
do substantially better than Rukhin’s estimator. Consider the preliminary-test estimator with
{ = oo, i.e. the estimator &2 (ug; 00, mo) = S2(1o)/mo . By simple calculation, its risk is

4d* + 2n+ (n+ d*)*  2n 4 2d°
2 - +1

my mo

which is minimized at |d| by the choice of my = [4d* + 2n + (n + d*)?]/[n + d?], where the risk is
[4d* + 2n]/[4d® + 2n + (n + d*)?]. Note that this tends to zero as |d| tends to infinity. Choosing
fto = 0, so that 52(0;00,m9) = S2(0)/mg is scale-equivariant, |d| = 5 as above. In Figure
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5, we plot the maximum possible improvement in the risk at a given 7 over o> for Rukhin’s
estimator and this estimator. This estimator seems to be the best that can be found within the
preliminary-test class. Again, we use n = 3, so that 7, = 1.38.

O -
Sl e
E o
(O] 3 "
: pT
S T
o
E o
o (q\] O
O\ -
Rukhin
O | | | I 1
0 L , ) 4 5

n

Figure 5. The maximum possible improvement at a given n for Rukhin’s locally optimal
estimator E%{ukhinm(n) and the locally optimal preliminary-test estimator for n = 3.

Of course, if we happen to be wrong about the true value of n this estimator may do very
poorly. We can provide some insurance against an unexpected value of 7 by using another member
of the preliminary test family. In Figure 6, we choose a member of the preliminary-test family
by choosing mg as above at the 1 where the risk of E%{ukhinm(ﬁn) is minimized and then adjust
t € (0,00) so that the risk of the corresponding preliminary-test estimator and the Rukhin’s best
estimator are equal at that 1. As can be seen, neither estimator dominates.

5 ] Rukni /’”_T__’.../.‘
q) ﬂ-f—.’-..’-.- ------
2
>
: ' P
2 o |
S

\—I| _

0 . 2 3 4 5

Figure 6. Comparison of the risks of Rukhin’s locally best minimax estimator E%{ukhinm(ﬁn),
the Brewster-Zidek estimator (B-Z) and a selected preliminary-test estimator (PT) for n = 3.

To conclude, if minimaxity is important then the estimator of Rukhin is a good choice. Even

so the maximum possible gain over G2 is small and we will be lucky to see much gain at all.
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However, if local optimality is important (as it would be with some prior knowledge) then we
can realize far greater improvements within the preliminary-test family which lies outside the
shrinkage class that has been the focus of most prior work.
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