
ON THE ESTIMATION OF A NORMAL VARIANCE�S�andor Cs�org}o and Julian J. FarawayReceived:Abstract. Complementing Rukhin's [5] investigations, the mean squared error of members of afamily of preliminary-test estimators and members of the basic family of shrinkage estimators arecompared. The reference point is Stein's [6] estimator that is contained in both classes. It turnsout that Stein's estimator has certain qualitative optimality properties among the preliminary-testestimators. But it also turns out that, while Rukhin's 4% maxim in the minimax shrinkage classis well known and frequently cited, without minimaxity greater improvements can be achievedin his local sense by estimators coming from the preliminary-test class. This underlines anotheraspect of Stein's original insight. Most of our �ndings are presented graphically.1. IntroductionLet X1; X2; : : : ; Xn be independent observations from a normal distribution with unknown mean� 2 IR and unknown variance �2 > 0, n = 2; 3; : : : . Let Xn :=Pnk=1Xk=n be the sample mean,and, with any �0 2 IR , put(1:1) S2n := nXk=1 �Xk �Xn�2 ; S2n(�0) := nXk=1 �Xk � �0)2 ; e�2n := S2nn + 1 ; s2n := S2nn � 1 ;so that S2n = S2n�Xn� . The equivariant estimator e�2n of �2 has desirable properties (cf. [3]and [4]). However, Stein [6] proved that it is inadmissible with respect to squared error loss.Speci�cally, he has shown that for the scaled squared error risk of the minimax estimator(1:2) �2Stein;n := min�S2n(0)n+ 2 ; S2nn + 1� = min�S2n(0)n+ 2 ; e�2n�one has, for every n � 2,(1:3) E���2Stein;n�2 � 1�2� < E��e�2n�2 � 1�2� = 2n+ 1 ;� Work partially supported by NSF Grant DMS{9208067.AMS Subject Classi�cation: 62F10, 62C15.Key words and phrases: preliminary-test and shrinkage estimators, quadratic risk.



2 CS �ORG }O { FARAWAYno matter what the true values of � and �2 are, where the value of the scaled squared error of e�2non the right side is well known. Stein's proof is also recorded in [7], pp. 396{397, and is accoladedand analyzed in [4].Using a version of Stein's idea, Brown [2] has extended Stein's inadmissibility result for theproblem of estimation of powers of scale parameters in general location-scale models, where thelocation parameter is also unknown, under a very general class of loss functions. When specializedto the normal case above, and understanding that I(A) is the indicator of the event A , Brown'sestimator is(1:4) �2Brown;n := �2Brown;n(t) = I�pn ��Xn�� < tsn��ns2n + I�pn ��Xn�� � tsn�e�2n ;where, under the scaled squared error loss, �n = �n(t) 2 (0; 1) for t > 0 is given by�n := R10 �2�(tx)� 1�xn e� n�12 x2dxR10 �2�(tx)� 1�xn+2 e�n�12 x2dx ;where, and in what follows, �(�) and '(�) = �0(�) denote the standard normal distribution anddensity functions. Brown [2] has presented a limited calculation of the risk of �2Brown;n(t) under thescaled squared error and another loss function. Under the scaled squared error loss, for appropriatechoices of t > 0, he found 1.6% and 1.2% \maximal improvements" over e�2n for sample sizes n = 2and n = 10, respectively.Stein's estimator is a member of the family of scale-equivariant shrinkage estimators �2n ,given in Rukhin's [5] notation by(1:5) �2n := �2n(�n) := "1� �n pn ��Xn��qnX2n + S2n!#e�2n = "1� �n� pn ��Xn��pPnk=1X2k �# S2nn+ 1 ;where �n : [0; 1) 7! [0; 1] is a Borel measurable function. It belongs to the choice�n(x) = �Stein;n(x) := max�0; 1� n + 1n + 2 11� x2� ; 0 � x < 1 :As easy considerations show, Brown's estimator is also a member of this shrinkage family.Brewster and Zidek [1] have constructed a minimax member �2B�Z;n of the shrinkage familyand proved that their estimator is admissible within the class of all scale-equivariant estimators.Later Proskin proved that �2B�Z;n is admissible in general. (See [4] for the exact reference.) Thefunction �B�Z;n(�) that produces the admissible minimax Brewster{Zidek estimator has beenexplicitly described by Rukhin [5].Rukhin [5] has derived a general integral formula that can be used in principle to evaluatethe scaled squared error loss of any estimator �2n(�n) in the shrinkage family as a function ofpn j�j=� . In this way he was able to calculate the improvement of the Brewster{Zidek estimator�2B�Z;n over e�2n numerically. Furthermore, for any value of � := �n := pn j�j=� , he determinedan explicit function �Rukhin;n;�(�) that gives the locally optimal shrinkage estimators �2Rukhin;n(�)that provide the greatest possible improvement at � within the whole shrinkage class. Rukhin's [5]frequently cited result is that for any values of the parameters, the greatest relative improvementover e�2n that is possible in the whole subclass of shrinkage estimators that are minimax, is lessthan 4%. We have �2Rukhin;n(0) = �2Stein;n , and Rukhin determined a critical value �n > 0 such



CS �ORG}O { FARAWAY 3that �2Rukhin;n(�) is minimax for � � �n and not minimax for � > �n . In the latter case, thelocal improvements may be greater than 4%; the precise statements are in Section 3 below.Let us introduce the general families of preliminary-test estimators b�2n(�0) = b�2n(�0; t;m0; m) ,indexed by �0 , given as(1:6) b�2n(�0) = I�����pn �Xn � �0�sn ���� < t�S2n(�0)m0 + I�����pn �Xn � �0�sn ���� � t�S2nm ;where �0 2 IR , t � 0, m0 > 0, m > 0, and sn , S2n and S2n(�0) are as in (1.1). No membersof the class b�2n(�0) are scale-equivariant if �0 6= 0. However, all members of the class b�2n(0) arescale-equivariant. Moreover, �2Stein;n can be identi�ed as(1:7) �2Stein;n = b�2n�0; tStein;n ; n+ 2; n+ 1� where tStein;n =p(n� 1)=(n+ 1) :This is indicated by Stein [6] himself, and can be found explicitly in [3], pp. 274{275. Thus �2Stein;nresults from performing a preliminary test, using Student's test with critical value t = tStein;n ,for the null hypothesis that � = 0, and using e�2n or S2n(0)=(n + 2), depending upon whetherthis hypothesis is rejected or accepted. In case of the latter, S2n(0)=(n + 2) is the admissibleestimator of �2 under the squared error loss when � = 0. (Although Brown's estimator is alsobased on a preliminary-test of the hypothesis � = 0, upon acceptance it does not use the value 0.Hence �2Brown;n is not in the above class b�2n(0) of scale-equivariant preliminary-test estimators.)Of course, no member of the class b�2n(�0; t;m0; m) can be admissible, whether � = 0 or not. Theformal choice t =1 results in the estimator b�2n(�0;1; m0) = S2n(�0)=m0 .In the recent overview of Maatta and Casella [4], the focus of attention is the shrinkage class�2n(�n) as far as point estimation goes. Most of the discussants also concentrate on this class.This is, of course, natural in view of the main developments following Stein's [6] paper. Readersinterested in interval estimation, conditional properties, directions of multivariate extensions andother aspects of the problem (in all of which the above results in univariate point estimation serveas basic motivation and guideline) are referred to this excellent review that, taken together withthe discussions, explores the whole literature to date.The aim of the present paper is to calculate the scaled mean squared error of b�2n(�0) =b�2n(�0; t;m0; m) in (1.6) for all values of the parameters. A formula for this is derived in the nextsection. Since the formula obtained is very complicated, its analysis has become possible only bythe use of today's computers. This is done in the third section, where we try to see what are thechoices of the parameters that give the best improvements relative to e�2n and each other, and inrelationship with Rukhin's locally optimal shrinkage estimators. Thus our investigations paralleland complement Rukhin's [5] original numerical investigations. It turns out that Stein's estimatorhas certain qualitative optimality properties among the preliminary-test estimators. However, italso turns out that the preliminary-test aspect of Stein's basic insight also deserves some attention:in Rukhin's local sense, far greater improvements are possible within this class if minimaxity isnot required. Since Rukhin's estimator is minimax only for the limited interval [0; �n] of � values,this is of some interest: �3 = 1:38; �4 = 1:34; : : :; �n decreases as n grows.Stein [6] himself expressed skepticism concerning the use of quadratic loss when estimatinga variance, a point dealt with by Brown [2] extensively in the general context of estimating ascale parameter and again by him and others in the discussion of [4]. But as [4] itself and manyof its references show, there is still an interest in quadratic loss. This must be partly due to itsgeneral theoretical importance and its mathematical tractability. Whether the local improvements



4 CS �ORG }O { FARAWAYindicated in Section 3 can motivate ideas in multivariate and other settings remains to be seen.Most of our �ndings are presented in a graphical form.2. The mean squared error of preliminary-test estimatorsFor u; v 2 IR and k = 0; 1; 2; : : :, consider the functionsLk(u; v) := Z 10 �(ux+ v)xk e�x2=2 dx and Mk(u; v) := Z 10 '(ux+ v)xk e�x2=2 dx :The following theorem determines the scaled squared error risk(2:1) Rn(�; t;m0; m) := E��b�2n(�0)�2 � 1�2� = E�b�4n(�0)�4 � � 2E�b�2n(�0)�2 �+ 1in terms of the scaled �rst moment E�b�2n=�2� and the scaled second moment E�b�4n=�4� , byevaluating the functions Lk(u; v) and Mk(u; v) at u = c and v = �d , and using a constant �n ,where(2:2) � := �� �0� ; c := tpn� 1 ; d := pn� and �n := 12n�12 ��n�12 � ;and where �(�) := R10 x��1 e�x dx , � > 0, is the usual gamma function.THEOREM. For n = 2; 3; : : : and 0 < t <1 we haveE�b�2n(�0)�2 � = 2�nm0 �Ln(c; d) + Ln(c;�d) + �1 + d2��Ln�2(c; d) + Ln�2(c;�d)	� c�Mn�1(c; d) +Mn�1(c;�d)	+ d�Mn�2(c; d)�Mn�2(c;�d)	�� 2�nm �Ln(c; d) + Ln(c;�d)�+ 2 n� 1m � nm0 � d2m0andE�b�4n(�0)�4 � = 2�nm20 �Ln+2(c; d) + Ln+2(c;�d) + 2�1 + d2��Ln(c; d) + Ln(c;�d)g+ �3 + 6d2 + d4��Ln�2(c; d) + Ln�2(c;�d)g� �c3 + 2c��Mn+1(c; d) +Mn+1(c;�d)	+ d�c2 + 2�fMn(c; d)�Mn(c;�d)	� c�d2 + 3��Mn�1(c; d) +Mn�1(c;�d)	+ �d3 + 5d��Mn�2(c; d)�Mn�2(c;�d)	�� 2�nm2 �Ln+2(c; d) + Ln+2(c;�d)�+ 2 n2 � 1m2 � n2 + 2n+ 2nd2 + 4d2 + d4m20 :Furthermore, for every v 2 IR and k = 0; 1; 2; : : :,(2:3) L2k(c; v) = (2k)!2kk! L0(c; v) + c k�1Xj=0 (2k)! (k� j)!2j(2k � 2j)! k!M2k�2j�1(c; v) ;L2k+1(c; v) = 2kk! �(v) + c kXj=0 2jk!(k � j)!M2k�2j (c; v)



CS �ORG}O { FARAWAY 5and, with G(k)(t) denoting the kth derivative of G(t) = G(0)(t) = et2=2�(t) , t 2 IR,(2:4) Mk(c;�d) = e�d2=2(1 + c2)(k+1)=2 G(k)�� d cp1 + c2� :The formulae in (2.3) and (2.4) imply that, besides the values of �, the only integral in theresulting expression for Rn(�; t;m0; m) in (2.1) that has to be computed by numerical integrationis L0(c;�d) = R10 �(cx � d)e�x2=2 dx = p2� R10 �(cx � d)'(x) dx . It is absent when n is odd.Using Leibniz's binomial rule for successive di�erentiation of a product, it is possible to givea (complicated) closed formula for the derivatives in (2.4) in terms of rational and exponentialfunctions and values of �.PROOF. Using the notation in (1.1) and (2.2) and setting Zn = pn �Xn � ��=� and �2n�1 =S2n=�2 , simple algebra givesb�2n(�0)�2 = I�� cq�2n�1 � d < Zn < cq�2n�1 � d� 1m0 h�2n�1 + Z2n + 2dZn + d2i+ I�Zn 62 �� cq�2n�1 � d ; cq�2n�1 � d�� 1m �2n�1and, denoting the two indicator values here by I�Zn 2 � and I�Zn 62 � ,b�4n(�0)�4 = I�Zn 2 � 1m20 h�4n�1 + Z4n + 2�2n�1Z2n + 4d��2n�1Zn + Z3n	+ 2d2��2n�1 + Z2n	+ 4d2Z2n + 4d3Zn + d4i + I�Zn 62 � 1m2 �4n�1 :Since Zn and �2n�1 are independent, with Zn standard normal for each n and �2n�1 having the�2 -distribution with n � 1 degrees of freedom, conditioning on �2n�1 we obtainE�b�2n(�0)�2 � = �nm0 Z 10 �Z cpy�d�cpy�d hy + d2 + 2dx+ x2i'(x) dx�y n�32 e� y2 dy+ �nm Z 10 h��� cpy � d�+ 1� ��cpy � d�iy y n�32 e� y2 dy ;since for y > 0, the density function of �2n�1 is hn�1(y) = �ny(n�3)=2 e�y=2 , andE�b�4n(�0)�4 � = �nm20 Z 10 �Z cpy�d�cpy�d hy2 + 2d2y + d4 + 4dyx+ 4d3x + 2yx2 + 6d2x2+ 4dx3 + x4i'(x) dx�y n�32 e� y2 dy+ �nm2 Z 10 h��� cpy � d�+ 1� ��cpy � d�iy2 y n�32 e� y2 dy :In both formulae, all the inner integrals can be integrated out by using as many integrationsby parts as dictated by the exponent of x . We also use the obvious symmetry properties of �and ' , and the facts that R10 yhn�1(y) dy = n � 1 and R10 y2hn�1(y) dy = n2 � 1. The latter



6 CS �ORG }O { FARAWAYyield some trivial terms that are integrated out completely. Disregarding the coe�cients of thenon-trivial terms, two types emerge. One isZ 10 ��cpy � d�yl y n�32 e� y2 dy = 2 Z 10 �(cx� d)xn�2+2l e� x22 dx = 2Ln�2+2l(c;�d)for l = 0; 1; 2, and the other isZ 10 '�cpy � d�y r2 y n�32 e� y2 dy = 2 Z 10 '(cx� d)xn�2+r e� x22 dx = 2Mn�2+r(c;�d)for r = 0; 1; 2; 3. The rest is just tedious bookkeeping of the terms and their coe�cients, and bothformulae for the scaled �rst and second moments follow.To prove the formulae in (2.3), for k = 1; 2; : : : we setf2k(x) = � e� x22 �x2k�1 + k�1Xj=1(2k � 1)(2k � 3) � � � (2k� 2j + 1)x2k�2j�1�+ �(2k � 1)(2k � 3) � � �1�p2��(x) ; x 2 IR ;and for k = 0; 1; 2; : : :,f2k+1(x) = �e� x22 �x2k + kXj=1(2k)(2k� 2) � � �(2k � 2j + 2)x2k�2j� ; x 2 IR :Then it is easy to check that f 02k(x) = x2ke�x2=2 and f 02k+1(x) = x2k+1e�x2=2 , x 2 IR . Hence,for all n 2 IN and v 2 IR ,Ln(c; v) = Z 10 �(cx+ v)xn e�x2=2 dx = hfn(x)�(cx+ v)ix=1x=0 � c Z 10 '(cx+ v)fn(x) dx :Substituting now n = 2k , k = 1; 2; : : :, and n = 2k+ 1, k = 0; 1; 2; : : :, separately, both formulaein (2.3) follow by straightforward work.Finally, to show (2.4), for k = 0; 1; 2; : : : and v 2 IR ,Mk(c; v) = Z 10 '(cx+ v)xk e�x2=2 dx = 1p2� Z 10 xk e� 12 [(cx+v)2+x2] dx= e� v22p2� Z 10 xk e�cvx e� 12 (p1+c2 x)2dx = e� v22(1 + c2)(k+1)=2 Z 10 yke� cvp1+c2 y'(y) dy= e�v2=2(1 + c2)(k+1)=2 Gk�� cvp1 + c2� ;where Gk(t) = R10 xk etx '(x) dx = G(k)0 (t) , and where G0(t) = R10 etx '(x) dx , t 2 IR , a functionrelated to the moment generating function of the standard normal distribution. It is routine tosee that G0(t) = G(0)0 (t) = et2=2 �(t) = G(0)(t) = G(t) , t 2 IR . 2We note that for Brown's estimator �2Brown;n in (1.4), with the adjusted notation c :=t=pn � 1, � := �=� and d := pn�, and with the notation at the beginning of the proof,we have �2Brown;n�2 = I�Zn 2 � �nn � 1 �2n�1 + I�Zn 62 � 1n+ 1 �2n�1 ;



CS �ORG}O { FARAWAY 7and as easy special case of the above calculation we obtain Rn(t) := E��(�2Brown;n � �2)=�2�2 =E��4Brown;n=�4�� 2E��2Brown;n=�2�� 1, whereE��2Brown;n�2 � = 2�n� �nn� 1 � 1n+ 1��Ln(c; d) + Ln(c;�d)�+ 2 n � 1n + 1 � �n ;E��4Brown;n�4 � = 2�n� �2n(n � 1)2 � 1(n+ 1)2 ��Ln+2(c; d) + Ln+2(c;�d)�+ 2 n � 1n + 1 � �2n n+ 1n� 1 :3. Analysis of the quadratic risk formulaeThe mean squared error Rn(�; t;m0; m) in (2.1) with � as in (2.2), given by the theorem,can be calculated to any required accuracy using a symbolic mathematics package. The onenumerical integration required for L0(c;�d) when n is even may be computed accurately withoutgreat computational expense. The veracity of the formula was checked independently for n = 2by direct numerical integration in the de�ning formula (2.1) and less precisely by simulation forlarger sample sizes. While on issues of computation, we correct the following two misprints in[5]: the index n � 3 in equation (3.3) should be n + 3, and in the second line of the equationfor �rel(�0) on p. 927 replace �0 by � in the integrand only. Also, the function �rel(�0) is notmonotonically increasing in �0 .Simple inspection shows that for the risk formula of the theorem we have Rn(�; t;m0; m) =Rn(j�j; t;m0; m) for any values of the other three parameters. So, unifying our notation withRukhin's [5], we write � = jdj below when �0 = 0, i.e. in the scale-equivariant case, when makingcomparisons with shrinkage estimators.The choice of m = n + 1 in Stein's estimate of the normal variance in (1.7), or in anyother estimator b�2n(�0) = b�2n(�0; t;m0; n + 1) given in (1.6) is guided by the fact that the limitlimj�j!1 Rn(�; t;m0; m) is minimized by m = n + 1 at 2=(n+ 1) of the right side of (1.3), andso any other choice of m would result in an estimator whose risk exceeds that of the estimatore�2n for all � with j�j large enough. Although the risk may be smaller at small values of j�j forother m , and this is why we included the possibility of choices di�erent from n+ 1, we shall staywith m = n+1 from now on. Accordingly, we drop the dependence on m = n+1 in the notation:from now on b�2n(�0; t;m0) := b�2n(�0; t;m0; n+ 1) and Rn(�; t;m0) := Rn(�; t;m0; n+ 1).If m0 � n + 1, then Rn(0; t;m0) � 2=(n + 1) for any t > 0, so from now on we deal onlywith the case when m0 > n + 1. Also we note the phenomenon that the special preliminary-testestimator �2Stein;n(0) in (1.7) can be written as a simple minimum as in (1.2) can be extendedfor general m0 > n + 1. Indeed, if we de�ne t�n(m0) = p(m0 � n� 1)(n� 1)=(n+ 1), so thatt�n(n+2) = tStein;n , with tStein;n = p(n � 1)=(n+ 1) as in (1.7), then for all m0 > n+1 we have(3:1) b�2n��0; t�n(m0); m0� = min�S2n(�0)m0 ; S2nn + 1� = min�S2n(�0)m0 ; e�2n� :This follows by a straightforward extension of the second statement of Problem 4.3.7 in [3],p. 315. Although Stein [6] considered only the scale-equivariant case �0 = 0, we continue tocall b�2n��0; tStein;n ; n+ 2� as Stein's estimator since the idea of a preliminary test is the same forall �0 and, in general, the risk depends only on the distance between �0 and � .The complexity of the analytic formula for the risk precludes de�nitive mathematical state-ments. The statements below are based on clear numerical evidence; as mathematical statementsthey should be viewed as conjectures.



8 CS �ORG }O { FARAWAYFirst we indicate that, in a certain sense, the Stein choices of m0 and t are best among thepreliminary-test estimators. First, consider the choice of t with m0 = n + 1 �xed at the Steinchoice. Then computation for small n suggests the following:(i) For 0 < t < tStein;n , the estimator b�2n(�0; t; n + 2) dominates the estimator e�2n but isdominated by Stein's estimator b�2n��0; tStein;n; n+2� , i.e. the inequalities Rn��; tStein;n; n+2� <Rn(�; t; n+ 2) < Rn(�; 0; n+ 2) = 2=(n+ 1) hold for all � 2 IR.(ii) For t > tStein;n , the risk of the estimator b�2n(�0; t; n + 2) exceeds that of the estimatore�2n for some � , i.e. there exists a � such that Rn(�; t; n+ 2) > Rn(�; 0; n+ 2) = 2=(n+ 1) .This is demonstrated in Figure 1, n = 2 and m0 = n + 2 = 4, where t is varied. TheStein estimate, t = tStein;2 = 1=p3, is best. Other choices of n exhibited similar behavior, onlythe di�erences are more pronounced when n = 2. In all six �gures below, the percentage riskimprovement over e�2n is plotted on the vertical axes.
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CS �ORG}O { FARAWAY 9(iii) For n + 1 < m0 < n + 2 , the estimator b�2n(�0; t�n(m0); m0) is dominated by Stein'sestimator b�2n��0; tStein;n ; n + 2� , i.e. the inequality Rn��; t�n(m0); m0� > Rn��; tStein;n; n + 2�holds for all � 2 IR .(iv) The risk when � = 0 , that is when the preliminary test hypothesis is true, is minimizedby m0 = n + 2 .In Figure 2 above, n = 2, t = t�2(m0) and m0 is varied. The Stein choice of m0 = 4 is bestin the sense described above but larger choices of m0 can result in a smaller quadratic risk forsome values of �. Again, other choices of n tell the same story.Uncertain knowledge of the value of � can motivate the use of a preliminary-test estimator, sowe should require its best performance when � = ���0 = 0. The Stein choice of the parametersminimizes the risk at � = 0 while still dominating the estimator e�2n . However, the risk of Stein'sestimator is at best 1.44% smaller than the risk of e�2n for n = 2. The improvement drops o� to1.30% for n = 10.Since, as explained in [4], the starting point for the development of the admissible estimatorof Brewster and Zidek [1] is Brown's [2] modi�cation of Stein's idea, it is of some historical interestto consider a comparison of Brown's estimator and our general class of preliminary-test estimatorsseparately before we go over to more general shrinkage estimators.If the parameter K := t=pn of �2Brown;n(t) in (1.4) is adjusted in a manner to minimize therisk at � = 0, the improvement over e�2n is only 1.36% for n = 2, obtained at K = 0:31. Brown'sestimator achieves its maximum improvement over e�2n at values of � 6= 0, claiming gains of 1.6%and 1.2% for sample sizes 2 and 10, respectively. It is possible to adjust m0 to obtain gains of1.93% and 1.66%, respectively, using the minimax preliminary-test estimator with t = t�n(m0) .Figure 3 compares the performance of Brown's estimator against the preliminary-test estimatorfor n = 2. If minimizing the risk at � = 0 is the objective, then Brown's best choice of K = 0:31is dominated by the Stein estimator, but if minimizing the risk for any � while still dominatinge�2n is the aim, then Brown's best choice of K = 0:55 is beaten by the preliminary-test estimatorwith m0 = 5:11.
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10 CS �ORG }O { FARAWAYunder the same rules. If we restrict ourselves to minimax estimators, the Stein estimate, which isa special case of both the preliminary-test and Rukhin's locally optimal estimators �2Rukhin;n(�) ,achieves its minimum risk at � = 0. If the game is to achieve the minimum risk for any valueof � , then the Rukhin estimator is superior, followed by the Brewster{Zidek estimator. Sincethe preliminary-test estimator falls in the shrinkage class when it is expressed in the form of aminimum as in (3.1), Rukhin's considerations show that it will be inferior in the locally optimalsense. A comparison of the estimators under this minimax restriction is shown in Figure 4.
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Figure 4. A comparison of Rukhin's locally best minimax estimator �2Rukhin;n(�n) , theBrewster{Zidek estimator (B-Z), the Stein estimator and the locally best minimax preliminary-test estimator (PT) for n = 3.The most improvement we can hope for using Rukhin's minimax estimator �2Rukhin;n(�n) isless than 4% and that will only occur when the true value of � is where the minimum risk occurs.Here �n is Rukhin's critical value of � = pnj�j=� , such that �2Rukhin;n(�) is minimax for � � �nand not minimax for � > �n . According to Rukhin's Table 3, �3 = 1:38; �4 = 1:34; : : : ; �8 = 1:27,so that �n is a decreasing function of n . If we happened to have prior information about the valueof � and this is away from the minimum risk, we might hope to realize the maximum possiblegain by shifting the location of the observations so that the new, shifted value of � is at theminimum. Unfortunately, to determine the right amount of location shifting required, we wouldneed to know � , so such location shifting is not realizable. Moreover, it seems more likely thatthe prior information will be about the mean, in which case the Stein estimate will be the bestrealizable minimax choice.If we do happen to have prior information about � we may not care about minimaxity {local optimality will be the primary goal. In this situation, the preliminary-test estimator cando substantially better than Rukhin's estimator. Consider the preliminary-test estimator witht =1 , i.e. the estimator b�2n(�0;1; m0) = S2n(�0)=m0 . By simple calculation, its risk is4d2 + 2n+ (n+ d2)2m20 � 2n + 2d2m0 + 1which is minimized at jdj by the choice of m0 = [4d2+ 2n+ (n+ d2)2]=[n+ d2] , where the risk is[4d2 + 2n]=[4d2 + 2n + (n+ d2)2] . Note that this tends to zero as jdj tends to in�nity. Choosing�0 = 0, so that b�2n(0;1; m0) = S2n(0)=m0 is scale-equivariant, jdj = � as above. In Figure



CS �ORG}O { FARAWAY 115, we plot the maximum possible improvement in the risk at a given � over e�2n for Rukhin'sestimator and this estimator. This estimator seems to be the best that can be found within thepreliminary-test class. Again, we use n = 3, so that �3 = 1:38.
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