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Abstract

Recent results on the winding angle of the ordinary two-dimensional random walk
on the integer lattice are reviewed. The difference between the Brownian motion
winding angle and the random walk winding angle is discussed. Other functionals of
the random walk, such as the maximum winding angle, are also considered and new
results on their asymptotic behavior, as the number of steps increases, are presented.
Results of computer simulations are presented, indicating how well the asymptotic
distributions fit the exact distributions for random walks with 10™ steps, for
m=2,3,4,5,6,7.

BROWNIAN MOTION; RANDOM WALK ON INTEGER LATTICE

1. Introduction

In recent years there has been an increasing interest in the study of the winding angle
of two-dimensional random walks (Bélisle (1986), (1989), (1990), Berger (1987), Berger
and Roberts (1988), Brereton and Butler (1987), Duplantier and Saleur (1988), Fisher
et al. (1984), Rudnick and Hu (1987), (1988)). Via rigorous mathematical analysis, via
heuristic arguments, and via computer simulations, researchers have investigated the
probability distribution of the total angle wound around the origin by the two-
dimensional random walk. The ordinary (free) random walk and the self-avoiding
random walk have both been studied. The distribution of the winding angle after a finite
number of steps, and the behavior of that distribution as the number of steps increases,
have both been investigated.

The present paper is concerned with the ordinary two-dimensional random walk on
the integer lattice, although the results stated hold for a large collection of two-
dimensional random walks (Bélisle (1986), (1989), (1990)). In Section 2, we recall the
theorem of Spitzer (1958) on the winding angle of the two-dimensional Brownian
motion. We also discuss a theorem, due to Messulam and Yor (1982), on the so-called
big winding angle of the two-dimensional Brownian motion, i.e. the total winding
occurring while the Brownian motion is outside the unit disk centered at the origin. The
two results are drastically different. In Spitzer’s theorem, the limit distribution of the
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(normalized) winding angle is a Cauchy distribution. In the Messulam and Yor result,
the limit distribution of the (normalized) big winding angle is a hyperbolic secant
distribution. In Section 3 we review the recent results of Bélisle (1986), (1989), (1990) on
the winding angle of two-dimensional random walks. It turns out that the random walk
winding angle behaves asymptotically like the Brownian motion big winding angle. Thus
the limit distribution of the (normalized) random walk winding angle is a hyperbolic
secant distribution. We also present new results involving the maximum winding angle,
the maximum absolute winding angle, and the range of the winding angle. The limiting
distributions turn out to be relatives of the hyperbolic secant distribution. In Section 4,
we discuss some properties of the limiting distributions obtained in Section 3. In
particular, their moments are computed and expressed in terms of Euler’s numbers and
alternating series of reciprocals of powers of integers. Finally, in Section 5 we present the
results of computer simulations indicating how well the asymptotic distributions fit the
exact distributions for random walks with 10™ steps, for m =2, 3,4, 5,6, 7.

2. Windings of Brownian motion

Consider a standard two-dimensional Brownian motion starting at a point z, other
than the origin and let 6(¢) denote the total continuous angle wound around the origin
up to time ¢. Spitzer (1958) has shown that the distribution of 26(¢)/log ¢ is asympto-
tically standard Cauchy as t — «, i.e., for every 6,

_onew _ 1 e 1
1) ,llrﬂp[logz éo]—f.x T

In local form, (1) would be written as

PO <6(1) <0+ ~— 181
n((3logt)* + 6%

Spitzer’s proof involves a computation of the Fourier transform of the cumulative

distribution function of 6(¢). A variation of his proof can be found in It6 and McKean

(1965).

A more powerful approach to the study of the winding angle of Brownian motion was
introduced by Williams (1974) and Durrett (1982). It involves a conformal invariance
argument. Here is a brief outline. Start the Brownian motion (Z,; ¢ = 0) at the point
(1, 0). The time at which the Brownian motion hits the circle of radius \/_t centered at the
origin, say T(\/E), is of the order of ¢. Thus

26() _26(T(/1)
log ¢ logt

(More precisely, one shows that the difference between the above two quantities goes to 0
in probability as ¢ — «c.) Now conformal invariance (see e.g. Durrett (1984)) says that
the process log Z, =log|| Z, || +i©(¢) is a time-changed Brownian motion. More
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precisely, the process log Z,,, is a standard two-dimensional Brownian motion starting
at the origin, where #(u) = inf{t Z 0: |, || Z, || ~2ds = u}. It follows that

26(T(/1) _ &TW1) _ Y(0ig i)
logt log ﬁ log \/}

where  ((X(u), Y(u)); u =20)=((log || Z,,) || , B(t(u));u =0) and where o,=
inf{u = 0: X(u)=v}. (Below, the process ((X(u), Y(u)); u = 0) is referred to as the
log-scaling limit process.) By scaling, Y(0i, /;)/l0g \/i is equal in distribution to Y(a,)
and a standard computation shows that the distribution of Y(o;) is standard Cauchy.
Thus 26(t)/1og ¢ is asymptotically standard Cauchy.

This approach led to further investigations. In particular Messulam and Yor (1982)
have shown that if 6+(t) denotes the total winding occurring while the Brownian motion
path is outside the unit disk centered at the origin, that is

t
8.(1)= J; L)z >1) 46(s),

then, as ¢ — oo, the distribution of 20 . (¢)/log ¢ is asymptotically hyperbolic secant; i.e.
for every 0

. 20,(t) ] [ | (nu)
lim P|———=<0|= —sech(—) du.
) lim [ log <6 __ysech (=) au

The process (8,(t);t =0) is usually referred to as the big winding process. The
probability distribution with density (1/2)sech(zu/2) has mean 0 and variance 1; we
refer to it as the standard hyperbolic secant distribution. Note that unlike the Cauchy
distribution, the hyperbolic secant distribution has finite moments of all orders. Thus a
comparison of (1) and (2) shows that it is the excursions of the Brownian motion path
near the origin that give the distribution of 26(¢)/log ¢ its heavy tails.

Pitman and Yor ((1986), section 8, pp. 761-769; (1989), section 2, pp. 970-975) took
a giant step further. They obtained a large class of limit theorems for various functionals
of the two-dimensional Brownian motion. These so-called log-scaling laws include
results (1) and (2) above. They include the famous Kallianpur-Robbins limit theorem
for occupation times. They also include limit theorems for quantities such as the
maximum winding max,<, <, ©(s), the maximum absolute winding max, <, <, |6(s)|, the
winding range max,<;<,6(s) —ming.,,6(s), the maximum big winding
maX,<, <, 0.(s), the maximum absolute big winding max,<,<, |0, (s)|, and the big
winding range maxy <<, 0, (s) — miny<, <, 8, (s). In each case the appropriate norma-
lizing constant is 2/log ¢, the approach is a refinement of the Williams-Durrett approach
outlined above, and the limiting distribution is expressed in terms of the log-scaling limit
process. Standard computations, involving refinements of the classical reflection princi-
ple for Brownian motion, allow us to compute the probability density function of the
limiting distributions. In particular, for the big winding angle we can write the results in
the following form. For every 6 > 0:
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llmP[—z—maxe(s)<0J fsech( )du

t-o |logtossst

lim P[—z—- max [0,(s)| = 0}

t—o 1 gtO sst

du;

(2% (——l)"(2k+1)sech(w)
0 k=0

lim P[ 2 < max 0 ,(s) — mm 6+(s)) = 0]
log ¢

t—wo 0=<s=t
knu
4 Z (— 1)k+1k% sec h( 5 )du

3. Windings of random walks

Now let S =(S,; n = 0) denote the ordinary random walk on the two-dimensional
integer lattice. Thus S, is the origin and S, = Z/_, X;, where X, X;, X;,- - - are indepen-
dent random vectors with common distribution given by

PLX; = (1,0 = P[X; = (0, 1)] = PLX, = (— 1,0)) = P[X, = (0, — 1)] = 1/4.

Let ¢(n) denote the winding angle at time n. More precisely, ¢(n) = Z"., A(j) where the
winding increments (i.e. the A(j)’s) are defined as follows. If S;_, S; and the origin are
collinear, then A(j) = 0. If §;_, S; and the origin are not collinear, then A(/) is the unique
number between — n/4 and n/4 such that

Sf — etlU) S

([ IS; l"

where i =,/ — 1 and where || (¥, v) | =./u?+ v’ Bélisle (1986), (1989), (1990) has
shown that as n — o the distribution of 2¢(n)/log n is asymptotically standard hyper-
bolic secant, i.e. we have the following result.

Theorem 1. For every 0,

. 2¢(n) e 1 nu
3 rlll*n;lo [logn—] f_wzsech<2>du.

In local form, (3) would be written as

sech(nf/log n) AD

P[0 < ¢(n) <6 + A6~ Tiog
n

Theorem 1 holds for a large class of random walks (including the ordinary two-
dimensional random walk on the integer lattice). The proof is presented in Bélisle
(1989). It involves a decomposition of the random walk path into a series of short
excursions near the origin and for which the winding angle contributions are of a smaller
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order than log 7 and a series of long excursions far from the origin and for which the
winding angle contributions can be approximated by the big winding angle of a
Brownian motion. The result (3) is then obtained from the result (2). For spherically
symmetric random walks, such as the random walk studied by Berger and Roberts
(1988), a simpler proof using Brownian embedding is presented in Bélisle (1990).

This approach can also be used to obtain the asymptotic distribution of the maximum
winding angle max, 3 <, #(j), the maximum absolute winding angle max,; <, | #(j)| and
the winding angle range max,;<, #(j) — miny;<, #(j) from the analogous Brownian
motion big winding results presented above. The results are summarized in Theorem 2
below. The proof is almost identical to the proof of Theorem 1.

Theorem 2. For every positive 0,

. 2 . o nu
) lim P[—— max ¢(j) = 0] = f sech (—) du;
n— |log nosjsn 0 2
. 2 .
lim P[— max |¢(j)| = 0]
n~o [lognosjsn
(5)
] )
= ["2 3 (= )42k + Dsech (Qli—tl—)—"—’f> du;
0 k=0 2
. 2 . . .
lim P[——( max ¢(j) — min ¢(_/)) = 0]
n~o |logn\osjsn 0sjsn
(6)

(2 @
= [ 4 % (- 1)k sech (@) du.
0 k=1 2

Finally, let us mention that the same approach can also be used to study the winding
angle of a random walk reflected outside a disk, or a square, centered at the origin. For
instance if ¢,(n) denotes the winding angle at time » for a random walk reflected outside
a disk of radius 7 centered at the origin, then for every r > 0 the results (3), (4), (5) and (6)
are still valid with ¢ replaced by ¢,. The asymptotic behavior of the winding angle of the
random walk kept away from the origin was also studied by Rudnick and Hu (1987),
(1988). They considered the case where the random walk is kept away from the origin
with a reflecting boundary and the case where it is kept away with an absorbing
boundary. In the former case, their result is consistent with ours: see Rudnick and Hu
(1988), p. 712, Equation 3. In the latter case they obtained a different asymptotic
behavior: see Rudnick and Hu (1988), p. 712, Equation 2.

4. Some remarks on the hyperbolic secant distribution

Let us denote the limit probability density functions arising in (3), (4), (5) and (6) by
Ju(0), f2(6), £5(60) and f,(6) respectively, and the corresponding cumulative distribu-
tion functions by F,(6), Fi5(0), Fi5(0) and Fy(0) respectively. Thus
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fu0) = (1/2)sech(n6/2), — o0 <0< co;
o {sech(n0/2), )
(6)=
el 0, 6 <0;

([ ®
2 ¥ (= )%k + lsech((k + 1)n6/2), 620

f[‘al(o) = 1 k=0
L0, 6 <0;
43 (= 1)k sech(knf/2), 620

Sa(@)= k!
{0, 0<0;

and, for j=1,2,3,4, F;(0)={ fm Ji(w)du. In particular, the standard hyperbolic
secant cumulative distribution function is given by

6 1 1
Fuy(0)= f (1/2)sech(nu/2)du = 2 + — arctan(sinh(n6/2)).
—© 4
A comparison with the standard Cauchy cumulative distribution function

6
F(6)= f-—eo m du = % + 7—lt arctan(6)
shows that if a random variable W is standard hyperbolic secant, then the random
variable sinh(7W/2) is standard Cauchy and, equivalently, if a random variable V is
standard Cauchy, then the random variable (2/m)arcsinh(?)) is standard hyperbolic
secant. Other interesting properties of the hyperbolic secant distribution are discussed in
Manoukian and Nadeau (1988).

We now turn our attention to the moments of the above distributions. With the help of
Gradshteyn and Ryznik (1980) we can, after tedious computations, express the moments
as follows:

. E|. k=024
f 64%,(6)d6 = {' el
e 0, k=135

© El k=0,2,4,--
f 641,,(8)d6 = Jl' Kl
~m 22Uyt K, k=1,3,5.-:

© _ 4 ...
f 643(6)d§ = {Z'E"""" k=024
o (Qk/m) Ee_y | @415 k=1,3,5,---;
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|7 eutoras - {“Eklb""’ k=024,
- 8Q2/m) k! b1y,  k=1,3,5,--

Here E, denotes the kth Euler number, g,=1/2 and, for k=1, a =
ZRo(—1)/2j + 1)k, b_,=1/4, by=1/2 and, for k=1, b =Z=,(— 1)/*'/j*. The
first four moments are given in the last row of Tables 1, 2, 3 and 4 below, under
the heading ‘o0’.

5. Results of computer simulations

Let F,(6) denote the cumulative distribution function of 2¢(n)/log n, i.e. F,(0) =
P[2¢(n)/log n = 6]. Then Theorem 1 says that for every 6 ER, lim, ., F,(8) = F;(6) or,
equivalently (see e.g. Breiman (1968), p. 160),

@) lim sup | F,(6) — F;,(6)| = 0.

n—® geR

The theorem does not give any information as to how fast convergence takes place in (7).
The purpose of this section is to get some empirical insight into this matter.

Consider k independent replications of an n-step simple symmetric random walk on
the integer lattice Z? and let F, , denote the empirical cumulative distribution function
of the (normalized) winding angle:

Nn,k(o)

Fn,k(o) = k

where N, ,(0) is the number of replications for which the observed 2¢(n)/log n is less
than or equal to 6. Then, for every n, the strong law of large numbers gives

P|lim1F,4(0) - F,@)1 =0 - 1

and since for each fixed n the distributions F,(0) and F,,(6), k=1,2,3,---, are
supported by the same finite set, an elementary discrete version of the Glivenko-Cantelli
theorem (see e.g. Billingsley (1986), p. 275) yields

P[ lim sup | F, ,(8) — F,(6)| = 0] =1.
k—=w© geRr

For large n the jumps of the cumulative distribution function F,(@) are small and
the Kolmogorov-Smirnov theorem (see Breiman (1968), Section 13.6) tells us that the
distance supyeg|F,:(0) — F,(0)| is of the order of k=2 Thus the distance
Supger| F,(0) — Fyy)(6)| can be estimated via the inequality

sup | F,(0) — F;;)(0)| = sup | F, x(6) — F,(0)| + sup | F,,(6) — Fyyy(6)|
6eR R 0eR

by choosing k large enough so that the first term on the right-hand side of the above
inequality is comfortably small and by empirically computing the second term.
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We performed k =20000 independent replications of the n-step simple
symmetric random walk, for n = 10™ with m =2,3,4,5,6,7. The distances A, =
supger| F, 1 (0) — F;;)(6)| are reported in Table 1 under the heading ‘Sup’. We also

TABLE 1
Winding
n Moments
1 2 3 4 Sup
10? —0.101 1.336 —0.467 6.699 0.103
10% —0.076 1.149 —0.352 5.431 0.064
104 —-0.057 1.101 —0.191 5.264 0.047
103 —-0.038 1.072 —0.083 5.214 0.035
108 —0.038 1.065 —0.122 5.159 0.033
107 —0.023 1.004 —0.067 4.390 0.028
SE 0.006 0.022 0.039 0.278 0.001
®© 0 1 0 5 0

computed the first four empirical moments of 2¢(n)/log n based on these 20000
replications. These empirical moments are reported in Table | where they can be
compared with the corresponding moments of the limiting distribution computed in
Section 4. Finally, we computed the estimated standard error of the first four moments
and of the distance A, for the case n = 107. These estimated standard errors are reported
in the penultimate row of Table 1 under the heading ‘SE’.

TABLE 2
Maximum winding

n Moments

1 2 3 4 Sup
10? 0.854 1.256 2415 5.747 0.213
10 0.847 1.211 2.328 5.616 0.171
104 0.838 1.187 2.298 5.665 0.159
10% 0.833 1.188 2.357 5.997 0.139
108 0.824 1.159 2.269 5.675 0.123
107 0.813 1.126 2.178 5.409 0.116
SE 0.006 0.019 0.068 0.279 0.003
x 0.742 1 1.949 5 0

Tables 2, 3, and 4 present the results of similar simulations and computations for the
maximum winding, the maximum absolute winding, and the winding range respectively.
These simulations were performed on a DEC 3100 at the Statistics Department of the
University of Michigan.

Looking at these tables, we observe that the sample moments appear to be converging
to the moments of the corresponding limit distributions. However, this convergence is
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TABLE 3
Maximum absolute winding

n Moments
1 2 3 4 Sup
102 1.495 2.691 5.775 14.625 0.358
10° 1.407 2.435 5.166 13.250 0.281
104 1.359 2.304 4.847 12.448 0.219
10° 1.330 2.237 4.719 12.218 0.186
10¢ 1.314 2.197 4.623 11.986 0.168
107 1.273 2.071 4.248 10.676 0.144
SE 0.007 0.032 0.129 0.530 0.002
© 1.166 1.832 3.777 9.889 0
TABLE 4
Winding range
n Moments
1 2 3 4 Sup

102 1.891 4.083 9.982 27.553 0.344
10° 1.823 3.853 9.433 26.605 0.285
104 1.770 3.672 8.900 25.037 0.227
10% 1.735 3.563 8.633 24.470 0.182
108 1.714 3.497 8.475 24.172 0.168
107 1.665 3.319 7.875 21.979 0.147
SE 0.008 0.039 0.163 0.693 0.002
®© 1.485 2.773 6.413 18.034 0

slow. This is not surprising in view of the log n rate. The distances A, also decrease with n
although the actual values are quite large, even for large n. Again this is not surprising in
view of the slow log n rate of growth of these various functionals.

Acknowledgements

The authors wish to thank the referee for helpful suggestions.

References

BELISLE, C. (1986) Limit Distribution of Windings of Planar Random Walks. Ph.D. thesis, Dept. of
Statistics, Univ. of California, Berkeley.

BELISLE, C. (1989) Windings of random walks. Ann. Prob. 17, 1377-1402.

BELISLE, C. (1990) Windings of spherically symmetric random walks via Brownian embedding.
Statist. Prob. Lett. To appear.

BERGER, M. A. (1987) The random walk winding number problem: convergence to a diffusion
process with excluded area. J. Phys. A: Math. Gen. 20, 5949-5960.

BERGER, M. A. AND ROBERTs, P. H. (1988) On the winding number problem with finite steps.
Adv. Appl. Prob. 20, 261-274.



726 CLAUDE BELISLE AND JULIAN FARAWAY

BILLINGSLEY, P. (1986) Probability and Measure, 2nd edn. Wiley, New York.

BREIMAN, L. (1968) Probability. Addison-Wesley, Reading, Mass.

BRERETON, M. G. AND BUTLER, C. (1987) A topological problem in polymer physics: configura-
tional and mechanical properties of a random walk enclosing a constant area. J. Phys. A: Math. Gen. 20,
3955-3968.

DUPLANTIER, B. AND SALEUR, H. (1988) Winding-angle distributions of two-dimensional self-
avoiding walks from conformal invariance. Phys. Rev. Lett. 60, 2343-2346.

DURRETT, R. (1982) A new proof of Spitzer’s result on the winding of two dimensional Brownian
motion. Ann. Prob. 10, 244-246.

DURRETT, R. (1984) Brownian Motion and Martingales in Analysis. Wadsworth, Belmont, CA.

FisHER, M. E., PRIVMAN, V. AND REDNER, S. (1984) The winding angle of planar self-avoiding
random walks. J. Phys. A: Math. Gen. 17, L569-L578.

GRADSHTEYN, 1. S. AND RYZzHIK, 1. M. (1980) Table of Integrals, Series, and Products. Academic
Press, New York.

IT6, K. AND McKEAN, H. P. (1965) Diffusion Processes and their Sample Paths. Springer-Verlag,
Berlin.

MANOUKIAN, E. B. AND NADEAU, P. (1988) A note on the hyperbolic secant distribution. Amer.
Statistician 42, 77-79.

MESSULAM, P. AND YOR, M. (1982) On D. Williams’ ‘pinching method’ and some applications.
J. London. Math. Soc. (2) 26, 348-364.

PITMAN, J. W. AND YOR, M. (1986) Asymptotic laws of planar Brownian motion. Ann. Prob. 14,
733-779.

PITMAN, J. W. AND YOR, M. (1989) Further asymptotic laws of planar Brownian motion. Ann. Prob.
17, 965-1011.

RUDNICK, J. AND Hu, Y. (1987) The winding angle distribution for an ordinary random walk.
J. Phys. A: Math. Gen. 20, 4421-4438.

RUDNICK, J. AND Hu, Y. (1988) Winding angle of a self-avoiding walk. Phys. Rev. Lett. 60,
712-715.

SPITZER, F. (1958) Some theorems concerning 2-dimensional Brownian motion. Trans. Amer.
Math. Soc. 87, 187-197.

WiLLIAMS, D. (1974) A simple geometric proof of Spitzer’s winding number formula for 2-
dimensional Brownian motion. Unpublished manuscript, University College, Swansea.





