Exercise Sheet 3- Stochastic Calculus

3.1: The mean-reverting Ornstein-Uhlenbeck process satisfies the equation:

$$
\mathrm{d} X_{t}=\lambda\left(\mu-X_{t}\right) \mathrm{d} t+\sigma \mathrm{d} W_{t}
$$

where $\lambda, \mu, \sigma>0$ are fixed parameters.
(a) By considering the process $Y_{t}=\mathrm{e}^{\lambda t} X_{t}$, find an expression for X_{t} involving only $\left(W_{s}\right)_{s \geq 0}$.
(b) Considering $X_{0}=x_{0} \in \mathbb{R}$ a fixed constant, find the distribution of X_{t}. [Hint: Recall Example 5.4
(c) Suppose $X_{0} \sim N\left(\mu, \frac{\sigma^{2}}{2 \lambda}\right)$ is independent of W. Show that X_{t} is stationary, that is X_{t} has the same distribution for all $t \geq 0$.
3.2: Recall Question Q2.4. Prove this result for arbitrary n.
[Hint: You may find the relations $h_{n}^{\prime}(x)=n h_{n-1}(x)$ and $h_{n+1}(x)-x h_{n}(x)+$ $n h_{n-1}(x)=0$ useful.]
3.3: Suppose $Y_{t}=\left(Y_{t}^{1}, Y_{t}^{2}\right)$ solves:

$$
\left\{\begin{array}{l}
\mathrm{d} Y_{t}^{1}=-\frac{1}{2} Y_{t}^{1} \mathrm{~d} t-Y_{t}^{2} \mathrm{~d} W_{t} \\
\mathrm{~d} Y_{t}^{2}=-\frac{1}{2} Y_{t}^{2} \mathrm{~d} t+Y_{t}^{1} \mathrm{~d} W_{t}
\end{array}\right.
$$

with $\boldsymbol{Y}_{0}=(1,0)$.
(a) Show that $\left(Y_{t}^{1}\right)^{2}+\left(Y_{t}^{2}\right)^{2}$ is constant.
(b) Find an Itô process Z_{t} such that $Y_{t}=\left(\cos \left(Z_{t}\right), \sin \left(Z_{t}\right)\right)$.
(c) Let N_{t} be the 'winding number' of Y_{t} around the origin - that is, the total number of complete anti-clockwise rotations around the origin (subtracting complete clockwise rotations), made by \boldsymbol{Y}_{t}. Find an expression for $\mathbb{P}\left(N_{t} \geq n\right)$, where $n \in \mathbb{N}$.
3.4: Let X_{t} be a Geometric Brownian motion, that is, a solution to

$$
\mathrm{d} X_{t}=\mu X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} W_{t}, \quad X_{0}=x_{0}
$$

for $\sigma>0, \mu \in \mathbb{R}$. Find an ODE satisfied by $m(t):=\mathbb{E}\left[X_{t}\right]$, and hence find $\mathbb{E}\left[X_{t}\right]$.
For a standard Brownian motion W, it is well known that if $a>0$ then $\lim _{t \rightarrow \infty}\left[W_{t}-\right.$ $a t]=-\infty$. Suppose $0<\mu<\sigma^{2} / 2$. What can be said about $\lim _{t \rightarrow \infty} \mathbb{E}\left[X_{t}\right]$, and $\lim _{t \rightarrow \infty} X_{t}$?
3.5: $\operatorname{Fix} x, y \in \mathbb{R}$, and consider the equation

$$
\mathrm{d} X_{t}=\frac{y-X_{t}}{1-t} \mathrm{~d} t+\mathrm{d} W_{t}, \quad X_{0}=x .
$$

Show that

$$
X_{t}=x+(y-x) t+(1-t) \int_{0}^{t} \frac{\mathrm{~d} W_{s}}{1-s}
$$

for $0 \leq t<1$, and prove that $X_{t} \rightarrow y$ as $t \uparrow 1$ in $\mathcal{L}^{2}(\mathbb{P})$.
3.6: In a similar manner to solving ODEs, we can solve SDEs by introducing 'integrating factors'.

Suppose we want to solve the SDE

$$
\mathrm{d} X_{t}=\alpha X_{t} \mathrm{~d} B_{t}+r \mathrm{~d} t, \quad X_{0}=x_{0}
$$

where r and α are real constants. Let F_{t} be our 'integrating factor':

$$
F_{t}=\exp \left\{-\alpha B_{t}+\frac{1}{2} \alpha^{2} t\right\} .
$$

What is $\mathrm{d} F_{t}$? Let $Y_{t}=F_{t} X_{t}$ and find $\mathrm{d} Y_{t}$. Solve the resulting equation to find X_{t}.
3.7: Let W be n-dimensional Brownian motion, for $n \geq 2$, started at $x_{0} \neq \mathbf{0}$. Set

$$
R_{t}=\left|W_{t}\right|=\sqrt{\left(W_{t}^{1}\right)^{2}+\cdots+\left(W_{t}^{n}\right)^{2}}
$$

Show that

$$
\mathrm{d} R_{t}=\sum_{i=1}^{n} \frac{W_{t}^{i} \mathrm{~d} W_{t}^{i}}{R_{t}}+\frac{n-1}{2 R_{t}} \mathrm{~d} t
$$

(You may assume that Itô's Lemma holds even though $f(x)=|x|$ is not C^{2} at the origin, since the process will almost surely never reach the origin).
Hence find (i) $\mathrm{d}\left(\ln \left(R_{t}\right)\right)$ for $n=2$ and (ii) $\mathrm{d}\left(R_{t}^{2-n}\right)$ for $n \geq 3$.
3.8: Let W be a standard Brownian motion with $W_{0}=0$, and write $H_{a, b}=\inf \{t \geq 0$: $\left.W_{t} \in\{a, b\}\right\}$, the first hitting time of either a or b. For the sequence $\phi_{u}^{N}=\mathbf{1}_{u \leq H_{-1, N}}$, find $I^{N}:=\int_{0}^{\infty} \phi_{u}^{N} \mathrm{~d} W_{u}$, and hence show that $I^{N} \rightarrow I$ in probability, but not in $\mathcal{L}^{2}(\mathbb{P})$, for some I which you should identify. What are $\mathbb{E}\left[I^{N}\right], \mathbb{E}[I]$?

