Exercise Sheet 2— The Stochastic Integral

Throughout, you should assume that W_t is a real-valued, standard Brownian motion with $W_0 = 0$.

2.1: Show from the definition of the Itô integral that:

$$\int_0^t s \, \mathrm{d}W_s = tW_t - \int_0^t W_s \, \mathrm{d}s.$$

[Hint: for a, b, c, d, show bd - ac = a(d - c) + d(b - a).]

2.2: (a) Let Π^n be a sequence of partitions of [0, T]. Show that

$$\sum_{i} W_{t_i} (W_{t_{i+1}} - W_{t_i})^2 \to \int_0^T W_t \, \mathrm{d}t$$

in $\mathcal{L}^2(\mathbb{P})$ as the mesh of the partition tends to zero.

(b) Show that

$$\sum_{i} (W_{t_{i+1}} - W_{t_i})^3 \to 0$$

in $\mathcal{L}^2(\mathbb{P})$ as the mesh of the partition tends to zero.

- (c) Hence find an expression for $\int_0^t W_s^2 dW_s$. [Hint: $(b-a)^3 = b^3 a^3 3a^2(b-a) 3a(b-a)^2$.
- **2.3:** Prove i)-iv) of Lemma 3.3 for simple processes. Using Corollary 3.6 show that all these properties, except for path continuity, extend to general $\phi \in \mathcal{V}$.
- 2.4: A result of Itô gives the following formula for the iterated Itô integral:

$$\int_{u_n=0}^t \int_{u_{n-1}=0}^{u_n} \int_{u_{n-2}=0}^{u_{n-1}} \dots \int_{u_1=0}^{u_{n-1}} dW_{u_1} dW_{u_2} \dots dW_{u_n} = \frac{t^{n/2}}{n!} h_n\left(\frac{W_t}{\sqrt{t}}\right),$$

where h_n is the Hermite polynomial of degree n, given by

$$h_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left[e^{-x^2/2} \right].$$

Find h_0, h_1, \ldots, h_3 and verify that this is true up to n = 3.

2.5: Suppose $\varphi, \psi \in \mathcal{V}$. Show that

$$\mathbb{E}\left[\int_0^t \varphi_u \,\mathrm{d}W_u \int_0^t \psi_u \,\mathrm{d}W_u\right] = \mathbb{E}\left[\int_0^t \varphi_u \psi_u \,\mathrm{d}u\right]$$

2.6: Directly from the definition of the Stratonovich integral find $\int_0^t W_u \circ dW_u$ and $\int_0^t W_u^2 \circ dW_u$.

Amg Cox

2.7: Let $\varphi \in \mathcal{V}$ be a function which varies smoothly in t, in the sense that there exists $K, \varepsilon > 0$ such that:

$$\mathbb{E}\left[|\varphi_t - \varphi_s|^2\right] \le |t - s|^{1+\varepsilon}$$

Amg Cox

for $0 \leq s, t \leq T$.

Show that in this case,

$$\int_0^T \varphi_u \, \mathrm{d}W_u = \lim_{\Pi} \sum_i \varphi_{t_i^*} (W_{t_{i+1}} - W_{t_i})$$

where the limit on the right-hand side is in probability, and is taken along partitions, Π with $||\Pi|| \to 0$, and t_i^* is any choice of $t \in [t_i, t_{i+1}]$. [Hint: Show convergence in $\mathcal{L}^1(\mathbb{P})$, which implies convergence in probability.]

Hence deduce that in this case the Itô and Stratonovich integrals coincide.

- **2.8:** [Hard]: In this section, we use a result from Martingale Theory to show that the Itô integral has a modification with continuous paths.
 - (a) A process X_t is called a martingale if (i) $\mathbb{E}[|X_t|] < \infty$ for all $t \ge 0$; (ii) X_t is adapted; (iii) $\mathbb{E}[X_t|\mathcal{F}_s] = X_s$ for all $t \ge s$. Show that if $\varphi \in \mathcal{S}$, then $\int_0^t \varphi_s \, dW_s$ is a continuous martingale.
 - (b) Doob's Martingale Inequality states that if M_t is a martingale with continuous paths, then for all $p \ge 1, T \ge 0$ and $\lambda > 0$

$$\mathbb{P}\left(\sup_{0\leq t\leq T}|M_t|\geq\lambda\right)\leq\frac{1}{\lambda^p}\mathbb{E}\left[|M_T|^p\right].$$

Using this result, show that if $\varphi^n \in \mathcal{S}$ is a sequence of simple integrands approximating φ , and $I_t^n := \int_0^t \varphi_u^n dW_u$, then there exists a subsequence n_k such that

$$\mathbb{P}\left(\sup_{0 \le t \le T} |I_t^{n_{k+1}} - I_t^{n_k}| > 2^{-k}\right) < 2^{-k}$$

(c) By applying the Borel-Cantelli Lemma, show that for $\varphi \in \mathcal{V}$, then $I_t := \int_0^t \varphi_u \, dW_u$ has a continuous modification.