The proof of Theorem 2.1 will be "guess and verify" and consist of three steps:
1 formulate and solve HJB-equation,
2 an auxiliary technical result,
3 find appropriate supermartingale (needs Itô's formula).

The proof of Theorem 2.1 will be "guess and verify" and consist of three steps:
1 formulate and solve HJB-equation,
2 an auxiliary technical result,
3 find appropriate supermartingale (needs Itô's formula).

Step ??:

When π and c are constants, then the generator of w_{t} acts on $\tilde{v} \in C^{2}$ by

$$
\left(A^{c, \pi} \tilde{v}\right)(w)=((r+(\alpha-r) \pi) w-c) \tilde{v}^{\prime}(w)+\frac{1}{2} w^{2} \pi^{2} \sigma^{2} \tilde{v}^{\prime \prime}(w)
$$

The proof of Theorem 2.1 will be "guess and verify" and consist of three steps:
1 formulate and solve HJB-equation,
2 an auxiliary technical result,
3 find appropriate supermartingale (needs Itô's formula).

Step ??:

When π and c are constants, then the generator of w_{t} acts on $\tilde{v} \in C^{2}$ by

$$
\left(A^{c, \pi} \tilde{v}\right)(w)=((r+(\alpha-r) \pi) w-c) \tilde{v}^{\prime}(w)+\frac{1}{2} w^{2} \pi^{2} \sigma^{2} \tilde{v}^{\prime \prime}(w)
$$

The HJB-equation reads

$$
\max _{c, \pi}\left\{\left(A^{c, \pi} \tilde{v}\right)(w)+\frac{c^{\gamma}}{\gamma}-\delta \tilde{v}(w)\right\}=0 \quad \text { for all } w>0
$$

The maxima are achieved at

$$
c=\tilde{v}^{\prime}(w)^{\frac{-1}{1-\gamma}} \quad \text { and } \quad \pi=\frac{-\beta \tilde{v}^{\prime}(w)}{w \sigma \tilde{v}^{\prime \prime}(w)}
$$

The maxima are achieved at

$$
c=\tilde{v}^{\prime}(w)^{\frac{-1}{1-\gamma}} \quad \text { and } \quad \pi=\frac{-\beta \tilde{v}^{\prime}(w)}{w \sigma \tilde{v}^{\prime \prime}(w)}
$$

and hence the HJB-equation is equivalent to

$$
r w \tilde{v}^{\prime}-\frac{\beta^{2}}{2} \frac{\left(\tilde{v}^{\prime}\right)^{2}}{\tilde{v}^{\prime \prime}}+\frac{1-\gamma}{\gamma}\left(\tilde{v}^{\prime}\right)^{-\gamma /(1-\gamma)}-\delta \tilde{v}=0
$$

The maxima are achieved at

$$
c=\tilde{v}^{\prime}(w)^{\frac{-1}{1-\gamma}} \quad \text { and } \quad \pi=\frac{-\beta \tilde{v}^{\prime}(w)}{w \sigma \tilde{v}^{\prime \prime}(w)}
$$

and hence the HJB-equation is equivalent to

$$
r w \tilde{v}^{\prime}-\frac{\beta^{2}}{2} \frac{\left(\tilde{v}^{\prime}\right)^{2}}{\tilde{v}^{\prime \prime}}+\frac{1-\gamma}{\gamma}\left(\tilde{v}^{\prime}\right)^{-\gamma /(1-\gamma)}-\delta \tilde{v}=0
$$

It is easy to see that $v(w)=\gamma^{-1} C^{\gamma-1} w^{\gamma}$ is solution of this differential equation.

Step ??:

Let $\left(c_{t}, \pi_{t}\right) \in \mathcal{U}$ be an arbitrary policy and define the process

$$
x_{t}:=\int_{0}^{t} \sigma \pi_{u} d z_{u} .
$$

Then w_{t} is given explicitly (proof: Itô's formula) by

$$
w_{t}=\left(w-\int_{0}^{t} c_{s} f_{s} d s\right) \mathcal{E}\left(x_{t}\right) \exp \left(r t+\int_{0}^{t}(\alpha-r) \pi_{u} d u\right)
$$

where \mathcal{E} is the stochastic exponential of x_{t} and

$$
f_{s}:=\exp \left(-r s-\int_{0}^{s}\left((\alpha-r) \pi_{u}-\frac{1}{2} \sigma^{2} \pi_{u}^{2}\right) d u-\int_{0}^{s} \sigma \pi_{u} d z_{u}\right) .
$$

Step ??:

Let $\left(c_{t}, \pi_{t}\right) \in \mathcal{U}$ be an arbitrary policy and define the process

$$
x_{t}:=\int_{0}^{t} \sigma \pi_{u} d z_{u} .
$$

Then w_{t} is given explicitly (proof: Itô's formula) by

$$
w_{t}=\left(w-\int_{0}^{t} c_{s} f_{s} d s\right) \mathcal{E}\left(x_{t}\right) \exp \left(r t+\int_{0}^{t}(\alpha-r) \pi_{u} d u\right)
$$

where \mathcal{E} is the stochastic exponential of x_{t} and

$$
f_{s}:=\exp \left(-r s-\int_{0}^{s}\left((\alpha-r) \pi_{u}-\frac{1}{2} \sigma^{2} \pi_{u}^{2}\right) d u-\int_{0}^{s} \sigma \pi_{u} d z_{u}\right) .
$$

$\Rightarrow w_{t}$ has moments of all orders by Holder's inequality and since π_{t} is bounded.

Step ??:

Define for any policy $\left(c_{t}, \pi_{t}\right)$ the process

$$
M_{t}:=\int_{0}^{t} e^{-\delta s} u\left(c_{s}\right) d s+e^{-\delta t} v\left(w_{t}\right)
$$

where $v(w)=\gamma^{-1} C^{\gamma-1} w^{\gamma}$.

Step ??:

Define for any policy $\left(c_{t}, \pi_{t}\right)$ the process

$$
M_{t}:=\int_{0}^{t} e^{-\delta s} u\left(c_{s}\right) d s+e^{-\delta t} v\left(w_{t}\right)
$$

where $v(w)=\gamma^{-1} C^{\gamma-1} w^{\gamma}$. Itô's formula then shows that

$$
\begin{aligned}
M_{t}= & M_{0}+\int_{0}^{t} e^{-\delta s}\left(\left(A^{c, \pi} v\right)\left(w_{s}\right)+\frac{c_{s}^{\gamma}}{\gamma}-\delta v\left(w_{s}\right)\right) d s \\
& +\sigma C^{\gamma-1} \int_{0}^{t} e^{-\delta s} \pi_{s} w_{s}^{\gamma} d z_{s}
\end{aligned}
$$

Step ??:

Define for any policy $\left(c_{t}, \pi_{t}\right)$ the process

$$
M_{t}:=\int_{0}^{t} e^{-\delta s} u\left(c_{s}\right) d s+e^{-\delta t} v\left(w_{t}\right)
$$

where $v(w)=\gamma^{-1} C^{\gamma-1} w^{\gamma}$. Itô's formula then shows that

$$
\begin{aligned}
M_{t}= & M_{0}+\int_{0}^{t} e^{-\delta s}\left(\left(A^{c, \pi} v\right)\left(w_{s}\right)+\frac{c_{s}^{\gamma}}{\gamma}-\delta v\left(w_{s}\right)\right) d s \\
& +\sigma C^{\gamma-1} \int_{0}^{t} e^{-\delta s} \pi_{s} w_{s}^{\gamma} d z_{s}
\end{aligned}
$$

$\Rightarrow M_{t}$ is a supermartingale and if $\left(c_{t}, \pi_{t}\right)=\left(c_{t}^{*}, \pi_{t}^{*}\right)$ it is a martingale. Thus,

$$
v(w)=M_{0} \geq \mathbb{E}_{w}\left[M_{t}\right]=\mathbb{E}_{w}\left[\int_{0}^{t} e^{-\delta s} u\left(c_{s}\right) d s\right]+\mathbb{E}_{w}\left[e^{-\delta t} v\left(w_{t}\right)\right]
$$

The proof is complete if we can show that

$$
\lim _{t \rightarrow \infty} \mathbb{E}_{w}\left[e^{-\delta t} v\left(w_{t}\right)\right]=0
$$

for any $(c, \pi) \in \mathcal{U}$.

The proof is complete if we can show that

$$
\lim _{t \rightarrow \infty} \mathbb{E}_{w}\left[e^{-\delta t} v\left(w_{t}\right)\right]=0
$$

for any $(c, \pi) \in \mathcal{U}$. To this end, observe that by Itô's formula we may write

$$
e^{-\delta t} w_{t}^{\gamma}=w_{0}^{\gamma} \mathcal{E}\left(\gamma x_{t}\right) \exp \left(\int_{0}^{t} a_{s} d s\right)
$$

where

$$
a_{s}=\gamma\left(r+(\alpha-r) \pi_{s}-\frac{c_{s}}{w_{s}}-\frac{1}{2}(1-\gamma) \pi_{s}^{2} \sigma^{2}\right)-\delta .
$$

The proof is complete if we can show that

$$
\lim _{t \rightarrow \infty} \mathbb{E}_{w}\left[e^{-\delta t} v\left(w_{t}\right)\right]=0
$$

for any $(c, \pi) \in \mathcal{U}$. To this end, observe that by Itô's formula we may write

$$
e^{-\delta t} w_{t}^{\gamma}=w_{0}^{\gamma} \mathcal{E}\left(\gamma x_{t}\right) \exp \left(\int_{0}^{t} a_{s} d s\right)
$$

where

$$
a_{s}=\gamma\left(r+(\alpha-r) \pi_{s}-\frac{c_{s}}{w_{s}}-\frac{1}{2}(1-\gamma) \pi_{s}^{2} \sigma^{2}\right)-\delta .
$$

Since $a_{s} \leq-(1-\gamma) C$ the claim follows. This completes the proof.

Guessing solution for problem with transaction costs.

Ansatz: $\operatorname{try} L$ and U absolutely continuous with bounded derivatives, that is,

$$
L_{t}=\int_{0}^{t} l_{s} d s, \quad U_{t}=\int_{0}^{t} u_{s} d s, \quad 0 \leq l_{s}, u_{s} \leq \kappa
$$

Guessing solution for problem with transaction costs.

Ansatz: $\operatorname{try} L$ and U absolutely continuous with bounded derivatives, that is,

$$
L_{t}=\int_{0}^{t} l_{s} d s, \quad U_{t}=\int_{0}^{t} u_{s} d s, \quad 0 \leq l_{s}, u_{s} \leq \kappa
$$

The HJB-equation reads

$$
\begin{aligned}
\max _{c, l, u} & \left\{\frac{1}{2} \sigma^{2} y^{2} \tilde{v}_{y y}+r x \tilde{v}_{x}+\alpha y \tilde{v}_{y}+\frac{1}{\gamma} c^{\gamma}-c \tilde{v}_{x}\right. \\
& \left.\left(-(1+\lambda) \tilde{v}_{x}+\tilde{v}_{y}\right) l+\left((1-\mu) \tilde{v}_{x}-\tilde{v}_{y}\right) u-\delta \tilde{v}\right\}=0 .
\end{aligned}
$$

Since \tilde{v}_{x} and \tilde{v}_{y} are positive (extra wealth gives increased utility), we see that the maxima are attained as follows:

$$
\begin{aligned}
& c=\left(\tilde{v}_{x}\right)^{1 /(\gamma-1)}, \\
& l= \begin{cases}\kappa, & \text { if } \tilde{v}_{y} \geq(1+\lambda) \tilde{v}_{x}, \\
0, & \text { if } \tilde{v}_{y}<(1+\lambda) \tilde{v}_{x}\end{cases} \\
& u= \begin{cases}0, & \text { if } \tilde{v}_{y}>(1-\mu) \tilde{v}_{x}, \\
\kappa, & \text { if } \tilde{v}_{y} \leq(1-\mu) \tilde{v}_{x} .\end{cases}
\end{aligned}
$$

Since \tilde{v}_{x} and \tilde{v}_{y} are positive (extra wealth gives increased utility), we see that the maxima are attained as follows:

$$
\begin{aligned}
& c=\left(\tilde{v}_{x}\right)^{1 /(\gamma-1)}, \\
& l= \begin{cases}\kappa, & \text { if } \tilde{v}_{y} \geq(1+\lambda) \tilde{v}_{x} \\
0, & \text { if } \tilde{v}_{y}<(1+\lambda) \tilde{v}_{x}\end{cases} \\
& u= \begin{cases}0, & \text { if } \tilde{v}_{y}>(1-\mu) \tilde{v}_{x} \\
\kappa, & \text { if } \tilde{v}_{y} \leq(1-\mu) \tilde{v}_{x}\end{cases}
\end{aligned}
$$

This indicates that the optimal transaction policies are "bang-bang": buying and selling either take place at maximum rate or not at all, and the solvency region splits into three regions

■ B, the region in which stocks are bought,
■ S, the region in which stocks are sold,
■ $N T$ the region where no transactions take place.

Let us analyse the boundary

$$
\tilde{v}_{y}=(1+\lambda) \tilde{v}_{x}
$$

between S and $N T$ (a similar argument applies for the boundary between $N T$ and B). To this end assume that $\tilde{v} \in C^{1}$ and that it is homothetic which implies that

$$
\tilde{v}_{x}(\rho x, \rho y)=\rho^{\gamma-1} \tilde{v}_{x}(x, y)
$$

Let us analyse the boundary

$$
\tilde{v}_{y}=(1+\lambda) \tilde{v}_{x}
$$

between S and $N T$ (a similar argument applies for the boundary between $N T$ and B). To this end assume that $\tilde{v} \in C^{1}$ and that it is homothetic which implies that

$$
\tilde{v}_{x}(\rho x, \rho y)=\rho^{\gamma-1} \tilde{v}_{x}(x, y) .
$$

It follows that if $\tilde{v}_{y}(x, y)=(1+\lambda) \tilde{v}_{x}(x, y)$ for some point (x, y), then the same is true for all points along the ray through (x, y).

Heuristic argument suggests so far:
■ boundaries between transaction and no-transaction regions are straight lines through the origin,

Heuristic argument suggests so far:
■ boundaries between transaction and no-transaction regions are straight lines through the origin,
■ in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of $N T$,

Heuristic argument suggests so far:
■ boundaries between transaction and no-transaction regions are straight lines through the origin,
■ in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of $N T$,
■ the finite transaction in S or B moves the portfolio down or up a line of slope $-1 /(1-\mu)$ or $-1 /(1+\lambda)$.

Heuristic argument suggests so far:
■ boundaries between transaction and no-transaction regions are straight lines through the origin,
■ in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of $N T$,
■ the finite transaction in S or B moves the portfolio down or up a line of slope $-1 /(1-\mu)$ or $-1 /(1+\lambda)$.
■ after the initial transaction, all further transactions must take place at the boundaries, and this suggests a "local time" type of transaction policy,

Heuristic argument suggests so far:
■ boundaries between transaction and no-transaction regions are straight lines through the origin,
■ in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of $N T$,
■ the finite transaction in S or B moves the portfolio down or up a line of slope $-1 /(1-\mu)$ or $-1 /(1+\lambda)$.
$■$ after the initial transaction, all further transactions must take place at the boundaries, and this suggests a "local time" type of transaction policy,

- meanwhile, consumption takes place at rate $\left(v_{x}\right)^{1 /(\gamma-1)}$.

In $N T$ the value function $v(x, y)$ satisfies the HJB-equation with $l=u=0$:

$$
\max _{c}\left\{\frac{1}{2} \sigma^{2} y^{2} v_{y y}+(r x-c) v_{x}+\alpha y v_{y}+\frac{1}{\gamma} c^{\gamma}-\delta v\right\}=0
$$

i.e.,

$$
\frac{1}{2} \sigma^{2} y^{2} v_{y y}+(r x-c) v_{x}+\alpha y v_{y}+\frac{1-\gamma}{\gamma} v_{x}^{-\gamma /(1-\gamma)}-\delta v=0 .
$$

In $N T$ the value function $v(x, y)$ satisfies the HJB-equation with $l=u=0$:

$$
\max _{c}\left\{\frac{1}{2} \sigma^{2} y^{2} v_{y y}+(r x-c) v_{x}+\alpha y v_{y}+\frac{1}{\gamma} c^{\gamma}-\delta v\right\}=0
$$

i.e.,

$$
\frac{1}{2} \sigma^{2} y^{2} v_{y y}+(r x-c) v_{x}+\alpha y v_{y}+\frac{1-\gamma}{\gamma} v_{x}^{-\gamma /(1-\gamma)}-\delta v=0 .
$$

The final step now consists of reducing this equation to an equation in one variable. In order to do so, define

$$
\psi(x):=v(x, 1) .
$$

By the homothetic property it follows that $v(x, y)=y^{\gamma} \psi(x / y)$.

If our conjectured optimal policy is correct then v is constant along lines of slope $(1-\mu)^{-1}$ in S and along lines of slope $(1+\lambda)^{-1}$ in B, and this implies by homothetic property that

$$
\begin{aligned}
& \psi(x)=\frac{1}{\gamma}(x+1-\mu)^{\gamma}, \quad x \leq x_{0} \\
& \psi(x)=\frac{1}{\gamma}(x+1+\lambda)^{\gamma}, \quad x \geq x_{T}
\end{aligned}
$$

for some constants A, B and x_{0} and x_{T} as in the picture.

If our conjectured optimal policy is correct then v is constant along lines of slope $(1-\mu)^{-1}$ in S and along lines of slope $(1+\lambda)^{-1}$ in B, and this implies by homothetic property that

$$
\begin{array}{ll}
\psi(x)=\frac{1}{\gamma}(x+1-\mu)^{\gamma}, & x \leq x_{0} \\
\psi(x)=\frac{1}{\gamma}(x+1+\lambda)^{\gamma}, & x \geq x_{T}
\end{array}
$$

for some constants A, B and x_{0} and x_{T} as in the picture. Using the homothetic property again, one can show that ψ satisfies for $x \in\left[x_{0}, x_{T}\right]$,

$$
\beta_{3} \psi^{\prime \prime}(x)+\beta_{2} x \psi^{\prime}(x)+\beta_{1} \psi(x)+\frac{1-\gamma}{\gamma}\left(\psi^{\prime}(x)\right)^{-\gamma /(1-\gamma)}=0
$$

where $\beta_{1}=-\frac{1}{2} \sigma^{2} \gamma(1-\gamma+\alpha \gamma)-\delta, \beta_{2}=\sigma^{2}(1-\gamma)+r-\alpha$, $\beta_{3}=\frac{1}{2} \sigma^{2}$.

Theorem (4.1, follows from [?])

Take $0<x_{0}<x_{T}$ and let NT be the closed wedge shown in the picture, with upper and lower boundaries $\partial S, \partial B$ respectively. Let $c: N T \rightarrow[0, \infty)$ be any Lipschitz continuous function and let $(x, y) \in N T$. Then there exists a unique process s_{0}, s_{1} and continuous increasing processes L, U such that for $t<\tau=\inf \left\{t \geq 0:\left(s_{0}(t), s_{1}(t)\right)=0\right\}$

$$
\begin{aligned}
d s_{0}(t)= & \left(r s_{0}(t)-c\left(s_{0}(t), s_{1}(t)\right)\right) d t \\
& -(1+\lambda) d L_{t}+(1-\mu) d U_{t}, \quad s_{0}(0)=x, \\
d s_{1}(t)= & \alpha s_{1}(t) d t+\sigma s_{1}(t) d z_{t}-d U_{t}, \quad s_{1}(0)=y, \\
& L_{t}=\int_{0}^{t} 1_{\left\{\left(s_{0}(\xi), s_{1}(\xi)\right) \in \partial B\right\}} d L_{\xi}, \\
& U_{t}=\int_{0}^{t} 1_{\left\{\left(s_{0}(\xi), s_{1}(\xi) \in \partial S\right\}\right.} d U_{\xi} .
\end{aligned}
$$

The process $\tilde{c}_{t}:=c\left(s_{0}(t), s_{1}(t)\right)$ satisfies condition $(2.1)(i)$.

Define the set of policies that do not involve short selling:

$$
\mathfrak{U}^{\prime}=\left\{(c, L, U) \in \mathfrak{U}:\left(s_{0}(t), s_{1}(t)\right) \in \mathscr{S}_{\mu}^{\prime} \text { for all } t \geq 0\right\}
$$

where $\mathscr{S}_{\mu}^{\prime}=\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0\right.$ and $\left.x+(1-\mu) y \geq 0\right\}$.

Theorem (4.2, proof in [?])

Le $0<\gamma<1$ and assume Condition A holds. Suppose there are constants A, B, x_{0}, x_{T} and a function $\psi:[-1(1-\mu), \infty) \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& 0<x_{0}<x_{T}<\infty \\
& \psi \text { is } C^{2} \text { and } \psi^{\prime}(x)>0 \text { for all } x, \\
& \psi(x)=\frac{1}{\gamma} A(x+1-\mu)^{\gamma} \text { for } x \leq x_{0}, \\
& \beta_{3} \psi^{\prime \prime}(x)+\beta_{2} x \psi^{\prime}(x)+\beta_{1} \psi(x) \\
& +\frac{1-\gamma}{\gamma}\left(\psi^{\prime}(x)\right)^{-\gamma /(1-\gamma)}=0 \text { for } x \in\left[x_{0}, x_{T}\right], \\
& \psi(x)=\frac{1}{\gamma} B(x+1+\lambda)^{\gamma} \text { for } x \geq x_{T} .
\end{aligned}
$$

Theorem

Let N_{T} denote the closed wedge

$$
\left\{(x, y) \in \mathbb{R}_{+}^{2}: x_{T}^{-1} \leq y x^{-1} \leq x_{0}^{-1}\right\}
$$

and let B and S denote the regions below and above $N T$ as in the picture. For $(x, y) \in N T \backslash\{(0,0)\}$ define

$$
c^{*}(x, y)=y \psi^{\prime}(x / y)^{-1 /(1-\gamma)} .
$$

Let $\tilde{c}_{t}^{*}=c^{*}\left(s_{0}(t), s_{1}(t)\right)$ where $\left(s_{0}, s_{1}, L^{*}, U^{*}\right)$ is the unique solution of (4.1) with $c:=c^{*}$. Then the policy $\left(\tilde{c}^{*}(t), L^{*}(t), U^{*}(t)\right)$ is optimal in the class \mathscr{U}^{\prime} for any initial endowment $(x, y) \in N T$. If $(x, s) \notin N T$ then an immediate transaction to the closest point in NT followed by application of this policy is optimal in \mathscr{U}^{\prime}. The maximal expected utility is

$$
v(x, s)=y^{\gamma} \psi(x / y)
$$

Davis, M. H. A. and Norman, A. R. (1990). Portfolio selection with transaction costs. Mathematics of Operations Research. 15 676-713.

Tanaka, H. (1978). Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9 163-177.

