ItoVsStratonovich

February 12, 2018

Setting up iPython

In [1]: import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from pylab import *
Create a sample Brownian path using i.i.d. normal noise.

In [2]: \#Normal Increments
noiseT $=\operatorname{lambda} N, T: n p . r a n d o m . n o r m a l(0, \operatorname{sqrt}(T / f l o a t(N)), N)$
\# Number of time steps:
$\mathrm{N}=100000$
$\mathrm{t}=\mathrm{np} .1 \mathrm{inspace}(0,1, \mathrm{~N}+1)$ \# time discretisation
\# append a 0 to the start of the noise vector, and compute the cumulative sum:
$\mathrm{W}=\operatorname{cumsum}(\mathrm{np} . \operatorname{hstack}((\operatorname{arange}(1), \operatorname{noiseT}(\mathrm{N}, 1))))$
Functions to compute the Itô and Stratonovich integrals for $\int_{0}^{1} W_{s} \mathrm{~d} W_{s}$.
In [3]: def Ito(W):
"This computes the Ito integral of W against itself" M = W.size
$\mathrm{I} 2=\mathrm{W}[0:(\mathrm{M}-1)] * \mathrm{np} \cdot \operatorname{diff}(\mathrm{W}[0:(\mathrm{M}+1)])$ return cumsum(I2)

```
# NB: to get the value at the midpoint, we can only compute
# the difference between 0,2,4,...
def Strat(W):
"This computes the Stratonovich integral of W against itself"
M = W.size
J2 = W[1:(M+1):2]*np.diff(W[0:(M+1):2])
return cumsum(J2)
# To make the comparison at equivalent discretisations, we only
# consider W at alternate points for the Ito integral
I = Ito(W[0:Size(W):2])
J = Strat(W)
```

In [4]: \%matplotlib inline

```
    fig = plt.figure()
    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8])
    axes.plot(t, W*W/2, 'r')
    axes.plot(t[0:(size(t)-2):2], I, 'b')
    axes.plot(t[0:(size(t)-2):2], J, 'g')
    axes.set_xlabel(r'Time')
    axes.set_ylabel(r'$I_t$, $J_t$, $W_t^2/2$')
    axes.set_title(u'Sample paths of the Itô and Stratonovich integrals');
```

Sample paths of the Itô and Stratonovich integrals

Note that the red curve of $\frac{W_{t}^{2}}{2}$ is barely visible behind the green curve, which is the Stratonovich integral.

In [5]: \%matplotlib inline

```
    fig = plt.figure()
    axes = fig.add_axes([0.1, 0.1, 0.8, 0.8])
    axes.plot(t[0:(size(t)-2):2], J-I, 'b')
    axes.set_xlabel(r'Time')
```

```
axes.set_ylabel(r'$J_t - I_t$')
axes.set_title(u'Difference of the Stratonovich and Itô integrals');
```

Difference of the Stratonovich and Itô integrals

As might have been guessed, the difference between the Itô and Stratonovich integrals is $t / 2$. This is slightly different to the result in lectures: in the lectures, we showed that taking the righthand endpoint of the interval gives a difference of t between this integral and the Itô integrals. Numerically, this confirms the intuition that taking the mid-point is 'inbeetween' these two cases.

