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Abstract. A stability/instability trichotomy for a class of nonnegative continuous-time Lur’e
systems is derived. Asymptotic, exponential, and input-to-state stability concepts are considered.
The presented trichotomy rests on Perron–Frobenius theory, absolute stability theory, and recent
input-to-state stability results for Lur’e systems. Applications of the results derived arise in various
fields, including density-dependent population dynamics, and two examples are discussed in detail.
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1. Introduction. In mathematical control theory, much attention has been de-
voted to a class of nonlinear systems referred to as Lur’e or Lurie systems [9, 18, 24,
29, 37, 47, 48]. These systems are comprised of two components: a linear system,
with state x, input u, and output y, given by

(1.1) ẋ = Ax+ bu , x(0) = ξ, y = cTx,

and a nonlinear feedback u = f(y). The resulting nonlinear feedback system is given
by

(1.2) ẋ = Ax+ bf(cTx), x(0) = ξ .

Lur’e systems arise in various contexts in circuit, control, and systems theory. Under
the common assumption that the nonlinearity f satisfies f(0) = 0, it follows that 0
is an equilibrium of (1.2). The study of stability properties of the zero equilibrium
of Lur’e systems is termed absolute stability and generally refers to the situation
where the linear system (1.1) is known and the nonlinearity f is unknown but usually
sector bounded. Absolute stability is a well-studied and active area of research, and
we refer the reader to [9, 18, 24, 37, 47, 48] and the references therein. A typical
absolute stability result provides conditions on the linear component (either in time
or frequency domain) which ensure that zero is globally asymptotically stable (GAS)
for a class of sector bounded nonlinearities. Crucially, stability of the Lur’e system is
determined by the sector bounds and not by the individual nonlinearity f itself. Such
inherent robustness makes absolute stability results especially powerful. Furthermore,
if the Lur’e system (1.2) is subject to an external additive time-dependent disturbance
d, that is, if (1.2) is replaced by

(1.3) ẋ = Ax+ bf(cTx) + d, x(0) = ξ,
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1177

then recent research [18, 37] shows that the conditions of a well-known classical ab-
solute stability result, the so-called circle criterion, guarantee input-to-state stability
(ISS) of the forced system (1.3), thereby adding to the inherent robustness properties
of stable Lur’e systems. Without going into details here, we mention that ISS means
that the map R

n × L∞(R+,R
n) → R

n, (ξ, d) �→ x(t) has “nice” boundedness and
asymptotic properties (see sections 2 and 5 for more details on ISS). For an overview
of ISS theory, we refer the reader to [5, 41].

Systems of type (1.2) or (1.3) also arise naturally in biology, ecology, and chem-
istry, for example, in T-cell receptor signal transduction [31, 42]; enzyme synthesis [33,
section 7.2], [38, Chapter 4.2], and [45]; and population dynamics [8]. Lur’e type mod-
els for economic fluctuations have also been suggested; see [7]. In a population model,
the function f captures density-dependence, for example, a carrying capacity. In a
chemical reaction model, f may describe a nonlinear reaction rate between certain
components. In these applied contexts, a common key feature is that the components
of the state x of the model, which may represent population abundances, chemical
concentrations, or economical quantities (such as prices), are, necessarily, nonnega-
tive. In this case, the matrix A is Metzler, whilst b and c are nonnegative, and f
maps the interval [0,∞) into itself.

In the context of biological, ecological, and chemical models the focus is often
on the existence and stability of nonzero equilibria which then correspond to the
co-existence of populations or chemical compounds. Townley and collaborators have
used Lur’e system ideas and small-gain techniques to develop stability/instability tri-
chotomy results for classes of both finite-dimensional [44] and infinite-dimensional [35]
discrete-time population models. For the situations considered in [35, 44], only one
of three outcomes is possible: either zero is GAS, or there is a stable nonzero equi-
librium which attracts all nonzero solutions, or else all nonzero solutions diverge
componentwise. Further trichotomies of stability for various classes of monotone
discrete-time dynamical systems have been established in [21, Chapter 6] and [22] for
finite-dimensional systems and in [16, 39] for infinite-dimensional systems. The paper
[22] also contains a limit set trichotomy for a class of periodic continuous-time systems
satisfying certain monotonicity conditions. Here we develop stability/instability tri-
chotomy results for continuous-time Lur’e systems using ideas from absolute stability
theory (for instance, [18]). Our results cover asymptotic and exponential stability
as well as ISS. We emphasize that the Lur’e systems considered in this paper are in
general not monotone and therefore results from the theory of monotone dynamical
systems [38] do not apply.

This paper is organized as follows. Sections 2 and 3, respectively, collect material
on absolute stability and Metzler matrices that we shall require. Sections 4 and 5
contain our main results, namely stability/instability trichotomies for unforced and
forced Lur’e systems, respectively. The paper concludes with section 6, in which
detailed discussions of two examples are provided.

Notation and terminology. The set of positive integers is denoted by N, whilst
R and C denote the fields of real and complex numbers, respectively. For n ∈ N, Rn

and Cn denote the familiar real and complex n-dimensional vector spaces, respectively,
both equipped with a norm ‖ · ‖ (the 2-norm, unless said otherwise). For m ∈ N, let
Rn×m and Cn×m denote the normed linear spaces of n × m matrices with real and
complex entries, respectively, both equipped with the operator norm, also denoted
‖ · ‖, induced by the norm on Rn or Cn. As usual, let ‖ · ‖1 denote the 1-norm on Rn.
We set R+ := {r ∈ R : r ≥ 0}, and the nonnegative orthant in Rn is denoted by Rn

+.
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1178 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

For z ∈ C and r > 0, set

D(z, r) := {s ∈ C : |s− z| < r} ⊆ C,

the open disk in the complex plane, centered at z and of radius r. Similarly, for
x ∈ Rn, B(x, r) denotes the open ball in Rn centered at x and with radius r.

For M ∈ C
n×n, σ(M) and ρ(M) denote the spectrum and the spectral radius of

M , respectively. The spectral abscissa α(M) of M is defined by

α(M) = max{Reλ : λ ∈ σ(M)} ,

and M is said to be Hurwitz if α(M) < 0 (that is, every eigenvalue of M has negative
real part).

Let M = (mij) ∈ Rn×m and N = (nij) ∈ Rn×m. We write

M ≥ N if mij ≥ nij ∀i and j,
M > N if M ≥ N and M 
= N,

M � N if mij > nij ∀i and j.

We say thatM is nonnegative ifM ≥ 0. The matrixM is called positive ifM � 0. A
nonnegative square matrixM is said to be primitive if there exists k ∈ N such thatMk

is positive. A square matrix M = (mij) ∈ Rn×n is said to be Metzler (or essentially
nonnegative or quasi-positive) if all its off-diagonal entries of M are nonnegative, that
is, mij ≥ 0 for all 1 ≤ i, j ≤ n with i 
= j.

As usual, the space of bounded holomorphic functions defined on the open right
half of the complex plane is denoted by H∞. For a function h ∈ H∞, its norm is
defined by

‖h‖H∞ = sup
Re s>0

|h(s)|.

Finally, we recall the definitions of certain classes of comparison functions. Let K
denote the set of all continuous functions ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ is
strictly increasing. Moreover,

K∞ := {ϕ ∈ K : ϕ(s) → ∞ as s→ ∞}.

We denote by KL the set of functions ψ : R+×R+ → R+ with the following properties:
ψ(· , t) ∈ K for every t ≥ 0, and ψ(s, · ) is nonincreasing with limt→∞ ψ(s, t) = 0 for
every s ≥ 0. For more details on comparison functions, we refer the reader to [19].

2. Stability of Lur’e systems. Consider the Lur’e system

(2.1) ẋ = Ax+ bf(cTx), x(0) = ξ ∈ R
n,

where A ∈ Rn×n, b ∈ Rn, c ∈ Rn, and f : R → R is locally Lipschitz with f(0) =
0. The superscript T denotes both matrix and vector transposition. Let x(· ; ξ)
denote the continuously differentiable unique maximally defined forward solution of
the initial-value problem (2.1) (the existence of which is guaranteed by, for example,
[26, Theorem 4.22] or [43, Theorem 54]). If there exists an affine linear bound for the
nonlinearity f , then x(t; ξ) is defined for all t ≥ 0 (see [26, Proposition 4.12]).

Application of linear output feedback of the form u = κy to (1.1) leads to ẋ =
(A+κbcT )x, where κ is a constant (sometimes referred to as a feedback gain). Define

S(A, b, cT ) := {κ ∈ C : A+ κbcT is Hurwitz},

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1179

the set of complex stabilizing output feedback gains for the linear system (A, b, cT ).
The following stability result, developed and proved in [18], will play an important

role in this paper.

Theorem 2.1. Let A ∈ Rn×n, b, c ∈ Rn, and let f : R → R be locally Lipschitz.
Assume that

(2.2) D(k, r) ⊆ S(A, b, cT ),

where k ∈ R and r > 0.
(1) If

(2.3)
f(y)

y
∈ [k − r, k + r] ∀ y ∈ R\{0},

then there exists g ≥ 1 such that

‖x(t; ξ)‖ ≤ g‖ξ‖ ∀ t ≥ 0, ∀ ξ ∈ R
n.

In particular, the equilibrium 0 of (2.1) is stable in the large.
(2) If

(2.4)
f(y)

y
∈ (k − r, k + r) ∀ y ∈ R\{0},

then the equilibrium 0 of (2.1) is globally asymptotically stable.
(3) If there exists r1 ∈ (0, r) such that

(2.5)
f(y)

y
∈ (k − r1, k + r1) ∀ y ∈ R\{0},

then the equilibrium 0 of (2.1) is globally exponentially stable, that is, there exists
γ > 0 and g ≥ 1 such that

‖x(t; ξ)‖ ≤ ge−γt‖ξ‖ ∀ t ≥ 0, ∀ ξ ∈ R
n.

The well-known control theoretic circle criterion (see, for example, [47]) can be
derived as a corollary of Theorem 2.1 (see [18]). Statement (2) of Theorem 2.1 says,
roughly speaking, that linear stability (namely, D(k, r) ⊆ S(A, b, cT )) implies global
asymptotic stability for all nonlinearities f : R → R satisfying f(y)/y ∈ (k−r, k+r) for
all nonzero y ∈ R. In this sense, Theorem 2.1 is reminiscent of the Aizerman conjecture
(see [14, section 5.6.3]) and [18, 23, 47]). We emphasise though that stability of the
linear feedback system ẋ = (A+κbcT )x has to hold for all complex κ satisfying |κ−k| <
r. It is easy to see that the conclusions in Theorem 2.1 remain true for complex
nonlinearities f : C → C, provided that, in statements (1)–(3), conditions (2.3)–(2.5)
are replaced by

(2.6)
f(y)

y
∈ D(k, r),

f(y)

y
∈ D(k, r), and

f(y)

y
∈ D(k, r1),

respectively, where the conditions (2.6) hold for all complex nonzero y and D(k, r)
denotes the closed complex ball, centered at k, with radius r.

We will now present a special case wherein the complex condition D(k, r) ⊆
S(A, b, cT ) can be replaced by its real counterpart (k − r, k + r) ⊆ S(A, b, cT ).

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1180 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Corollary 2.2. Let A ∈ Rn×n, b, c ∈ Rn, let f : R → R be locally Lipschitz,
and let k ∈ R and r > 0. Assume that b and c are nonnegative, A+ kbcT is Metzler,
and

(2.7) (k − r, k + r) ⊆ S(A, b, cT ).

Under these conditions, statements (1)–(3) of Theorem 2.1 hold.

Proof. Set Ak := A+ kbcT and define

rF(Ak; b, c
T ) := inf{|κ| : κ ∈ F, Ak + κbcT is not Hurwitz} (where F = R or F = C),

the stability radius of Ak with respect to the perturbation structure given by b and
cT . Invoking (2.7), we see that r ≤ rR(Ak; b, c

T ). By a stability radius result for
nonnegative systems proved in [15], rR(Ak; b, c

T ) = rC(Ak; b, c
T ), and consequently

D(0, r) ⊆ S(Ak, b, c
T ), or equivalently D(k, r) ⊆ S(A, b, cT ). The claim now follows

from Theorem 2.1.

In the following, let G denote the transfer function of the linear system (1.1), i.e.,
G(s) = cT (sI − A)−1b. We will also refer to G as the transfer function of (A, b, cT ).
The next result considers a scenario wherein the Lur’e system (2.1) has an equilibrium
x∗ 
= 0 in addition to the zero equilibrium.

Theorem 2.3. Consider the unforced Lur’e system (2.1) and assume that A is
Hurwitz, ‖G‖H∞ = |G(0)| > 0, and there exists y∗ 
= 0 such that y∗ = G(0)f(y∗).
Then x∗ = −A−1bf(y∗) 
= 0 is an equilibrium of (2.1) and the following statements
hold:

(1) If

(2.8)

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ ≤ 1

|G(0)| ∀ y ∈ R, y 
= y∗,

then there exists g ≥ 1 such that ‖x(t; ξ)− x∗‖ ≤ g‖ξ − x∗‖ for all ξ ∈ Rn and t ≥ 0.
(2) If

(2.9)

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ < 1

|G(0)| ∀ y ∈ R, y 
= 0, y∗,

then, for every ξ ∈ Rn, we have that x(t; ξ) → x∗ or x(t; ξ) → 0 as t→ ∞.

Note that (2.8) is a “sector” condition in the sense that the graph of f is “sand-
wiched” between the lines l1(y) = py and l2(y) = −py+ 2py∗, where p = 1/G(0) (see
Figure 2.1 for an illustration). In the case of the “strict” sector condition (2.9), the
graph of f “touches” these lines only at the points (0, 0) and (y∗, f(y∗)).

Before proving Theorem 2.3, we provide examples of linear systems satisfying the
condition ‖G‖H∞ = |G(0)|.

Example 2.4. (1) Let (A, b, cT ) be a symmetric system, that is, A = AT and c = b.
If A is Hurwitz, then by [25, part (2) of Theorem 4.1]

‖G‖H∞ = G(0).

The assumptions on A imply that −A−1 is positive definite and thus, if b 
= 0, then
G(0) = −bTA−1b > 0.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1181

(a)

y

f(y)

l2

l1
2py∗

f

0 y∗

(b)

y

f(y)

l2

l1

2py∗

f

0

y∗

(c)

y

f(y)

l1

l2

2py∗

f

0

y∗

(d)

y

f(y)

l1

l2
2py∗

f

0y∗

Fig. 2.1. Graph of f “sandwiched” between the lines l1(y) = py and l2(y) = 2py∗ − py, where
(a) p > 0 and y∗ > 0, (b) p > 0 and y∗ < 0, (c) p < 0 and y∗ > 0, and (d) p < 0 and y∗ < 0.

(2) Let Ã ∈ Rn×n, b̃ ∈ Rn, c̃ ∈ Rn, and set G̃(s) = c̃T (sI− Ã)−1b̃. Assume that Ã
is Hurwitz and G̃(0) 
= 0. Let k be a real parameter and consider the integral control
system

ẋ = Ãx+ b̃u, y = c̃Tx, u̇ = v − ky,

where v is an input (forcing) function. The above feedback system (with input v and
output y) is described by the triple (Ak, b, c

T ), where

Ak :=

(
Ã b̃

−kc̃T 0

)
, b :=

(
0
1

)
, c :=

(
c̃
0

)
.

A routine calculation shows that

top right-hand block of (sI −Ak)
−1 =

(
s+ kc̃T (sI − Ã)−1b̃

)−1
(sI − Ã)−1b̃

=
(
s+ kG̃(s)

)−1
(sI − Ã)−1b̃,

and so, the transfer function Gk(s) = cT (sI−Ak)
−1b of the system (Ak, b, c

T ) satisfies

Gk(s) = G̃(s)
(
s+ kG̃(s)

)−1
=
G̃(s)

s

(
1 + k

G̃(s)

s

)−1

.

It follows from [27] that there exists k∗ > 0 such that, for all k with kG̃(0) > 0 and
0 < |k| < k∗,

‖Gk‖H∞ =
1

|k| = |Gk(0)|.
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1182 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

(3) Let (A, b, cT ) be a nonnegative continuous-time system, that is, A is Metzler
and b, c ∈ Rn

+. If A is Hurwitz, then ‖G‖H∞ = G(0) ≥ 0 (see Lemma 4.2).

Proof of Theorem 2.3. Since G(0) 
= 0 and y∗ 
= 0, we have f(y∗) 
= 0 and x∗ 
= 0.
Noting that cTx∗ = y∗, we conclude that

Ax∗ + bf(cTx∗) = Ax∗ + bf(y∗) = 0,

showing that x∗ is an equilibrium of (2.1).
Let ξ ∈ Rn and set x̃(t) = x(t; ξ) − x∗ for all t ≥ 0. Furthermore, defining

f̃ : R → R by f̃(y) = f(y + y∗)− f(y∗) for all y ∈ R, it follows that

(2.10) ˙̃x = Ax̃+ bf̃(cT x̃), x̃(0) = ξ − x∗.

Setting p := 1/|G(0)|, it follows by hypothesis that p = 1/‖G‖H∞ and thus, by
elementary stability radius theory (see [13] or [14, section 5.3]),

inf
{
|κ| : κ ∈ C, A+ κbcT is not Hurwitz

}
= p.

Consequently,

(2.11) D(0, p) ⊆ S(A, b, cT ).

To prove statement (1), note that

(2.12)

∣∣∣∣∣ f̃(y)y
∣∣∣∣∣ ≤ p ∀ y ∈ R, y 
= 0.

Combining (2.10)–(2.12) with statement (1) of Theorem 2.1 yields the existence of a
constant g ≥ 1 such that, for every ξ ∈ Rn,

‖x(t; ξ)− x∗‖ ≤ g‖ξ − x∗‖ ∀ t ≥ 0.

We proceed to prove statement (2) of Theorem 2.1. To this end, observe that

(2.13)

∣∣∣∣∣ f̃(y)y
∣∣∣∣∣ < p ∀ y ∈ R, y 
= 0,−y∗.

By [14, proof of Theorem 5.6.22] there exists a positive semidefinite P = PT ∈ Rn×n

such that the quadratic form V (z) = 〈Pz, z〉 satisfies

(2.14) Vd(z) := 〈(∇V )(z), Az + bf̃(cT z)〉 ≤ f̃2(cT z)− p2(cT z)2 ≤ 0 ∀ z ∈ R
n,

where the last inequality follows from (2.13). By statement (1), x̃ is bounded and so
its ω-limit set Ω is nonempty, compact, connected, and invariant. Furthermore, Ω is
the smallest closed set with the property

lim
t→∞ dist(x̃(t),Ω) = 0;

see, for example, [26]. As a consequence of LaSalle’s invariance principle, Ω ⊆ V −1
d (0).

By (2.13) and (2.14),

V −1
d (0) ⊆ {z ∈ R

n : cT z = 0 or cT z = −y∗}.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1183

Hence
Ω ⊆ ker cT ∪ (ker cT − x∗).

The sets ker cT and ker cT − x∗ are closed and disjoint (as cTx∗ = y∗ 
= 0). Now Ω
is connected and, therefore,

Ω ⊆ ker cT or Ω ⊆ ker cT − x∗.

Consequently,
lim
t→∞ cT x̃(t) = 0 or lim

t→∞ cT x̃(t) = −y∗.

Hence by (2.10) and the Hurwitz property of A,

lim
t→∞ x̃(t) = 0 or lim

t→∞ x̃(t) = −A−1bf̃(−y∗) = −x∗.

Thus,
lim
t→∞ x(t; ξ) = x∗ or lim

t→∞x(t; ξ) = 0,

completing the proof.

Let us now consider forced Lur’e systems of the form

(2.15) ẋ = Ax+ bf(cTx) + d, x(0) = ξ ∈ R
n,

where A ∈ Rn×n, b, c ∈ Rn, f : R → R is locally Lipschitz with f(0) = 0, and
d ∈ L∞

loc(R+,R
n) is an external disturbance (forcing, input). Let x(· ; ξ, d) denote the

unique absolutely continuous maximally defined forward solution of the initial-value
problem (2.15) (see, for example, [43, Theorem 54]). In most applied contexts, the
function d will be piecewise continuous, in which case x(· ; ξ, d) is piecewise continu-
ously differentiable. Furthermore, if the nonlinearity f satisfies an affine linear bound,
then x(t; ξ, d) is defined for all t ≥ 0 (see [26, Proposition 4.12]). The following result
is proved in [37].

Theorem 2.5. Let A ∈ Rn×n, b, c ∈ Rn, and let f : R → R be locally Lipschitz
and f(0) = 0. Assume that

(2.16) D(k, r) ⊆ S(A, b, cT ),

where k ∈ R and r > 0. If there exists β ∈ K∞ such that

(2.17) |f(y)− ky| ≤ r|y| − β(|y|) ∀ y ∈ R,

then there exist ψ ∈ KL and ϕ ∈ K such that, for all ξ ∈ Rn and all d ∈ L∞
loc(R+,R

n),

(2.18) ‖x(t; ξ, d)‖ ≤ ψ(‖ξ‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.

Obviously, if d = 0 in (2.15), then 0 is an equilibrium of (2.15). If there exist
ψ ∈ KL and ϕ ∈ K such that (2.18) holds for all ξ ∈ Rn and all d ∈ L∞

loc(R+,R
n),

then 0 is said to be ISS. For more details on ISS theory, we refer the reader to [5, 41].
Note that there exists β ∈ K∞ such that (2.17) holds if and only if |f(y)− ky| < r|y|
for all y 
= 0, and the difference r|y| − |f(y)− ky| tends to ∞ as |y| → ∞.

Trivially, condition (2.4) in Theorem 2.1 can be rewritten in the form

(2.19) |f(y)− ky| < r|y| ∀ y ∈ R\{0},
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1184 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

and thus we see that Theorem 2.5 is structurally very similar to Theorem 2.1. In par-
ticular, Theorem 2.5 says that linear stability (namely, D(k, r) ⊆ S(A, b, cT )) implies
ISS for all nonlinearities f : R → R satisfying (2.17). It is not difficult to construct
counterexamples which show that Theorem 2.5 does not remain valid if the condition
β ∈ K∞ is replaced by β ∈ K (see [37]). In particular, the disc condition (2.16)
together with (2.19) is not sufficient for ISS. Finally, we mention that if there exists
r1 ∈ (0, r) such that (2.5) holds, then (2.17) is satisfied with β(s) = r0s, where r0
is an arbitrary constant satisfying 0 < r0 < r − r1. In this case, assuming that the
linear condition (2.16) holds, it can be shown that the ISS estimate (2.18) holds with
ψ and ϕ given by ψ(s, t) = c1e

−c2ts and ϕ(s) = c3s, where c1, c2, and c3 are suitable
positive constants.

3. Metzler matrices. In this section we gather from the literature a number of
results on Metzler matrices that shall play a key role in sections 4 and 5. Frequently,
Metzler matrices are also called essentially nonnegative [1, p. 146] or quasi-positive
[38, p. 60]. In a dynamical systems context, they are the continuous-time analogue
of nonnegative matrices which arise naturally in discrete-time nonnegative dynamical
systems (see, for example, [6] or [11]). We refer the reader to [1, 28, 46] for further
background on Metzler matrices.

Let M = (mij) ∈ R
n×n. Recall that M is Metzler if all off-diagonal entries of M

are nonnegative, that is, mij ≥ 0 for all 1 ≤ i, j ≤ n with i 
= j. The matrix M is said
to be reducible if there exist nonempty disjoint subsets J1, J2 ⊆ {1, . . . , n} such that
J1 ∪ J2 = {1, . . . , n} and mij = 0 for all (i, j) ∈ J1 × J2. The matrix M is irreducible
if it is not reducible. A primitive matrix is irreducible.

The following well-known result demonstrates that the Metzler property charac-
terises linear flows which leave the nonnegative orthant invariant.

Lemma 3.1. A matrix M ∈ Rn×n is Metzler if and only if eMt > 0 for all t ≥ 0.
A matrix M ∈ Rn×n is Metzler and irreducible if and only if eMt � 0 for all t > 0.

Proof. The first claim is proved in, for example, [38, section 3.1] or [40, Theorem
3]. The second claim may be found in [46, Theorem 8.2] (see also [40, Proposition 1]
for a more general version).

Lemma 3.2. A matrix M ∈ Rn×n is Metzler and Hurwitz if and only if −M−1 >
0.

Proof. See [2, characterization N38 in section 6.2] or [34, characterization F15],
noting that the matrix M is Hurwitz and Metzler if and only if −M is a nonsingular
M-matrix (recall that N ∈ Rn×n is a M-matrix if N is of the form N = νI−P , where
P is nonnegative and ν ≥ �(P )).

Classical Perron–Frobenius theory [2, 30] pertains to nonnegative matrices. Whilst
a Metzler matrix M is, in general, not nonnegative, by defining

δ(M) := − min
1≤i≤n

(
mii, 0

)
≥ 0 ,

the matrix μI + M is nonnegative for all μ ≥ δ(M). This observation, combined
with the following lemma, enables applications of Perron–Frobenius theory to Metzler
matrices; see Theorem 3.4.

Lemma 3.3. Let M ∈ Rn×n be an irreducible Metzler matrix. If μ > δ(M), then
μI +M is a primitive matrix.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

06
/2

9/
16

 to
 1

38
.3

8.
10

6.
11

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1185

Proof. It is clear that μI +M is a nonnegative irreducible matrix with positive
trace. It follows now from [2, Corollary 2.2.28] that μI +M is primitive.

Theorem 3.4. Let M ∈ Rn×n be a Metzler matrix, set a := α(M), and let
μ > δ(M). Then

(1) a ∈ σ(M) and a = ρ(μI +M)− μ.
(2) If λ ∈ σ(M) and λ 
= a, then Reλ < a.

Furthermore, under the additional assumption that M is irreducible, the following
statements hold:

(3) a is simple.
(4) There exist unique vectors v, w ∈ Rn satisfying

(3.1) vTM = avT , Mw = aw, v, w � 0, and ‖v‖1 = ‖w‖1 = 1.

(5) The following convergence result holds:

lim
t→∞ e(M−aI)t =

1

vTw
wvT � 0,

where v and w are the vectors satisfying (3.1).

Proof. Statement (1) is taken from [15, part (i) of Proposition 1 and equation (8)]
and statement (2) from [15, part (ii) of Proposition 1]. Statements (3) and (4) follow
from, for example, [6, Theorems 11 and 17]. Although statement (5) is undoubtedly
known, we could not find a proof in the literature. Therefore, we prove it here. To
this end, we invoke a ∈ σ(M) and statement (3) to see that there exists an invertible
matrix S such that

M = S−1

(
a 0
0 J

)
S, where J is a Jordan matrix with σ(J) = σ(M)\{a}.

By Lemma 3.3, the matrix μI +M is primitive and thus, appealing to statement (1)
and Perron–Frobenius theory, we obtain

μ+ a = ρ(μI +M) > |μ+ λ| ∀ λ ∈ σ(J).

Consequently, ρ((μ+ a)−1(μI + J)) < 1, and so

(μ+a)−j(μI+M)j = (μ+a)−jS−1

(
μ+ a 0
0 μI + J

)j

S → S−1

(
1 0
0 0

)
S as j → ∞.

On the other hand, Perron–Frobenius theory applied to μI +M guarantees that

(μ+ a)−j(μI +M)j → 1

vTw
wvT as j → ∞,

where v and w are the unique vectors satisfying (3.1). Hence,

S−1

(
1 0
0 0

)
S =

1

vTw
wvT ,

and furthermore,

e(M−aI)t = e−ateMt = S−1

(
1 0
0 e−ateJt

)
S → 1

vTw
wvT as t→ ∞,

where we have used that, by statement (2), a > Reλ for all λ ∈ σ(J). We may now
conclude that e−ateJt → 0 as t→ ∞.
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1186 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

We shall also make use of the following monotonicity property of the spectral
abscissas of irreducible Metzler matrices a proof may be found in [38, Corollary 4.3.2].

Lemma 3.5. Let M,N ∈ R
n×n denote Metzler matrices. If M > N and N is

irreducible, then α(M) > α(N).

4. Stability of unforced nonnegative Lur’e systems. Consider the Lur’e
system (2.1). We introduce the following assumptions.

(A1) A is Metzler and b, c ∈ Rn
+\{0}.

(A2) A is Hurwitz.
(A3) A+ bcT is irreducible.
(A4) f : R+ → R+ is locally Lipschitz and f(0) = 0.
If (A1) and (A4) hold, then for every ξ ∈ Rn

+, the unique maximally defined
forward solution x(· ; ξ) of (2.1) satisfies x(t; ξ) ∈ Rn

+ for all t ≥ 0 for which the
solution exists. The following remark is a straightforward consequence of the definition
of irreducibility and Lemma 3.3.

Remark 4.1. (1) If (A1) and (A3) are satisfied, then A + kbcT is irreducible for
every k > 0.

(2) If (A1) and (A3) hold, then for every μ > δ(A) and every k > 0, μI+A+kbcT

is primitive.
(3) If there exist μ, k ≥ 0 such that μI +A+ kbcT is primitive, then (A3) holds.

The following result shows that under assumptions (A1)–(A3), the steady-state
gain G(0) of the linear system (A, b, cT ) is positive and equal to the H∞-norm.

Lemma 4.2. Assume that (A1) and (A2) hold; then ‖G‖H∞ = |G(0)| = G(0) ≥ 0.
If additionally (A3) holds, then G(0) > 0.

Proof. The first claim is a consequence of [15, Theorem 5]. For the convenience
of the reader, we provide a short direct proof. To this end, assume that (A1) and
(A2) are satisfied. Then, by Lemma 3.1, cT eAtb ≥ 0 for all t ≥ 0, and hence, for all
s ∈ C with Re s ≥ 0,

|G(s)| =
∣∣∣∣
∫ ∞

0

cT eAtbe−st dt

∣∣∣∣ ≤
∫ ∞

0

|cT eAtb||e−st| dt ≤
∫ ∞

0

cT eAtb dt = G(0),

showing that ‖G‖H∞ = G(0) ≥ 0.
Now assume that (A1)–(A3) hold. We prove that G(0) > 0 by invoking a contra-

diction argument. To this end, suppose that G(0) = 0. Since ‖G‖∞ = G(0) = 0, it
follows that G(s) ≡ 0 and hence cTAkb = 0 for all k ∈ N0. Therefore, for μ > δ(A),

(4.1)

∞∑
k=0

cT
(μI +A+ bcT )k

k!
b = 0 .

On the other hand, we know, by part (2) of Remark 4.1, that μI+A+bcT is primitive,
implying that the series in (4.1) is positive. This provides the desired contradiction
and therefore G(0) > 0.

Lemma 4.3. Assume that (A1)–(A3) hold, set

(4.2) p := 1/G(0) ,

and let r > p. Then 0 = α(A + pbcT ) < α(A + rbcT ).
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1187

Proof. By Lemma 4.2, p = 1/‖G‖H∞ , and from stability radius theory for non-
negative linear systems [15] we know that the real and complex stability radii of A with
respect to the weightings b and cT coincide and are equal to p. Moreover, p is a minimal
destabilizing perturbation, implying in particular that α(A+ pbcT ) = 0. Moreover, if
r > p, then the Metzler matrices A+ pbcT and A+ rbcT satisfy A+ rbcT > A+ pbcT .
By (A3) and part (1) of Remark 4.1, A + pbcT is irreducible, and thus, invoking
Lemma 3.5, α(A + rbcT ) > α(A + pbcT ).

Assume that (A1)–(A4) hold. This means in particular that p given by (4.2) is
well defined and positive. As for the nonlinearity f , we will consider the following
three cases:

Case 1. f(y)/y ≤ p for all y > 0.
Case 2. infy>0 f(y)/y > p.
Case 3. There exists y∗ > 0 such that f(y∗) = py∗ and

(4.3)

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ ≤ p ∀ y ≥ 0, y 
= y∗.

See Figure 4.1 for an illustration of condition (4.3).

y

f(y)

l2

l1

2py∗

f

0 y∗

Fig. 4.1. The graph of f is “sandwiched” between the lines l1(y) = py and l2(y) = 2py∗ − py.

Roughly speaking, the three cases respectively correspond to the stability/instability
trichotomy we will be establishing: the zero equilibrium of (2.1) being stable, all
nonzero solutions of (2.1) diverging to infinity, and the existence of a “quasi-globally”
stable nonzero equilibrium of (2.1).

Case 1. The following theorem shows that in this case the zero equilibrium of (2.1)
has “nice” stability properties.

Theorem 4.4. Consider the unforced Lur’e system (2.1) and assume that (A1)–
(A4) hold.

(1) If f(y)/y ≤ p for all y > 0, then the equilibrium 0 is stable in the large in the
sense that there exists g ≥ 1 such that, for every ξ ∈ Rn

+,

‖x(t; ξ)‖ ≤ g‖ξ‖ ∀ t ≥ 0.

(2) If f(y)/y < p for all y > 0, then the equilibrium 0 is globally asymptotically
stable in the sense that 0 is stable in the large and, for every ξ ∈ Rn

+, x(t; ξ) → 0 as
t→ ∞.
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1188 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

(3) If supy>0 f(y)/y < p, then the equilibrium 0 is globally exponentially stable,
that is, there exists γ > 0 and g ≥ 1 such that, for every ξ ∈ Rn

+,

‖x(t; ξ)‖ ≤ ge−γt‖ξ‖ ∀ t ≥ 0 .

Proof. By Lemma 4.2, p = 1/‖G‖H∞ and therefore D(0, p) ⊆ S(A, b, cT ). To
apply Theorem 2.1, we extend f to the whole real line by defining an extension
f̃ : R → R as follows:

(4.4) f̃(y) =

{
f(y) for y > 0,
0 for y ≤ 0.

Note that by linear boundedness of f and assumptions (A1) and (A4), we have that
for every ξ ∈ Rn

+, x(· ; ξ) is defined on R+ and x(t; ξ) ∈ Rn
+ for all t ≥ 0. Therefore,

for every ξ ∈ Rn
+, x(·; ξ) is also the unique maximally defined forward solution of

(4.5) ẋ = Ax+ bf̃(cTx), x(0) = ξ.

To prove statement (1), assume that f(y)/y ≤ p for all y > 0. Then, trivially,

f̃(y)

y
∈ [0, p] ∀ y ∈ R, y 
= 0 ,

and the claim follows from statement (1) of Theorem 2.1 applied to (4.5). Statements
(2) and (3) are derived from Theorem 2.1 in a similar manner. For the sake of brevity,
we omit the details.

Remark 4.5. An alternative approach to establishing global asymptotic stability
of the zero equilibrium of nonnegative Lur’e systems is based on dissipativity theory
for nonnegative dynamical systems [11, Chapter 5]. The assumptions and conclusions
of [11, Theorem 5.6] (see also [10, Theorem 7.2]) are similar to those in statement (2)
of Theorem 4.4. The proof presented in [10, 11] invokes a linear Lyapunov function
arising from a dissipativity assumption. We emphasise that the main topic of the
current paper (see case 3), namely stability properties of a nonzero equilibrium in the
presence of another equilibrium at the origin, is not considered in [10, 11].

Case 2. In this case, the zero equilibrium of (2.1) is “strongly” unstable, as the
following result shows.

Theorem 4.6. Consider the unforced Lur’e system (2.1). Assume that (A1)–
(A4) hold and that f satisfies

inf
y>0

f(y)

y
> p .

If ξ ∈ R
n
+, ξ 
= 0, is such that the solution x(t; ξ) exists for every t ≥ 0, then

lim
t→∞xi(t; ξ) = ∞ ∀ i ∈ {1, . . . , n},

where xi(t; ξ) denotes the ith component of x(t; ξ).

Proof. Let ξ ∈ Rn
+, ξ 
= 0, be such that the solution x(t; ξ) exists for every t ≥ 0.

Write x(t) := x(t; ξ) for all t ≥ 0. By the hypothesis on f , there exists q > p such
that

f(y) ≥ qy ∀ y ∈ R+.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1189

By (A1), (A3), and part (1) of Remark 4.1, A+ qbcT is an irreducible Metzler matrix.
Invoking statement (5) of Theorem 3.4 shows that there exists a positive matrix L
such that

(4.6) lim
t→∞ e(A+qbcT−aI)t = L� 0,

where a := α(A+ qbcT ). We note that a > 0, as follows from Lemma 4.3. Moreover,

ẋ = (A+ qbcT )x + b(f(cTx)− qcTx)

and thus, by the variation of parameters formula,

x(t) = e(A+qbcT )tξ+

∫ t

0

e(A+qbcT )(t−s)b
(
f(cTx(s))−qcTx(s)

)
ds ≥ e(A+qbcT )tξ ∀ t ≥ 0.

Since a > 0, it follows from (4.6) that every component of e(A+qbcT )tξ diverges to ∞
as t→ ∞, completing the proof.

Case 3. Assume that (A1)–(A4) hold, which implies that G(0) > 0 and p =
1/G(0) is well-defined. Since in the current case we are assuming that there exists
y∗ > 0 such that f(y∗) = py∗, it follows from Theorem 2.3 that (2.1) has an additional
equilibrium x∗ = −A−1bpy∗ 
= 0. We shall provide sufficient conditions under which
x∗ has “nice” stability properties. To provide a detailed treatment, it is convenient
to introduce the following assumptions on the nonlinearity f .

(A5) There exists y∗ > 0 such that f(y∗) = py∗.
(A6) f satisfies ∣∣∣∣f(y)− f(y∗)

y − y∗

∣∣∣∣ ≤ p ∀ y ≥ 0, y 
= y∗.

(A7) f satisfies ∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ < p ∀ y > 0, y 
= y∗.

Assumptions (A6) and (A7) are sector conditions in the sense that they are equivalent
to the graph of f being “sandwiched” between the straight lines l1(y) = py and
l2(y) = 2py∗ − py; see Figure 4.1. The following proposition provides a sufficient
condition for (A5) and (A7) to hold.

Proposition 4.7. Assume that f : R+ → R+ is twice continuously differentiable.
If f(0) = 0, f ′(0) > p, f ′(y) ≥ 0, and f ′′(y) ≤ 0 for all y ∈ R+, and if limy→∞ f ′(y) <
p, then (A5) and (A7) hold.

Note that the assumptions f ′ ≥ 0 and f ′′ ≤ 0 together guarantee the existence
of the limit of f ′(y) as y → ∞. The proof of Proposition 4.7 is elementary and is
therefore omitted.

Example 4.8. (1) Consider the nonlinearity f : R+ → R+ given by

(4.7) f(y) =
f1y

f2 + y
, where f1 and f2 are positive constants.

In population dynamics, the nonlinearity (4.7) is sometimes said to be of Beverton–
Holt type [3] or of Holling type II [17]. The function f satisfies f(0) = 0, f ′(0) = f1/f2,
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1190 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

f ′(y) > 0, and f ′′(y) < 0 for all y ∈ R+ and limy→∞ f ′(y) = 0. Therefore, by
Proposition 4.7, (A5) and (A7) hold if f1/f2 > p. Moreover, if f1/f2 ≤ p, then (A5)
does not hold.

(2) Consider the nonlinearity f : R+ → R+ defined by

(4.8) f(y) = ye−ay, where a is a positive constant.

In population dynamics, this function is referred to as Ricker nonlinearity [36]. By
using elementary calculus, it can be shown that (A5) and (A7) hold if and only if
p ∈ [e−2, 1) (see [44]) independently of a > 0.

Lemma 4.9. Assume that (A1)–(A5) are satisfied. Then 0 and x∗ := −A−1bpy∗ >
0 are equilibria of system (2.1). If additionally (A7) holds, then there are no other
equilibria in Rn

+.

Proof. Clearly, since f(0) = 0 by (A4), 0 is an equilibrium of (2.1). By Lemma 4.2,
‖G‖H∞ = G(0) > 0, and so, appealing to Theorem 2.3 and Corollary 3.2, we see that
x∗ is an equilibrium of (2.1) satisfying x∗ > 0.

Now assume that (A7) also holds and that x0 ∈ Rn
+ is an equilibrium of (2.1),

that is, Ax0 + bf(cTx0) = 0. We have to show that x0 = 0 or x0 = x∗. Since A is
Hurwitz, A is invertible, and so,

(4.9) x0 = −A−1bf(cTx0).

If cTx0 = 0, then x0 = 0. Assume that cTx0 > 0. Since

cTx0 = −cTA−1bf(cTx0) = G(0)f(cTx0) =
1

p
f(cTx0),

it follows that
f(cTx0)− f(y∗) = p(cTx0 − y∗).

Invoking assumption (A7), we conclude that cTx0 = y∗, which together with (4.9)
implies that x0 = x∗.

The following result shows in particular that under suitable assumptions, the
equilibrium x∗ = −A−1bpy∗ is stable in the large and attracts every nonzero initial
vector ξ ≥ 0.

Theorem 4.10. Consider the unforced Lur’e system (2.1) and assume that (A1)–
(A5) hold.

(1) Under the additional assumption that (A6) is satisfied, there exists g ≥ 1 such
that x∗ = −A−1bpy∗ is stable in the large in the sense that, for every ξ ∈ Rn

+,

‖x(t; ξ)− x∗‖ ≤ g‖ξ − x∗‖ ∀ t ≥ 0.

(2) Under the additional assumption that (A7) is satisfied, the equilibrium x∗ =
−A−1bpy∗ is “globally” asymptotically stable in the sense that it is stable in the large
and, for every ξ ∈ Rn

+, ξ 
= 0, x(t; ξ) → x∗ as t→ ∞.

Proof. Let f̃ be defined by (4.4), thereby extending f to the whole real line in
an obvious way. Note that by linear boundedness of f and assumptions (A1) and
(A4), we have that, for every ξ ∈ Rn

+, x(· ; ξ) is defined on R+ and x(t; ξ) ∈ Rn
+ for

all t ≥ 0. Therefore, for every ξ ∈ Rn
+, x(· ; ξ) is also the unique maximally defined

forward solution of (4.5). Appealing to Lemma 4.2, we see that ‖G‖H∞ = G(0) > 0.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1191

Thus, via an application of statement (1) of Theorem 2.3 to the Lur’e system (4.5), it
follows that statement (1) holds. Furthermore, if (A7) is satisfied, then by statement
(2) of Theorem 2.3,

lim
t→∞ x(t; ξ) = x∗ or lim

t→∞x(t; ξ) = 0.

Fix ξ ∈ Rn
+, ξ 
= 0, and write x(t) := x(t; ξ) for all t ≥ 0. Seeking a contradiction,

suppose that x(t) → 0 as t → ∞. Then there exists τ ≥ 0 such that cTx(t) ≤ y∗ for
all t ≥ τ . Thus, since

x(t+ τ) = e(A+pbcT )tx(τ) +

∫ t+τ

τ

e(A+pbcT )(t+τ−s)b(f(cTx(s))− pcTx(s))ds ∀ t ≥ 0

and
f(y)− py ≥ 0 ∀ y ∈ [0, y∗],

we have

(4.10) x(t+ τ) ≥ e(A+pbcT )tx(τ) ∀ t ≥ 0.

By Lemma 4.3, α(A+pbcT ) = 0, and so it follows from Theorem 3.4 that there exists
v � 0 such that vT (A+ pbcT ) = 0. Consequently,

vT e(A+pbcT )t = vT ∀ t ≥ 0.

By (4.10),
vTx(t + τ) ≥ vTx(τ) ∀ t ≥ 0.

Since v � 0 and x(τ) ∈ Rn
+, x(τ) 
= 0, it is clear that vTx(τ) > 0, and so

vTx(t) ≥ vTx(τ) > 0 ∀ t ≥ τ,

contradicting the supposition that limt→∞ x(t) = 0. Thus, x(t) → x∗ = −A−1bpy∗ as
t→ ∞, completing the proof of statement (2).

We now discuss the issue of exponential stability. To recap, assumptions (A1)–
(A5) imply that the unforced Lur’e system (2.1) has at least two equilibria, including
0 and x∗. When (A6) and (A7) hold as well, then Theorem 4.10 shows that x∗ is
respectively stable in the large and asymptotically stable with domain of attraction
equal to Rn

+ \{0}. Assumption (A7) also ensures that 0 and x∗ are the only equilibria
of (2.1) (see Lemma 4.9). We remark that “global” exponential stability of x∗, in the
sense that there exist g ≥ 1 and γ > 0 such that for every nonzero ξ ∈ Rn

+,

(4.11) ‖x(t; ξ)− x∗‖ ≤ ge−γt‖ξ − x∗‖ ∀ t ≥ 0,

is not possible. This is a straightforward consequence of the continuity of the flow
map (t, ξ) �→ x(t; ξ) together with the facts that 0 is an equilibrium of (2.1) and
x∗ 
= 0. Indeed, x(t; 0) = 0 for each t ≥ 0, and so, if (tn) is a sequence in R+ with
tn → ∞, then there exists a sequence (ξn) in Rn

+\{0} such that

ξn → 0 and x(tn; ξn) → 0 as n→ ∞,

and thus,

‖x(tn; ξn)− x∗‖ → ‖x∗‖ > 0 as n→ ∞.
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1192 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Hence, there do not exist constants g and γ such the estimate (4.11) holds for all
nonzero ξ in Rn

+.
1

We will now show that under suitable conditions, the equilibrium x∗ is exponen-
tially stable in a “quasi-global” sense (see Theorem 4.11 below). To this end, we
introduce two further assumptions:

(A8) lim sup
y→y∗

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ < p.

(A9) lim sup
y→∞

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ < p.

If f is differentiable at y∗, then (A8) is equivalent to the condition |f ′(y∗)| < p.
Assumption (A9) says that for all sufficiently large y, the points (y, f(y)) lie in a
sector defined by two straight lines of slope r and −r, where 0 < r < p. Note that
neither (A8) nor (A9) is implied by assumption (A7).

Theorem 4.11. Assume that (A1)–(A5) and (A7)–(A9) hold. Then the equilib-
rium x∗ = −A−1bpy∗ of the unforced Lur’e system (2.1) is quasi-globally exponentially
stable in the sense that for every ε > 0, there exist constants γ > 0 and g ≥ 1 such
that (4.11) holds for every ξ ∈ Rn

+ with ‖ξ‖ ≥ ε.

Note that, collectively, (A7)–(A9) are equivalent to the condition:

sup
y≥y0, y 	=y∗

∣∣∣∣f(y)− f(y∗)
y − y∗

∣∣∣∣ < p ∀ y0 > 0.

Obviously, this condition can be seen as a “uniformized” version of (A7). Also note
that the above inequality does not hold for y0 = 0 (since f(0) = 0 and f(y∗) =
py∗). The proof of Theorem 4.11 is facilitated by the following proposition, which is
formulated in the context of the forced Lur’e system (2.15), because it will not only
be useful in this section, but also in the next section on ISS for forced Lur’e systems.

Proposition 4.12. Assume that (A1)–(A5) and (A7) hold and let ε > 0. Then
there exist η > 0 and θ ≥ 0 such that for all ξ ∈ Rn

+ with ‖ξ‖1 ≥ ε and all nonnegative
disturbances d ∈ L∞

loc(R+,R
n
+), the solution x(· ; ξ, d) of the forced Lur’e system (2.15)

satisfies

(4.12) cTx(t; ξ, d) ≥ η ∀ t ≥ θ .

Informally, the proposition says that under the stated assumptions, the output
cTx(t; ξ, d) is uniformly ultimately bounded away from 0. In order to avoid breaking
the flow of the presentation, we relegate the lengthy proof of Proposition 4.12 to the
end of the section.

Proof of Theorem 4.11. Let ε > 0. By Proposition 4.12, there exist η > 0
and θ ≥ 0 such that cTx(t; ξ) ≥ η for all t ≥ θ, all ξ ∈ Rn

+ with ‖ξ‖1 ≥ ε, and
all nonnegative disturbances d ∈ L∞

loc(R+,R
n
+). Invoking assumptions (A7)–(A9), it

follows that

(4.13) r := sup
{
|f(y + y∗)− f(y∗)|/|y| : −y∗ + η ≤ y <∞, y 
= 0

}
< p .

1We mention that this also follows from a more general result on domains of attractions; see [12,
Theorem 33.2].
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1193

Consider a fixed, but arbitrary, ξ ∈ Rn
+ with ‖ξ‖1 ≥ ε, and write x̃(t) := x(t; ξ) − x∗

for t ≥ 0. Choose a locally Lipschitz function f̃ : R → R such that
(4.14)
f̃(y) = f(y + y∗)− f(y∗) ∀ y ∈ [−y∗ + η,∞) and |f̃(y)/y| ≤ r ∀ y ∈ R\{0} .

Since cT x̃(t) ≥ −y ∗ +η for all t ≥ θ and using (4.14), it is straightforward to show
that

˙̃x = Ax̃+ bf̃(cT x̃) ∀ t ≥ θ .

By (4.13), r < p, and thus it follows from statement (3) of Theorem 2.1 that there
exist γ > 0 and h ≥ 1 (not depending on ξ) such that

‖x̃(t)‖ ≤ he−γ(t−θ)‖x̃(θ)‖ ∀ t ≥ θ .

Combined with the stability in the large of x∗ (statement (1) of Theorem 4.10), this
shows that there exists g > h (not depending on ξ) such that

‖x̃(t)‖ ≤ ge−γt‖ξ − x∗‖ ∀ t ≥ 0 ,

completing the proof.

Example 4.13. We revisit Example 4.8 and consider nonlinearities of Beverton–
Holt and Ricker type.

(1) The Beverton–Holt nonlinearity f given by (4.7) has the following properties:
f ′(0) = f1/f2, f

′(y) < f1/f2 for all y > 0, and f(y)/y → 0 as y → ∞. Combining this
with part (1) of Example 4.8, we conclude that f satisfies (A5) and (A7)–(A9) if and
only if f1/f2 > p. Consequently, since f trivially satisfies (A4), Theorem 4.11 applies
to the Lur’e system (2.1) provided that the linear system (A, b, cT ) satisfies (A1)–(A3)
and f1/f2 > p.

(2) The Ricker nonlinearity f given by (4.8) satisfies f ′(0) = 1 and, since e−ay∗
=

p,
f ′(y∗) = e−ay∗

(1− ay∗) = p(1 + log p) .

In conjunction with part (2) of Example 4.8, this shows that f satisfies (A5) and
(A7)–(A9) if and only if p ∈ (e−2, 1). Now it is obvious that f satisfies (A4), and
so, Theorem 4.11 applies to the Lur’e system (2.1), provided that the linear system
(A, b, cT ) satisfies (A1)–(A3) and p ∈ (e−2, 1).

The next result shows that if (A9) does not hold, but all other assumptions of
Theorem 4.11 are satisfied, then x∗ is still “semiglobally” exponentially stable.

Theorem 4.14. Assume that (A1)–(A5), (A7), and (A8) hold. Then the equilib-
rium x∗ = −A−1bpy∗ of the unforced Lur’e system (2.1) is semiglobally exponentially
stable in the sense that for every compact set Γ ⊆ R

n
+ with 0 /∈ Γ, there exist constants

γ > 0 and g ≥ 1 such that (4.11) holds for every ξ ∈ Γ.

Proof. Let Γ ⊆ R
n
+ be compact with 0 /∈ Γ. Then there exists ε > 0 such that

‖ξ‖1 ≥ ε for all ξ ∈ Γ. Consequently, invoking Proposition 4.12, there exist η > 0 and
θ ≥ 0 such that

cTx(t; ξ) ≥ η ∀ t ≥ θ, ∀ ξ ∈ Γ.

Furthermore, by statement (1) of Theorem 4.10, the equilibrium x∗ is stable in the
large, and thus, there exists a constant h > 0 such that

cTx(t; ξ) ≤ h ∀ t ≥ 0, ∀ ξ ∈ Γ.
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1194 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Replacing the definitions of r and f̃ : R → R in (4.13) and (4.14) by

r := sup
{
|f(y + y∗)− f(y∗)|/|y| : −y∗ + η ≤ y ≤ h}, y 
= 0

}
and

f̃(y) = f(y + y∗)− f(y∗) ∀ y ∈ [−y∗ + η,∞) and |f̃(y)/y| ≤ r ∀ y ∈ R\{0} ,

respectively, and noting that r < p by (A7) and (A8), we can argue as in the proof of
Theorem 4.11 to establish the claim.

We mention that there is an alternative method of proving the semiglobal ex-
ponential stability property guaranteed by Theorem 4.14 that does not make use of
Proposition 4.12. This proof rests on a combination of local exponential stability of
x∗ (which is not difficult to establish), statement (2) of Theorem 4.10, and a well-
known uniformity property enjoyed by compact subsets of the region of attraction
of an asymptotically stable equilibrium (see [26, Proposition 5.20]). We emphasize
that this approach cannot be used to establish the quasi-global exponential stability
property (Theorem 4.11), which pertains to initial vectors of arbitrarily large norm.

It remains to prove Proposition 4.12. To this end, it is convenient to introduce
some notation. Assuming that (A1)–(A3) hold, let q ≥ p, set aq := α(A+ qbcT ), and
let vq, wq ∈ R

n
+ denote the unique positive vectors such that

vTq (A+ qbcT ) = aqv
T
q , (A+ qbcT )wq = aqwq, ‖vq‖1 = ‖wq‖1 = 1.

The existence of such vectors follows from an application of statement (4) of Theo-
rem 3.4 to the irreducible Metzler matrix A+ qbcT . By Lemma 4.3,

0 = ap < aq ∀ q > p.

Invoking part (5) of Theorem 3.4, there exist τq > 0 such that

(4.15) e−aqte(A+qbcT )t ≥ 1

2vTq wq
wqv

T
q =: Lq � 0 ∀ t ≥ τq .

We define the constants

(4.16) μ := δ(A+ pbcT ) ≥ 0, λq := smallest component of cTLq.

Note that λq > 0 by the positivity of Lq. Furthermore, for every l > 0, we set

(4.17) ω(l) := inf{‖z‖1 : cT z ≥ l} > 0.

The following technical lemma will be useful for the proof of Proposition 4.12.

Lemma 4.15. Assume that (A1)–(A5) and (A7) hold, fix y† ∈ (0, y∗), and let
d ∈ L∞

loc(R+,R
n
+).

(1) If for ξ ∈ Rn
+\{0}, there exists t† ≥ 0 such that cTx(t†; ξ, d) = y†, then

cTx(t; ξ, d) ≥ min
{
λpω(y

†), e−μτpy†
}
> 0 ∀ t ≥ t† .

(2) For each ε > 0, there exists tε ∈ (0,∞) such that for all ξ ∈ Rn
+ with ‖ξ‖1 ≥ ε

and cT ξ < y†, there exists t† ∈ (0, tε] such that cTx(t†; ξ, d) = y†.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1195

Proof. Let ξ ∈ Rn
+, ξ 
= 0, d ∈ L∞

loc(R+,R
n
+), and set x(t) := x(t; ξ, d) for all t ≥ 0.

To prove statement (1), let t† ≥ 0 be such that cTx(t†) = y†. If cTx(t) ≥ y†

for all t ≥ t†, then there is nothing to show (because y† ≥ min{λpω(y†), e−μτpy†}).
Therefore, let us assume that there exists t1 > t† such that cTx(t1) < y†. It is
sufficient to show that

cTx(t1) ≥ min
{
λpω(y

†), e−μτpy†
}
.

To this end, as t �→ cTx(t) is continuous, note that there exists t0 ∈ [t†, t1) such that
cTx(t0) = y† and

cTx(t) ≤ y† ∀ t ∈ [t0, t1] .

Invoking the sector condition (A7), we obtain

(4.18) f(cTx(t)) ≥ pcTx(t) ∀ t ∈ [t0, t1] .

Now, for t ≥ 0, it follows from the variation of parameters formula that
(4.19)

x(t+t0) = e(A+pbcT )tx(t0)+

∫ t+t0

t0

e(A+pbcT )(t+t0−s)
[
b
(
f(cTx(s))−pcTx(s)

)
+d(s)

]
ds.

By the hypotheses and (4.18), the integrand on the right-hand side of (4.19) is non-
negative for all s ∈ [t0, t1], and so

(4.20) x(t+ t0) ≥ e(A+pbcT )tx(t0) ∀ t ∈ [0, t1 − t0].

By definition of μ in (4.16), it follows that μI +A+ pbcT is nonnegative, and thus

(4.21) e(A+pbcT )t ≥ e−μtI ≥ e−μτpI ∀ t ∈ [0, τp] ,

with τp defined in (4.15). Combining (4.20) and (4.21), we see that

cTx(t+ t0) ≥ e−μτpcTx(t0) = e−μτpy† for all t such that 0 ≤ t ≤ min
{
τp, t1 − t0

}
.

Hence, if t1 − t0 ≤ τp, then

(4.22) cTx(t1) = cTx(t1 − t0 + t0) ≥ e−μτpy† .

Furthermore, if t1 − t0 > τp, then, by (4.15), (4.16), and (4.20),

cTx(t+ t0) ≥ cTLpx(t0) ≥ λp‖x(t0)‖1 ∀ t ∈ (τp, t1 − t0].

Since cTx(t0) = y†, we have ‖x(t0)‖1 ≥ ω(y†), and so

(4.23) cTx(t1) = cTx(t1 − t0 + t0) ≥ λpω(y
†) .

Combining (4.22) and (4.23) yields that

cTx(t1) ≥ min
{
λpω(y

†), e−μτpy†
}
,

which completes the proof of statement (1).
We proceed to prove statement (2). To this end, given ε > 0, let ξ ∈ Rn

+ be such
that cT ξ < y† and ‖ξ‖1 ≥ ε. We consider two exhaustive cases.
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1196 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Case 1. There does not exist t ∈ (0, τp] such that cTx(t) = y†, in which case

(4.24) cTx(t) < y† ∀ t ∈ [0, τp] .

Set

T :=
{
t ≥ 0 : cTx(s) ≤ y† ∀ s ∈ [τp, τp+t]

}
and r := inf

{
f(y)/y : λpε ≤ y ≤ y†

}
> p.

Note that assumption (A7) guarantees that r > p. It is clear that T 
= ∅ and
t∗ := sup T satisfies 0 < t∗ ≤ ∞ (by (4.24) and the definition of t∗).

Noting that cTx(t) ≤ y† for all t ∈ [0, τp + t∗), we can argue as in the derivation
of statement (1) (see, especially, (4.18)–(4.20)) to obtain

cTx(t) ≥ cT e(A+pbcT )tξ ∀ t ∈ [0, τp + t∗) .

Now cT e(A+pbcT )tξ ≥ cTLpξ ≥ λpε for all t ≥ τp, and so

(4.25) cTx(t) ≥ λpε ∀ t ∈ [τp, τp + t∗) .

Consequently,

(4.26) λpε ≤ cTx(t) ≤ y† ∀ t ∈ [τp, τp + t∗),

and thus, by the definition of r,

f(cTx(t)) ≥ rcTx(t) ∀ t ∈ [τp, τp + t∗).

The variation of parameters formula then yields

x(t) = e(A+rbcT )(t−τp)x(τp) +

∫ t

τp

e(A+rbcT )(t−s)
[
b
(
f(cTx(s)) − rcTx(s)

)
+ d(s)

]
ds

≥ e(A+rbcT )(t−τp)x(τp) ∀ t ∈ [τp, τp + t∗).

(4.27)

Since

(4.28) e(A+rbcT )(t−τp)x(τp) ≥ ear(t−τp)Lrx(τp) ∀ t ≥ τp + τr,

we use the positivity of ar > 0 to conclude from (4.26) and (4.27) that t∗ < ∞.
Setting t† := τp + t∗, it is clear that cTx(t†) = y†. If t† > τp + τr (equivalently,
t∗ > τr), then, by (4.27) and (4.28),

y† = cTx(t†) ≥ cT e(A+rbcT )(t†−τp)x(τp) ≥ ear(t
†−τp)cTLrx(τp),

and so, invoking (4.25),

y† ≥ ear(t
†−τp)λrω(λpε),

which in turn leads to

t† ≤ τp +
1

ar
ln

y†

λrω(λpε)
=: sε.

Consequently, we have that

(4.29) t† ≤ max{sε, τp + τr} =: tε.

Case 2. There exists t ∈ (0, τp] such that cTx(t) = y†. In which case, setting
t† := t, (4.29) is trivially satisfied.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1197

We are now in position to prove Proposition 4.12.

Proof of Proposition 4.12. Fix y† ∈ (0, y∗) and ε > 0. For ξ ∈ R
n
+ with ‖ξ‖1 ≥ ε

and d ∈ L∞
loc(R+,R

n
+), set x(t) := x(t; ξ, d). Furthermore, define

η := min
{
λpω(y

†), e−μτpy†
}

and θ := tε > 0, where tε is the number guaranteed to exist by statement (2) of
Lemma 4.15. We will show that

(4.30) cTx(t) ≥ η ∀ t ≥ θ

by considering three exhaustive cases.
Case 1. If cTx(0) = cT ξ < y†, appealing to statement (2) of Lemma 4.15, we see

that there exists t† ∈ (0, θ] such that cTx(t†) = y†. An application of statement (1)
of Lemma 4.15 yields that cTx(t) ≥ η for all t ≥ t†, and so (4.30) is satisfied.

Case 2. cTx(0) = cT ξ = y†. In this case, by statement (1) of Lemma 4.15,
cTx(t) ≥ η for all t ≥ 0, and hence (4.30) holds.

Case 3. cTx(0) = cT ξ > y†. If cTx(t) > y† for all t ≥ 0, then (4.30) is satisfied
since y† ≥ η. Alternatively, there exists t† > 0 such that

cTx(t†) = y† and cTx(t) > y† ∀ t ∈ [0, t†).

By statement (1) of Lemma 4.15, cTx(t) ≥ η for all t ≥ t†. It now follows that (4.30)
holds, since cTx(t) > y† ≥ η for all t ∈ [0, t†).

5. Stability of forced nonnegative Lur’e systems. Consider a forced non-
negative Lur’e system of the form (2.15) where, as usual, nonnegative means that
(A1) and (A4) hold. The unique maximally defined forward solution of (2.15) is
denoted by x(· ; ξ, d). If f is affine-linearly bounded and the disturbance (forcing,
input) d ∈ L∞

loc(R+,R
n) is nonnegative, then the maximally defined forward solution

exists for all times t ≥ 0 (that is, there is no finite escape time from the nonnegative
orthant). Obviously, if d ∈ L∞

loc(R+,R
n) is not nonnegative, then the interval of exis-

tence of the maximally defined forward solution may be bounded (finite escape time
from the nonnegative orthant).

We introduce a further assumption (recalling that p := 1/G(0) > 0).

(A10) py − f(y) → ∞ as y → ∞.

The following result provides the counterpart of statement (2) of Theorem 4.4 for
Lur’e systems with disturbances.

Theorem 5.1. Assume that (A1)–(A4) and (A10) hold, and f(y)/y < p for all
y > 0. Then, for the forced Lur’e system (2.15), 0 is ISS in the sense that there
exist ψ ∈ KL and ϕ ∈ K such that, for all ξ ∈ R

n
+ and all nonnegative disturbances

d ∈ L∞
loc(R+,R

n
+),

(5.1) ‖x(t; ξ, d)‖ ≤ ψ(‖ξ‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0.

Proof. By Lemma 4.2, p = 1/‖G‖H∞ > 0, and therefore D(0, p) ⊆ S(A, b, cT ). To
apply Theorem 2.5 (with r = p and k = 0), consider the function f̃ : R → R given
by (4.4), which extends f to the whole real line. Furthermore, by the hypotheses on
f , we have that

p|y| − |f̃(y)| > 0 ∀ y 
= 0 and p|y| − |f̃(y)| → ∞ as |y| → ∞.
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1198 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Hence, there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R.

Note that by linear boundedness of f and assumptions (A1) and (A4), we have that,
for every ξ ∈ Rn

+ and every d ∈ L∞(R+,R
n
+), x(· ; ξ, d) is defined on R+ and x(t; ξ, d) ∈

Rn
+ for all t ≥ 0. Therefore, for every ξ ∈ Rn

+ and every d ∈ L∞(R+,R
n
+), x(·; ξ, d) is

also the unique maximally defined forward solution of

(5.2) ẋ = Ax+ bf̃(cTx) + d, x(0) = ξ.

An application of Theorem 2.5 to (5.2) shows that there exist ψ ∈ KL and ϕ ∈ K
such that, for all ξ ∈ Rn

+ and all d ∈ L∞
loc(R+,R

n
+),

‖x(t; ξ, d)‖ ≤ ψ(‖ξ‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0,

completing the proof.

The next result shows that Theorem 4.6 extends to disturbed Lur’e systems.

Theorem 5.2. Assume that (A1)–(A4) hold and f satisfies

inf
y>0

f(y)

y
> p.

If ξ ∈ Rn
+, ξ 
= 0, and d ∈ L∞

loc(R+,R
n
+) are such that the solution x(t; ξ, d) of the

forced Lur’e system (2.15) exists for every t ≥ 0, then

lim
t→∞xi(t; ξ, d) = ∞ ∀ i ∈ {1, . . . , n},

where xi(t; ξ, d) denotes the ith component of x(t; ξ, d).

We omit the proof of Theorem 5.2 because the proof of Theorem 4.6, mutatis
mutandis, carries over to Lur’e systems with disturbances.

We now state and prove the main result of this section. It can be viewed as a
counterpart of statement (2) of Theorem 4.10 for Lur’e systems with disturbances.

Theorem 5.3. Assume that (A1)–(A5), (A7), and (A10) hold. Then, for the
forced Lur’e system (2.15), x∗ = −A−1bpy∗ is “quasi-globally” ISS in the sense that,
for all ε > 0, there exist ψ ∈ KL and ϕ ∈ K such that, for all ξ ∈ Rn

+ with ‖ξ‖ ≥ ε
and all nonnegative disturbances d ∈ L∞

loc(R+,R
n
+),

(5.3) ‖x(t; ξ, d)− x∗‖ ≤ ψ(‖ξ − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0 .

Proof. Let ε > 0. By Proposition 4.12, there exist η > 0 and θ ≥ 0 such that for
all ξ ∈ Rn

+ with ‖ξ‖ ≥ ε and all d ∈ L∞
loc(R+,R

n
+),

(5.4) cTx(t; ξ, d) ≥ η ∀ t ≥ θ .

Define f̃ : R → R by

(5.5) f̃(y) =

{
f(y + y∗)− f(y∗) for y ≥ −y∗ + η,
f(η)− f(y∗) for y < −y∗ + η;

see Figure 5.1 for illustrations of f and f̃ . Then

p|y| − |f̃(y)| > 0 ∀ y 
= 0 and p|y| − |f̃(y)| → ∞ as |y| → ∞.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1199

y

f(y)

l2

l1
2py∗

f

0 y∗

y

f̃(y)

l̃2

l̃1

f̃

0−y∗

Fig. 5.1. The left figure shows the “original” nonlinearity f bounded by the lines l1(y) = py
and l2(y) = 2py∗ − py. The right figure shows the graph of the shifted and extended nonlinearity f̃
bounded by the lines l̃1(y) = py and l̃2(y) = −py.

Hence, there exists β ∈ K∞ such that

|f̃(y)| ≤ p|y| − β(|y|) ∀ y ∈ R .

Combining this with the fact that D(0, p) ⊆ S(A, b, cT ), it follows from Theorem 2.5
that the system

(5.6) ż = Az + bf̃(cT z) + d̃, z(0) = ζ ,

is ISS in the sense that there exist ψ̃ ∈ KL and ϕ̃ ∈ K such that, for every ζ ∈ Rn

and every d̃ ∈ L∞
loc(R+,R

n),

(5.7) ‖z(t; ζ, d̃)‖ ≤ ψ̃(‖ζ‖, t) + ϕ̃(‖d̃‖L∞(0,t)) ∀ t ≥ 0 ,

where z(· ; ζ, d̃) denotes the unique forward solution of (5.6).
Let ξ ∈ Rn

+ with ‖ξ‖ ≥ ε, and let d ∈ L∞
loc(R+,R

n
+) be a nonnegative disturbance.

Define x̃(t) := x(t; ξ, d)− x∗ for all t ≥ 0, and set

x̃θ(t) := x̃(t+ θ) and dθ(t) := d(t+ θ) ∀ t ≥ 0 .

By (5.4),

cT x̃θ(t) ≥ −y∗ + η ∀ t ≥ 0 ,

and it is easy to see that x̃θ solves (5.6) with ζ = x̃θ(0) = x(θ; ξ, d) − x∗ and d̃ = dθ.
Hence, by (5.7) we have that

(5.8) ‖x̃θ(t)‖ ≤ ψ̃(‖x̃θ(0)‖, t) + ϕ̃(‖dθ‖L∞(0,t)) ∀ t ≥ 0 .

Moreover, on the interval [0, θ], x̃ satisfies

˙̃x(t) = Ax̃(t) + bf∗(cT x̃(t)) + d(t) ∀ t ∈ [0, θ] ,

where the function f∗ : [−y∗,∞) → [−py∗,∞) is defined by

f∗(y) = f(y + y∗)− f(y∗) = f(y + y∗)− py∗ ∀ y ≥ −y∗.

c© 2016 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1200 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

It is clear that |f∗(y)| ≤ p|y| for all y ≥ −y∗, and using the variation of parameters
formula, it follows that there exist constants k1 > 0 and k2 > 0 (not depending on ξ
and d) such that

(5.9) ‖x̃(t)‖ ≤ k1
(
‖ξ − x∗‖+ ‖d‖L∞(0,θ)

)
+ k2

∫ t

0

‖x̃(s)‖ds ∀ t ∈ [0, θ].

Applying Gronwall’s lemma to the estimate (5.9) yields

(5.10) ‖x̃(t)‖ ≤ k1e
k2θ
(
‖ξ−x∗‖+‖d‖L∞(0,θ)

)
= k

(
‖ξ−x∗‖+‖d‖L∞(0,θ)

)
∀ t ∈ [0, θ] ,

where k := k1e
k2θ. Defining ψ1 ∈ KL and ϕ1 ∈ K by

ψ1(s, t) := keθe−ts ∀ s, t ≥ 0 and ϕ1(s) := ks ∀ s ≥ 0,

respectively, and noting that ks ≤ keθe−ts = ψ1(s, t) for all t ∈ [0, θ] and s ≥ 0, it
follows from (5.10) that

(5.11) ‖x̃(t)‖ ≤ ψ1(‖ξ − x∗‖, t) + ϕ1(‖d‖L∞(0,t)) ∀ t ∈ [0, θ] .

Note that we have made use here of the causality of the underlying Lur’e system (on
the right-hand side of (5.11), the L∞-norm is taken over the interval [0, t] and not
over [0, θ] as in (5.10)). Furthermore, evaluating (5.10) at t = θ, we see that

(5.12) ‖x̃θ(0)‖ = ‖x̃(θ)‖ ≤ k
(
‖ξ − x∗‖+ ‖d‖L∞(0,θ)

)
.

Inserting (5.12) into (5.8) and invoking the inequality

ψ̃(s1 + s2, t) ≤ ψ̃(2s1, t) + ψ̃(2s2, t) ≤ ψ̃(2s1, t) + ψ̃(2s2, 0) ∀ s1, s2, t ≥ 0,

we obtain

(5.13) ‖x̃(t+θ)‖ ≤ ψ̃(2k‖ξ−x∗‖, t)+ψ̃(2k‖d‖L∞(0,θ), 0)+ϕ̃(‖d‖L∞(0, t+θ)) ∀ t ≥ 0 .

Defining ψ2 ∈ KL and ϕ2 ∈ K by

ϕ2(s) := ϕ̃(s) + ψ̃(2ks, 0) ∀ s ≥ 0

and

ψ2(s, t) :=

{
ψ̃(2ks, 0), (s, t) ∈ R+ × [0, θ],

ψ̃(2ks, t− θ), (s, t) ∈ R+ × (θ,∞),

respectively, the estimate (5.13) can be written as

‖x̃(t+ θ)‖ ≤ ψ2(‖ξ − x∗‖, t+ θ) + ϕ2(‖d‖L∞(0,t+θ)) ∀ t ≥ 0 .

Finally, setting

ψ := max(ψ1, ψ2) ∈ KL and ϕ := max(ϕ1, ϕ2) ∈ K,

it is clear that ψ and ϕ do not depend on ξ and d. Invoking (5.11), we obtain

‖x̃(t)‖ ≤ ψ(‖ξ − x∗‖, t) + ϕ(‖d‖L∞(0,t)) ∀ t ≥ 0,
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1201

and hence (5.3), completing the proof.

Example 5.4. Once again we consider nonlinearities of Beverton–Holt and Ricker
type; see Examples 4.8 and 4.13.

(1) Let f be the Beverton–Holt nonlinearity given by (4.7). Invoking Examples 4.8
and 4.13, we see that Theorem 5.3 applies to the Lur’e system (2.1), provided that
the linear system (A, b, cT ) satisfies (A1)–(A3) and f1/f2 > p.

(2) Consider the Lur’e system (2.1), where f is the Ricker nonlinearity f given
by (4.8), and assume that the linear system (A, b, cT ) satisfies (A1)–(A3). Then, if
p ∈ [e−2, 1), the conclusion of Theorem 5.3 holds (cf. Examples 4.8 and 4.13).

Finally, we comment on forced Lur’e systems with arbitrary, not necessarily non-
negative, disturbances. As has already been mentioned, if the disturbance d is not
nonnegative, then the solution may not exist on the whole interval R+, that is, the
solution may approach the boundary of the nonnegative orthant in finite time. The
following result shows that if x∗ � 0, then, under the assumptions of Theorem 5.3, the
forward solution exists on R+ (with values in the interior of the nonnegative orthant)
for all initial conditions ξ ∈ Rn

+ and all (not necessarily nonnegative) disturbances
d ∈ L∞(R+,R

n) with ‖ξ − x∗‖+ ‖d‖L∞(R+) sufficiently small.

Proposition 5.5. Assume that (A1)–(A5), (A7), and (A10) hold, and that x∗ =
−A−1bpy∗ � 0. Then there exists ε > 0 such that, for all ξ ∈ Rn

+ and all disturbances
d ∈ L(R+,R

n) with ‖ξ−x∗‖+‖d‖L∞(R+) < ε, the maximally defined forward solution
x(· ; ξ, d) exists on R+ with values in the interior of Rn

+.

The proof is based on an ISS argument combined with ideas similar to those used
in the proof of Theorem 5.3 and can be found in Appendix A.

6. Examples. Nonnegative Lur’e systems occur naturally in numerous biolog-
ical contexts, and here we present a detailed discussion of two examples. The first
arises in both population modeling [8] and reaction kinetics; see, for example, [33,
section 7.2] or [45]. The second example comes from a spatial discretization of a
nonlinear integro-partial differential equation that also arises in population dynamics.

Example 6.1. Consider the n coupled differential equations

(6.1)
ẋ1 = −a1x1 + f(xn) + d1 , x1(0) = ξ1 ,

ẋk = a2(k−1)xk−1 − a2k−1xk + dk , xk(0) = ξk for k ∈ {2, . . . , n} ,

where f : R+ → R+, ai > 0 for all i ∈ {1, . . . , 2n−1}, di ∈ L∞
loc(R+,R) is nonnegative

for all i ∈ {1, . . . , n}, and ξi ≥ 0 for all i ∈ {1, . . . , n}.
Systems of the form (6.1) describe the dynamics of a population over time, parti-

tioned into n discrete age- or stage-classes; see, for example [8]. Here the a2k−1 denote
mortality rates, the a2k denote growth rates into the next stage class, and f models
nonlinear recruitment. The functions di represent nonnegative disturbances.

Introducing x := (x1, . . . , xn)
T and d := (d1, . . . , dn)

T , system (6.1) may be
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1202 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

rewritten in the form (2.15) with

A :=

⎛
⎜⎜⎜⎜⎝
−a1 0 · · · 0

a2 −a3
. . .

...
. . .

. . . 0
0 a2n−2 −a2n−1

⎞
⎟⎟⎟⎟⎠ , b :=

⎛
⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ , c :=

⎛
⎜⎜⎜⎝
0
...
0
1

⎞
⎟⎟⎟⎠ .

Obviously, (A1) holds. Since

σ(A) = {−a1,−a3, . . . ,−a2n−1} ,

and ai > 0 for all i ∈ {1, . . . , 2n− 1}, assumption (A2) is also satisfied. Moreover, it
is readily verified that (A3) holds. A straightforward calculation yields that

p =
1

G(0)
= − 1

cTA−1b
=

∏n
i=1 a2i−1∏n−1
i=1 a2i

.

Let f : R+ → R+ be a Beverton–Holt type nonlinearity given by

(6.2) f(y) =
f1y

f2 + y
, where f1 and f2 are positive constants;

cf. Examples 4.8, 4.13, and 5.4. In the unforced case (d = 0), it follows from part (1) of
Example 4.13 that Theorem 4.11 applies to (6.1), provided that f1/f2 > p. Similarly,
in the context of the forced system, if f1/f2 > p, then, by part (1) of Example 5.4,
Theorem 5.3 applies to (6.1).

For the following numerical simulation, we take

(6.3) n = 3 , a1 = 1 , a2 = 0.8 , a3 = 0.9 , a4 = 0.6 , a5 = 0.8 , f1 = 3 , f2 = 1.

For these choices p = 3/2, the unique positive y∗ satisfying f(y∗) = py∗ is given by
y∗ = 1 and, furthermore,

x∗ := −A−1bpy∗ =
(
3/2 4/3 1

)T
is the unique nonzero equilibrium of (6.1) with di = 0 for all i ∈ {1, 2, 3}.

As f1/f2 = 3 > 3/2 = p, we may conclude that
• in the unforced case (d1 = d2 = d3 = 0), the equilibrium x∗ is quasi-globally

exponentially stable in the sense of Theorem 4.11;
• in the forced case, x∗ is ISS in the sense of Theorem 5.3.

Figure 6.1(a) shows simulations of the system given by (6.1)–(6.3) with d = (d1, d2, d3)
T

= 0 for three initial conditions ξ i ∈ R
3
+, i ∈ {1, 2, 3}. To illustrate the ISS property of

the system given by (6.1)–(6.3), Figure 6.1(b) contains simulations of (6.1)–(6.3) with
initial condition ξ3, and where the dynamics (6.1) are subject to the disturbances

(6.4) d i(t) = ki

⎛
⎝ 0.1

(
1 + sin(0.2t)

)
0.2
(
1 + cos(0.6t)

)
0.15

(
1 + sin(0.2t)

)
⎞
⎠ ∀ t ≥ 0, i = 1, 2, 3,

with k1 = 1, k2 = 0.5, and k3 = 0.25.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1203
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Fig. 6.1. Numerical simulations of the system given by (6.1)–(6.3). (a) Unforced case: evolution
of ‖x(t)− x∗‖ from three different initial conditions. (b) Forced case: evolution of ‖x(t)− x∗‖ with
three different disturbances d1, d2, and d3 given by (6.4), plotted in solid, dashed, and dashed-dotted,
respectively.

Remark 6.2. The asymptotic dynamics of the unforced model (6.1) have been
considered elsewhere in the literature, and here we highlight some existing results.
In [45], the Popov criterion is used to prove, for a specific class of nonlinearities,
global asymptotic stability results in the case that the unforced system (6.1) has
a unique nonzero equilibrium (a scenario not considered in this paper). For the
situation wherein the unforced model (6.1) has multiple equilibria, a global asymptotic
result [38, Proposition 2.1] holds provided that f is strictly increasing. The latter
result has some overlap with part (2) of Theorem 2.3. However, we emphasize that
these two results are difficult to compare; for example, neither monotonicity of f nor
the Metzler property of A is assumed in Theorem 2.3.

Example 6.3. Consider the following partial differential equation which models a
population q = q(z, t) at the (continuous) age-class z ∈ [0, 1] and time t ≥ 0:

(6.5a) qt(z, t) = −δq(z, t)− qz(z, t), t ≥ 0 , z ∈ [0, 1],

where subscripts denote partial derivatives. The initial condition is given by

(6.5b) q(z, 0) = ξ(z) ∀ z ∈ [0, 1]

for continuous ξ : [0, 1] → R+, and we impose the nonlinear boundary condition

(6.5c) q(0, t) = f

(∫ 1

0

β(z)q(z, t) dz

)
∀ t ≥ 0 .

The nonnegative constant δ and the continuous nonnegative β : [0, 1] → R+ denote
mortality and birth weighting, respectively, where we assume that β(z) 
≡ 0. The
function f : R+ → R+ models density-dependence affecting recruitment into the
population, and is assumed locally Lipschitz with f(0) = 0.

If f is the identity function (that is, f(y) = y for all y ≥ 0), then (6.5) is known as
the McKendrick equation (also called the McKendrick–von Foerster equation); see [4,
Chapter 2] and [20, 32].
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1204 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

We note that system (6.5) can be obtained from the linear controlled and observed
PDE

(6.6) qt(z, t) = −δq(z, t)− qz(z, t), q(0, t) = u(t), y(t) =

∫ 1

0

β(z)q(z, t) dz ,

via application of the feedback u = f(y). The transfer function G of (6.6) is given by

(6.7) G(s) =

∫ 1

0

β(z)e−(δ+s)zdz.

For complex s with Re s ≥ 0, we have

G(0) ≥
∫ 1

0

|β(z)e−(δ+s)z|dz ≥ |G(s)|,

showing that G ∈ H∞ and ‖G‖H∞ = G(0) > 0, where the inequality follows from the
assumption that β(z) 
≡ 0.

A simple calculation shows that any equilibrium (steady-state solution) q∗ :
[0, 1] → R+ of (6.5) is of the form

(6.8) q∗(z) = e−δzr∗ ∀ z ∈ [0, 1] ,

where r∗ ≥ 0 satisfies

(6.9) r∗ = f(G(0)r∗).

As f(0) = 0, (6.9) admits the solution r∗ = 0, corresponding to the zero equilibrium
of (6.5). Obviously, there may be other equilibria, depending on f and G(0). Defining
p := 1/G(0) and setting y∗ := r∗/p, (6.9) can be written in the familiar form f(y∗) =
py∗.

Obviously, the theory in section 4 was developed in the context of Lur’e systems
defined by ordinary differential equations and does not apply to the Lur’e system
given by the PDE (6.5). Instead, we use the finite-dimensional results in section 4 to
analyze the (finite-dimensional) Lur’e system

(6.10a) ẋN = ANxN + bNf(c
T
NxN ), xN (0) = ξN ,

obtained by applying feedback with characteristic f to a finite-difference approxima-
tion of the PDE (6.6). In (6.10a), N ∈ N, (AN , bN , cN) ∈ R

N×N ×R
N ×R

N are given
by
(6.10b)

AN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−δ −N 0 . . . 0

N −δ −N 0 . . .
...

0
. . .

. . .
...

...
0 . . . 0 N −δ −N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, bN =

⎛
⎜⎜⎜⎜⎜⎜⎝

N
0
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠
, cN =

1

N

⎛
⎜⎜⎜⎜⎜⎝

β(z1)
β(z2)

...

β(zN )

⎞
⎟⎟⎟⎟⎟⎠ ,

and

ξN := (ξ(z1), . . . , ξ(zN ))T , with zi := i/N , i ∈ {1, 2, . . . , N}.
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1205

To arrive at the approximation (6.10) of (6.5), set xN (t) :=
(
q(z1, t), . . . , q(zN , t)

)T
for

t ≥ 0, and note that by approximating the spatial derivative qz(zi, t) by a difference
quotient, it follows from the PDE (6.5a) that

qt(zi, t) ≈ −δq(zi, t)−
q(zi, t)− q(zi−1, t)

zi − zi−1

= (−δ −N)q(zi, t) +Nq(zi−1, t) for i ∈ {2, . . . , N}.(6.11)

Moreover, for i = 1, we use a difference quotient approximation and the boundary
condition (6.5c) to obtain

qt(z1, t) ≈ −δq(z1, t)−
q(z1, t)− q(0, t)

z1
= (−δ −N)q(z1, t) +Nq(0, t),

whence

qt(z1, t) ≈ (−δ −N)q(z1, t) +Nf

(∫ 1

0

β(z)q(z, t) dz

)

≈ (−δ −N)q(z1, t) +Nf

(
N∑
j=1

β(zj)

N
q(zj , t)

)
,(6.12)

where we have approximated the integral by a Riemann sum. The equations (6.10)
now follow from (6.11) and (6.12).

The triple (AN , bN , cN ) satisfies (A1) and (A2), and it is easily verified that (A3)
holds if and only if β(zN ) = β(1) > 0, which we shall always impose. Denoting the
transfer function of (6.10) by GN , that is, GN (s) = cTN (sI − AN )−1bN , and setting
pN := 1/GN (0), a straightforward calculation shows that

(6.13) GN (0) = −cNA−1
N bN =

1

N

N∑
j=1

β(zj)

(1 + δ/N)j
=

1

pN
> 0.

We now assume for the remainder of the example that f : R+ → R+ is a Ricker type
function given by (4.8):

f(y) = ye−ay, where a is a positive constant.

We consider three cases.
Case a: pN < e−2. In this case, the results of section 4 do not apply to (6.10).
Case b: pN ∈ (e−2, 1). Let y∗N be the unique positive number such that pNy

∗
N =

f(y∗N ). Then
x∗N := −A−1

N bNpNy
∗
N

is an equilibrium of (6.10), and by part (2) of Example 4.13, x∗N is quasi-globally
exponentially stable in the sense of Theorem 4.11.

Case c: pN > 1. In this case, since f ′(y) ≤ 1 for all y ≥ 0, it follows from part
(3) of Theorem 4.4 that the equilibrium 0 of (6.10) is globally exponentially stable.

It can be shown (see Appendix A) that

(6.14) lim
N→∞

GN (0) = G(0),

and hence ‖GN‖H∞ → ‖G‖H∞ as N → ∞. As an immediate consequence of (6.14)
we have

y∗N =
1

a
lnGN (0) → 1

a
lnG(0) = y∗ as N → ∞.
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1206 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Moreover, a straightforward calculation shows that

(x∗N )(j) =

(
N

N + δ

)j

pNy
∗
N ∀ j ∈ {1, 2, . . . , N},

where (x∗N )(j) denotes the jth component of x∗N . Consequently, for rational z =
nz/dz ∈ (0, 1] (nz and dz co-prime integers) and with Nk := kdz , k ∈ N, it follows, as
k → ∞,

(x∗Nk
)(zNk) =

(
1

1 + δ/Nk

)zNk

pNk
y∗Nk

=
(
(1 + δ/Nk)

Nk
)−z y∗Nk

GNk
(0)

→ e−δz y∗

G(0)
= q∗(z).

In the following, we shall focus on cases b and c. For given N , it depends on δ which
of these two cases is relevant. To make this statement more precise, assume that β is
such that

(6.15) ‖β‖L1 =

∫ 1

0

β(z)dz ∈ (1, e2).

Then, writing pN = pN (δ), we have

1 <

∫ 1

0

β(z)dz = lim
N→∞

⎛
⎝ 1

N

N∑
j=1

β(zj)

⎞
⎠ = lim

N→∞
1

pN (0)
< e2.

Note that the function δ �→ 1/pN(δ) is strictly decreasing, converging to 0 as δ → ∞.
Hence, choosing N such that 1 < 1/pN(0) < e2, it follows that we move from case b
to case c as δ increases from 0 to ∞.

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

y

f
(y
)

Nonlinearity

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

δ =5

δ =2

δ =1

N

G
N
(0
)

Approximation GN (0) of G(0)

(b)

Fig. 6.2. (a) The Ricker function f from (4.8) with a = 2 (blue) and lines with slopes ±p60(1)
(green), ±p60(2) (black), and p60(5) (red). (b) Sequences of GN (0) from (6.13) for increasing N
labeled with corresponding δ and limiting G(0) (dotted line). (Figure in color on-line.)

For the following numerical simulations, we assume a log-normal type birth weight-
ing β defined by

(6.16) β(0) = 0, β(z) =
6√
2πz

e− ln2(z)/2 ∀ z ∈ (0, 1],
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1207

which satisfies (6.15) since ‖β‖L1 = 3. As initial population distribution, we take

ξ(z) = e8(z−1) ∀ z ∈ [0, 1].

We choose N = 60, a = 2 (Ricker parameter), and we consider three numerical values
for δ, namely 1, 2, and 5.

Figure 6.2(a) shows the graph of f and the relevant straight lines, and Fig-
ure 6.2(b) plots the sequence of approximations GN (0) and G(0) for the three δ
values considered. The simulations are plotted in Figures 6.3(a), 6.3(b), and 6.3(c),
respectively. Panels (a) and (b) of Figure 6.3 illustrate quasi-global exponential sta-
bility of nonzero equilibria (in the sense of Theorem 4.11) and panel (c) of Figure 6.3
shows zero global exponential stability of the zero equilibria.

As for the original PDE model (6.5), the considerations made in this example
seem to indicate that the nonzero equilibrium distribution q∗ given by (6.8) and (6.9)
is quasi-globally exponentially stable for δ = 1, 2, and that the zero distribution is
globally exponentially stable for δ = 5.

0
1

2 0

20

40

60
0

0.5

1

component, i
time, t

x
(i
)

6
0
(t
)

(a)

0
1

2 0

20

40

60
0

0.5

1

component, i
time, t

x
(i
)

6
0
(t
)

(b)

0
2

4 0

20

40

60
0

0.5

1

component, i
time, t

x
(i
)

6
0
(t
)

(c)

Fig. 6.3. Numerical simulation of the discretization (6.10) from Example 6.3, corresponding to
(a) δ = 1, (b) δ = 2, and (c) δ = 5.

Appendix A. Proofs of results. The proofs of some results were not included
in the relevant sections in order to maintain the flow of the development of the key
points of the work. These proofs are given below.
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1208 A. BILL, C. GUIVER, H. LOGEMANN, AND S. TOWNLEY

Proof of Proposition 5.5. Since x∗ � 0 (by hypothesis) and cTx∗ = y∗, there
exists ε0 > 0 such that

(A.1) B(x∗, ε0) ⊆ intRn
+

and

(A.2) cT z ≥ y∗

2
∀ z ∈ B(x∗, ε0) .

Defining the nonlinearity f̃ : R → R by (5.5) with η = y∗/2, there exists β ∈ K∞
such that |f̃(y)| ≤ p|y| − β(|y|) for all y ∈ R, and thus, in the context of the system,

(A.3) ẇ = Aw + bf̃(cTw) + d, w̃(0) = ζ,

the origin is ISS, as follows from Theorem 2.5. Consequently, there exist ψ ∈ KL and
ϕ ∈ K such that

(A.4) ‖w(t; ζ, d)‖ ≤ ψ(‖ζ‖, t) + ϕ(‖d‖L∞) ∀ t ≥ 0, ∀ ζ ∈ R
n
+, d ∈ L∞(R+,R

n),

where w(· ; ζ, d) denotes the unique solution of (A.3). Obviously, w(t; ζ, d) is defined
for all t ≥ 0. Note that in (A.4), all disturbances d ∈ L∞(R+,R

n) (not necessarily
nonnegative) are considered. Now choose ε > 0 such that

ψ(‖ζ‖, 0) + ϕ(‖d‖L∞) < ε0 ∀(ζ, d) ∈ Rn × L∞(R+,R
n) such that ‖ζ‖+ ‖d‖L∞ < ε.

With this choice of ε, it follows from (A.4) that
(A.5)
‖w(t; ζ, d)‖ < ε0 ∀ t ≥ 0 and ∀ (ζ, d) ∈ Rn × L∞(R+,R

n) such that ‖ζ‖+ ‖d‖L∞ < ε.

Finally, let (ξ, d) ∈ Rn × L∞(R+,R
n) such that ‖ξ − x∗‖ + ‖d‖L∞ < ε, and set

z(t) := w(t; ξ − x∗, d) + x∗. By (A.1), (A.2), and (A.5),

(A.6) z(t) ∈ B(x∗, ε0) ⊆ intRn
+ ∀ t ≥ 0

and

cT z(t) ≥ y∗

2
∀ t ≥ 0 .

Consequently, by the latter,

cTw(t; ξ − x∗, d) = cT z(t)− y∗ ≥ −y
∗

2
∀ t ≥ 0 ,

from which it follows that

f̃(cTw(t; ξ − x∗, d)) = f(cTw(t; ξ − x∗, d) + y∗)− f(y∗) = f(cT z(t))− py∗ ∀ t ≥ 0 .

An immediate consequence of this identity is that ż = Az+bf(cT z)+d. Now z(0) = ξ,
and thus, by uniqueness of solutions, z(t) = x(t; ξ, d) for all t ≥ 0. The claim now
follows from (A.6).

Proof of (6.14) in Example 6.3. Since β is continuous, the Riemann sum

N∑
j=1

β(zj)e
−δzj (zj − zj−1), where z0 := 0,
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STABILITY OF NONNEGATIVE LUR’E SYSTEMS 1209

converges to
∫ 1

0 β(z)e
−δzdz as N → ∞. Consequently,

G(0) =

∫ 1

0

β(z)e−δzdz = lim
N→∞

1

N

N∑
j=1

β(zj)e
−δj/N .

To prove that GN (0) → G(0) as N → ∞, it is sufficient to show that∣∣∣∣∣∣
1

N

N∑
j=1

β(zj)e
−δj/N −GN (0)

∣∣∣∣∣∣→ 0 as N → ∞.

Setting ‖β‖∞ := supz∈[0,1] |β(z)|, we estimate

∣∣∣∣∣ 1N
N∑
j=1

β(zj)e
−δj/N − GN (0)

∣∣∣∣∣ ≤ ‖β‖∞
N

N∑
j=1

∣∣∣∣∣
(
e−δ/N

)j
−
(

1

1 + δ/N

)j
∣∣∣∣∣

=
‖β‖∞
N

∣∣∣∣e−δ/N − 1

1 + δ/N

∣∣∣∣
N∑
j=1

j−1∑
k=0

(
e−δ/N

)j−1−k
(

1

1 + δ/N

)k

.

Obviously,

(
e−δ/N

)j−1−k
(

1

1 + δ/N

)k

≤ 1 for all k = 0, . . . , j − 1,

and thus ∣∣∣∣∣∣
1

N

N∑
j=1

β(zj)e
−δj/N −GN (0)

∣∣∣∣∣∣ ≤
‖β‖∞
N

∣∣∣∣e−δ/N − 1

1 + δ/N

∣∣∣∣
N∑
j=1

j

= ‖β‖∞
(

N

N + δ
− e−δ/N

)
N + 1

2
.(A.7)

The expression (A.7) converges to zero, which can be seen by noting that

N

(
N

N + δ
− e−δ/N

)
= N

⎛
⎝ δ2

N(N + δ)
−

∞∑
j=2

(−δ/N)j

j!

⎞
⎠

=
δ2

N + δ
− δ2

N

∞∑
j=0

(−δ/N)j

(j + 2)!
→ 0 as N → ∞,

completing the proof.
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