The Law of the Supremum of a Stable Lévy Process

Goran Peskir

The University of Manchester

Let $X = (X_t)_{t \ge 0}$ be a stable Lévy process of index $\alpha \in (1, 2)$ with no negative jumps, and let $S_t = \sup_{0 \le s \le t} X_s$ denote its running supremum for t > 0. We show that the probability density function f_t of S_t can be characterised as the unique solution to a weakly singular Volterra integral equation of the first/second kind, or equivalently, as the unique solution to a first-order Riemann-Liouville fractional differential equation satisfying a boundary condition at zero. This yields an explicit series representation for f_t . Recalling the familiar relation between S_t and the first entry time τ_x of X into $[x, \infty)$, this further translates into an explicit series representation for the probability density function of τ_x .

The purpose of the talk is to present and discuss the proof, paying a particular attention to the three integral equations which characterise f_t , and examining their interplay.

This is a joint work with V. Bernyk and R. C. Dalang (both of Lausanne).