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Preliminaries

These notes constitute the core theoretical content of the unit MA50251, which is a course on
‘Applied SDEs’. Roughly speaking, the aim of this course is to introduce SDEs (Stochastic
Differential Equations) as a tool for modelling random phenomena in a wide variety of contexts,
to students with varied backgrounds. In particular, we do not assume a background in rigorous
(measure-theoretic) probability. In one or two places, this means that we need to be a little
vague about some details, however in general I hope to introduce the main issues in the field
without substantial loss in rigour.

This set of notes is intended to cover the first 8 hours of lectures (4×2 hours). The remaining
lectures will be given by Tony Shardlow, and be more focussed on the applications. The material
in these notes will loosely follow the book of Øksendal [3], and this is recommended as a first
destination when looking for a different treatment or additional examples and detail. Also
useful, although generally more advanced, are the books by Karatzas and Shreve [1], Mörters
and Peres [2], and Revuz and Yor [4]. Although we will try to assume only a limited background
in probability, some understanding of fundamental probability is necessary. A brief summary of
the core probabilistic ideas which are needed can be found at the end of these notes in Section 7,
where some key notions from probability are briefly summarised.

More information about the course can be found on the webpage: http://www.maths.bath.

ac.uk/~mapamgc/AppliedSDEs.htm. Information that will appear here includes problem sheets
and solutions. Where a question on a problem sheet may be informative to the discussion in
the notes, a note in the margin may be included. The lectures will also include some interactive
demonstrations using an iPython notebook. This interlude is generally indicated in the notes,
and a link to the relevant iPython notebook is included. The results of the notebook will also
be included as a pdf file for reading, however it is strongly recommended that the interested
reader spend time playing with the iPython examples, and modifying to better understand the
ideas. Details about installing and running the notebooks can be found on the course website.

Finally, the notes also include occasional digressions into measure theory. These are not core to
the material, and can safely be ignored by a reader who has not taken any courses on measure
theory. They are clearly distinguished from the main text by a change of colour and the marginal
designation MT.
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1 Introduction

The aim of this course is to consider processes which model systems whose dynamics depend
on both the current state of the system, and some random noise. Consider as a basic example,
the proportion of a biological population which possesses some genetic mutation, Xt ∈ [0, 1] say.
Then over time the proportion of the population expressing this trait may evolve in a way that
depends on both the current proportion of the population which displays this trait, and also
some random noise, representing for example background effects (e.g. fluctuations in the living
environment at the individual level). Writing loosely, we might expect:

dXt

dt
= µ(Xt) + σ(Xt) × ‘noise’. (1)

In the absence of the noise term, this is just a classical ODE, and we can model the system
using standard techniques for ODEs. The question we try to address in this course is: how to
deal with the additional noise term.

Some important questions we might hope to answer are:

• How to model the noise? What (statistical) properties might be useful?
• What can we say about the distribution of the process Xt at a future time?
• What can we say about path properties of the process: for example, the probability that

the process ever exceeds a certain level.

In the example of the population model above, then we might be interested in the probability
that at least half of the population have a particular trait at time t0. We could also be interested
in (for example) the probability that one of the traits becomes extinct, or whether there is a long-
run asymptotic distribution (that is, a probability measure µ such that limt→∞ P(Xt ∈ A) =
µ(A)). Note that these are inherently probabilistic questions — they do not have deterministic
counterparts.

An important question is then what sort of properties might we expect from the noise term? Let’s
start by thinking about a discretised version of the above equation, say ∆t = N−1, tk := k∆t,
for k = 0, 1, . . . , N . Then the discretised version of the equation above becomes:

X1 = X0 +
N−1∑
k=0

(µ(Xtk) ∆t+ σ(Xtk)Zk) , (2)

where the Zk’s represent the noise terms.

The question now becomes: what properties should Zk have in order for this equation to make
sense? We can immediately make two natural assumptions: the Zk’s should be independent (we
shouldn’t be able to predict future noise based on past noise), and identically distributed (the
noise should not depend on Xt or t).

Armed with these assumptions, we can perform some numerical experiments. One question is
what should the distribution of Zk be. This separates into two questions: first, the type of
distribution (e.g. Gaussian, Bernoulli, etc.) and secondly, what parameters should we choose
— in particular, as we let N →∞, how should the distribution of the Zk’s scale in N?

iPython Interlude: Go To Notebook
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Of course, in the simplest case, we can use a little theory to back this up: let µ(x) = 0, and
σ(x) = 1. Then we have

X1 = X0 +

N−1∑
k=0

Zk, (3)

where our assumption is that the Zk’s are i.i.d.. But now we have a key result about convergence
of sums of i.i.d. r.v.’s. Recall that the Central Limit Theorem (CLT, see Section 7.6) says that
if Yk is a sequence of i.i.d. r.v.’s with mean 0 and variance ξ2, then

1√
N

N−1∑
k=0

Yk
D−→ N(0, ξ2). (4)

Setting Yk =
√
N (Zk − E [Zk]), we see that (3) has a sensible limit if E [Zk] ≈ νN−1 and

Var(Zk) ≈ ξ2N−1, in which case X1 −X0 = N(ν, ξ2).

More generally, we can use this limiting argument to define a process Xt. Let N be large, and
set

Xt = X0 +

bNtc−1∑
k=0

Zk.

Then for t ≥ s, we have

Xt −Xs =

bNtc−1∑
k=bNsc

Zk

and for large N , by the Central Limit Theorem again, the right hand side is normally distributed
with mean ν(t− s) and variance ξ2(t− s). In addition, consider times t1 ≤ t2 ≤ · · · ≤ tn. Then
if i 6= j, Xti+1 − Xti and Xtj+1 − Xtj have at most one Zk term in common, the other terms
contributing to the sums being independent. In the limit, we would then expect these terms to
be independent. In particular that we have the following properties:

(P1): Normally distributed: Xt −Xs ∼ N(ν(t− s), ξ2(t− s)),
(P2): Independent increments: if 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn then Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−

Xtn−1 are independent.

Then this limiting process looks a lot like a Gaussian process: specifically, (Xt0 , . . . , Xtn) is a
Gaussian process with mean function m(t) = νt and covariance function K(s, t) = ξ2 min(s, t). Q1.1

However, we want to introduce one further assumption. Not only do we want to consider the
joint distribution of ‘slices’ of the process at a finite number of fixed times, but more generally,
we will want to consider the whole process as a function of time, t 7→ Xt. For example, we might
want to know properties of the maximum of the process, sups≤T Xt. However in full generality,
the two properties above are simply not enough: suppose we construct a process satisfying the
normal and independent increments assumptions. If I take a random variable U ∼ U([0, 1]), and
define a new process X ′t by:

X ′t =

{
Xt, t 6= U

10, t = U

then Xt and X ′t both satisfy the normal and independent increments condition (if I check either
property for X ′ at any finite set of times, the probability that any of these times are equal to U
is zero). It follows that many of the path properties that we may be interested are not robust
if we only specify the two properties above.

To rectify this, we need to make a simple additional assumption: we assume that

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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(P3): t 7→ Xt is a continuous process.

Note that this property would appear to be justified by inspection of the numerical output
above. We will also provide a more detailed justification of this below.

MT
Note also that path continuity is also a strongly necessary property from a measure theo-
retic point of view. If we simply consider the (uncountable) set of random variables (Xt; t ∈
R+), defined on some probability space (Ω,F ,P), it is not even clear that the event {t 7→
Xt is continuous} is measurable. By assuming that the process is continuous, we can check
many relevant properties simply by looking at Xt at rational times, for example:{

sup
s≤t

Xs ≥ x
}

=
⋂
εn→0

{
sup

s≤t,s∈Q
Xs ≥ x− εn

}

which is easily seen to be measurable.

To make the discussion above more rigorous, we say that two processes Xt and X ′t, defined on
the same probability space, are modifications of each other if, for each t,

Xt = X ′t, a.s..

Note that this is different to the stronger notion of indistinguishable processes: Xt and X ′t are
indistinguishable if, for almost all ω:

Xt(ω) = X ′t(ω), for every t.

However, if we know that Xt and X ′t have continuous paths, then these are equivalent (by
countability of the rationals, P(Xt = X ′t, ∀t ∈ Q) = 1, which is equivalent to being everywhere
equal when the paths are continuous).

In particular, we have the following result:

Theorem 1.1 (Kolmogorov’s Continuity Criterion). If (Xt)t≥0 is a real-valued process such that
for all T > 0 there exist constants α, β, γ > 0 with

E [|Xt+h −Xt|α] ≤ γh1+β

for every t and 0 ≤ h ≤ T , then there exists a modification of X which has almost-surely
continuous paths.

In the case where X satisfies (P1) and (P2), it is easy to check that this condition is satisfied,
since1 E

[
Z4
]

= ν4h4 + ν3ξ2h3 + 3ξ4h2, when Z ∼ N(νh, ξ2h), and so

E
[
|Xt+h −Xt|4

]
= ν4h4 + ν3ξ2h3 + 3ξ4h2 ≤ h2(ν4T 2 + ν3ξ2T + 3ξ4) =: γh2.

where we have used the fact that Xt+h −Xt ∼ N(νh, ξ2h).

In particular, given any process Xt satisfying (P1) and (P2), there exists a modification X ′t
which has continuous paths. It is this modification that we will work with.

1For example, by recalling that the moment generating function of a N(µ, σ) r.v. Z is fZ(α) := E [exp{αZ}] =

eµt+σ
2t2/2, and so E

[
Z4
]

= f ′′′′Z (0) = µ4 + 6µ2σ2 + 3σ2.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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2 Brownian Motion

2.1 Definition and Basic Properties

Having motivated this construction, we define:

Definition 2.1. A real-valued stochastic process (Wt)t≥0 is a (standard) Brownian motion
starting at x ∈ R if:

(P0): W0 = x,
(P1): Wt −Ws ∼ N(0, t− s),
(P2): if 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn then Wt1−Wt0 ,Wt2−Wt1 , . . . ,Wtn−Wtn−1 are independent,
(P3): t 7→Wt is continuous, almost surely.

Here, standard refers to the fact that we have chosen ν = 0, ξ = 1. More generally, a Brownian
motion with drift ν and infinitesimal variance ξ2 is a process Xt = νt+ ξWt, for a standard
Brownian motion Wt. If the starting point is unspecified, we typically assume W0 = 0. Note that
we use W here as a reference to ‘Wiener’, who gave the first rigorous mathematical construction.

A Rd-valued process (W t)t≥0 is a (d-dimensional) Brownian motion if W t = (W 1
t ,W

2
t , . . . ,W

d
t ),

where W 1, . . . ,W d are i.i.d. R-valued Brownian motions. Equivalently, (W t)t≥0 is a stochastic
process taking values in Rd, such that W t −W s ∼ N(0, (t − s)I), a multivariate normal with
mean 0 ∈ Rd, and covariance matrix which is (t − s) times the identity matrix, and such that
(P2), (P3) hold.

We list here some important properties of Brownian motion2:

Theorem 2.2. If (Wt)t≥0 is a (one-dimensional) standard Brownian motion with W0 = 0, then:

i) (Wt)t≥0 is a Strong Markov process;
ii) (Wt)t≥0 is a martingale;

iii) if α 6= 0, (α−1Wα2t)t≥0 is a standard Brownian motion (Brownian scaling);
iv) if h > 0, (Wt+h −Wh)t≥0 is a standard Brownian motion (stationarity);
v) (W1 −W1−t)t∈[0,1] is a standard Brownian motion on [0, 1] (time-reversal).

Some of these properties generalise to e.g. d-dimensional Brownian motion, Brownian motion
starting at x 6= 0, or Brownian motion with drift; the details can be found in many text books.

Another important theorem is:

Theorem 2.3. Brownian motion exists and is unique. Specifically, if W and W̃ are both
Brownian motions on (possibly different) probability spaces (Ω,F ,P) and (Ω̃, F̃ , P̃), then

P((Wt)t≥0 ∈ A) = P̃((W̃t)t≥0 ∈ A)

for any3 subset A of the continuous functions.

The existence of Brownian motion is non-trivial, but can be shown as a consequence of the
construction that follows.

2Don’t worry if you are not familiar with some of these terms — if needed, they will be introduced later in the
course.

3(measurable)

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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As a simple example of how the uniqueness result is often used, consider e.g. iii), iv) and v) of
Theorem 2.2. Suppose we can show a property is true of e.g. the rescaled version of Brownian
motion, W̃t = (α−1Wα2t). Then it must also be true of W . Of course, the uniqueness does not
mean that W̃t = Wt!

From a modelling perspective, the key reason for introducing Brownian motion is the following
result, which formalises the intuitive arguments in the introduction: let (Zn)n∈Z+ be a sequence
of i.i.d. random variables, normalised so that E [Zk] = 0,Var(Zk) = 1. Consider the random
walk

Yn =
n∑
k=1

Zk

and construct a real valued, continuous function by interpolation:

Y (t) = Ybtc + (t− btc)(Ybtc+1 − Ybtc).

This is a continuous function on [0,∞). Then we can renormalise (recall (4)) by:

Y N (t) :=
1√
N
Y (Nt).

We can now consider the sequence of random functions Y n on [0, 1] (say) and get the following
result:

Theorem 2.4 (Donsker’s invariance principle). Considered as functions on the unit interval,
the functions Y N converge to a Brownian motion Wt in the sense that, for any continuous path
f : [0, 1]→ R and ε > 0:

P( sup
t∈[0,1]

|Y N (t)− f(t)| < ε)→N→∞ P( sup
t∈[0,1]

|Wt − f(t)| < ε).

If we write C([0, 1]) for the space of continuous functions equipped with the uniform norm,
||f ||∞ = supt∈[0,1] |f(t)|, then this is exactly convergence in distribution in this space. See [2,
Theorem 5.22] for a proof of this result.

Recall that our ‘physical’ interpretation of the noise in (1) was that the Zk’s should be i.i.d.,
Donsker’s Theorem provides us with the essential theoretical understanding of this characteri-
sation: if we assume the noise is i.i.d. with second moment4 then, in the limit, the sum of the
noise looks like a Brownian motion, formally:∑

si≤t
noisesi →

∫
s≤t

noises ds ≈Wt.

Again, completely formally, we would like to differentiate this to get:

dXt

dt
= µ(Xt) + σ(Xt) × Ẇt. (5)

but this just doesn’t make sense:

Theorem 2.5 (Payley, Wiener, Zygmund, 1933). The paths of a Brownian motion are almost-
surely nowhere differentiable, moreover, almost surely for all t, at least one of:

lim sup
h↓0

Wt+h −Wt

h
=∞ or lim inf

h↓0

Wt+h −Wt

h
= −∞

holds.
4That is, E

[
Z2
k

]
<∞, otherwise we cannot perform the above normalisation.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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Since Ẇt exists at t0 if and only if

lim sup
h↓0

Wt0+h −Wt0

h
= lim sup

h↓0

Wt0−h −Wt0

h
= lim inf

h↓0

Wt0+h −Wt0

h
= lim inf

h↓0

Wt0−h −Wt0

h
∈ R

we see that the latter condition of the theorem is indeed stronger than the lack of differentiability.

We refer to [2, Theorem 1.39] for a proof of this result. See also Q1.5 for a proof of a similar,
but slightly easier result.

2.2 Variation Properties of Brownian motion

The lack of differentiability causes problems when we want to define the integral, and we need to
come up with a method around this. The essential problem is that we have a form of cancellation
arising from the noise term. Think again of our discrete approximations of the Brownian motion:
fix N , let ∆t = 1/N , and write ti = i∆t, and ∆Wi := (Wti+1 −Wti), so ∆W0,∆W1, . . . are

i.i.d. N(0,∆t) r.v.’s. Then for fixed t ≈ N∆t, Wt −W0 =
∑N−1

i=0 ∆Wi, i.e. the sum of N i.i.d.
N(0,∆t) random variables.

Let’s think about the convergence properties of this sum — the ‘typical’ size of a ∆Wi is
E [|∆Wi|], which is easily computed (since the increments are Gaussian) to be

√
2∆t/π. Since

N ≈ t/∆t, the sum of the absolute values is approximately:

N−1∑
i=0

|∆Wi| ≈ N
√

2∆t/π = t
2

∆t π
.

As ∆t → 0, we therefore expect the sum of the increments will not be absolutely convergent.
In general, what we observe is that, although the increments are not absolutely convergent, on
average they will cancel out, since roughly as many terms are positive as negative. However,
observe that this claim is a probabilistic claim: it is not true that for every sequence of Brownian
increments (in the limit) this sum will be convergent, only for almost every sequence, i.e. with
probability one. The tricky part is how to combine the probability with the analysis in a
satisfactory way.

However, there is another way in which we can consider the sum above in a nice way: let’s look
at the sum of squared increments: here we have E

[
(∆W )2

]
= ∆t, and so

N−1∑
i=0

(∆Wi)
2 ≈ N∆t = t.

iPython Interlude: Go To Notebook

We can formalise this intuitive argument as follows. We say a partition Π = {t0, t1, . . . } of R+

is an increasing sequence of times, 0 = t0 ≤ t1 ≤ t2 ≤ . . . such that tk → ∞ as k → ∞. Then
the mesh of the partition is the largest gap: ||Π|| := supi∈N |ti− ti−1|. In addition, the quadratic
variation of the process X along the partition Π is defined to be the process:

V Π
t (X) :=

∑
i∈N

(Xti∧t −Xti−1∧t)
2,

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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where the sum is along the times ti ∈ Π, and we write a ∧ b = min{a, b}, so the final non-zero
term in the sum is (Xt −Xtk), where tk is the largest element of Π smaller than t.

This leads us to the following definition:

Definition 2.6. Let Xt be a real-valued process. Then Xt is of finite quadratic variation
if there exists a finite process (〈X〉t)t≥0 such that for every t ≥ 0, when ||Π|| → 0, V Π

t (X)
converges to 〈X〉t in probability: i.e. for all ε, η > 0, there exists δ > 0 such that

||Π|| < δ =⇒ P(|V Π
t (X)− 〈X〉t| > η) < ε.

The process 〈X〉t is called the quadratic variation of X.

Theorem 2.7. Brownian motion has finite quadratic variation, and 〈W 〉t = t a.s.. In addition,
for Brownian motion V Π

t (W )→ t in L2 as well as in probability.

Proof. Since convergence in L2 implies convergence in probability, we only need to show that
for ε > 0, there exists δ > 0 such that :

||Π|| < δ =⇒ E
[
|V Π
t (W )− t|2

]
< ε. (6)

Given Π = {t0, t1, . . . tN}, with t0 = 0 and tN = t, write ∆tΠi = ti+1−ti and ∆WΠ
i = Wti+1−Wti .

Then

E
[
|V Π
t (W )− t|2

]
= E

∣∣∣∣∣
N−1∑
i=0

(∆WΠ
i )2 − t

∣∣∣∣∣
2


= E

∣∣∣∣∣
N−1∑
i=0

(∆WΠ
i )2 −

N−1∑
i=0

∆tΠi

∣∣∣∣∣
2


= E

∣∣∣∣∣
N−1∑
i=0

(
(∆WΠ

i )2 −∆tΠi
)∣∣∣∣∣

2


But by the definition of Brownian motion, (∆WΠ
i )2 −∆tΠi are independent random variables,

each with mean zero. Hence we can expand out the terms in the square, and the cross-terms
are all the product of mean-zero, independent terms, and hence are all zero. So:

E
[
|V Π
t (W )− t|2

]
= E

[
N−1∑
i=0

(
(∆WΠ

i )2 −∆tΠi
)2]

=
N−1∑
i=0

E
[(

∆WΠ
i

)4 − 2(∆WΠ
i )2(∆tΠi ) + (∆tΠi )2

]
Since Z is a centred normal random variable, E

[
Z4
]

= 3E
[
Z2
]2

and also E
[
(∆WΠ

i )2
]

= ∆tΠi ,
and we finally get

E
[
|V Π
t (W )− t|2

]
= 2

N−1∑
i=0

(∆tΠi )2

≤ 2

(
max
i

∆tΠi

)N−1∑
i=0

∆tΠi = 2||Π||t.

Taking δ = ε/(2t), we conclude that (6) holds.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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Remark 2.8. There are some subtleties here that we need to be careful about: while the
theorem above tells us that

sup
||Π||<δ

P(|V Π
t (W )− t| > η) < ε,

if we can choose the partition based on the path we observe, then the quadratic variation can
be made arbitrarily large:

P

(
sup
||Π||<δ

V Π
t (W ) =∞

)
= 1

for all t, δ > 0.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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3 Stochastic Integration

In this section we consider further the problem of making sense of an equation such as (5). We
know from the discussion above that Ẇ does not make sense, so we cannot ‘define’ a classical
integral, but we can try at least to make sense of this term in some cases. Writing (5) in its
integrated form, we have:

Xt −X0 =

∫ t

0
µ(Xs) ds+

∫ t

0
σ(Xs) dWs

where dWs is a nicer way of writing the (meaningless) Ẇs ds. The first term on the right-hand
side is not (usually) difficult to interpret: it is simply the average of a function over time, and we
can handle this using classical integration. Our aim is to try and understand the dWs integral.

In this section, we therefore concentrate on how to interpret integrals of this form, and (slightly
more generally) how to understand ∫ t

0
ϕs dWs

where Wt is a standard Brownian motion, and (ϕt)t≥0 is a stochastic process — in particular,
it may depend on the processes Wt and Xt say.

We begin by considering a simple case: ϕt = Wt. Following the numerical examples in Section 1,
and recalling that we used (2), where we now take Zk = ∆Wk, we might guess:∫ 1

0
Ws dWs ≈

N−1∑
k=0

Wtk ×∆Wk,

where we recall that, for fixed N , ∆t = 1/N , tk = k∆t and ∆Wk = Wtk+1
−Wtk . Then the

right-hand side of the equation is:

N−1∑
k=0

Wtk(Wtk+1
−Wtk).

But we can use the simple algebraic identity: a(b− a) = 1
2b

2 − 1
2a

2 − 1
2(b− a)2 to see:

N−1∑
k=0

Wtk(Wtk+1
−Wtk) =

N−1∑
k=0

[
1

2
W 2
tk+1
− 1

2
W 2
tk
− 1

2
(Wtk+1

−Wtk)2

]

=
1

2
W 2
tN
− 1

2
W 2
t0 −

1

2

N−1∑
k=0

(Wtk+1
−Wtk)2

=
1

2

(
W 2

1 −W 2
0

)
− 1

2

N−1∑
k=0

(Wtk+1
−Wtk)2. (7)

If Wt were ‘classically’ differentiable, at this point we would say that the final term is zero and
the first term is what we would expect by the chain rule (‘(1

2W
2
t )′ = Wt dWt’). However, using

Theorem 2.7, since 〈W 〉1 = 1, we have

N−1∑
k=0

Wtk(Wtk+1
−Wtk)→ 1

2

(
W 2

1 −W 2
0

)
− 1

2

as N →∞, and where the convergence is in both probability and L2.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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So this suggests a general procedure: we approximate the process ϕ which we wish to integrate
against the Brownian motion, and look at the limit of a sequence of sums. However, there is one
additional aspect about which we really need to be careful. Why did we choose to approximate
ϕt = Wt over the interval [ti, ti+1) by ϕti? By the continuity of Brownian paths, it really should
not matter if we choose ϕ(ti+ti+1)/2 or ϕti+1 , since in the limit as N → ∞, these processes
will also converge to the same process. But a simple calculation should give us concern: using
b(b− a) = 1

2b
2 − 1

2a
2 + 1

2(b− a)2, we get

N−1∑
k=0

Wtk+1
(Wtk+1

−Wtk) =
N−1∑
k=0

[
1

2
W 2
tk+1
− 1

2
W 2
tk

+
1

2
(Wtk+1

−Wtk)2

]

=
1

2
W 2
tN
− 1

2
W 2
t0 +

1

2

N−1∑
k=0

(Wtk+1
−Wtk)2

=
1

2

(
W 2

1 −W 2
0

)
+

1

2

N−1∑
k=0

(Wtk+1
−Wtk)2.

In particular, in the limit, our ‘integral’ converges to 1
2

(
W 2

1 −W 2
0

)
+ 1

2 , not 1
2

(
W 2

1 −W 2
0

)
− 1

2 .

iPython Interlude: Go To Notebook

In the second case, the integrand has been allowed to peek slightly into the future, and this has
led to a different result. For the moment, we will concentrate on the case where our integrand is
the value of the left-hand endpoint of the time interval (this is usually called the Itô integral),
but we will later discuss briefly another case, where we choose the average value of the integrand
at the times ti and ti+1, which is also known as the Stratonovich integral. In practice, which
integral is more relevant should depend on the application.

To avoid issues such as this, we will from now on assume that the process ϕt is adapted: that
is, for each time t, ϕt is a random variable which depends only on the information available at
time t — the process ϕt is not allowed to ‘look ahead’ and use information from the future.
Using the notation from Section 7.4, so that Ft represents the information up to time t, note
that this means in particular that E [ϕt|Fs] = ϕt for all s ≥ t — i.e. ϕt is the best guess at the
value of ϕt given all the information known at time s ≥ t. Note also that we (implicitly) assume
that our Brownian motion Wt is known at time t.

MT
Strictly speaking, at this point we should introduce a filtered probability space, (Ω,F , (Ft)t≥0,P),
such that the Brownian motion Wt is Ft-adapted, and moreover, such that Ws −Wt is inde-
pendent of Ft for all s ≥ t. Alternatively, one could take a probability space, (Ω,F ,P), and a
Brownian motion, and define a filtration FWt by setting FWt to be the smallest σ-algebra such
that Ws is FWt -measurable, for all s ≤ t. Such a filtration is called the natural filtration.

In fact, when constructing the stochastic integral, it is usual to take a filtration satisfying the
usual conditions: that is, we assume that is, we assume that in addition Ft is right-continuous
(i.e. Ft = ∩s>tFs), and F0 contains all the P-negligible events (i.e. P(F ) = 0, F ∈ F =⇒ F ∈
F0). It is easy to see how such a filtration can be constructed from the natural filtration by
including all the negligible events in F0 and taking the right-limit of the resulting filtration. It
can be shown that in this filtration, Wt remains a Brownian motion.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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3.1 Construction of the integral for simple processes

The strategy we will follow is to consider a class V of processes satisfying some natural conditions.
Within this class, we can identify a natural subclass of simple processes for which the Itô integral
can be easily defined. Then our goal will be to show that there is a natural manner in which
a general element of V can be approximated by simple processes, and moreover, that a limit of
the resulting integrals also exists in a natural sense, in which case we can define the limit of the
random variables to be the Itô integral of the limiting ϕ ∈ V.

Definition 3.1. We define the set V to be the set of processes — that is functions ϕ : R+×Ω→
R, usually written5 ϕt(ω) := ϕ(t, ω), such that

i) ϕt(ω) is adapted,

ii) E
[∞∫

0

ϕ2
t dt

]
<∞.

MT
And really we need an additional measurability criteria, which is that ϕ : (t, ω) → ϕt(ω) is
B([0, t]) × F-measurable, where B([0, t]) denotes the Borel σ-algebra. Processes satisfying this
criteria are called progressively measurable.

Note that this is strictly stronger than the class of adapted processes, in particular, the mea-
surability criteria above implies adaptedness. However, any adapted, measurable process (i.e.
ϕ : B(R+)× F → R is measurable) has a progressively measurable modification, and moreover
if the paths of the process ϕ are either left-continuous, or right-continuous almost surely, then
ϕ is also progressively measurable. See [1, Propositions 1.13, 1.14]. To be rigorous, a formal
treatment should replace ‘adapted’ by ‘progressively measurable’ in what follows.

If ϕ ∈ V has the form:

ϕt(ω) =

N−1∑
j=0

ej(ω)1[tj ,tj+1)(t),

for some sequence of (fixed) times t0 ≤ t1 ≤ · · · ≤ tN , then we say that ϕt is simple and write
ϕ ∈ S. Note that the assumption that ϕt is adapted implies ej is known at time tj .

Now we are in a position to define the stochastic integral for simple processes:

Definition 3.2. Let ϕt be a simple process. Then the stochastic integral of ϕt with respect
to a Brownian motion Wt is defined to be:∫ ∞

0
ϕt dWt =

N−1∑
j=0

ej(Wtj+1 −Wtj ). (8)

More generally, if u ≤ v are fixed times, we can define the stochastic integral:∫ v

u
ϕt dWt =

∫ ∞
0

ϕt1[u,v)(t) dWt, (9)

where it is easily verified that ϕt is simple implies ϕt1[u,v)(t) is also simple.

5Or also commonly as just ϕt; as is common in probability, we often omit the ω unless we want to emphasise
the fact that this is a random variable.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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3.2 Properties of the integral of simple processes

In this section we discuss some useful properties of simple processes. One aim will be to show
that these properties actually extend to the limit, and so they are also true of the general
stochastic integral. However, we will also need some of these properties to show that the limit
exists. The main result is the following:

Lemma 3.3. Suppose ϕ,ψ ∈ S and α, β ∈ R, 0 ≤ s ≤ u ≤ t, t ∈ R+ ∪ {∞}. Then

i)
∫ t
s ϕr dWr =

∫ u
s ϕr dWr +

∫ t
u ϕr dWr.

ii)
∫ t
s (αϕr + βψr) dWr = α

∫ t
s ϕr dWr + β

∫ t
s ψr dWr.

iii) E
[∫ t
s ϕr dWr

]
= E

[∫ t
s ϕr dWr|Fs

]
= 0.

iv) t 7→
∫ t

0 ϕr dWr is a continuous, adapted process.

v) (Itô Isometry:) E
[(∫ t

0 ϕu dWu

)2
]

= E
[∫ t

0 ϕ
2
u du

]
.

We leave the proofs of many of these to a question sheet. Here we show v). Q2.3

Proof of v). Since ϕt is a simple function, we can write ϕu =
∑N−1

i=0 ϕti1[ti,ti+1)(u) for some
sequence 0 = t0 ≤ t1 ≤ · · · ≤ tN = t. Then we have:

E

[(∫ t

0
ϕu dWu

)2
]

= E

(N−1∑
i=0

ϕti
(
Wti+1 −Wti

))2


= E

N−1∑
i,j=0

ϕtiϕtj∆Wi∆Wj


where ∆Wi = Wti+1 −Wti . Now consider i 6= j with i < j say. Then

E
[
ϕtiϕtj∆Wi∆Wj

]
= E

[
E
[
ϕtiϕtj∆Wi∆Wj |Ftj

]]
= E

[
ϕtiϕtj∆WiE

[
∆Wj |Ftj

]]
= E

[
ϕtiϕtj∆WiE [∆Wj ]

]
= 0

where we have used the Tower property in the first line, the fact that ϕti , ϕtj and ∆Wti are all
known at time tj , and finally the fact that ∆Wj is independent of Ftj , and has mean zero.

For i = j, the terms in the sum simplify to:

E
[
ϕ2
ti(∆Wi)

2
]

= E
[
ϕ2
tiE
[
(∆Wi)

2|Fti
]]

= E
[
ϕ2
tiE
[
(∆Wi)

2
]]

= E
[
ϕ2
ti(ti+1 − ti)

]
= E

[∫ ti+1

ti

ϕ2
u du

]
.
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So

E

[(∫ t

0
ϕu dWu

)2
]

= E

∑
i=j

+
∑
i 6=j

ϕtiϕtj∆Wi∆Wj


=
∑
i

E
[∫ ti+1

ti

ϕ2
u du

]
= E

[∫ t

0
ϕ2
u du

]
.

3.3 Itô Isometry and the Stochastic Integral

Throughout this section, we assume that T ∈ R+∪{∞} is fixed and with slight abuse of notation,

write V for the set of processes defined on [0, T ] such that E

[
T∫
0

ϕ2
t dt

]
< ∞. We assume that

W is a standard Brownian motion.

The key idea is now to use the Itô isometry to extend the integral from S to V. An important
point is that, for simple integrands, we have a map from S to the integral

∫ t
0 ϕu dWu, which is

an element of the metric space L2(P), where

L2(P) := {X : Ω→ R|E
[
X2
]
<∞},

which is complete, that is, every Cauchy sequence converges, or equivalently E
[
|Xn −Xm|2

]
→ 0

as m,n→∞ implies Xn → X, some X ∈ L2(P).

To exploit this fact, we look for a sequence ϕn ∈ S approximating ϕ ∈ V, such that both

E
[∫ T

0
(ϕnu − ϕu)2 du

]
→ 0, and E

[∫ T

0
(ϕnu − ϕmu )2 du

]
→ 0

as n,m→∞. Then, by the completeness of L2(P) and the Itô Isometry, there exists a limit of

the sequence
∫ T

0 ϕnu dWu, and we can define the integral of ϕ to be this limit. With this aim in
mind, we have:

Theorem 3.4. Let ϕ ∈ V. Then there exists a sequence ϕn ∈ S such that

lim
n→∞

E
[∫ T

0
(ϕu − ϕnu)2 du

]
= 0. (10)

Moreover I := limn→∞
∫ T

0 ϕnu dWu exists (in L2(P)) and is independent of the choice of the
sequence ϕn.

A full proof of this result is technical and difficult. We refer the reader to [1, Lemma 3.2.4] for
complete details. We sketch the proof here:

Sketch Proof. We first prove the existence of a suitable approximating sequence in three steps:

i) Suppose ϕ ∈ V is bounded (i.e. ϕt(ω) ≤ M for all t and almost all ω) and continuous in
t, for each ω. Then taking tni := i2−n, we have

ϕnt :=
∑
i

ϕtni 1[tni ,t
n
i+1)(t)

defines a process in S, and (10) holds by bounded convergence.

Please e-mail any comments/corrections/questions to: a.m.g.cox@bath.ac.uk.
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ii) Suppose ϕ ∈ V is bounded. Define

ϕnt := n

∫ t

(t−1/n)∨0
ϕu du.

Then (it can be shown — this is not trivial) ϕn ∈ V, ϕn is continuous and (10) holds.
iii) Finally, consider a general ϕ ∈ V. Then this can be approximated by bounded ϕn ∈ V by

taking
ϕnt = (−n) ∨ (n ∧ ϕt),

and we have convergence in the sense of (10) by dominated convergence.

By combining each of the three steps, we are able to provide an approximating sequence of ϕ
by elements of S.

Moreover, for ϕ,ψ, ξ ∈ V, we have:

E
[∫ T

0
(ϕu − ψu)2 du

]
≤ 2E

[∫ T

0
(ϕu − ξu)2 du

]
+ 2E

[∫ T

0
(ξu − ψu)2 du

]
where we have used the identity (x− y)2 ≤ 2(x− z)2 + 2(y − z)2. It follows immediately that,
whenever (10) holds, then

E
[∫ T

0
(ϕmu − ϕnu)2 du

]
→ 0 as m,n→∞.

In particular, if we write In :=
∫ T

0 ϕnu dWu, then, by the Itô Isometry for simple processes, and
the fact that ϕn − ϕm is also simple:

E
[
(In − Im)2

]
= E

[∫ T

0
(ϕnu − ϕmu )2 du

]
→ 0 as m,n→∞.

Hence In forms a Cauchy sequence in L2(P), which is a complete space, and so In converges to
a limit, I ∈ L2, say.

Finally, suppose ϕn, ϕ̃n are both sequences of simple functions, approximating ϕ ∈ V. By the
argument just given, these sequences both converge to limits I and Ĩ, say. Consider also the
sequence ψn obtained by interleaving these sequences. This sequence also converges to ϕ in
the sense of (10), and so the corresponding integrals must converge in L2(P) to some limit I ′.
It follows immediately that I ′ = I = Ĩ, and so the limit is independent of the approximating
sequence chosen.

Definition 3.5. Let ϕ ∈ V, fix T > 0. Then the Itô integral of ϕ from 0 to T is defined to be∫ T

0
ϕu dWu = lim

n→∞

∫ T

0
ϕnu dWu,

where the limit is in L2(P), and ϕnu ∈ S is a sequence of simple processes satisfying (10).

Corollary 3.6 (Itô Isometry). If ϕ ∈ V, then

E

[(∫ T

0
ϕu dWu

)2
]

= E
[∫ T

0
ϕ2
u du

]
.

Proof. This now follows immediately from the definition of the stochastic integral and the fact
that if Xn → X in L2(P), then E

[
X2
n

]
→ E

[
X2
]
.
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Example 3.7. Recall the example at the start of this chapter, where we tried to compute∫ 1
0 Ws dWs. Let tNj := jN−1, and set ϕNt :=

∑
jWtNj

1[tNj ,t
N
j+1)(t). Then ϕN ∈ S, and it is not

hard to show:

E
[∫ 1

0

(
ϕNu −Wu

)2
du

]
→ 0 as N →∞.

But in (7) we showed∫ 1

0
ϕNu dWu =

N−1∑
j=0

WtNj
(WtNj+1

−WtNj
) =

1

2
(W 2

1 −W 2
0 )− 1

2

N−1∑
k=0

(WtNk+1
−WtNk

)2,

and we know from Theorem 2.7 that the right hand side converges in L2(P) to 1
2(W 2

1 −W 2
0 )− 1

2 .
It follows therefore that ∫ 1

0
Wu dWu =

1

2
(W 2

1 −W 2
0 )− 1

2
,

and more generally, it is easy to check that∫ t

0
Wu dWu =

1

2
(W 2

t −W 2
0 )− 1

2
t.

iPython Interlude: Go To Notebook

Finally, we observe that:

Corollary 3.8. All the properties of Lemma 3.3 hold for ϕ ∈ V.

In general, these results hold in a very similar manner to the proof of Corollary 3.6, see the
example sheet. The one non-trivial statement is the claim that the stochastic integral is con- Q2.3
tinuous as a function of t — in fact, this statement should be more carefully stated as: there
exists a modification of the stochastic integral which is continuous (so far, we have only defined
the stochastic integral for fixed T > 0, and as a limit). In future, we will always assume that
the continuous modification of the stochastic integral has been chosen. See the example sheet
for more details. Q2.8

3.4 Stratonovich Integral

Recall the discussion at the start of this chapter. In particular, we showed that there were
different integrals depending on how we chose to approximate the integrand in the limiting sum.
The Itô integral arose when we chose the left-hand endpoint of the interval [ti, ti+1]. A more
appropriate choice might have been to consider the limit of the sums:∑

i

(
ϕti + ϕti+1

2

)(
Wti+1 −Wti

)
(11)

rather than ∑
i

ϕti
(
Wti+1 −Wti

)
.

It is possible to show6, under certain conditions, that the term in (11) converges to a limit in
probability, which we denote

∫ t
0 ϕu ◦dWu. We call this limit the Stratonovich Integral of ϕu.

6Indeed, we can also consider the approximation
∑
i ϕt∗i

(
Wti+1 −Wti

)
, where t∗i = (ti + ti+1), and this gives

the same result, as does any similar choice which ‘averages’ out to give t∗i over [ti, ti+1].
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Theorem 3.9. Suppose ϕ ∈ V, and the Stratonovich integral exists. Then∫ T

0
ϕu ◦ dWu =

∫ T

0
ϕu dWu +

1

2
〈ϕ,W 〉T ,

where
〈ϕ,W 〉T := lim

∑(
ϕti+1 − ϕti

) (
Wti+1 −Wti

)
is the (quadratic) covariation of ϕ,W , and the limit is in the sense of convergence in proba-
bility, along partitions with mesh going to zero.

Remark 3.10. Observe that the quadratic variation 〈X〉T is equal to the covariation of X
with itself, 〈X,X〉T . Moreover, the quadratic covariation, 〈ϕ,W 〉 can be defined in terms of the
quadratic variation, using the polarisation identity:

〈φ,W 〉T =
1

4
[〈ϕ+W 〉T − 〈ϕ−W 〉T ] .

In a specific modelling situation, it now becomes important to understand which of the integrals,
the Itô integral, or the Stratonovich integral, is the relevant integral. In practice, this needs a
careful understanding of the application, and exactly how the integral arises. For example, in
financial applications, one often uses the stochastic integral to model the value of a portfolio,
where one integrates against the value of some asset, and φs becomes the number of units held.
Since one cannot know the price in the future, the Itô integral becomes more relevant. On the
other hand, for some physical processes, or for applications in filtering, the Stratonovich integral
turns out to be more useful. In addition, there are some technical advantages to each integral:

• The Itô integral has certain advantages from a technical perspective (in particular, it can
be defined in more general situations).
• The Itô integral of an integrand against a martingale preserves the martingale property.

This can be extremely useful for computing expectations.
• The Stratonovich has a nice chain rule: see the problem sheet, and Section 4 for further Q2.6

discussion on ‘chain-rules’ for stochastic integrals.

3.5 Stochastic integration in higher dimensions

Let W =
(
W 1, . . . ,W d

)
be a d-dimensional Brownian motion, and let Vn×d denote the set of

n× d matrices, ϕt :=
(
ϕijt

)
, where ϕijt ∈ V for each i, j.

Then we define the n-dimensional stochastic integral

It :=

∫ t

0
ϕu dW u =


I1
t

I2
t
...
Int

 ∈ Rn,

where Iit =
∑d

j=1

∫ t
0 ϕ

ij
u dW j

u .
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4 Stochastic Calculus

In this section we introduce some rules to manipulate the stochastic integral. As usual, we
consider a standard Brownian motion, Wt, and consider processes of the form:

Xt = X0 +

∫ t

0
αu du+

∫ t

0
ϕu dWu.

Our aim is to understand the process f(t,Xt) for such an Xt.

Our first observation is that we can weaken slightly the assumption on ϕ, so that this is no
longer in V. Specifically, consider a process ϕ which is adapted, and such that

P
(∫ t

0
ϕ2
u du <∞, ∀t ≥ 0

)
= 1, (12)

so that this class contains V as a subset, since ϕ ∈ V implies that
∫∞

0 ϕ2
u du <∞ almost surely.

On the other hand, given ϕu satisfying (12), we can define ϕNu ∈ V by:

ϕNt :=

{
ϕt

∫ t
0 ϕ

2
u du ≤ N

0
∫ t

0 ϕ
2
u du > N

it is easily checked that ϕNt ∈ V. Moreover, it is easy to show that
∫ t

0 ϕ
N
u dWu =

∫ t
0 ϕ

N ′
u dWu

whenever
∫ t

0 ϕ
2
u du ≤ max{N,N ′}, since we may take approximating sequences of simple func-

tions for ϕN and ϕN
′

which agree on this event. Hence, limN→∞
∫ t

0 ϕ
N
u dWu is well defined for

all t ≥ 0, whenever
∫ t

0 ϕ
2
u du ≤ N for some N . By (12), this is a set of probability 1, so we can

define
∫ t

0 ϕu dWu to be the limit in probability of the sequence
∫ t

0 ϕ
N
u dWu.

However, we note that this sequence may not converge in L2(P). Q3.8

Denote the set of adapted processes satisfying (12) by H. Moreover, write Ĥ for the class of
adapted processes αu for which the integral of the absolute value is almost surely finite for all
t, i.e. αt ∈ Ĥ if and only if:

P
(∫ t

0
|αu| du <∞,∀t ≥ 0

)
= 1. (13)

We note that it can be shown that any ϕ ∈ H and α ∈ Ĥ can be approximated by simple
functions such that

∫ t
0 |ϕ

N
u − ϕu|2 du converges to zero in probability, and then the limit of the

integrals of the simple functions converge in probability to the integral of ϕu as above (and
hence, uniquely).

The reason for doing this is that we can now define a class of processes Xt which are represented
as integrals in time and a stochastic integral:

Definition 4.1. A (one-dimensional) Itô process is a stochastic process on R of the form:

Xt = X0 +

∫ t

0
αu du+

∫ t

0
ϕu dWu, (14)

for some process ϕ ∈ H and α ∈ Ĥ.

We will sometimes also refer to such a process as a stochastic integral.
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Then, for example, Wt ∈ H, and 1/2 ∈ Ĥ, so

W 2
t

2
=
W 2

0

2
+

∫ t

0

1

2
du+

∫ t

0
Wu dWu

and hence W 2
t /2 is an Itô process. We often write this in the abbreviated form:

d

(
W 2
t

2

)
=

1

2
dt+Wt dWt,

or more generally, (14) becomes:

dXt = αt dt+ ϕt dWt.

Note also that the choice of X0 in (14) can be treated as an ‘initial condition’, so we may often
look at an equation of the form above with the initial condition X0 = x0, for some constant x0.
In some situations, we may also be interested in a random starting point, so X0 may be given as
some random variable (in which case, we need the randomness to be included in the information
available at time 0).

With this in mind, we are able to extend the notion of a stochastic integral against Brownian
motion to the case where our integrand is an Itô process:

Definition 4.2. Let Xt be an Itô process with representation

Xt = X0 +

∫ t

0
αu du+

∫ t

0
ϕu dWu,

and suppose ψu is an adapted process in the set

H[X] :=

{
ψ :

∫ t

0
|αuψu| du+

∫ t

0
(ϕuψu)2 du <∞,P− as for all t ≥ 0

}
.

Then we define Yt :=
∫ t

0 ψu dXu by

Yt =

∫ t

0
ψuαu du+

∫ t

0
ψuϕu dWu.

Remark 4.3. Taking this definition, we can extend the stochastic integral to the set of Itô
processes. Of course, a natural question is whether this still corresponds to our original definition
for Brownian motion, and this can indeed be shown: if ψ ∈ H[X], and ψn is a sequence of simple
processes in H[X] such that

∫ t
0 (ψnu − ψu)2ϕ2

u du→ 0 and
∫ t

0 |ψu − ψ
n
u |αu du→ 0 in probability,

for all t ≥ 0, then the limit in probability of the discrete sums:∑
i

ψnti(Xti+1 −Xti)

exists in probability, and agrees with the integral defined above.7

Note also the following corollary:

Corollary 4.4. Let X be an Itô process, and for ψ ∈ H[X] define Y :=
∫
ψu dXu. Then Yt is

an Itô process, and if ξ ∈ H[Y ], then ξuψu ∈ H[X] and∫
ξu dYu =

∫
ξuψu dXu.

7The approach we take here is slightly non-standard. It is more common to define the integral in general in this
manner, and then to show that as a consequence, the integral against an Itô process has this defining property.
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4.1 Ito’s Lemma

The main reason for considering Itô processes is that this class of processes are closed when we
apply a (suitably nice) function to the process, and moreover, we can explicitly compute their
form:

Theorem 4.5 (Itô’s Lemma). Let Xt be an Itô process given by (14), and suppose g ∈ C2([0,∞)×
R) (i.e. g(t, x) is twice continuously differentiable in both t and x). Then

Yt := g(t,Xt)

is an Itô process, and

dYt =

(
∂g

∂t
(t,Xt) + αt

∂g

∂x
(t,Xt) +

1

2
ϕ2
t

∂2g

∂x2
(t,Xt)

)
dt+ ϕt

∂g

∂x
(t,Xt) dWt. (15)

An important interpretation of (15) is the following: we know from Theorem 2.7, that (roughly)
dWt ∼

√
dt and (dWt)

2 ∼ dt, so e.g. dWt dt ∼ (dWt)
3 ∼ (dt)3/2, and hence we might expect

these latter terms to be zero, so:

(dXt)
2 = (αt dt+ ϕt dWt)

= α2
t dt2 + 2αtϕt dWt dt+ ϕ2

t (dWt)
2

= ϕ2
t dt.

It is easy then to check that (15) is exactly what we get if we expand

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

using these rules. The interpretation of the formula above is that this is the second order
Taylor expansion of g(t,Xt) over a small time step, and using the additional approximations
that (dt)2 = (dt dXt) = 0 (which are also consequences of similar expansions).

We prove the theorem under the slightly stronger assumption that g ∈ C3, but this is not
necessary.8

Proof of Theorem 4.5. We first observe that Yt is indeed an Itô process, and specifically, that
βt ∈ Ĥ, ψ ∈ H, where:

βt :=
∂g

∂t
(t,Xt) + αt

∂g

∂x
(t,Xt) +

1

2
ϕ2
t

∂2g

∂x2
(t,Xt)

ψt := ϕt
∂g

∂x
(t,Xt).

Note first that to show (12), (13), it is sufficient to show e.g. that
∫ t

0 ϕ
2
u du <∞ with probability

1 for all t > 0. So fix t > 0, and then our first observation is that, since Xt has continuous
paths, the sets

An := {ω : |Xu(ω)| ≤ n, ∀u ≤ t}

satisfy P(An)→ 1. It suffices therefore to verify (12), (13) for finite t, on each An. But now by
the continuity of the derivatives, each of the partial derivatives are bounded on [0, t]× [−n, n],

8See e.g. [1, Theorem 3.3]; in fact, we only require g ∈ C1,2([0,∞)× R) for the theorem to hold.
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and so it is sufficient to observe that, with probability 1, each of
∫ t

0

(
1 + |αu|+ |ϕ2

u|
)

du and∫ t
0 ϕ

2
udu are all finite almost surely.

We first make some simplifying comments: first, by multiplying by a smooth function η(t, x)
such that η(t, x) = 1 for max{|x|, t} < N , and η(t, x) = 0 for max{|x|, t} > N + 1, we can
assume that g is bounded, and has bounded derivatives up to order 3.

Second, recalling the discussion at the start of the chapter, it is sufficient to show the result
when αt, ϕt are simple functions such that αu, ϕu are bounded. In particular, if we can take
a sequence of α,ϕ converging to some limits in probability, it follows from the assumption of
bounded derivatives, that the corresponding terms βt, ψt converge in probability, and hence the
integrals are indeed the same.

So we consider the case where αu, ϕu are simple, and consider a sequence of partitions Πn of [0, t],
0 = tn0 ≤ tn1 ≤ · · · ≤ tnmn = t such that α,ϕ are constant for t ∈ [tni , t

n
i+1) (so in particular, these

are all refinements of the usual partitions associated with α,ϕ). We then consider a sequence
with ||Πn|| → 0 as n→∞.

Write αj,n = αtnj , ϕj,n = ϕtnj , ∆tj,n = tnj+1 − tnj , ∆Xj,n = Xtnj+1
− Xtnj

,∆Wj,n = Wtnj+1
−Wtnj

,
and then by Taylor’s Theorem

g(t,Xt) = g(0, X0) +

mn−1∑
j=0

(
g(tnj+1, Xtnj+1

)− g(tnj , Xtnj
)
)

= g(0, X0) +

mn∑
j=0

∂g

∂t
(tnj , Xtnj

)∆tj,n +

mn∑
j=0

∂g

∂x
(tnj , Xtnj

)∆Xj,n

+
1

2

mn∑
j=0

∂2g

∂t2
(tnj , Xtnj

)(∆tj,n)2 +

mn∑
j=0

∂2g

∂t∂x
(tnj , Xtnj

)(∆tj,n)(∆Xj,n)

+
1

2

mn∑
j=0

∂2g

∂x2
(tnj , Xtnj

)(∆Xj,n)2 +

mn∑
j=0

Rj

where Rn are remainder terms, in particular, Rj = o(|∆tj,n|2 + |∆Xj,n|2), uniformly over j, n by
the assumption that g ∈ C3.

As we let n→∞, so ∆tj,n → 0, we get the convergence in probabilities of:

mn∑
j=0

∂g

∂t
(tnj , Xtnj

)∆tj,n →
∫ t

0

∂g

∂t
(u,Xu) du and

mn∑
j=0

∂g

∂x
(tnj , Xtnj

)∆Xj,n →
∫ t

0

∂g

∂x
(u,Xu) dWu

by the fact that ∂g
∂t is bounded, and Remark 4.3. Also

∑mn
j=0Rj → 0 in probability.

Since ∂2g
∂t2

is bounded (by g∗ say), we also have
∑mn

j=0

∣∣∣∂2g∂t2
(tnj , Xtnj

)(∆tj,n)2
∣∣∣ ≤ g∗||Πn||t→ 0, and

also
mn∑
j=0

∂2g

∂t∂x
(tnj , Xtnj

)(∆tj,n)1[tnj ,t
n
j+1)(t)→ 0

in the sense of Remark 4.3, so that also this term converges to zero.

Finally, we need to consider the term
∑mn

j=0
∂2g
∂x2

(tnj , Xtnj
)(∆Xj,n)2. By assumption, since α,ϕ are
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simple functions, we have:

mn∑
j=0

∂2g

∂x2
(tnj , Xtnj

)(∆Xj,n)2 =

mn∑
j=0

∂2g

∂x2
(tnj , Xtnj

)(αj,n∆tj,n + ϕj,n∆Wj,n)2

=

mn∑
j=0

∂2g

∂x2
α2
j,n(∆tj,n)2 + 2

mn∑
j=0

∂2g

∂x2
αj,n(∆tj,n)ϕj,n(∆Wj,n)

+

mn∑
j=0

∂2g

∂x2
ϕ2
j,n(∆Wj,n)2.

Again, we observe that for the first term on the right hand side,
∑mn

j=0
∂2g
∂x2

α2
j,n(∆tj,n)2, by

boundedness of the g and α terms, this converges to zero as ∆t → 0. Moreover, by a similar
reasoning to above, using Remark 4.3, the second term goes to zero. It only remains to consider

the final term. Write γt := ∂2g
∂x2

(t,Xt)ϕ
2
t , and γj,n := γtnj . We show the convergence in L2(P):

mn∑
j=0

γj,n(∆Wj,n)2 →
∫ t

0
γu du.

The argument follows closely that of Theorem 2.7. Consider:

E

mn∑
j=0

γj,n(∆Wj,n)2 −
mn∑
j=0

γj,n(∆tj,n)

2
=
∑
i,j

E
[
γj,nγi,n

(
(∆Wj,n)2 −∆tj,n

) (
(∆Wi,n)2 −∆ti,n

)]
=
∑
j

E
[
γ2
j,n

(
(∆Wj,n)2 −∆tj,n

)2]
=
∑
j

E
[
γ2
j,n

]
E
[(

(∆Wj,n)2 −∆tj,n
)2]

= 2
∑
j

E
[
γ2
j,n

]
(∆tj,n)2 → 0.

Here, we have used in the second line the tower property, and the fact that

E
[(

(∆Wj,n)2 −∆tj,n
)]

= 0

(see also Theorem 2.7 for a similar calculation with extra details). Then the subsequent line
follows by independence of the Brownian increment, and adaptedness of γ. Next we use the

fact that E
[(

(∆Wj,n)2 −∆tj,n
)2]

= 2(∆tj,n)2, which was proved in Theorem 2.7. Finally,∑mn
j=0 γj,n(∆tj,n)→

∫ t
0 γs ds in L2(P), since γs is bounded, and ∆tj,n → 0 as n→∞.

Example 4.6. As a very simple example, we consider the case where Yt = W 2
t , so f(t, x) = x2

and Xt = Wt. Then we get:

dYt =
∂f

∂x
(t,Wt) dWt +

1

2

∂2f

∂x2
(dWt)

2 = 2Wt dWt + dt

which we can integrate to get the (by now) familiar:

W 2
t = W 2

0 + 2

∫ t

0
Ws dWs + t.
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4.2 Multi-dimensional Itô formula

Let W be a d-dimensional Brownian motion, and consider the n-dimensional process αt =
(α1

t , . . . , α
n
t ) and the n × d-dimensional process ϕt = (ϕi,jt )1≤i≤n,1≤j≤d, such that αi ∈ Ĥ,

ϕi,j ∈ H. Then we define the n-dimensional Itô process Xt = (X1
t , X

2
t , . . . , X

n
t ) by

dXi
t = αit dt+ ϕi,1t dW 1

t + · · ·+ ϕi,dt dW d
t , (16)

or in matrix notation,
dXt = αt dt+ϕt dW t. (17)

Then there is a multi-dimensional version of Itô’s Lemma, which states:

Theorem 4.7. Suppose Xt is a n-dimensional Itô process, given by (17). Let g : [0,∞) ×
Rn → Rm be a C2 function. Then Y t := g(t,Xt) is an m-dimensional Itô process, given by
(Y 1
t , . . . , Y

m
t ), where

dY i
t =

∂gi
∂t

(t,Xt) dt+

n∑
j=1

∂gi
∂xj

(t,Xt)dX
j
t +

1

2

n∑
j,k=1

∂2gi
∂xj∂xk

(t,Xt) dXj
t dXk

t , (18)

where g(t, x) = (g1(t, x), . . . , gm(t, x)), and where dXj
t dXk

t are computed by expanding (16), and
using the rules:

dW j
t dW k

t = δj,k dt, dW j
t dt = dt dW j

t = (dt)2 = 0. (19)

In essence, this result is proved in the same manner as the one-dimensional version of the result.
The main additional concern comes from the ‘cross’-terms, ∆W j∆W k. In particular, we have
an additional term (as in the proof of Theorem 4.5) of the form

∑mn
i=0 γi,n(∆W j

i,n)(∆W k
i,n). In

the case where j = k, this converges as above to the time-integral of γ, and hence the claim
dW j

t dW j
t = dt is justified.

In the case where j 6= k, we consider

E

(mn∑
i=0

γi,n(∆W j
i,n)(∆W k

i,n)

)2
 = E

 mn∑
i,l=0

γi,nγl,n(∆W j
i,n)(∆W k

l,n)(∆W j
l,n)(∆W k

i,n)


=

mn∑
i=0

E
[
γ2
i,n(∆W j

i,n)2(∆W k
i,n)2

]
=

mn∑
i=0

E
[
γ2
i,n

]
(∆ti,n)2

where in the second line, we use the independence of the increments of W j and W k (recall,
these are assumed independent processes), and the Tower property, and in the final line, we use

independence, and conditioning again (since E
[
(∆W j

i,n)2
]

= E
[
(∆W k

i,n)2
]

= ∆ti,n). It follows

from the convergence of the mesh of the partition to zero that this last term goes to zero.

4.3 Integration by Parts

We can deduce from the multi-dimensional Itô formula a particularly useful one-dimensional
result: let Xt, Yt be Itô processes, say:

dXt = αt dt+ ϕt dWt

dYt = βt dt+ ψt dWt.
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Then we can apply Theorem 4.7 in the case where n = 2 and d = 1, with g(t, x, y) = xy to get
the Integration by Parts formula:

d(XtYt) = Xt dYt + Yt dXt + dXt dYt

where dXt dYt is computed using the usual rules:

dWt dWt = dt, dWt dt = dt dWt = (dt)2 = 0. (20)

In particular, we have:

XtYt = X0Y0 +

∫ t

0
Xs dYs +

∫ t

0
Ys dXs +

∫ t

0
ϕsψs ds.

4.4 Rules of Stochastic Calculus

We summarise here the previous results, and how they allow us to manipulate Itô processes:

Suppose Xt and Yt are Itô processes with representation

dXt = αt dt+ ϕt dWt

dYt = βt dt+ ψt dWt

where all processes are assumed to be sufficiently well-behaved. Then:
• Zt =

∫ t
0 γs dXs is given by

dZt = γt dXt = γt(αt dt+ ϕt dWt) = γtαt dt+ γtϕt dWt.

• Itô’s Lemma:

dg(t,Xt) =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

where (dXt)
2 can be calculated using the rules:

dWt dWt = dt, dWt dt = dt dWt = (dt)2 = 0.

Note in particular that this is essentially a formal Taylor expansion of g, combined with
these rules. The general (multi-dimensional) version can be derived in an identical
manner.
• Integration by parts:

d(XtYt) = Xt dYt + Yt dXt + dXt dYt

where, again, dXt dYt can be calculated using the same rules as above.
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5 Stochastic Differential Equations

We now return to the study of equations with an unknown X appearing on both sides. Specifi-
cally, we say that Xt solves the Stochastic Differential Equation (SDE):

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x0 (21)

if Xt = x0 +
∫ t

0 µ(s,Xs) ds+
∫ t

0 σ(s,Xs) dWs for the given functions µ, σ. Note that we can have
x0 to be a random variable, usually assumed independent of the Brownian motion Wt.

5.1 Simple Examples

Example 5.1 (Geometric Brownian Motion). Fix µ ∈ R, x0, σ > 0. Let Xt be given by

Xt = x0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
so Xt = f(t,Wt) where f(t, x) = x0 exp{(µ− 1

2σ
2)t+ σx}. Then

∂f

∂x
= σf(t, x),

∂2f

∂x2
= σ2f(t, x)

∂f

∂t
=

(
µ− 1

2
σ2

)
f(t, x).

So, by Itô’s Lemma, Theorem 4.5, we have:

dXt = df(t,Wt)

=

(
µ− 1

2
σ2

)
f(t,Wt) dt+ σf(t,Wt) dWt +

1

2
σ2f(t,Wt) (dWt)

2

= µXt dt+ σXtdWt.

In particular, this process satisfies an SDE with µ(t, x) = µx, σ(t, x) = σx, and we call such a
process Geometric Brownian motion.

Example 5.2 (Ornstein Uhlenbeck process). Let λ, σ ∈ R. Consider the process

Yt = σ

∫ t

0
eλs dWs.

Then dYt = σeλt dWt. Now consider Xt := e−λtYt. By Itô’s Lemma (applied to f(t, y) = e−λty)
we have

dXt = e−λt dYt − λe−λtYt dt

= −λXt dt+ σ dWt.

In particular, we have Xt = e−λtx0 + σ
∫ t

0 e(s−t)λ dWs solves the SDE:

dXt = −λXt dt+ σ dWt, X0 = x0.

Example 5.3 (Exponential Martingales). Let

Xt = x0 exp

{∫ t

0
αs dWs −

1

2

∫ t

0
α2
s ds

}
, x0 ∈ R.
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Then, writing Yt =
∫ t

0 αs dWs − 1
2

∫ t
0 α

2
s ds, we get Xt = x0 exp(Yt), and so by Itô’s Lemma,

dXt = Xt dYt +
1

2
Xt (dYt)

2

= Xt(αt dWt −
1

2
α2
t dt) +

1

2
Xt

(
αt dWt −

1

2
α2
t dt

)2

= Xtαt dWt +

(
1

2
− 1

2

)
α2
tXt dt

= Xtαt dWt.

Note that, provided E
[∫ t

0 α
2
tX

2
t dt

]
<∞, we have:

E
[∫ t

0
αsXs dWs

]
= 0

by Corollary 3.6, so:

E [Xt] = E
[
x0 exp

{∫ t

0
αs dWs −

1

2

∫ t

0
α2
s ds

}]
= E

[
X0 +

∫ t

0
αsXs dWs

]
= E [X0] = x0.

Example 5.4 (Integrals of deterministic processes). Let Xt = x0 +
∫ t

0 α(s) ds +
∫ t

0 ϕ(s) dWs,
where α(s) and ϕ(s) are deterministic functions. Then we will show

Xt ∼ N(x0 +

∫ t

0
α(s) ds,

∫ t

0
ϕ(s)2 ds).

Proof. We use the following fact about the moment generating function of a random variable Z:

Z ∼ N(µ, σ2) ⇐⇒ E
[
eηZ
]

= eηµ+ 1
2
η2σ2 ∀η ∈ R.

Consider Yt = exp{ηXt}. Then

dYt = ηYt dXt +
1

2
η2Yt (dXt)

2

= ηYtα(t) dt+ ηYtϕ(t) dWt +
1

2
η2Ytϕ(t)2 dt

that is:

Yt = Y0 +

∫ t

0

(
ηα(s) +

1

2
η2ϕ(s)2

)
Ys ds+

1

2

∫ t

0
ηYsϕ(s) dWs.

Assuming that E
[∫ t

0 η
2ϕ(s)2Y 2

s ds
]
< ∞ (it is. . . ) then the stochastic integral term has zero

expectation. So

E [Yt] = exp{x0η}+

∫ t

0
E [Ys]

(
ηα(s) +

1

2
η2ϕ(s)2

)
ds
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or

d

dt

{
E
[
eηXt

]}
= E

[
eηXt

](
ηα(t) +

1

2
η2ϕ(t)2

)
which has solution

E
[
eηXt

]
= exp

{(
x0 +

∫ t

0
α(s) ds

)
η +

1

2
η2

∫ t

0
ϕ(s)2 ds

}

5.2 Existence and Uniqueness of Solutions to SDEs

The class of solutions to SDEs have important and useful properties, as demonstrated by the
examples above. To work with these objects, it will be useful to first establish existence and
uniqueness of SDEs of the form (21).

First note that, even if we consider the simplification σ ≡ 0, where we get a ‘classical’ ODE,
things can still go wrong with both existence and uniqueness:

i) Consider the ODE: dXt
dt = X2

t , with X0 = 1. Then we get the ‘solution’ Xt = 1
1−t for

0 ≤ t < 1, which explodes at time 1. Hence there is no global solution on [0,∞).

ii) Consider the ODE: dXt
dt = 3X

2/3
t , Xt = 0. Then the functions

Xt =

{
0 t ≤ a
(t− a)3 t > a

solve the ODE for any a ≥ 0: hence there is no unique solution.

In the classical theory, it is usual to put a Lischitz condition on the function in the ODE to get
well-behaved solutions, and this is essentially the approach we need to take here:

Theorem 5.5. Let T > 0 and suppose µ, σ : [0, T ]× R→ R are functions such that

i) there exists a constant C ≥ 0 for which

|µ(t, x)|+ |σ(t, x)| ≤ C(1 + |x|), ∀x ∈ R, t ∈ [0, T ]; (22)

ii) and there exists a constant D ≥ 0 for which

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|, ∀x, y ∈ R, t ∈ [0, T ]. (23)

In addition, let Z be a r.v. such that E
[
Z2
]
<∞, and such that Z is independent of (Wt)t≥0.

Then there exists a unique t-continuous solution to (21) with X0 = Z and such that Xt depends
only on Z, (Ws)s≤t and

E
[∫ T

0
X2
s ds

]
<∞.

The version of the theorem given above is stated for the case of a one-dimensional process, but
the result easily extends to higher dimensional processes.
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Proof. We first show uniqueness. For slight additional generality, we consider initially the case
where we have two solutions Xt, X

′
t to (21) with possibly different starting values, X0 = Z,X ′0 =

Z ′. Then, writing µs = µ(s,Xs) and µ′s = µ(s,X ′s), etc.:

E
[
(Xt −X ′t)2

]
= E

[(
Z − Z ′ +

∫ t

0
(µs − µ′s) ds+

∫ t

0
(σs − σ′s) dWs

)2
]

≤ 3E
[
(Z − Z ′)2

]
+ 3E

[(∫ t

0
(µs − µ′s) ds

)2
]

+ 3E

[(∫ t

0
(σs − σ′s) dWs

)2
]

≤ 3E
[
(Z − Z ′)2

]
+ 3tE

[∫ t

0
(µs − µ′s)2 ds

]
+ 3E

[∫ t

0
(σs − σ′s)2 ds

]
≤ 3E

[
(Z − Z ′)2

]
+ 3(1 + t)D2

∫ t

0
E
[
(Xs −X ′s)2

]
ds.

Writing m(t) = E
[
(Xt −X ′t)2

]
we have

m(t) ≤ 3E
[
(Z − Z ′)2

]︸ ︷︷ ︸
C1

+ 3(1 + T )D2︸ ︷︷ ︸
C2

∫ t

0
m(s) ds

for some constants C1, C2. By Gronwall’s Inequality9 we get: m(t) ≤ C1eC2t, and in the case
where C1 = 0, we in addition have m(t) = 0 for all t ∈ [0, T ].

It follows that Xt = X ′t almost surely at every rational, and by the continuity of paths, we
therefore have almost sure equality of the paths (i.e. X, X ′ are indistinguishable).

We now consider the existence of solutions. Our proof will follow a similar structure to the
classical proof of existence of solutions to ODEs.

We iteratively define a sequence of stochastic processes by: Y
(0)
t = X0, and

Y
(k+1)
t = X0 +

∫ t

0
µ(s, Y (k)

s ) ds+

∫ t

0
σ(s, Y (k)

s ) dWs.

By the same argument as above, we get:

E
[
(Y

(k+1)
t − Y (k)

t )2
]
≤ 3(1 + T )D2

∫ t

0
E
[
(Y

(k)
t − Y (k−1)

t )2
]

ds

for k ≥ 1, and

E
[
(Y

(1)
t − Y (0)

t )2
]
≤ 2C2t2(1 + E

[
X2

0

]
) + 2C2t(1 + E

[
X2

0

]
) ≤ A1t

where A1 is a constant depending only on T,C,E
[
X2

0

]
.

By induction on k, we get

E
[
(Y

(k+1)
t − Y (k)

t )2
]
≤ Ak+1

2 tk+1

(k + 1)!

9Gronwall’s Inequality: If m(t) ≤ u(t) +
∫ t
0
m(s)v(s) ds for continuous functions m, v, and non-decreasing

function u, and all t ≥ 0, then m(t) ≤ u(t)e
∫ t
0 v(s) ds for all t ≥ 0.
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for an additional constant A2. But then:

E
[∫ T

0
(Y (m)
s − Y (n)

s )2 ds

]1/2

= E

[∫ T

0

m−1∑
k=n

(Y (k+1)
s − Y (k)

s )2 ds

]1/2

≤
m−1∑
k=n

E
[∫ T

0
(Y (k+1)
s − Y (k)

s )2 ds

]1/2

≤
m−1∑
k=n

(∫ T

0

Ak+1
2 sk+1

(k + 1)!
ds

)1/2

≤
m−1∑
k=n

(
Ak+1

2 T k+2

(k + 2)!

)1/2

→ 0 as m,n→∞.

It follows that (Y n
t )t∈[0,T ] is a Cauchy sequence, and therefore that the limit exists. More-

over, by Hölder’s inequality and the Itô isometry, we get convergence of e.g.
∫ t

0 b(s, Y
n
s ) ds →∫ t

0 b(s, Ys) ds, and so the desired process exists, and has the required properties.

5.3 Weak and Strong Solutions to SDEs

Observe that, in the section above, we have the following interpretation of a solution to an
SDE: essentially, we assume that we are given a probability space on which there is a Brownian
motion, and based on this, we look to construct a solution which depends on this Brownian
motion, and which solves equation (21).

It turns out that this is a rather strong notion of solution. A weaker notion of solution might
allow us to construct a probability space on which there exists both a Brownian motion Wt, and
a process Xt satisfying (21). We call such a notion of solution a weak solution. As we shall see
below, there are examples of functions σ and µ such that it is not possible to construct a strong
solution, but it is possible to construct a weak solution. Observe that, from Theorem 5.5, if
there is no strong solution, then necessarily conditions (22) and (23) must not be satisfied.

From a modelling perspective, the latter form of solution may be more natural. Often we do
not think of the noise as a given external signal, which can be measured directly, but something
which may only be observable through its influence on the observed process Xt. In this case,
there is no reason to assume that Wt is observed independently of the process Xt, and so it may
be no loss of generality to assume that we only have a weak solution to (21).

Example 5.6 (The Tanaka SDE). The idea here is to consider the SDE:

dXt = sign(Xt) dWt, (24)

where sign(x) =

{
1 x ≥ 0

−1 x < 0
.

If Xt is a solution to this SDE, then we should be able to recover the process Wt, since:

dWt = sign(Xt)
2dWt = sign(Xt)dXt.

Moreover, if Xt solves (24), then Xt is also a Brownian motion10.

10This is Levy’s Theorem: if Xt is a continuous martingale with 〈X〉t = t, then Xt is a standard Brownian
motion. It is easy to check that these conditions hold for Xt given by (24).
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Now consider a Brownian motion, or more specifically, the approximation we get for N large
through Donsker’s Theorem and i.i.d. noise,

X̃n = X̃n−1 +

{
N−1/2 with probability 1

2

−N−1/2 with probability 1
2

so Xt = X̃btNc + (tN − btNc)(X̃btNc+1 − X̃btNc). Then we have

∫ t

0
sign(Xs) dXs ≈

bNtc−1∑
i=0

sign(X̃t)(X̃i+1 − X̃).

Now observe that this sum can be rewritten as:

bNtc−1∑
i=0

sign(X̃i)(X̃i+1 − X̃i) = |X̃bNtc| − |X̃0| − 2N−1/2

bNtc−1∑
i=0

1{X̃i = 0, X̃i+1 = −N−1/2}.

However, as N →∞, by the strong law of large numbers, we have

2

bNtc−1∑
i=0

1{X̃i = 0, X̃i+1 = −N−1/2} →
bNtc−1∑
i=0

1{X̃i = 0} =

bNtc−1∑
i=0

1{|X̃i| = 0}.

In particular,

bNtc−1∑
i=0

sign(X̃i)(X̃i+1 − X̃i)→ |X̃bNtc| − |X̃0| −N−1/2

bNtc−1∑
i=0

1{|X̃i| = 0}.

So
∫ t

0 sign(Xs) dXs should only depend on |Xs|, not Xs. Writing11

Lt := lim
N→∞

N−1/2

bNtc−1∑
i=0

1{|X̃i| = 0}

we have ∫ t

0
sign(Xs) dXs = |Xt| − |X0| − Lt,

where the right-hand side only depends on (|Xs|)s≤t, and not (Xs)s≤t.

Therefore, if there were a strong solution to (24), we would be able to follow the sequence of
constructive steps:

(Ws)s≤t 7−−−−−−−−−→∫
sign(Xt)dWt

(Xs)s≤t 7−−−−−−−−−→∫
sign(Xt)dXt

(Ws)s≤t

i.e. this is an invertible set of maps.

However, by the argument above, again assuming that there is a strong solution, we also can
map constructively by:

(Ws)s≤t 7−−−−−−−−−→∫
sign(Xt)dWt

(Xs)s≤t 7−−−−−−−−−→
|·|

(|Xs|)s≤t 7−−−−−−−−−→
|Xt|−|X0|−Lt

(Ws)s≤t

Again, we have an invertible sequence of mappings, however, by applying these in the correct
order, this implies that we can construct (Xs)s≤t from its absolute value (|Xs|)s≤t. However,

11This is a process called the Local time. It is essentially a measure of the time spent by the process at 0.
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there is no way that the sign of Xt can be inferred simply from its absolute value, and hence this
is not possible. In particular, the assumption that there exists a strong solution to (24) must
be false.

Finally, it is easy to see that we can construct a weak solution. Simply take a probability space
on which we have a Brownian motion, Xt, and define Wt by Xt = |Xt| − |X0| −Lt. Then by the
arguments above, Xt solves the SDE (24) in the weak sense, but not in the strong sense.
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6 Diffusion Processes

In this section, we analyse further the properties of solutions to SDEs of the form:

dXt = µ(t,Xt) dt+ σ(t,Xt) dWt, X0 = x0. (25)

We call solutions to these equations diffusions, and we call µ the drift coefficient and σ (or
sometimes, confusingly, 1

2σ
2) the diffusion coefficient.

More specifically, we often drop the time-dependence in the coefficients, and then:

Definition 6.1. A (time-homogenous) (Itô) diffusion is a process Xt such that

dXt = µ(Xt) dt+ σ(Xt) dWt, t ≥ s,Xs = x (26)

where |µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, for some constant D.

We denote the unique (strong) solution to (25) by (Xs,x
t )t≥s, and X0,x = Xx. Then in particular,

we expect the process (Xs,x
t ) to be time-homogenous, that is, (Xs,x

s+t)s≥0 and (X0,x
t )t≥0 should

have the same laws. We also write Ex [·] for the expectation of X0,x, i.e. given X0 = x.

Theorem 6.2 (Markov Property). We have

Ex [f(Xt+h)|Ft] = EXt [f(Xh)] (27)

We will not prove this result, but rather motivate this result: we have

Xt = X0 +

∫ t

0
σ(Xu) dWu +

∫ t

0
µ(Xu) du

=

(
X0 +

∫ s

0
σ(Xu) dWu +

∫ s

0
µ(Xu) du

)
︸ ︷︷ ︸

=Xs

+

∫ t

s
σ(Xu) dWu +

∫ t

s
µ(Xu) du,

so conditioning on Xs = x is essentially the same as starting at x at time s.

A stronger version of the Markov Property involves starting at random times.

Definition 6.3. A random time τ : Ω → [0,∞] is a stopping time if {τ ≤ t} ∈ Ft, i.e. we
know at time t if it has already happened.

For example:

τ1(ω) = inf{t ≥ 0
∣∣|Wt| ≥ x}

τ2(ω) = inf{t ≥ 0
∣∣2Wt ≥ x+ sup

s≤t
Ws}

are both stopping times, while

τ3(ω) = sup{t ≥ 0
∣∣Wt ≥ 2t}

is not a stopping time — we need to ‘see’ the future in order to know whether or not it has
happened at the current time.

Since stopping times are not able to see the future, we do not expect the behaviour up to a
stopping time τ to influence the future. In particular, we have:
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Theorem 6.4 (Strong Markov Property). It Xt is a (time-homogenous, Itô) diffusion, and τ
is a stopping time such that τ <∞ almost surely, then

Ex [f(Xτ+h)|Ft] = EXτ [f(Xh)]

where Fτ denotes the information available at the random time τ

MT
Strictly speaking, A ∈ Fτ if and only if A ∈ F and A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0.

The Strong Markov property can be described in words as:

‘The behaviour of the diffusion after a stopping time is
independent of the past, given the current position.’

6.1 Generators of diffusions and the Dynkin formula

There is an important connection between second order partial differential operators and diffu-
sions, which we now investigate.

Recall Questions Q1.2 and Q1.3 from Example Sheet 1. Here, we examined h−1 [Ex [f(Xh)]− f(x)]
for Brownian motion and the Brownian Bridge, and we were able to show that for example

lim
h↘0

Ex [f(Wh)]− f(x)

h
=

1

2
f ′′(x),

for ‘nice’ functions f . In the case of the Brownian Bridge, we obtained a (time-inhomogeneous)
limit: y−x

1−t f
′(x) + 1

2f
′′(x).

Definition 6.5. Let Xt be a (time-homogeneous, Itô) diffusion on Rn. The (infinitesimal)
generator A of Xt is defined by

Af(x) = lim
h↘0

Ex [f(Xt)]− f(x)

t
, x ∈ Rn. (28)

The set of functions f : Rn → R for which the limit exists at x is denoted DA(x), and DA is the
set of functions for which the limit exists at all x ∈ Rn.

Remark 6.6. It can be show that if f ∈ DA, and Un is a sequence of open sets decreasing to
{x} (that is, Un ⊃ Un+1 and ∩∞n=1Un = {x}), then

Af(x) = lim
Un↘{x}

Ex
[
f(XτUn )− f(x)

]
Ex [τUn ]

,

where τU := inf{t ≥ 0 : Xt 6∈ U}.

Theorem 6.7. Let Xt be the solution to (26). Then

dXt = µ(Xt) dt+ σ(Xt) dWt.

If f ∈ C2
0 (R) (the set of compactly supported, twice differentiable functions), then f ∈ DA and

Af(x) = µ(x)
∂f

∂x
+

1

2
σ(x)2∂

2f

∂x2
.
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More generally, if Xt is a diffusion12 in Rn, and f ∈ C2
0 (Rn) then f ∈ DA and

Af(x) =

n∑
i=1

µi(x)
∂f

∂xi
+

1

2

n∑
i,j=1

(σ(x)σT (x))i,j
∂2f

∂xi∂xj
.

Proof for n = d = 1. By Itô’s Lemma,

f(Xt) = f(X0) +

∫ t

0

(
∂f

∂x
(Xs)µ(Xs) +

1

2
σ(Xs)

2∂
2f

∂x2

)
ds+

∫ t

0

∂f

∂x
σ(Xs) dWs.

Taking expectations, we get

E [f(Xt)− f(X0)] = E
[∫ t

0

(
∂f

∂x
(Xs)µ(Xs) +

1

2
σ(Xs)

2∂
2f

∂x2

)
ds

]
+ E

[∫ t

0

∂f

∂x
σ(Xs) dWs

]
Now, since f is compactly supported, and σ(x) is continuous (by the assumption that |σ(x) −
σ(y)| ≤ D|x−y| in Definition 6.1), we have ∂f

∂xσ(x) is bounded on R, and so 1[0,t]
∂f
∂x (x)σ(x) ∈ V.

Hence (Corollary 3.8) E
[∫ t

0
∂f
∂xσ(Xs) dWs

]
= 0.

Taking limits as t↘ 0, we get

Af(x) = lim
t↘0

E
[

1

t

∫ t

0

(
∂f

∂x
(Xs)µ(Xs) +

1

2
σ(Xs)

2∂
2f

∂x2

)
ds

]
= µ(x)

∂f

∂x
+

1

2
σ(x)2∂

2f

∂x2
.

A closely related result, which is very useful is:

Theorem 6.8 (Dynkin’s Lemma). Let f ∈ C2
0 , and suppose that τ is a stopping time with

Ex [τ ] <∞. Then:

Ex [f(Xτ )] = f(x) + Ex
[∫ τ

0
Af(Xs) ds

]
.

Proof. As f ∈ C2
0 and σ, µ are continuous, |Af | is bounded, by M say. Then:∫ τ

0
|Af(Xs)|ds ≤Mτ,

and by bounded convergence, we have

E
[∫ τ∧t

0
Af(Xs) ds

]
→ E

[∫ τ

0
Af(Xs) ds

]
as t→∞.

12So σ : Rn → Rn×d, W a d-dimensional Brownian motion, and µ : Rn → Rn, and we denote individual
elements of σ and µ by e.g. σi,j or µj . Recall the discussion at the start of Section 4.2.
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But applying the same argument as above to the Itô process dX̂t = αt dt + ϕt dWt, where
αt = µ(X̂t)1{t ≤ τ} and ϕt = σ(X̂t)1{t ≤ τ}, so we have X̂t = Xt on {t ≤ τ} and X̂t = Xτ on
{t ≥ τ}.

Then applying the same argument as in the previous proof, we get:

Ex [f(Xτ )]← Ex [f(Xt∧τ )] = f(x) + Ex
[∫ t∧τ

0
Af(Xs) ds

]
→ f(x) + Ex

[∫ τ

0
Af(Xs) ds

]
.

Example 6.9. The generator of d-dimensional Brownian motion is:

Af(x) =
1

2

d∑
i=1

∂2f

∂xi2
(x) =:

1

2
∆f(x), x = (x1, . . . , xd) ∈ Rd.

Here ∆ is commonly known as the Laplacian.

Let D be an open subset of Rd, and write τD := inf{t ≥ 0 : Xt 6∈ D}. Suppose Xt is a diffusion
on Rd. Then we set

u(x) := Ex [g(XτD)]

for some (nice) function g, and observe that, for any open set U ⊂ D, we have:

u(x) = Ex
[
EXτU [g(XτD)]

]
= Ex [u(XτU )]

by the Strong Markov property (Theorem 6.4). Hence, by Remark 6.6 we have

Au(x) = lim
U↘{x}

Ex [u(XτU )]− u(x)

Ex [τU ]
= 0.

In particular, if u ∈ DA, then we must have Au(x) = 0.

6.2 Kolmogorov’s Backward Equation, Boundary Value Problems

The close connection between the generator and second order partial differential operators allows
us to provide some probabilistic insight into classical second order problems. We give some basic
examples here, but note that there are many deep connections, and much more can be said than
we do here.

Theorem 6.10 (Kolmogorov’s Backward Equation). Let Xt be an Itô diffusion in Rn with
generator A. Suppose f ∈ C2

0 (Rn), and set u(t, x) := Ex [f(Xt)]. Then:

i) u(t, ·) ∈ DA, and {
∂u
∂t = Au t > 0, x ∈ Rn

u(0, x) = f(x), x ∈ Rn
(29)

ii) Moreover, if w ∈ C1,2 solves (29), then w = u.
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Sketch Proof. We have

Au(t, x) =
Ex [u(t,Xr)]− u(t, x)

r

=
1

r
Ex
[
EXr [f(Xt)]− Ex [f(Xt)]

]
=

1

r
Ex [Ex [f(Xt+r)|Fr]− Ex [f(Xt)|Ft]]

=
1

r
Ex [f(Xt+r)− f(Xt)]

=
u(t+ r, x)− u(t, x)

r
→ ∂u

∂t
(t, x)

Conversely, given w solving (29), and applying Itô’s Lemma (as in the proof of Dynkin’s Lemma),
we get:

Ex [w(s− t,Xt)] = w(s,Xt) + Ex

∫ t

0

(
−∂w
∂t

+Aw
)

︸ ︷︷ ︸
=0

(s− r,Xr) dr


taking s = t, we see that w(t, x) = Ex [w(0, Xt)] = Ex [f(Xt)] = u(t, x).

Theorem 6.11 (Dirichlet-Poisson Problem). Let D be a bounded, open set, such that Ex [τD] <
∞, for all x ∈ D, and suppose that g ∈ C(∂D), h ∈ C(D) are bounded, and w ∈ C2(D)∩C(D̄)13,
where

w(x) = Ex
[
g(XτD) +

∫ τD

0
h(Xs) ds

]
.

Then w is the unique solution to the Dirichlet-Poisson problem:{
Aw(x) = −h(x) x ∈ D
w(x) = g(x) x ∈ ∂D

. (30)

Sketch Proof. To see that w solves (30), we apply Dynkin’s formula to w (or strictly speaking,
to compact subsets of D, so that we can ensure sufficient differentiability on the whole of Rd).
Then:

Ex [w(XτD)] = w(x) + Ex
[∫ τD

0
Aw(Xs) ds

]
=⇒ Ex [g(XτD)] = w(x)− Ex

[∫ τD

0
h(Xs) ds

]

For uniqueness, suppose w̃ also solves (30). Then we can also apply Dynkin to w − w̃ to get:

Ex [(w − w̃)(XτD)] = (w − w̃)(x)− Ex
[∫ τD

0
A(w − w̃) ds

]
which implies (w − w̃)(x) = 0.

The arguments here are really only the start of many related results connecting second order
PDEs to diffusions. In particular, diffusions prove to be very powerful tools for proving existence
results of solutions to PDEs. See e.g. [3] for more on this topic.

13That is, w is twice continuously differentiable in D, and has a continuous extension to the boundary of D.
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We end with one last example. In this case, we use Theorem 6.11 to compute a numerical
solution to a PDE. Specifically, we simulate a diffusion up to the exit time of a domain, and
calculate the expectation given in the theorem. By simulating this diffusion many times, we
are able to compute an estimate of the true value of the expectation. These methods are called
Monte Carlo methods, and prove to be very important in certain situations.

iPython Interlude: Go To Notebook
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7 Probability Background

7.1 Probability spaces, probability measures and events

Let’s recall the key mathematical ingredients that we need to discuss probability.

A sample space, Ω, which is a set of points ω ∈ Ω, which we think of as the possible outcomes
of an experiment. When we run our experiment, one of these ω gets picked at random according
to some probability law P.

The second ingredient is an event. An event, F is a subset of Ω, F ⊂ Ω. The event F occurs if
and only if (iff) the chosen ω is an element of F .

Example 7.1. Infinite coin flips: Gp is event that proportion of heads converges to p:

Gp =

{
ω = (ω1, ω2, ω3, . . .) ∈ ΩC∞

∣∣∣ 1
n

n∑
k=1

1H(ωk)→ p as n→∞

}
.

Where we have introduced the indicator function: for an event Y ⊂ Ω, defined by:

1Y (ω) =

{
1 if ω ∈ Y
0 if ω 6∈ Y

.

Collection of events F : this all the events of interest. If Ω is a finite or countable set, usually
F = P(Ω), the set of all subsets of Ω. If |Ω| = N , |P(Ω)| = 2N .

Remember that, if Ω is countable, we can take F to be the power set of Ω, however this leads
to problems if Ω is uncountable. Fortunately, even for uncountable Ω we can still choose F to
be big enough that it contains all events of interest, and so that F is a σ-algebra: F ⊂ P(Ω)
is a σ-algebra if:

i) ∅ ∈ F ;
ii) F ∈ F =⇒ F { ∈ F ;

iii) Fn ∈ F , for n ∈ N, then ∪n∈NFn ∈ F

NB: F closed under complements and countable unions. Since ∅ ∈ F and Ω = ∅{, then Ω ∈ F .

Also ∩n∈NFn =
(
∪n∈NF {

n

){
, so countable intersection of Fn ∈ F also in F .

If A ⊂ P(Ω) is a collection of subsets of Ω, then we define σ(A), the σ-algebra generated
by A, to be the smallest σ-algebra on Ω that contains A. Note that since the intersection of
two σ-algebras is a (smaller) σ-algebra, this can be alternatively defined as the intersection of
all σ-algebras containing A. It is also easy to check that P(Ω) is a σ-algebra, so there is at least
one σ-algebra containing A.

If E ⊂ Ω is a single event, then σ(E) = {∅, E,E{,Ω}. (Check that this is a σ-algebra, and that
every σ-algebra containing E must contain all these elements.)

Now we can discuss probability! Given sample space Ω and σ-algebra F on Ω, the map P : F →
[0, 1] is a probability measure on (Ω,F) if:

i) P(∅) = 0;
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ii) P(Ω) = 1;
iii) (Countable additivity) If (Fn : n ∈ N) is a sequence of disjoint (i.e. Fi ∩ Fj = ∅ for all

i 6= j) events in F , then P(∪n∈NFn) =
∑

n∈N P(Fn).

Then we call (Ω,F ,P) a probability triple, or a probability space, and we interpret P(F )
as the probability of the event F happening — that is, the probability that the selected ω is in
F .

Lemma 7.2 (Properties of P). Let (Ω,F ,P) be a probability triple. Then:

i) If A ∈ F then P(A{) = 1− P(A);
ii) If A,B ∈ F and A ⊂ B then P(A) ≤ P(B);

iii) (Finite Additivity) If F1, F2, . . . , Fn ∈ F are disjoint then P(∪nj=1Fj) =
∑n

j=1 P(Fj);
iv) (Boole’s Inequality) For any F1, F2, . . . , Fn ∈ F , P(∪nj=1Fj) ≤

∑n
j=1 P(Fj);

v) (Continuity of P)
a) Suppose F1 ⊂ F2 ⊂ F3 ⊂ · · · and F = ∪n∈NFn, then P(Fn) ↑ P(F ) (i.e. P(Fn) is an

increasing sequence, with limit P(F )).
b) Suppose F1 ⊃ F2 ⊃ F3 ⊃ · · · and F = ∩n∈NFn, then P(Fn) ↓ P(F ).

When Ω is countable, then we can define a probability measure simply by assigning a prob-
ability to each ω ∈ Ω, and provided

∑
ω∈Ω P(ω) = 1, and P(ω) ∈ [0, 1] then we can define

P(F ) =
∑

ω∈F P(ω), and this satisfies the definition of a probability. It’s not so easy when Ω is
uncountable, but consider Ω = [0, 1] and define the Borel σ-algebra on [0, 1] to be σ(G) where
G = {[0, x] : x ∈ [0, 1]}. Then:

Theorem 7.3 (Lebesgue and Borel). There exists a unique probability measure P on the space
([0, 1],B([0, 1])) such that P([0, x]) = x for all x ∈ [0, 1].

Some terminology that will be used frequently: we say that an event A happens almost surely
if P(A) = 1. Note that this may be different to A = Ω: there may be elements ω 6∈ A, however
this set of events is assigned weight 0. Sometimes, these properties can seem counter-intuitive:
a simple example is the probability measure given above, which has P({x}) = 0 for all x ∈ [0, 1],
but P(∪x∈[0,1]{x}) = 1. This does not contradict the countably additivity property since [0, 1]
has uncountably elements. However, we can make statements such as: almost surely, ω is
irrational under P.

Two useful results about probability measures are the Borel-Cantelli Lemmas. The first lemma
says:

Lemma 7.4 (First Borel-Cantelli Lemma). Let F1, F2, F3 . . . be a sequence of events. If

∞∑
k=1

P(Fk) <∞

then almost surely, only finitely many of the events Fn occur (or equivalently P(
∑

k 1Fk <∞) =
1).

7.2 Random Variables, Expectation

A random variable (r.v.) X is a function X : Ω→ R such that {X ≤ x} := {ω ∈ Ω : X(ω) ≤
x} ∈ F for all x ∈ R.
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NB: Since B(R) = σ((−∞, x], x ∈ R) and F is a σ-algebra, X−1(A) := {ω ∈ Ω : X(ω) ∈ A} ∈ F
for any A ∈ B(R). Hence for any A ∈ B(R), P(X ∈ A) makes sense!

When this happens, we say that X is a F-measurable function from Ω to R. All the functions
we meet in this course will be suitably measurable.

The distribution function FX of a random variable X on (Ω,F ,P) is the map FX : R→ [0, 1]
where FX(x) = P(X ≤ x) = P({ω : X(ω) ≤ x}).

If X takes values in a countable set X(Ω) := {X(ω) : ω ∈ Ω}, we say that X is a discrete
r.v., and the probability mass function (p.m.f.) is the function pX(x) := P(X = x) = P({ω :
X(ω) = x}).

A r.v. is called continuous if there exists a non-negative function fX(x) on R such that

P(a < X ≤ b) = FX(b)−FX(a) =
∫ b
a fX(x) dx, in which case fX(x) is the probability density

function (p.d.f.) of X.

Let X be a r.v. with 0 ≤ X ≤ ∞. If X is discrete, the expectation of X is:

EX =
∑

x∈X(Ω)

xP(X = x) =
∑

x∈X(Ω)

x pX(x) ≤ ∞.

Note: E1A = 0 × P(1A = 0) + 1 × P(1A = 1) = P(1A = 1) = P(A), since {1A(ω) = 1} = {ω ∈
A} = A.

If X is a continuous random variable, then we define

EX =

∫
x∈R

xfX(x) dx.

More generally, we can define the expectation of a r.v. X with 0 ≤ X ≤ ∞ by:

EX = sup{EY |Y is discrete and Y ≤ X}

where Y ≤ X means Y (ω) ≤ X(ω) for all ω ∈ Ω.

For a r.v. X on R, write X+(ω) = max{0, X(ω)} and X−(ω) = max{0,−X(ω)}. Then X+

and X− are both non-negative, and X = X+ − X− and |X| = X+ + X−. If EX+ < ∞ and
EX− < ∞, so E|X| = EX+ + EX− < ∞, we say X is integrable, write X ∈ L1, and define
EX = EX+ − EX−.

Lemma 7.5 (Properties of Expectation). i) |E [X] | ≤ E|X|. (e.g. if X is 1 or −1 with
equal probability, E|X| = 1 6= 0 = |E [X] |.)

ii) If X,Y ∈ L1 and λ, µ ∈ R then λX + µY ∈ L1 and E [λX + µY ] = λEX + µEY .
iii) If X is a discrete r.v. and h : X(Ω) → R then Eh(X) =

∑
x∈X(Ω) h(x)P(X = x), and

h(X) is integrable iff
∑

x∈X(Ω) |h(x)|P(X = x) <∞.
iv) If X is a continuous r.v. with p.d.f. fX and h is a piecewise continuous function,

E [h(X)] =
∫
R h(x)fX(x) dx where h(X) is integrable iff

∫
R |h(x)|fX(x) dx <∞.

v) (Monotone Convergence Theorem) If (Xn) is a sequence of non-negative r.v.’s such that
0 ≤ Xn ↑ X then EXn ↑ EX ≤ ∞.

vi) (Fatou’s Lemma) If (Xn) is a sequence of non-negative r.v.’s then

E
[
lim inf

n
Xn

]
≤ lim inf

n
E [Xn] .
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vii) (Cauchy-Schwartz Inequality) If X,Y are integrable r.v.’s, then

(E [XY ])2 ≤ E
[
X2
]
E
[
Y 2
]
.

In v), convergence is to be understood pointwise, so Xn ↑ X means Xn(ω) ↑ X(ω) for (almost
all) ω ∈ Ω. Similarly, lim infnXn is the random variable X defined by X(ω) = lim infnXn(ω).

Given the notion of expectation, we are able to define two further key properties of random
variables: the variance of a random variable X is defined to be

Var(X) := E
[
X2 − E [X]2

]
,

and the covariance of two random variables X and Y is given by

Cov(X,Y ) := E [(X − E [X])(Y − E [Y ])] .

Note that Cov(X,X) = Var(X).

7.3 Conditional Probability and Independence

Given (Ω,F ,P) and A,B ∈ F with P(B) > 0, the conditional probability of A given B is

P(A|B) =
P(A ∩B)

P(B)
.

In addition, P(·|B) : F → [0, 1] is a probability measure on (Ω,F).

Events A,B ∈ F are independent if P(A∩B) = P(A)P(B). Then P(A|B) = P(A|B{) = P(A).
So whether or not B happens does not affect the probability of A happening.

More generally, a finite collection of events, F1, . . . , Fn are independent if, for every k = 2, . . . , n
and i1 < i2 < · · · < ik we have:

P(Fi1 ∩ Fi2 ∩ · · · ∩ Fik) = P(Fi1)P(Fi2) · · ·P(Fik).

Once we have independence, we can state the second Borel-Cantelli Lemma:

Lemma 7.6 (Second Borel-Cantelli Lemma). Let F1, F2, . . . be a sequence of independent events
such that

∑∞
n=1 P(Fn) =∞. Then

P(infinitely many Fn occur) = P

(∑
n∈N

1Fn =∞

)
= 1.

Random variables, X1, X2, X3, . . . in a finite or infinite sequence are independent if, whenever
i1, i2, . . . , ir are distinct integers, and xi1 , xi2 , . . . , xir ∈ R, then

P(Xi1 ≤ xi1 , Xi2 ≤ i2, . . . , Xir ≤ xir) = P(Xi1 ≤ xi1)P(Xi2 ≤ i2) · · ·P(Xir ≤ xir)

where we write P(A,B) as shorthand for P(A ∩ B). We sometimes use the notation X ⊥ Y to
mean X and Y are independent.
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If X1, X2, . . . are independent r.v.’s, and f1, f2, . . . are ‘nice’ functions on R then f(X1), f(X2), . . .
are also independent, and in fact, if f is ‘nice’ then

f(X1, X2, . . . , Xn), Xn+1, Xn+2, . . .

are also independent. (Here, ‘nice’ relates to the Borel σ-algebra, and every function we consider
will be ‘nice’).

Lemma 7.7 (Independence means multiply). Suppose X ⊥ Y . Then

i) If X,Y ≥ 0 then E [XY ] = E [X]E [Y ].
ii) If X,Y ∈ L1, then XY ∈ L1 and E [XY ] = E [X]E [Y ].

But: E [XY ] = E [X]E [Y ] 6=⇒ X ⊥ Y .

7.4 Conditional Expectation

Definition 7.8. For an integrable r.v. X and an event A ∈ F with P(A) > 0, we define the
conditional expectation of X given A to be:

E [X|A] =
E [X;A]

P(A)
=

E [X1A]

PA
.

In particular, if X takes values in a countable set, so X(Ω) = {x1, x2, . . .}, then

E [X|A] =
∑

xjP(X = xj |A).

Definition 7.9. Suppose X and Y are random variables.

i) Conditional Expectation (Discrete) If Y is a discrete r.v., so Y (Ω) = {y1, y2, . . .} =
{yi : i ∈ I}, where either I = {1, 2, . . . , n} or I = N, depending on whether |Y (Ω)| < ∞
or |Y (Ω)| = ∞, and P(Y = yi) > 0 for all i ∈ I, and

∑
i∈I P(Y = yi) = 1, then we define

the Conditional Expectation of X given Y to be the random variable:

E [X|Y ] =
∑
i∈I

1Y=yiE [X|Y = yi] .

Recall that 1A = 1A(ω) is a r.v. which takes the value 1 if ω ∈ A, and 0 otherwise. Since
the events {Y = yi} are disjoint, only one may happen, and therefore at most one term in
the sum is not zero.
Note that if we define the function

ψ(y) = E [X|Y = y]

then E [X|Y ] = ψ(Y ).
More generally, if Y0, Y1, . . . , Yn are discrete random variables, with Yk taking values in a
set Ik, we can define the conditional expectation

E [X|Y0, Y1, . . . , Yn]

=
∑

i0∈I0,i1∈I1,...,in∈In

1Y0=yi0 ,Y1=yi1 ,...,Yn=yinE [X|Y0 = yi0 , Y1 = yi1 , . . . , Yn = yin ] ,

and it follows that E [X|Y0, Y1, . . . , Yn] = ψ(Y0, Y1, . . . , Yn) if we define:

ψ(y0, y1, . . . , yn) = E [X|Y0 = y0, Y1 = y1, . . . , Yn = yn] .
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Alternatively, we can define (Fn)n≥0 to be the filtration of the sequence of random vari-
ables (Yi)i≥0. That is, Fn is the collection of events depending only on Y0, Y1, . . . , Yn. We
usually think of Yk as the value of something observed at time k, and then Fn is the ‘state
of knowledge’ or ‘history’ up to time n.
Given a filtration, we can then define the conditional expectation of X ‘given the history
up to time n’ as

E [X|Fn] = E [X|Y0, Y1, . . . , Yn]

=
∑

i0∈I0,i1∈I1,...,in∈In

1Y0=yi0 ,Y1=yi1 ,...,Yn=yinE [X|Y0 = yi0 , Y1 = yi1 , . . . , Yn = yin ] ,

We will also frequently use the shorthand: E [X|Fn] = En [X].
ii) If X and Y are both continuous random variables with joint density fX,Y (x, y), and

marginal densities fX(x) and fY (y) respectively, then the conditional p.d.f. of X given
Y = y is:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

If we define the function

ψ(y) = E [X|Y = y] =

∫
x∈R

x fX|Y (x|y) dx,

then the conditional expectation of X given Y is ψ(Y ).
Similarly, if Y0, Y1, . . . , Yn are continuous random variables, with X,Y0, . . . , Yn having joint
density fX,Y0,...,Yn(x, y0, . . . , yn) and

fY0,...,Yn(y0, . . . , yn) =

∫
x∈R

fX,Y0,...,Yn(x, y0, . . . , yn),

then we can define

fX|Y0,...,Yn(x|y0, . . . , yn) =
fX,Y0,...,Yn(x, y0, . . . , yn)

fY0,...,Yn(y0, . . . , yn)
,

and

ψ(y0, y1, . . . , yn) =

∫
x∈R

x fX|Y0,Y1,...,Yn(x|y0, y1, . . . , yn) dx,

and we define the conditional expectation by:

E [X|Y0, Y1, . . . , Yn] = ψ(Y0, . . . , Yn).

The notion of a filtration can be generalised. In particular, we can define the σ-algebra Fn :=
σ(Y0, Y1, . . . , Yn) to be the smallest σ-algebra G such that {Yj ≤ y} ∈ G for all j ∈ {0, 1, . . . , n}
and all y ∈ R. Such a σ-algebra exists (since the Yj ’s are random variables, this is true for
F ; then take the intersection over all sub-σ-algebras of F (that is, all σ-algebras G such that
A ∈ G =⇒ A ∈ F) such that the Yj ’s are measurable — it is easily verified that the intersection
of arbitrary σ-algebras is a σ-algebra). Then we can define the conditional expectation of
a random variable X with respect to this filtration by defining E [X|Fn] to be the (unique)
random variable Z which is measurable with respect to Fn, and such that

E [Z;A] = E [X;A]

for all A ∈ Fn. To further understand such a definition, one really needs a course in measure
theory! However, for our purposes, it is enough to understand that this definition coincides with
the previous definitions:

E [X|A] = E [X|σ(A)] , E [X|Y ] = E [X|σ(Y )] , E [X|Y0, Y1, . . . , Yn] = E [X|σ(Y0, Y1, . . . , Yn)] .
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However, this definition also turns out to be more flexible: in particular, we will want to think
of the information as being generated by a continuous time process: (Yt)t≥0, and often we
want to think about the information we receive by observing the path (Ys)s∈[0,t] — that is, the
information we have observed up to time t. In this case, we can define the filtration Ft to be
the smallest σ-algebra such that Ys is Ft-measurable for all s ≤ t. In this way, we are able
to condition on complicated properties of the path Ys (for example, we could condition on the

events
{

sups≤t Ys ≥ y
}

or
{∫

s≤t Ys ds ≥ y
}

) which may not be easily expressible in terms of

only finitely many of the values of the Yi’s.

Finally, in terms of σ-algebras, we can discuss independence: in particular, we say that Y is
independent of G if Y is independent of A for every A ∈ G.

Lemma 7.10 (Properties of Conditional Expectation). The following properties hold for all the
forms of conditional expectation above, if X,Z, Y0, . . . , Yn are r.v.’s, and G a σ-algebra:

i) (Taking out what is known): for a ‘nice’ function h

E [h(Y0, Y1, . . . , Yn)X|Y0, . . . , Yn] = h(Y0, Y1, . . . , Yn)E [X|Y0, . . . , Yn] ;

or equivalently: if Y is G-measurable,

E [XY |G] = Y E [X|G] .

ii) (Tower Property): if m ≤ n,

E [E [X|Y0, . . . , Yn] |Y0, . . . , Ym] = E [X|Y0, . . . , Ym] ,

and in particular, if m = 0, then

E [E [X|Y0, . . . , Yn]] = E [X] ;

or equivalently: if H is a sub-σ-algebra of G, then

E [E [X|G] |H] = E [X|H] .

iii) (Combining (i) and (ii)): for a ‘nice’ function h

E [h(Y0, Y1, . . . , Yn)X] = E [h(Y0, Y1, . . . , Yn)E [X|Y0, . . . , Yn]] ;

or equivalently: if Y is G-measurable:

E [XY ] = E [Y E [X|G]] .

iv) (Independence): if X is independent of Y0, . . . , Yn

E [X|Y0, . . . , Yn] = E [X] ;

or equivalently: if X is independent of G:

E [X|G] = E [X] .

v) (Linearity): for α, β ∈ R

E [αX + βZ|Y0, . . . , Yn] = αE [X|Y0, . . . , Yn] + βE [Z|Y0, . . . , Yn] ;

or equivalently:
E [αX + βZ|G] = αE [X|G] + βE [Z|G] .
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vi) (Conditional Monotone Convergence) Let (Xn)n∈Z+ , X be non-negative random variables
such that Xn ↗ X (i.e. for almost every ω ∈ Ω, Xn(ω)↗ X(ω)), then

E [Xn|G]↗ E [Xn|G] ,

and in the special case where G is the trivial σ-algebra, {∅,Ω}, we therefore have E [Xn]↗
E [X].

vii) (Conditional Jensen’s Inequality) Let ϕ be a convex function. Then:

E [ϕ(X)|G] ≥ ϕ(E [X|G]).

7.5 Convergence of Random Variables

Let X,Xn be real-valued Random Variables. We are interested in what it means for the sequence
Xn to converge to X. We write Lk(P) (or just Lk if the choice of P is clear) for the set of random
variables with finite kthmoment, E

[
|X|k

]
<∞.

Definition 7.11. i) We say that Xn converges to X in distribution if:

P(Xn ≤ x)→ P(X ≤ x) as n→∞;

ii) We say that Xn converges to X in probability if, for all ε > 0:

P(|Xn −X| > ε)→ 0 as n→∞;

iii) We say that Xn converges to X in Lk if

Xn, X ∈ Lk and E
[
|Xn −X|k

]
→ 0 as n→∞;

iv) We say that Xn converges almost surely to X if

P ({ω : Xn(ω)→ X(ω)}) = 1.

In general, we get the following implications: for p ≥ 1, convergence in Lp′ implies convergence
in Lp, for p′ > p, convergence in Lp (for p ≥ 1) implies convergence in probability, which in
turn implies convergence in distribution. Note that for convergence in distribution, the random
variables do not need to be defined on the same probability space, wheras for the stronger
versons of convergence, the random variables need to be defined on the same probability space.
Almost sure convergence implies convergence in probability. In general, almost sure convergence
does not imply convergence in Lp, or vice-versa.

It is also often useful to be able to deduce convergence results in expectation from almost sure
convergence results. In general, the implication does not hold14, however there are some special
cases where we can show that convergence almost surely implies convergence in expectation,
and we summarise these below:

Lemma 7.12. i) (Monotone Convergence Theorem) If (Xn) is a sequence of non-negative
r.v.’s such that 0 ≤ Xn ↑ X (i.e. for almost all ω ∈ Ω, Xn(ω) is an increasing sequence,
converging to X(ω)) then EXn ↑ EX ≤ ∞.

14Consider the following example, where we have Ω = [0, 1] with the uniform measure (so P([a, b]) = b − a for
0 ≤ a ≤ b ≤ 1). If we take the sequence of random variables Xn(ω) = n1(0, 1

n
)(ω), then Xn(ω)→ 0 almost surely,

since for any ω, Xn(ω) is zero for n sufficiently large. However, E [Xn] = nP((0, 1
n

)) = 1, so limn E [Xn] = 1 6= 0 =
0. Observe that this sequence only satisfies the conditions for Fatou’s Lemma in Lemma 7.12, and also therefore
shows that the inequality in ii) can be strict.
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ii) (Fatou’s Lemma) If (Xn) is a sequence of non-negative r.v.’s then

E
[
lim inf

n
Xn

]
≤ lim inf

n
E [Xn] .

iii) (Bounded Convergence) If Xn is a sequence of random variables bounded by a constant
(Xn(ω) ≤ M for all ω, n, M independent of n, ω), and Xn → X almost surely, then
E [Xn]→ E [X].

iv) (Dominated Convergence) If Xn is a sequence of random variables bounded in absolute
value by an integrable random variable Z (i.e. |Xn|(ω) ≤ Z(ω) for all ω, n and E [Z] <∞),
and Xn → X almost surely, then E [Xn]→ E [X].

Note that all of the integration results above have corresponding conditional versions.

7.6 Central Limit Theorem, Weak Law and Strong Law

One important probabilistic result concerns what happens when we look at the average of many
repeated, independent experiments. There are two types of results here. Let X1, X2, . . . be a
sequence of i.i.d. r.v.’s. Laws of Large numbers essentially state that the mean of the Xi’s,
mN := N−1

∑N
i=1Xi converges as N → ∞ to E [X1], for different notions of convergence. The

Strong law looks at the limit of zN := N−1/2
∑N

i=1(Xi − E [X1]), and shows that this converges
in distribution to a normally distributed random variable:

Theorem 7.13 (Laws of Large Numbers). Let X1, X2, . . . be i.i.d., integrable random variables
with mean µ = E [X1]. Then

• Weak Law of Large Numbers: mN converges to µ in probability;
• Strong Law of Large Numbers: mN converges to µ almost surely.

Since almost sure convergence implies convergence in probability, in some sense the weak law
above is redundant, however it is useful to separate the two since there are cases where one may
only be able to prove a weak law if some of the assumptions are weakened (for example, under
milder independence assumptions, or where the r.v.’s are not i.i.d.).

We also have:

Theorem 7.14 (Central Limit Theorem). Let X1, X2, . . . be i.i.d., random variables with mean
µ = E [X1] and σ2 := Var(Xi) <∞. Then

zN :=

∑N
i=1(Xi − µ)

σ
√
N

→ Z

where Z ∼ N(0, 1) and the convergence is in distribution, i.e. P(zN ≤ x) → P(Z ≤ x) for all
x ∈ R, as N →∞.
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