Optimal Stopping and Applications Example 2: American options

Martin Herdegen

24 March 2009

1 Introduction

1.1 The market model

We consider a financial market consisting of two primary assets, a *risk-free* bond B and a stock S whose dynamics under the unique *risk-neutral* measure \mathbb{P} are given by

$$dB(t) = rB(t) dt$$

$$dS(t) = rS(t) dt + \sigma S(t) dW(t)$$
(1)

$$B(0) = 1$$

$$S(0) = x$$

where r, σ are deterministic constants with $\sigma > 0$ and W(t) is a Brownian motion under \mathbb{P} . We refer to r as the *interest rate* and to σ as the *volatility* of S. We denote by $\{\mathscr{F}_t\}_{t\geq 0}$ the natural augmented filtration of W. It is easy to verify that (1) under \mathbb{P} has the unique strong solution

$$B(t) = e^{rt} \tag{2}$$

$$S(t) = x e^{\sigma W(t) + (r - \sigma^2/2)t}$$
(3)

It is not difficult to check that $e^{-rt}S(t)$ is a $\{\mathscr{F}_t\}$ -martingale under \mathbb{P} .

1.2 Pricing formula

Theorem 1 (Fundamental theorem of asset pricing). Let T > 0 and D be a \mathbb{P} -integrable and \mathscr{F}_T -measurable random variable, which we interpret as the value of some derivative security at time T. The arbitrage-free price of D at time $t \in [0; T]$ is given by

$$D(t) = \mathbb{E}[e^{-r(T-t)}D|\mathscr{F}_t]$$
(4)

Moreover $e^{-rt}D(t)$ is a $\{\mathscr{F}_t\}$ -martingale under \mathbb{P} .

Proof. See [8] Chapter 5.

1.3 European and American options

Definition 1. A European [American] call option C^{Eur} [C^{Am}] with strike price K > 0 and time of maturity T > 0 on the underlying asset S is a contract defined as follows

• The holder of the option has, exactly at time T [at any time $t \in [0; T]$], the right but not the obligation to **buy** one share of the underlying asset S at price K from the **underwriter** of the option.

Definition 2. A European [American] put option P^{Eur} [P^{Am}] with strike price K > 0 and time of maturity T > 0 on the underlying asset S is a contract defined as follows

• The holder of the option has, exactly at time T [at any time $t \in [0; T]$], the right but not the obligation to sell one share of the underlying asset S at price K to the underwriter of the option.

We fix a strike K > 0 and a time of maturity T > 0. By theorem 1, the *arbitrage-free* prices of a European call [put] at time 0 is given by

$$C^{Eur} = \mathbb{E}[e^{-rT}(S(T) - K)^+]$$
(5)

$$P^{Eur} = \mathbb{E}[e^{-rT}(K - S(T))^+] \tag{6}$$

which can be expressed in a closed formula, the Black-Scholes formula¹.

Now suppose we are the owner of an American call [put] option. Since we can exercise the option at any time $t \in [0;T]$, we choose an $\{\mathscr{F}_t\}$ -stopping time $\tau \in [0,T]$ taking values in [0,T]. At time T we own $e^{r(T-\tau)}(K-S(\tau))^2$. Since we may choose any $\{\mathscr{F}_t\}$ -stopping time $\tau \in [0,T]$, theorem 1 implies³ that the arbitrage-free price of an American call [put] option at time 0 is given by

$$C^{Am} = \sup_{\tau \in [0,T]} \mathbb{E}[e^{-r\tau} (S(\tau) - K)^+]$$
(7)

$$P^{Am} = \sup_{\tau \in [0,T]} \mathbb{E}[e^{-r\tau} (K - S(\tau))^+]$$
(8)

It is obvious that $C^{Am} \geq C^{Eur}$ and $P^{Am} \geq P^{Eur}$, since we can choose the exercise strategy $\tau = T$. The following theorem states in which cases the latter strategy is indeed the best that we can do.

Theorem 2.

- 1. Suppose $r \geq 0$. Then $C^{Am} = C^{Eur}$.
- 2. Suppose r = 0. Then $P^{Am} = P^{Eur}$.

Proof.

¹See for instance [1] p 100 et seq.

 $^{^2\}mathrm{If}$ we exercise before time T, we invest our money for the rest of the time up to T in the risk-less bond

³More precisely this follows once we have shown the existence of an optimal stopping time.

1. Fix $\tau \in [0, T]$. Define $g_1 : \mathbb{R}^+ \to \mathbb{R}^+$ by $g_1(x) = (x - e^{-rT}K)^+$. Clearly g_1 is convex. Jensen's inequality for conditional expectations, the fact that $e^{-rt}S(t)$ is a martingale and the optional sampling theorem yield

$$C^{Eur} = \mathbb{E}[e^{-rT}(S(T) - K)^+] = \mathbb{E}[g_1(e^{-rT}S(T))]$$

$$= \mathbb{E}[\mathbb{E}[g_1(e^{-rT}S(T))|\mathscr{F}_{\tau}]] \ge \mathbb{E}[g_1(\mathbb{E}[e^{-rT}S(T)|\mathscr{F}_{\tau}])]$$

$$= \mathbb{E}[g_1(e^{-r\tau}S(\tau))] = \mathbb{E}[(e^{-r\tau}S(\tau) - e^{-rT}K)^+]$$

$$\ge \mathbb{E}[e^{-r\tau}(S(\tau) - K)^+]$$
(9)

Since $\tau \in [0, T]$ was arbitrary, we have $C^{Eur} \ge C^{Am}$, which together with $C^{Eur} \le C^{Am}$ yields the claim.

2. Fix $\tau \in [0,T]$. Define $g_2 : \mathbb{R}^+ \to \mathbb{R}^+$ by $g_2(x) = (K-x)^+$. Clearly g_2 is convex. Jensen's inequality for conditional expectations, the fact that S(t) is a martingale and the optional sampling theorem yield

$$C^{Eur} = \mathbb{E}[(K - S(T))^+] = \mathbb{E}[g_2(S(T))]$$

= $\mathbb{E}[\mathbb{E}[g_2(S(T))|\mathscr{F}_{\tau}]] \ge \mathbb{E}[g_2(\mathbb{E}[S(T)|\mathscr{F}_{\tau}])]$
= $\mathbb{E}[g_2(S(\tau))] = \mathbb{E}[(K - S(\tau))^+]$ (10)

Since $\tau \in [0, T]$ was arbitrary, we have $P^{Eur} \ge P^{Am}$, which together with $P^{Eur} \le P^{Am}$ yields the claim.

Remark. If r > 0 the above argument breaks down for the American put. We will show below that in this case we have $P^{Am} > P^{Eur}$ and we will derive an explicit formula for difference $P^{Am} - P^{Eur}$.

2 Analytical Characterization of the Put Price

2.1 Formal definition of the problem

Let $\{\tilde{W}(s)\}_{s\geq 0}$ be a Brownian motion on some probability space $\{\tilde{\Omega}, \tilde{\mathscr{F}}, \tilde{\mathscr{F}}_s, \tilde{\mathbb{P}}\}$, where $\{\tilde{\mathscr{F}}_s\}_{s\geq 0}$ is the natural augmented filtration of \tilde{W} . Let $E := [0, \infty) \times (0, \infty)$ (*Perpetual American Put*) or $E = [0, T] \times (0, \infty)$; $0 < T < \infty$ (*Finite American Put*). Set $\Omega = E \times \tilde{\Omega}$, $\mathscr{F} = \mathscr{B}(E) \otimes \tilde{\mathscr{F}}$ and $\mathscr{G} = \{\emptyset, E\} \otimes \tilde{\mathscr{F}}$. For $s \geq 0$ and $\omega = (t, x, \tilde{\omega}) \in \Omega$ define

$$W(s)(\omega) = \tilde{W}(s)(\tilde{\omega})$$

$$S(s)(\omega) = x e^{\sigma W(s)(\tilde{\omega}) + (r - \sigma^2/2)s}$$

$$X(s)(\omega) = (t + s, S(s)(\omega))$$
(11)

where r, σ are deterministic constants with $\sigma, r > 0$. Moreover, for $s \ge 0$, let $\mathscr{F}_s = \mathscr{B}(E) \otimes \mathscr{\tilde{F}}_s$ and $\mathscr{G}_s = \{\emptyset, E\} \otimes \mathscr{\tilde{F}}_s$. Finally define probability measures $\{\mathbb{P}_{(t,x)}\}_{(t,x)\in E}$ on $\{\Omega,\mathscr{F}\}$ and \mathbb{P} on $\{\Omega,\mathscr{G}\}$ by $\mathbb{P}_{(t,x)} := \delta_t \otimes \delta_x \otimes \widetilde{\mathbb{P}}$ and $\mathbb{P} := \mu \otimes \widetilde{\mathbb{P}}$, where δ_t and δ_x denote Dirac measures and $\mu : \{\emptyset, E\} \mapsto [0, 1]$ is defined by $\mu(\emptyset) = 0$; $\mu(E) = 1$. For convenience we set $\mathbb{P}_x := \mathbb{P}_{(0,x)}$. It is not difficult to check that $\{W(s)\}_{s\geq 0}$ is a Brownian motion on $\{\Omega, \mathscr{G}, \mathscr{G}_s, \mathbb{P}\}$ and $\{S(s)\}_{s\geq 0}$ and $\{X(s)\}_{s\geq 0}$ are strong Markov families on $\{\Omega, \mathscr{F}, \mathscr{F}_s, \{\mathbb{P}_x\}_{x>0}\}$ and $\{\Omega, \mathscr{F}, \mathscr{F}_s, \{\mathbb{P}_{(t,x)}\}_{(t,x)\in E}\}$. **Remark.** Under $\mathbb{P}_{(t,x)}$ we interpret S(s) as the value of a stock \tilde{S} with volatility σ in a financial market with interest rate r at time $\mathbf{t} + \mathbf{s}$ given that $\tilde{S}(t) = x$.

We fix a strike price K > 0. Define the gain function $G : E \mapsto [0, K]$ by $G(t, x) := e^{-rt}(K - x)^+$. For $(t, x) \in E$ define the optimal stopping problem

$$V(t,x) = \sup_{\tau \in [0,T-t]} \mathbb{E}_{(t,x)}[G(X(s))]$$

=
$$\sup_{\tau \in [0,T-t]} \mathbb{E}_{(t,x)}[e^{-r(t+\tau)}(K-S(\tau))]$$
(12)

where T is the upper boundary of the time coordinate of E and $\tau \in [0, T - t]$ is a stopping time⁴ taking values in $[0, T - t]^5$. Since G is bounded, V(t, x) is defined for all $(t, x) \in E$. We call V the value function.

Remark. We interpret V(t, x) as the arbitrage free price of an American put option with strike K and maturity T on \tilde{S} at time 0 given that $\tilde{S}(t) = x$. Since we have a positive interest rate r, we cannot compare prices at different times directly, but need to discount appropriately. The price of an American put option at time t given $\tilde{S}(t) = x$ is given by

$$v(t,x) = e^{rt} V(t,x) = \sup_{\tau \in [0,T-t]} \mathbb{E}_x [e^{-r\tau} (K - S(\tau))^+]$$
(13)

We call v the value^{*} function. Similarly we define

$$g(t,x) = e^{rt}G(t,x) = (K-x)^+$$
(14)

which we call the $gain^*$ function. Even though V and G are the formal correct objects, which in addition carry the economic interpretation of time value of money, it turns out that v and g are the convenient mathematical objects to work with.

2.2 Elementary properties of the value* function

Lemma 1.

- 1. If $T = \infty$, the function $t \mapsto v(t, x)$ is constant
- 2. If $T < \infty$, the function $t \mapsto v(t, x)$ is decreasing with $v(T, x) = (K x)^+$.

Proof. Let $0 \le t_1 \le t_2 \le T^6$. Then

$$v(t_{1}, x) = \sup_{\tau \in [0, T-t_{1}]} \mathbb{E}_{x} [e^{-r\tau} (K - S(\tau))^{+}]$$

$$\geq \sup_{\tau \in [0, T-t_{2}]} \mathbb{E}_{x} [e^{-r\tau} (K - S(\tau))^{+}]$$

$$= v(t_{2}, x)$$
(15)

Since $[0, \infty - t_1] = [0, \infty - t_2]$ and clearly $v(T, x) = (K - x)^+$ by definition for $T < \infty$, both assertions follow immediately.

⁴In general we allow τ to be an $\{\mathscr{F}_t\}$ -stopping time. Note, however, that for fixed $(t,x) \in E$ for each $\{\mathscr{F}_t\}$ -stopping time $\tau_{\mathscr{F}}$ there exists a $\{\mathscr{G}_t\}$ -stopping time $\tau_{\mathscr{G}}$ with $\tau_{\mathscr{F}} = \tau_{\mathscr{G}} \mathbb{P}_{(t,x)}$ -a.s.. If necessary we will work with $\tau_{\mathscr{G}}$ rather than with $\tau_{\mathscr{F}}$, which will always be clear from the context.

 $^{{}^{5}\}infty - t := \infty$; moreover we allow $\tau = \infty$ if $T = \infty$

⁶We require $t < \infty$

Lemma 2. The function $x \mapsto v(t, x)$ is convex and continuous

Proof. Fix $t \in [0, T]^7$. For $\tau \in [0, T - t]$, x > 0 define

$$u(x,\tau) := e^{-r\tau} (K - x e^{\sigma W(\tau) + (r - \sigma^2/2)\tau})^+$$
(16)

It is straightforward to check that $x \mapsto u(x, \tau)$ is convex. By linearity of the integral it follows that $x \mapsto \mathbb{E}[u(x, \tau)]$ is convex. Moreover clearly

$$v(x,t) = \sup_{\tau \in [0,T-t]} \mathbb{E}[u(x,\tau)]$$
(17)

The assertion follows by the well-know facts that the supremum of convex functions is convex again, and that convex functions are continuous.

Lemma 3. The function $(t, x) \mapsto v(t, x)$ is lsc.

Proof. For $\tau \in [0,T]$ and $(t,x) \in E$ define

$$u(t, x, \tau) := e^{-r(\tau \wedge (T-t))} (K - x e^{\sigma W(\tau \wedge (T-t)) + (r - \sigma^2/2)(\tau \wedge (T-t))})^+$$
(18)

It is not difficult to check that $(t, x) \mapsto u(t, x, \tau)$ is continuous. By the dominated convergence theorem we get that $(t, x) \mapsto \mathbb{E}[u(t, x, \tau))]$ is continuous. Moreover clearly⁸

$$v(x,t) = \sup_{\tau \in [0,T]} \mathbb{E}[u(t,x,\tau)]$$
(19)

The assertion follows by the well-know fact that the supremum of lsc functions is lsc again.

2.3 Existence of an optimal stopping time

According to the Markovian approach to optimal stopping problems we define the *continuation set*

$$C := \{(t, x) \in [0, T) \times (0, \infty) : V(t, x) > G(t, x)\} = \{(t, x) \in [0, T) \times (0, \infty) : v(t, x) > g(x)\}$$
(20)

and the stopping set

$$D := \{(t, x) \in [0, T] \times (0, \infty) : V(t, x) = G(t, x)\}$$

= $\{(t, x) \in [0, T] \times (0, \infty) : v(t, x) = g(x)\}$ (21)

Note that D is closed since v is lsc by Lemma 3 and g is continuous. Moreover we define the stopping ${\rm time}^9$

$$\tau_D := \inf\{s \ge 0 : X_s \in D\}$$

$$(22)$$

Lemma 4. All points $(t, x) \in [0, T) \times [K, \infty)$ belong to the continuation set C.

⁷Again we require $t < \infty$

⁸Note $\{\tau \land (T-t) : \tau \in [0,T]\} = \{\tau : \tau \in [0,T-t]\}$

⁹This is indeed a stopping time since D is closed and X is continuous.

Proof. Let $(t, x) \in [0, T) \times [K, \infty)$ and $0 < \epsilon < K$. Define the stopping time¹⁰

$$\tau_{\epsilon} := \inf\{s \ge 0 : S_s \le K - \epsilon\} \land (T - t)$$
(23)

It is not difficult to show that $\mathbb{P}_{(t,x)}(0 < \tau_{\epsilon} < T - t) =: \alpha > 0$. Hence we have $V(t,x) \ge \alpha e^{-rT} \epsilon > 0 = G(t,x)$, which establishes the claim.

Now define w(t, x) = v(x, t) + x. Lemma 4 implies

$$C = \{(t, x) \in [0, T) \times (0, \infty) : w(t, x) > K\}$$
(24)

$$D = \{(t, x) \in [0, T) \times (0, \infty) : w(t, x) = K\} \cup \{T\} \times (0, \infty)$$
(25)

Lemma 5. The function $x \mapsto w(t, x)$ is convex and increasing. Moreover $\lim_{x\downarrow 0} w(t, x) = K$.

Proof. Convexity follows from convexity of $x \mapsto v(t, x)$ and $x \mapsto x$. The obvious inequality $(K - x)^+ + x \leq w(t, x) \leq K + x$, implies $K \leq w(t, x) \ \forall x \in (0, \infty)$ as well as $\lim_{x \downarrow 0} w(t, x) = K$. These two facts together with convexity of $x \mapsto w(t, x)$ imply immediately that $x \mapsto w(t, x)$ is increasing.

Lemma 4 and 5 imply that there exist a function $b: [0,T) \rightarrow [0,K)$ such that

$$C = \{(t, x) \in [0, T) \times (0, \infty) : x > b(t)\}$$
(26)

$$D = \{(t, x) \in [0, T) \times (0, \infty) : x \le b(t)\} \cup \{T\} \times (0, \infty)$$
(27)

2.3.1 Infinite time horizon

For convenience set v(x) := v(0, x). For 0 < b < K define the stopping time $\tau_b = \inf\{s \ge 0 : S(s) \le b\}$ and let

$$v_b(x) := \mathbb{E}_x[e^{-r\tau_b}(K - S(\tau_b))^+]$$
 (28)

The formula for the Laplace transform for the first passage time of a Brownian motion with drift¹¹ yields after some simple calculations

$$v_b(x) = \begin{cases} K - x & \text{if } 0 < x \le b\\ (K - b) \left(\frac{x}{b}\right)^{-2r/\sigma^2} & \text{if } x \ge b \end{cases}$$
(29)

Define $v^*(x) = \sup_{b \in (0,K)} v_b(x)$. Elementary Calculus yields

$$v^{*}(x) = v_{b^{*}}(x) = \begin{cases} K - x & \text{if } 0 < x \le b^{*} \\ (K - b^{*}) \left(\frac{x}{b^{*}}\right)^{-2r/\sigma^{2}} & \text{if } x \ge b^{*} \end{cases}$$
(30)

where $b^* = \frac{2r}{2r+\sigma^2}K$. It is straightforward to check that $v^* \in C^1((0,\infty))$ and $v^* \in C^2((0,b) \cup (b,\infty))$ with

$$v_x^*(x) = \begin{cases} -1 & \text{if } 0 < x \le b^* \\ \frac{-2r}{\sigma^2 x} v^*(x) & \text{if } x \ge b^* \end{cases}$$
(31)

$$v_{xx}^*(x) = \begin{cases} 0 & \text{if } 0 < x < b^* \\ \frac{2r(2r+\sigma^2)}{\sigma^4 x^2} v^*(x) & \text{if } x > b^* \end{cases}$$
(32)

Define $V^*(t, x) = e^{-rt} v^*(x)$.

 $^{10}\mathrm{This}$ is again a stopping time since $[0,K-\epsilon]$ is closed and S is continuous.

¹¹See for instance [8] p 346 et seq (Theorem 8.3.2)

Theorem 3. $v^*(x) = v(x)$ for $x \in (0, \infty)$. Moreover τ_{b^*} is the optimal stopping time for the Perpetual American Put.

Proof. Since $V^* \in C^{1,1}(E) \cup C^{1,2}(E \setminus ([0,\infty) \times b))$ and $\mathbb{P}_x(S(t) = b^*) = 0$ for all $x \in (0,\infty)$ and all t > 0, we can apply a slightly generalized version of Itô's formula¹² to $V^*(t, S(t))$ and get

$$dV^{*}(t, S(t)) = -rV^{*}(t, S(t)) dt + V_{x}^{*}(t, S(t)) dS(t) + \frac{1}{2}V_{xx}^{*}(t, S(t))\mathbb{1}_{\{S(t)\neq b\}} d\langle S(t), S(t)\rangle = -e^{-rt}rK\mathbb{1}_{\{S(t)< b^{*}\}} dt + \sigma S(t)V_{x}^{*}(t, S(t)) dW(t)$$
(33)

Hence $V^*(t, S(t))$ is a $\{\mathscr{F}_t\}$ -supermartingale¹³ with $V^*(t, S(t)) \ge G(t, S(t))^{14}$. Let $\tau \in [0,\infty]$ be a stopping time. Monotonicity of the integral and the optional sampling theorem yield

$$\mathbb{E}_{x}[G(\tau, S(\tau))] \le \mathbb{E}_{x}[V^{*}(\tau, S(\tau))] \le V^{*}(0, x) = v^{*}(x)$$
(34)

Taking the supremum in (34) over $\tau \in [0, \infty]$ yields $v^*(x) \ge v(x)$. On the other hand $v^*(x) \leq v(x)$ by definition. Hence

$$v^*(x) = v(x) = \mathbb{E}_x[v^*(\tau_b^*, S(\tau_b^*))]$$
(35)

q.e.d.

2.3.2Finite time horizon

Since V is lsc by lemma 3 and G is continuous, τ_D is optimal in (12), since $\mathbb{P}_{t,x}(\tau_D < \infty) = 1$ by the main existence theorem of the Markovian approach (Theorem 3.7 of the lecture notes).

$\mathbf{2.4}$ Elementary properties of b for finite time horizon

Lemma 6. The function b is increasing with $b^* \le b(t) \le K$.

Proof. Let $0 \le t_1 < t_2 < T$. By Lemma 1 and the definitions of the functions v, g and b we have

$$g(b(t_1)) = v(t_1, b(t_1)) \ge v(t_2, b(t_1)) \ge g(b(t_1))$$
(36)

Therefore $(t_2, b(t_1)) \in D$, which implies $b(t_2) > b(t_1)$. Moreover let $x < b^*$. Then by Theorem 3

$$v(0,x) \le \sup_{\tau \in [0,\infty]} \mathbb{E}_x[e^{-r\tau}(K - S(\tau))^+] = K - x = g(x)$$
 (37)

whence $(0, x) \in D$, which implies $b(t) \ge b(0) \ge b^*$. Finally, Lemma 4 implies b(t) < K.

 $^{^{12}}$ confer [6] p 74 et seq

 $^{{}^{13}\}int_0^t \sigma S(s) V_x^*(s, S(s)) \, \mathrm{d} W(s) \text{ is a proper martingale since } |V_x^*(s, S(s))| \leq \mathrm{e}^{-rs} \leq 1.$ ${}^{14} \text{Note that } v^*(x) \geq (K-x)^+ \text{ for } x \in (0,\infty).$

2.5 Further properties of the value* function

Lemma 7. The function $x \mapsto v(t, x)$ is decreasing and strictly decreasing for $x \in (0, K]$. Moreover $\lim_{x \downarrow 0} v(t, x) = K$ and $\lim_{x \to \infty} v(t, x) = 0$.

Proof. The claim is trivial for t = T, so assume t < T. Lemma 5 implies $\lim_{x\downarrow 0} v(t,x) = \lim_{x\downarrow 0} w(t,x) = K$. Moreover by (32) for $x \ge K$

$$v(x,t) = \sup_{\tau \in [0,T-t]} \mathbb{E}_{x} [e^{-r\tau} (K - S(\tau))^{+}]$$

$$\leq \sup_{\tau \in [0,\infty]} \mathbb{E}_{x} [e^{-r\tau} (K - S(\tau))^{+}]$$

$$= (K - b^{*}) \left(\frac{x}{b^{*}}\right)^{-2r/\sigma^{2}}$$
(38)

which implies $\lim_{x\to\infty} v(t,x) = 0$. Since $0 \le v(t,x) \le K$ by definition and $x \mapsto v(t,x)$ is convex by Lemma 2, $x \mapsto v(t,x)$ is decreasing. Moreover clearly v(t,x) > 0 for x < K. Again convexity of $x \mapsto v(t,x)$ implies that $x \mapsto v(t,x)$ is strictly decreasing for $x \in (0, K]$.

Lemma 8. The function v is continuous in E.

Proof. For $t \ge 0$ define $M(t) := \sup_{0 \le s \le t} |W(s)|$. Fix $x \in (0, \infty)$ and let $0 \le t_1 < t_2 \le T$. Denote by τ_1 the $\{\mathscr{G}_s\}$ -optimal stopping time for $v(t_1, x)$ and define $\tau_2 := \tau_1 \land (T - t_2)$. Clearly $\tau_1 \ge \tau_2$ with $\tau_1 - \tau_2 \le t_2 - t_1$. By stationary and independent increments $\{W(\tau_2 + t) - W(\tau_2)\}_{t\ge 0}$ is independent of \mathscr{G}_{τ_2} and equal in law to $\{W(t)\}_{t\ge 0}$. Recalling that $e^{-rt}S(t)$ is a martingale and $v(t_1, x) \ge v(t_2, x)$ we get

$$0 \leq v(t_{1}, x) - v(t_{2}, x)$$

$$\leq \mathbb{E}_{x} [e^{-r\tau_{1}} (K - S(\tau_{1}))^{+}] - \mathbb{E}_{x} [e^{-r\tau_{2}} (K - S(\tau_{2}))^{+}]$$

$$\leq \mathbb{E}_{x} [e^{-r\tau_{2}} [(K - S(\tau_{1}))^{+} - (K - S(\tau_{2}))^{+}]]$$

$$\leq \mathbb{E}_{x} [e^{-r\tau_{2}} (S(\tau_{2}) - S(\tau_{1}))^{+}]$$

$$\leq \mathbb{E}_{x} [e^{-r\tau_{2}} S(\tau_{2}) (1 - e^{\sigma(W(\tau_{1}) - W(\tau_{2})) + (r - \sigma^{2}/2)(\tau_{1} - \tau_{2})})^{+}]$$

$$\leq \mathbb{E}_{x} [e^{-r\tau_{2}} S(\tau_{2}) \mathbb{E} [(1 - e^{\sigma(W(\tau_{1} - \tau_{2}) + (r - \sigma^{2}/2)(\tau_{1} - \tau_{2})})^{+} |\mathscr{G}_{\tau_{2}}]]$$

$$\leq \mathbb{E} [e^{-r\tau_{2}} S(\tau_{2}) \mathbb{E} [(1 - e^{\sigmaW(\tau_{1} - \tau_{2}) + (r - \sigma^{2}/2)(\tau_{1} - \tau_{2})})^{+}]]$$

$$\leq x \mathbb{E} [(1 - e^{-\sigma M(t_{2} - t_{1}) - |(r - \sigma^{2}/2)|(t_{2} - t_{1})})^{+}] \qquad (39)$$

Define the function $h : \mathbb{R} \to \mathbb{R}$ by $h(t) := \mathbb{E}[(1 - e^{-\sigma M(|t|) - |(r-\sigma^2/2)||t|})^+]$. By dominated convergence h is continuous at 0 with h(0) = 0. Now fix $(t_0, x_0) \in E$ and let $\{(t_n, x_n)\}_{n \ge 1}$ be a sequence in E with $\lim_{n\to\infty} (t_n, x_n) = (t_0, x_0)$. Then by Lemma 2 and (39) we have

$$\limsup_{n \to \infty} |v(t_n, x_n) - v(t_0, x_0)| \le \limsup_{n \to \infty} |v(t_n, x_n) - v(t_0, x_n)| + \limsup_{n \to \infty} |v(t_0, x_n) - v(t_0, x_0)| \le \limsup_{n \to \infty} x_n h(t_n - t_0) + 0 = 0$$
(40)

Hence v is continuous in E.

Lemma 9. The function v is $C^{1,2}$ in C and satisfies there $v_x \leq 0$ and $v_t \leq 0$ as well as $v_{xx}(t,x) \geq \frac{2r}{\sigma^2 x^2} v(x,t)$.

Proof. Denote by L_X the infinitesimal generator of X. It is not difficult to establish that

$$L_X = \frac{\partial}{\partial t} + rx\frac{\partial}{\partial x} + \frac{\sigma^2}{2}x^2\frac{\partial^2}{\partial x^2}$$
(41)

Now fix $(t_0, x_0) \in C$ and let $r_0 > 0$ such that $\overline{B} := \overline{B}_{r_0}(t_0, x_0) \subset C$. Now consider the following PDE

$$L_X U = 0 \quad \text{in } B$$
$$U = V \quad \text{on } \partial B \tag{42}$$

Since V is continuous by Lemma 8, standard PDE results¹⁵ state, that there exist a unique solution U of (42) in $C^{1,2}(B) \cap C^0(\overline{B})$. Let $(t,x) \in B$ and $\epsilon > 0$ be arbitrary. Since \overline{B} is compact and $U, V \in C^0(\overline{B})$ with U = V on ∂B there exists $0 < r_1 < r_0$ such that $(t,x) \in B_* := B_r(t_0,x_0)$ and $|U - V| \le \epsilon$ on ∂B_* . Let $U^* : E \mapsto \mathbb{R}$ be a $C^{1,2}$ -extension of $U|_{\overline{B}_*}^{-16}$. Now applying Itô's formula to $U^*(X_s)$ yields

$$dU^*(X_s) = L_X U^*(X_s) ds + \sigma S(s) U^*_x(X_s) dW(s)$$
(43)

Define the stopping time

$$\tau_{B_*^c} := \inf\{s \ge 0 : X_s \in B_*^c\}$$
(44)

Note that $L_X = 0$ in \overline{B}_* by (42). Hence (43) and the Optional Sampling theorem yield¹⁷

$$U(t,x) = U^*(t,x) = \mathbb{E}_{(t,x)}[U^*(X_{\tau_{B^c_*}})] = \mathbb{E}_{(t,x)}[U(X_{\tau_{B^c_*}})]$$
(45)

On the other hand, since $\tau_{B_*^c} \leq \tau_D$ we get by the Strong Markov property

$$\mathbb{E}_{(t,x)}[V(X_{\tau_{B_{*}^{c}}})] = \mathbb{E}_{(t,x)}[\mathbb{E}_{X_{\tau_{B_{*}^{c}}}}[G(X_{\tau_{D}})]]$$

$$= \mathbb{E}_{(t,x)}[\mathbb{E}_{(t,x)}[G(X_{\tau_{B_{*}^{c}}+\tau_{D}})|\mathscr{F}_{\tau_{B_{*}^{c}}}]]$$

$$= \mathbb{E}_{(t,x)}[G(X_{\tau_{B_{*}^{c}}+\tau_{D}})] = \mathbb{E}_{(t,x)}[G(X_{\tau_{D}})]$$

$$= V(t,x)$$
(46)

Putting (45) and (46) together yields

$$|V(t,x) - U(t,x)| = |\mathbb{E}_{(t,x)}[V(X_{\tau_{B_{*}^{c}}}) - U(X_{\tau_{B_{*}^{c}}})]|$$

$$\leq \mathbb{E}_{(t,x)}[|V(X_{\tau_{B_{*}^{c}}}) - U(X_{\tau_{B_{*}^{c}}})|]$$

$$\leq \mathbb{E}_{(t,x)}[\epsilon] = \epsilon$$
(47)

Since $\epsilon > 0$ was arbitrary, we get V(t, x) = U(t, x). Thus V = U in \overline{B} , which in particular implies that V is $C^{1,2}$ in (t_0, x_0) . Since $(t_0, x_0) \in C$ was chosen

 $^{^{15}}$ See for instance [3] for a proof

¹⁶More precisely $U^* \in C^{1,2}(E)$ and $U^* = U$ on \overline{B}_* .

¹⁷Note that a priory we only know that $\int_0^t \sigma S(s) U_x^*(X_s) dW(s)$ is local martingale. Therefore we use a localizing sequence $\{\tau_n\}_{n\geq 0}$ of stopping times and observe that U_x is bounded on \overline{B}_* . The dominated convergence theorem then yields the desired result.

arbitrary, it follows that V and therefore also v are in $C^{1,2}$ in C. By Lemma 1 and Lemma 7 we get that $v_x \leq 0$ and $v_t \leq 0$. Moreover, an easy calculation using $L_X V = 0$ in C yields

$$v_{xx}(t,x) = \frac{2}{\sigma^2 x^2} (rv(t,x) - v_t(t,x) - v_x(t,x))$$

$$\geq \frac{2r}{\sigma^2 x^2} v(t,x)$$
(48)

Lemma 10. The function $x \mapsto v(t, x)$ is differentiable at b(t) with $v_x = g_x$.

Proof. Fix $t^* \in [0, T)$. Since $x \mapsto v(t^*, x)$ is convex by Lemma 2, the right-hand derivative $\frac{\partial^+ v}{\partial x}(t^*, x)$ exist for all $x \in (0, \infty)$. Denote $x^* = b(t^*) < K$. Then

$$\frac{\partial^+ v}{\partial x}(t^*, x^*) = \lim_{\epsilon \downarrow 0} \frac{v(t^*, x^* + \epsilon) - v(t^*, x^*)}{\epsilon}$$
$$\geq \lim_{\epsilon \downarrow 0} \frac{g(x^* + \epsilon) - g(x^*)}{\epsilon} = -1$$
(49)

Define $\tau_{x^*} := \inf\{s \ge 0 : S(s) \le x^*\}$ and denote by τ^{ξ} the $\{\mathscr{G}_s\}$ -optimal stopping time for $v(t^*, x^* + \xi)$ for $\xi \ge 0$. Since b is increasing by lemma 6, clearly $\tau^{\xi} \le \tau_{x^*}$ under $\mathbb{P}_{(t^*, x^* + \xi)}$ for all $\xi \ge 0$. Moreover by (29) we have

$$\liminf_{\xi \downarrow 0} \mathbb{E}[\mathrm{e}^{-r\tau^{\xi}}] \ge \liminf_{\xi \downarrow 0} \mathbb{E}_{(t^*, x^* + \xi)}[\mathrm{e}^{-r\tau_{x^*}}]$$
$$= \lim_{\xi \downarrow 0} \left(\frac{x^* + \xi}{x^*}\right)^{-2r/\sigma^2} = 1$$
(50)

This implies that for any sequence $\{\xi_n\}_{n\geq 1}$ in \mathbb{R}^+ with $\lim_{n\to\infty} \xi_n = 0$ we have $\lim_{n\to\infty} \tau^{\xi_n} = 0$ in probability. For $t \geq 0$ define $M(t) := \sup_{0\leq s\leq t} |W(s)|$ and for convenience set $\Sigma(t) := e^{\sigma W(t) + (r-\sigma^2/2)t}$ and $\Theta^{\pm}(t) := e^{\pm \sigma M(t) \pm |(r-\sigma^2/2)|t}$. Let $\epsilon > 0$ be arbitrary and $\{\xi_n\}_{n\geq 1}$ a sequence in \mathbb{R}^+ with $\lim_{n\to\infty} \xi_n = 0$. After possibly discarding a subsequence we may assume that $\lim_{n\to\infty} \tau^{\xi_n} = 0$ a.s. Then it holds

$$\frac{\partial^+ v}{\partial x}(t^*, x^*) = \limsup_{n \to \infty} \frac{v(t^*, x^* + \xi_n) - v(t^*, x^*)}{\xi_n} \\
\leq \limsup_{n \to \infty} \mathbb{E}[e^{-r\tau^{\xi_n}} \left((K - (x^* + \xi_n)\Sigma(\tau^{\xi_n}))^+ - (K - x^*\Sigma(\tau^{\xi_n}))^+ \right)]/\xi_n \\
\leq \limsup_{n \to \infty} \mathbb{E}[e^{-r\tau^{\xi_n}} \left(-\Sigma(\tau^{\xi_n}) \right) \mathbb{1}_{\{(x^* + \xi_n)\Sigma(\tau^{\xi_n}) < K\}} \mathbb{1}_{\{\tau^{\xi_n} < \epsilon\}}] \\
\leq e^{-r\epsilon} \limsup_{n \to \infty} \mathbb{E}[-\Theta^-(\epsilon) \mathbb{1}_{\{(x^* + \xi_n)\Theta^+(\epsilon) < K\}} \mathbb{1}_{\{\tau^{\xi_n} < \epsilon\}}] \\
= -e^{-r\epsilon} \mathbb{E}[\Theta^-(\epsilon)) \mathbb{1}_{\{x^*\Theta^+(\epsilon) < K\}}]$$
(51)

Letting $\epsilon \downarrow 0$ in (51) we get by dominated convergence¹⁸

$$\frac{\partial^+ v}{\partial x}(t^*, x^*) \le -1 \tag{52}$$

¹⁸Clearly $\lim_{\epsilon \downarrow 0} \Theta^{\pm}(\epsilon) = 1$; recall moreover that $x^* < K$

which together with (49) implies $\frac{\partial^+ v}{\partial x}(t^*, x^*) = -1$. Finally we have

$$\frac{\partial^{-}v}{\partial x}(t^*, x^*) = \lim_{\epsilon \downarrow 0} \frac{v(t^*, x^* - \epsilon) - v(t^*, x^*)}{-\epsilon}$$
$$= \lim_{\epsilon \downarrow 0} \frac{g(x^* - \epsilon) - g(x^*)}{-\epsilon} = -1$$
(53)

Hence $x \mapsto v(t, x)$ is differentiable at b(t) with $v_x = g_x$ (smooth fit).

Lemma 11. The function $x \mapsto v(t, x)$ is C^1 with $-1 \leq v_x(t, x) \leq 0$.

Proof. Fix $t^* \in [0,T)$. For $x > b(t^*)$ the assertion follows by lemma 7; for $x < b(t^*)$ this follows by the fact that v(t,x) = g(x) in $(0,b(t^*)]$ and clearly $g(x) \in C^1((0,b(t^*)])$. Now let $x = b(t^*)$. Since $x \mapsto v(t^*,x)$ is differentiable at $b(t^*)$ by lemma 10 with $v_x(t^*,b(t^*)) = -1 = \lim_{x \uparrow b(t^*)} v_x(t^*,x)$, it remains to show that

$$\lim_{x \downarrow b(t^*)} v_x(t^*, x) = -1 \tag{54}$$

Since $x \mapsto v(t^*, x)$ is differentiable we clearly have

$$v_x(t^*, x) = \frac{\partial^+ v}{\partial x}(t^*, x) \tag{55}$$

Since $x \mapsto v(t^*, x)$ is convex, the function $x \mapsto \frac{\partial^+ v}{\partial x}(t^*, x)$ is right-continuous¹⁹. This fact together with (55) immediately establishes (54). Hence $x \mapsto v(t^*, x)$ is C^1 . Finally, clearly $v_x(t^*, x) = -1$ for $x \in (0, b(t^*)]$ and hence by continuity of $x \mapsto v_x(t^*, x)$, convexity of $x \mapsto v(t^*, x)$ and lemma 9 we get $-1 \leq v_x(t^*, x) \leq 0$ for $x \in (0, b(t^*)]$.

2.6 Further properties of b for finite time horizon

Lemma 12. The function b is continuous with $\lim_{t\uparrow T} b(t) = K$.

Proof.

• Right-continuity: Let $t \in [0, T)$. Since b is increasing by Lemma 6, the right-hand limit b(t+) exists with $b(t) \leq b(t+) < K$. Moreover by definition $(t, b(t)) \in D$ for $t \in [0, T)$. Since D is closed, it follows that $(t, b(t+)) \in D$. This together with Lemma 7 implies

$$0 \le v(t, b(t+)) - v(t, b(t)) = (K - b(t+)) - (K - b(t)) = b(t) - b(t+) \le 0$$
(56)

Hence b(t) = b(t+) and $t \mapsto b(t)$ is right-continuous.

• Left-continuity: Let $t \in (0,T]$. For convenience set b(T) := K. Since b is increasing, the left-hand limit b(t-) exists with $b(t-) \leq b(t) \leq K^{20}$. Moreover $(t, b(t)) \in D$ for $t \in [0,T)$. Since D is closed, it follows that

¹⁹For a proof see [5] p 142 et seq (Satz 7.7 iv).

²⁰Recall that b(t) < K for $t \in [0, T)$.

 $(t, b(t-)) \in D$. Seeking a contradiction, suppose that b(t-) < b(t). Set $x^* := (b(t-) + b(t))/2$ and let $t' < t^{21}$. Then

$$b(t') \le b(t-) < x^* < b(t) \le K$$
(57)

which implies in particular that $(b(t'), x^*) \subset C$ and $(t, x^*) \in D$. By definition of C and Lemma 10 we have

$$v(t', b(t')) - g(b(t')) = 0$$

$$v_x(t', b(t')) - g_x(b(t')) = 0$$
(58)

Finally, by Lemma 9 we have for $x \in (b(t'), x^*)$

$$v_{xx}(t',x) \ge \frac{2r}{\sigma^2 x^2} v(t',x) \ge \frac{2r}{\sigma^2 x^2} (K-x)$$
$$\ge \frac{2r}{\sigma^2 b(t')^2} (K-x^*) =: \gamma > 0$$
(59)

A double application of the Fundamental Theorem of Calculus together with (58) yields

$$v(t', x^*) - g(x^*) = \int_{b(t')}^{x^*} (v_x(t', y) - g_x(y)) \, \mathrm{d}y$$

= $\int_{b(t')}^{x^*} \int_{b(t')}^{y} (v_{xx}(t', z) - g_{xx}(z)) \, \mathrm{d}z \, \mathrm{d}y$
$$\geq \int_{b(t')}^{x^*} \int_{b(t')}^{y} \gamma \, \mathrm{d}z \, \mathrm{d}y = \gamma \frac{(x^* - b(t'))^2}{2}$$
(60)

Taking the limit $t' \uparrow t$ and using that v is continuous yields

$$v(t, x^*) - g(x^*) \ge \gamma \frac{(x^* - b(t-))^2}{2} > 0$$
(61)

Hence $(t, x^*) \notin D$ in contradiction to $(t, x^*) \in D$. Thus b(t) = b(t-) and $t \mapsto b(t)$ is left-continuous with $\lim_{t \uparrow T} b(t) = K$.

Lemma 13. The function $t \mapsto b(t)$ is convex and satisfies

$$\lim_{t\uparrow T} \frac{\log(b(t)/K)}{\sigma\sqrt{(T-t)(-\log(8\pi r^2(T-t)/\sigma^2))}} = 1$$
(62)

Proof. See [2].

Remark. This result will not be used in the following.

2.7 Early exercise premium representation

The above lemmata imply²² that $V \in C^{0,1}(E \setminus \{T\} \times \{K\}) \cap C^{1,2}(E \setminus \Gamma(b(t)))^{23}$. Moreover, since $\mathbb{P}_{(t,x)}(X(s) = b(t+s)) = 0$ for all $(t,x) \in (0,T) \times (0,\infty)$ and

²¹Note that t' < T.

²²Note that clearly $V \in C^{1,2}(\text{Int}\{D\}).$

 $^{^{23}\}Gamma(b(t)) := \{(t,x) \in [0,T] \times (0,\infty) : x = b(t)\}$

all 0 < s < T - t, we can apply a slightly generalized version of Itô's formula²⁴ to $V(X_s)$ and get

$$dV(X_s) = L_X V(X_s) \mathbb{1}_{\{X(s) \neq b(t+s)\}} ds + V_x(X(s)) dS(t) = -e^{-rs} r K \mathbb{1}_{\{S(s) < b(t+s)\}} dt + \sigma S(t) V_x(X_s) dW(t)$$
(63)

From (63) we get immediately²⁵ for $(t, x) \in E$

$$E_{(t,x)}[V(X(T-t))] = V(t,x) - rK \int_0^{T-t} e^{-r(t+s)} \mathbb{P}_{(t,x)}(S(s) < b(t+s)) \, \mathrm{d}s \quad (64)$$

By the Markov Property using $(T - t) + \tau_D = T - t$ under $\mathbb{P}_{(t,x)}$ we have

$$E_{(t,x)}[V(X(T-t))] = E_{(t,x)}[E_{X(T-t)}[G(X(\tau_D))]]$$

= $E_{(t,x)}[E_{(t,x)}[G(X((T-t) + \tau_D))|\mathscr{F}_{T-t}]]$
= $E_{(t,x)}[G(X((T-t) + \tau_D))]$
= $E_{(t,x)}[G(X((T-t)))]$ (65)

multiplying (64) with e^{-rt} yields using (65)

$$v(t,x) = e^{-r(T-t)} E_{(t,x)}[g(S(T-t))] + rK \int_0^{T-t} e^{-rs} \mathbb{P}_{(t,x)}(S(s) < b(t+s)) \, \mathrm{d}s$$
(66)

Plugging in t = 0 in (66) yields after some algebra

$$V(0,x) = E_x [e^{-rT} (K - S(T))^+] + rK \int_0^T e^{-rs} \Phi\left(\frac{1}{\sigma\sqrt{s}} \left(\log\left(\frac{b(s)}{b(0)}\right) - \left(r - \frac{\sigma^2}{2}\right)s\right)\right) ds \qquad (67)$$

where Φ denotes the cdf of a standard normal.

Remark. Formula (67) is called the *early exercise premium representation* of the value function. It shows that the value of an American put option with strike price K and maturity T is the sum of the value of an European put option with the same strike and maturity and the so-called early exercise premium.

$\mathbf{2.8}$ Free boundary equation for b(t)

Theorem 4. The function $t \mapsto b(t)$ is the unique solution in the class of continuous increasing functions $c : [0,T] \rightarrow \mathbb{R}$ satisfying 0 < c(t) < K for all $0 < t < \infty$ of the following free-boundary integral equation

$$K - b(t) = e^{-r(T-t)} \int_0^K \Phi\left(\frac{1}{\sigma\sqrt{T-t}} \left(\log\left(\frac{K-x}{b(t)}\right) - \left(r - \frac{\sigma^2}{2}\right)(T-t)\right)\right) dx$$
$$+ rK \int_0^{T-t} e^{-rs} \Phi\left(\frac{1}{\sigma\sqrt{s}} \left(\log\left(\frac{b(t+s)}{b(t)}\right) - \left(r - \frac{\sigma^2}{2}\right)s\right)\right) ds \quad (68)$$

²⁴confer [6] p 74 et seq ²⁵Note that $\int_0^t \sigma S(s) V_x(s, S(s)) dW(s)$ is a proper zero-mean martingale since $|V_x(X_s)| \le$ $e^{-rt} < 1.$

Proof.

- $t \mapsto b(t)$ is a solution of (68): Plugging (t, b(t)) in (66) and noting that v(t, b(t)) = K b(t) yields after some lengthy calculation (68).
- $t \mapsto b(t)$ is the unique solution of (68): See [6] p 386 392.

References

- Thomas Björk, Arbitrage theory in continuous time, 2nd ed., Oxford University Press, 2004.
- [2] Xinfu Chen, John Chadam, Lishang Jiang, and Weian Zheng, Convexity of the exercise boundary of the american put option on a zero dividend asset, Mathematical Finance 18 (2008), 185 –197.
- [3] Laurence Evans, Partial differential equations, Oxford University Press, 1998.
- [4] Ioannis Karatzas and Steven Shreve, Brownian motion and stochastic calculus, 2nd ed., Springer-Verlag, 1991.
- [5] Achim Klenke, Wahrscheinlichkeitstheorie, Springer-Verlag, 2006.
- [6] Goran Peskir and Albert Shiryaev, Optimal stopping and free-boundary problems, Birkhäuser Verlag, 2006.
- [7] Daniel Revuz and Mark Yor, Continuous martingales and brownian motion, 3rd ed., Springer-Verlag, 2005.
- [8] Steven Shreve, Stochastic calculus for finance 2, 2nd ed., Springer-Verlag, 2004.