A Graphical Method of Exploring the Mean
Structure in Longitudinal Data Analysis

Julian J. FARAWAY

In a longitudinal study, individuals are observed over some period of time. The
investigator wishes to model the responses over this time as a function of various covari-
ates measured on these individuals. The times of measurement may be sparse and not
coincident across individuals. When the covariate values are not extensively replicated,
it is very difficult to propose a parametric model linking the response to the covariates
because plots of the raw data are of little help. Although the response curve may only
be observed at a few points, we consider the underlying curve y(t). We fit a regres-
sion model y(t) = zTB(t) + €(t) and use the coefficient functions 3(t) to suggest a
suitable parametric form. Estimates of y(t) are constructed by simple interpolation, and
appropriate weighting is used in the regression. We demonstrate the method on simulated
data to show its ability to recover the true structure and illustrate its application to some
longitudinal data from the Panel Study of Income Dynamics.
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1. INTRODUCTION

Longitudinal data arise when a subject is observed over a period of time, 7, or
over some other continuous variable. Suppose the response of the ith individual is y;(t),
where t € 7. Now in practice one never observes the whole continuous function y; ()
but only at a finite number of points ¢;; € 7, where i =1,...,nand j=1,...,m;. In
many applications m; is quite small, and sometimes the points of observation, ;;, differ
from individual to individual. Even when an experiment has been designed to make the
points of observation the same, data is often missing and the pattern will be broken.
Now even though the m; may be relatively small and there might seem to be little hope
of reconstructing y;(t), we take the point of view that it is worthwhile considering the
underlying function rather than the vector y;(ti;), j = 1,...,m;.

Suppose that we observe covariates z;, a vector of length p, associated with each
individual i. We wish to develop a model of the form

yi(t) = f(t, xz) -+ Gi(t).
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Our main objective is to determine an appropriate form for the mean structure f().
With a sufficiently large amount of data (in the sense that the range 7 is more densely
covered) we might attempt to formulate an at least partially nonparametric model. When
there is less data, or a compact formulation of the model is required, then a fully para-
metric form for f() will be desirable. The primary difficulty is in choosing a suitable
parametric form. This is the problem this article sets out to solve.

The error structure is contained in ¢;(t). I assume that each ¢;(t) is an independent
realization of a stochastic process with mean 0 and covariance function ~(s,t),s,t € T.
So I allow for correlated errors within individuals, but not between individuals. The
errors do not depend on the covariates. The purpose of this article, however, is not
to come up with novel methods for determining the form of () as this problem has
been investigated by other authors—see, for example, Izenman and Williams (1989) and
Grambsch, Randall, Bostick, Potter, and Louis (1995) among others.

Little work exists on exploratory methods for finding an appropriate mean structure
for longitudinal models. When there are no covariates or sufficiently large numbers of
individuals that have the same values of the covariates, then it is possible to plot the
data to obtain a suggestion for the appropriate form for f(). This is described in Rice
and Silverman (1991) and Diggle, Liang, and Zeger (1995). When the covariates are
continuous in nature, these methods will not be effective. When the points of measure-
ment, t,;, are in common across individuals, then it may be possible to avoid specifying
a functional form for the mean structure by saturating the model with enough parame-
ters to model the response at each time point, but this also requires some replication of
covariate values. The alternative is to use contextual information as much as possible,
but in practice, often the parametric form must be guessed and experimented with which
is less than satisfactory. Other semiparametric approaches to related problems can be
found in Hoover, Rice, Wu, and Yang (1996), Brumbach and Rice (1996), and Zhang,
Lin, Raz, and Sowers (1998). A fully functional approach is described in Ramsay and
Silverman (1997).

The method we propose here is exploratory and graphical in nature. Parametric
assumptions are avoided because the method is intended to suggest a suitable parame-
terization. The spirit of the method is similar to the alternating conditional expectation
(ACE) method of Breiman and Friedman (1985) and the generalized additive models
- of Hastie and Tibshirani (1990), which although nonparametric in nature can be used
to suggest suitable parametric forms for functions of covariates in regression problems.
The method can also be used as a diagnostic as well as an exploratory method when the
appropriate mean structure is thought to be known, but when some caution is required.

Methodology is laid out in Section 2. We check the efficacy of the method for some
simulated data in Section 3, where we know the true model, and demonstrate the method
on some real data in Section 4. A discussion follows in Section 5.
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2. METHOD
2.1 FuUNCTIONAL REGRESSION ANALYSIS

Suppose that we may observe the whole functional responses, y;(t), which are as-
sumed to arise from the model

y=X0+e¢, (2.1)

where 3 is a vector of functions (3;(t),...0B,(t))T and X is the familiar n x p design
matrix formed from the p vector valued covariates z;, 7 = 1,...n. As in scalar (i.e., scalar
y) regression, the first column of X will usually all be ones and categorical predictors
can be handled by assigning appropriate dummy variables. Various transformations of the
predictors can be incorporated in X as in scalar regression. Also y is a vector of response
functions (y;(t), . ..yn(t))T, and € is a vector of error functions (€;(t), ... ,en(t))T.

Suppose we choose /3 to minimize 3" |ly; — 27 8||%, where || - || is the L, norm
on 7. In parametric longitudinal analysis, distributional assumptions are made and the
model can be fit using maximum likelihood methods. Of course, this fit will be more
efficient than using the least squares criterion, but at the price of making some possibly
unjustifiable assumptions. By considering each ¢ € T separately, and provided that X
has full rank, as in the usual regression situation, it is clear that the solution is

f=(XTXx)'XTy.

The optimality of this estimator is discussed in Ramsay and Dalzell (1991). Let § =
X and & = y—{. We could also use a weight matrix W to get § = (XTW X))~ ' XTWy.
Because the solution is computed pointwise, the weight matrix can change as t varies.
We will need this feature later. See Faraway (1997) or Ramsay and Silverman (1997)
for a development of this model when the y(t) are observed more densely.

2.2 RANGE OF REPRESENTATION

Not all longitudinal models of interest may be represented in the form (2.1). Clearly
covariates that are explicitly a function of time cannot be represented within this model
without some further generalization. For simplicity consider a situation where there is
only one (univariate) covariate z. The model with an intercept will take the form

y(t) = Bo(t) + 261 (1) + (1)

The functional form of Gy(t) and G (t) are estimated which may then suggest a
suitable parametric model. A wide range of parametric forms fall within this setup.
Further generalization is possible by allowing for transformations of z as in

y(t) = Bo(t) + Y_ ai(2)Bilt) + €(t), (2.2)
1

where the g;()’s must be specified. We provide no way of estimating the correct forms
for the g;(); in practice, some experimentation and perhaps luck would be needed to find
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these forms. It is conceivable that, with a sufficiently large number of individuals, we
might attempt some nonparametric estimation of g;(z), but we do not investigate that in
this article.

Models such as

y(t) = log(zt + 2%%) + €(t)

do not fall within the factorized form (2.2) and lie outside the range of representation.
We would have no chance of discovering such a model using our method, although prior
substantive knowledge would likely be necessary to choose such a model anyway. In
some cases, an appropriate transformation of the response might allow the model to be
expressed in a representable form.

2.3 INTERPOLATION AND WEIGHTING

In practice, we do not observe y;(t),i = 1,...,n, only y;;,j = 1,...m; at times
t;; where

Yij = sz‘Tﬁ(ti]’) + €5,

where €ij = e,-(tz-j).

To estimate 3, we will first estimate y;(t) on a fine grid of points t;,7 = 1,...m,
where the grid of points is in common for all 7. Call these estimates y}(t).

We will use linear interpolation to construct the y(t) using a constant for the estimate
before the first and after the last observation in the range T; that is, yi(t) = y;; for
t < t;; and yﬁ (t) = Yim, for t > t;m,. This is not the standard nonparametric regression
problem. We wish to estimate y(t), not Ey(t). Certainly, linear interpolation is a poor
method of estimating Ey(t), but that is not our objective. We wish to estimate 3(¢). One
might contemplate some smoothing, but there are several reasons for preferring linear
interpolation, such as:

1. The m; might be very small, in which case more sophisticated methods of non-
parametric regression will not be appropriate—our method of linear interpolation
will work with only one point.

2. Not smoothing the estimates at all means that the bias will be minimized. At the
points of observation t;; there is no bias at all. When 3(t) is constructed, the bias
will be further reduced by the averaging. We can always smooth the estimates of
B(t), but if we smooth the y;; too much, we may lose features that cannot later
be recovered. One exception to this idea of avoiding smoothing the y;; is that we
should be beware of outliers. We might seek to eliminate these by a prescreening.

3. In the usual nonparametric regression problem, the errors at each time point
are assumed to be independent. In that case, linear interpolation is a very poor
method asymptotically. However, for that problem, the objective is to estimate the
mean curve Fy(t). Here, we are more interested in the observed curve y(t) and
the appropriate asymptotics will be different. Smoothing might filter out some
measurement error, but we would rather retain the random effects and serial
correlation parts of y(t) so that the error structure of €(¢) can be analyzed.
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4. Linear interpolation is simple and easily implemented without special software.
At a particular point ¢, we have

yé:x’fﬁ—}—bi-‘,—ei, i=1,...n,

where var(e) =  (which is a diagonal matrix by the assumption of independence
between individuals) and biases b;. The presence of the biases b; is what distinguishes
this from the usual regression setup. At the points #;;, the bias is zero. How should the
weight matrix W be chosen in this case?

The estimator is

B=(XTWwX) "Wy = 4y

so that bias(3) = Ab and var(3) = AQAT, where A = (XTW X)~!W. Notice that the
bias of 3 is a linear combination of the biases b;. Because some cancellation is likely
to occur, the bias of 3 is likely to be reduced. Now MSE(3) = A[bbT + Q) AT, which
suggests choosing W = [bbT + Q]! which gives MSE(3) = [XT[bbT + Q]~' X]~".

It would now be nice to have estimates of the bias and variance. However, given the
lack of information about the true mean response and the error structure combined with
possibly very few observations per individual, it is very difficult to find good estimates of
the bias and variance. Various, more ambitious methods than the one I will recommend
in the following failed because of a lack of stability in these estimates.

Note that MSE(3) has nonzero off-diagonal elements so a separate estimate of the
bias is required to approximate the optimal weight matrix. However, since it is difficult to
estimate the bias we propose to ignore the off-diagonal elements—we will use weighted
least squares rather than generalized least squares.

If we assume that y(t) is locally quadratic, this suggests that the bias at ¢ might be
estimated by a term of the form

bi(t) = yi(t) — yi(t) = £ {t* + tuts — t(tu + 1)}

for ¢ € [ti,t,], where the closest bracketing timepoints are at ¢; and ¢,,. This expression
may be derived by computing the distance between a line and a parabola and by observing
that b;(¢;) = b;(¢t,) = 0. v > 0 is a tuning parameter which should be chosen with
respect to the speculated amount of curvature in y(t). We cannot determine the sign of
bi(t) because we do not know whether y;(t) has positive or negative curvature in the
local interval. This also illustrates why we chose to ignore the off-diagonal elements
of W, whereas the diagonal elements of bias are squared and so the sign is irrelevant.
Bias is not necessarily greatest in the middle of a large gap between observations, but
without any further information it is safest to downweight any y!(t) that is estimated
using relatively distant observations. For ¢ < t;;, we suggest v(t;; —t)? and for t > t,,,
’Y(t — tim, )2'

Now suppose we assume that the error process, €(t), has variance, 0%, which is
constant in time, then we will choose the weights as

1 1

wi(t) = o2+ b3(t) 1+ b2t
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The last equivalency arises by observing that the multiplication of weights by a constant
term has no effect on the calculation of the regression coefficients and that we may
absorb constant multipliers of the tuning parameter . If we know that the variance
is not constant in time and takes the form o%(t) = o2v(t), for known v(t), then an

appropriate form for the weights will be

1
v(t) + b2 (t)

The w;(t) may be plotted to guide the selection of . With larger datasets, v can
be made bigger to localize the effect of observations. Since the aim of the analysis is
exploratory, manual adjustment of 7 is adequate—there is no necessity for smoothing
parameter selection methods. Other weighting systems can easily be implemented if more
information is available.

w;(t) =

2.4 CONSTRUCTING THE PARAMETRIC MODEL

Pointwise standard errors may easily be constructed using the standard regression
formula: se(G(t)) = / (XTW X), ! 5(t). We may then plot £y (t) + 2se(5(t)) against
t for each £ = 1,...,p. We can now

1. Gain insight on a suitable parametric form for 3(t), using the pointwise confidence

bands as guide to what the reasonable forms are.

2. Check these estimated (3 (t) against an already proposed parametric model looking

for possible inadequacies.

It would be better to use simultaneous rather than pointwise confidence bands, but
this would require more knowledge of the error structure than we care to presume.

3. SIMULATION

To see how well our method could recover the true 3(t), we generated data from a
known model:

Yij = Bo(tiz) + zubi(tis) + 22i6(tig) + €ij, (3.1)
where

Bo(t) = t/2
S5—t if t< .5
Aa) = { 0 otherwise

t—5 if t>.5
&) = { 0 otherwise,

and zy; and z; are iid U[—1,1] and €;; is iid N(0,.1%), i =1,...20 and j = 1,...5.
The plot of the raw data is shown in the first panel of Figure 1.

Notice that it would be almost impossible to guess the correct form of the model by
looking at the plot of the raw data. There is no suggestion of a change in trend at ¢ = .5.
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Figure 1. The first panel shows the data and the remaining three panels show the estimated 3(t) (solid), two
standard error bands (dotted), and the true B(t) (dashed).

However, our method recovers the true functional form very well. We see there is linear
increase in the response over time unrelated to either covariate, (o(t), that the effect of
2z decreases linearly over time to zero at ¢t = .5 and is constant after that, ﬁl (t), and the
complimentary effect for z, 3(t). We should not be too concerned that the true 3(t)
ventures slightly outside the bands as these are pointwise, not simultaneous, confidence
bands.

Obviously one example is not completely convincing, but we have tried many more.
I invite the reader to explore their own simulated models using S-Plus software available
from www.stat.Isa.umich.edu/faraway.

4. EXAMPLE

The Panel Study of Income Dynamics (PSID), begun in 1968, is a longitudinal
study of a representative sample of U.S. individuals (Hill 1992). The study is conducted
at the Survey Research Center, Institute for Social Research, University of Michigan,
and is still continuing. There are currently 8,700 households in the study, and many
variables are measured. I chose to analyze a random subset of this data, consisting of
85 heads of household who were aged between 25-39 in 1968 and had complete data
for at least 11 of the years between 1968 and 1990. The variables included were annual
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Figure 2. The coefficient functions 3(t) (solid line) for the model (4.1) with +2 standard errors (dotted lines)
and lowess smooth of 3(t) (dashed line). For gender, the effect of being female is observed.

income, gender, years of education and age in 1968. The analysis here is intended to
demonstrate the methodology. Because we have selected a subsample and have excluded
various important variables, this should not be construed as a complete attempt to draw
conclusions about the subject matter. We will attempt to model the annual income over
the period of interest as a function of the covariates mentioned above. We will consider
a model for individual ¢ of the form:

log (income), (t) = Bo(t) + B,(t)gender; + Se.education; + G,age;€;(t) (4.1)

Since in this example the response, income, is measured at yearly intervals, it is
convenient (although not necessary) to make the grid of timepoints at which the functions
will be estimated coincident with the years. For this data it it also convenient to make ~y
very large so that missing observations, although interpolated are effectively not used. A
plot of the estimated coefficient functions is shown in Figure 2 with a lowess-smoothed
fit to aid interpretation.

The constant function 3,(t) is not the mean income at each timepoint, so we should
not be disturbed that this does not increase monotonically with time. Age may well not be
important at all given that the zero line lies within the two standard error bands, but there
is some indication of a quadratic effect. The effect of Education seems approximately
linear with the relative effect of Education increasing over time. The coding of the gender
variable meant that the effect of being female is represented. We can see that women



68 J. J. FARAWAY

earn substantially less although the difference is decreasing approximately linearly with
time.

This analysis gives an idea of what functional forms for a parametric longitudinal
model might be appropriate. Some more work needs to be done in specifying a model,
but at least we now have good indication of how to do this.

5. DISCUSSION

Our method is not appropriate for all types of longitudinal data. For example, where
each individual is measured at the same small number of time points, then there would
be little value in using our method. However, although data may seem to have been
collected at the same time points, the concordance is lost when a different origin is
used—for example, patients may be measured at equal time points from the start of
treatment, but if chronological age is used as the origin, the times of measurement are
no longer the same for each individual. We also have not described how to handle time-
varying covariates, although a simple interpolation approach for this may also be feasible.
Nevertheless, the method provides a simple way to explore certain types of longitudinal
data.

[Received January 1997. Revised March 1998.]
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