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section of the paper is devoted to non-negative Lur’e systems which arise naturally in,
for example, ecological and biochemical applications: the main result in this context
is a sufficient criterion for a so-called “quasi CICS” property for Lur’e systems which,
when uncontrolled, admit two equilibria. The theory is illustrated with numerous
examples.

This work was supported by the UK EPSRC—Engineering and Physical Sciences Research
Council—(Grant EP/I019456/1).

B Chris Guiver
c.guiver@bath.ac.uk

Adam Bill
adamrbill@gmail.com

Hartmut Logemann
h.logemann@bath.ac.uk

Stuart Townley
s.b.townley@ex.ac.uk

1 Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

2 Environment and Sustainability Institute, College of Engineering, Mathematics and Physical
Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00498-016-0184-3&domain=pdf
http://orcid.org/0000-0002-6881-7020


 4 Page 2 of 50 Math. Control Signals Syst.  (2017) 29:4 

Keywords Absolute stability · Circle criterion · Converging-input converging-state
property · Input-to-state stability · Lur’e systems · Non-negative systems

Mathematics Subject Classification 37N35 · 93C10 · 93C15 · 93C35 · 93C80 ·
93D05 · 93D09 · 93D20 · 93D25

1 Introduction

We consider forced Lur’e systems in continuous-time of the form

ẋ(t) = Ax(t) + B f (Cx(t)) + v(t), x(0) = x0 ∈ R
n, t ≥ 0, (1.1)

where A, B and C are appropriately sized matrices, f is a (nonlinear) function, x
denotes the state and v is a control function (also interpreted as and named a distur-
bance, forcing term or input). Differential equations of the form (1.1) often arise as
closed-loop systems obtained by the application of output feedback with nonlinear
“characteristic” f to the linear system specified by (A, B, C), namely

ẋ(t) = Ax(t) + Bu(t) + v(t), y(t) = Cx(t), u(t) = f (y(t)), t ≥ 0,

where u and y denote the input and output variables, respectively, see Fig. 1. Lur’e
systems are a common and important class of nonlinear systems and are at the centre
of the classical subject of absolute stability theory which includes the well-known real
and complex Aizerman conjectures, circle and Popov criteria, see [13,14,18,20,23,
24,45,47]. An absolute stability criterion for (1.1) is a sufficient condition for stability,
usually formulated in terms of frequency-domain properties of the linear system given
by (A, B, C) and sector or boundedness conditions for f , guaranteeing stability for
all nonlinearities f satisfying these conditions.

Traditionally, Lyapunov approaches to the stability theory of systems of the
form (1.1) consider the uncontrolled (v = 0) case, whilst Lur’e systems with forcing
(usually acting through B, that is, v is of the form v = Bw for some w) have been stud-
ied using the input–output framework initiated by Sandberg and Zames in the 1960s;
see, for example, [11,45]. More recently, forced Lur’e systems have been analyzed
in the context of input-to-state stability (ISS) theory, see [4,19,20,36]. Whilst ISS is
a concept for general controlled nonlinear systems (first formulated in [38]), in our
context, ISS is a stability property of an equilibrium pair of (1.1), where (xe, ve) is an
equilibrium pair if Axe + B f (Cxe)+ ve = 0. Loosely speaking, (xe, ve) is ISS if the

Fig. 1 Block diagram of the
controlled Lur’e system (1.1) (A,B,C)
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map (x0 − xe, v − ve) �→ x(t; x0, v) − xe has “nice” boundedness and asymptotic
properties (see (2.2)), where x(· ; x0, v) denotes the solution of (1.1). In particular, if
an equilibrium pair (xe, ve) is ISS, then x(t; x0, v) → xe as t → ∞ for all x0 ∈ R

n

and all (essentially) bounded v such that limt→∞ v(t) = ve. For surveys of ISS theory
the reader is referred to [9,42].

In the present paper, we investigate the following problem (and variations thereof):
given v∞ ∈ R

n , find conditions (necessary or sufficient) for the existence of x∞ ∈ R
n

such that, for every x0 and every v with v(t) → v∞ as t → ∞, the solution x
of (1.1) converges to x∞. In particular, we consider the so-called converging-input
converging-state (CICS) property: (1.1) is said to have the CICS property if, for every
v∞ ∈ R

n , there exists x∞ ∈ R
n such that limt→∞ x(t) = x∞ for all x0 and all inputs

v converging to v∞.
For background and motivation, we comment that if (1.1) is linear and asymptot-

ically stable, that is, for some matrix F , we have that f (z) = Fz and A + B FC is
Hurwitz (meaning every eigenvalue has negative real part), then (1.1) has the CICS
property. Indeed, it is well known that, for given v∞, the state x and output y of (1.1)
have respective limits

x∞ := −(A + B FC)−1v∞ and y∞ := Cx∞ = −C(A + B FC)−1v∞

for every initial vector x0 and every v converging to v∞. The matrices −(A+ B FC)−1

and −C(A+ B FC)−1 are sometimes referred to as “steady-steady gains” and provide
linear maps v∞ �→ x∞ and v∞ �→ y∞. If system (1.1) has the CICS property, then
the steady-steady gain concept extends to Lur’e systems in the sense that there are
explicit formulae for the nonlinear functions v∞ �→ x∞ and v∞ �→ y∞ which map
input limits to state limits and output limits, respectively (see Sect. 4).

The main contribution of this paper is the establishment of sufficient conditions
for the CICS property which are reminiscent of the complex Aizerman conjecture
[17,18,20,36], the circle criterion for ISS [19,20,36] and the “nonlinear” ISS small-
gain condition for Lur’e systems [36] and involve the transfer function matrix of the
linear system (A, B, C) and an incremental condition (in terms of norm or sector
inequalities) on the nonlinearity f . Recent ISS results for Lur’e systems [36] play a
key role in the development of the CICS theory in Sect. 4. We demonstrate that our
sufficient CICS conditions also ensure that the nonlinear steady-state gains are con-
tinuous maps—further mirroring the linear case. We emphasize that CICS is a system
property, whereas ISS relates to stability properties of an equilibrium pair of (1.1). In
contrast to linear systems, Lur’e systems which admit a globally asymptotically stable
equilibrium when uncontrolled (v = 0) need not have the CICS property. Indeed,
there may exist convergent inputs such that, for some initial states, the corresponding
state trajectory is asymptotically divergent (see part (b) of Example 4.5).

In certain circumstances, it is of interest to relax the CICS concept and restrict
attention to convergent forcing terms v with limits v∞ belonging to a subset of Rn ,
perhaps just a singleton. For example, assuming that f (0) = 0, the so-called 0-CICS
property requires that x(t; x0, v) → 0 as t → ∞ for every x0 ∈ R

n and every
v ∈ L∞(R+,Rn) such that v(t) → 0 as t → ∞. In deriving sufficient conditions for
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the “global” CICS property, we present a “local” CICS result in Theorem 4.3 (local
in the limiting values v∞ of the forcing functions v), see also Examples 4.6.

In the context of general nonlinear systems, CICS-type properties (including 0-
CICS) have been studied in [2,34,41]. Concepts related to or reminiscent of the CICS
property have been introduced in [3,40]. Whilst [2,3,34,40] have little overlap with
the material presented here, [41] plays an important role in the proof of statement
(1) of Theorem 4.3, one of the main results in the current paper. To the best of our
knowledge, there is not much previous work on CICS properties for Lur’e systems,
exceptions include [7,31,35]. Of these works, [35] is, by some margin, the closest in
spirit to the present paper and we provide detailed comments on the relation of the
contribution in [35] to our results after the proof of Corollary 4.16. The papers [7,31]
develop stability criteria from the perspective of incremental stability and convergent
dynamics [1,30,33,46] and touch upon aspects of CICS for Lur’e systems, but there
is very little intersection with the systematic theory developed here.

We also study the CICS property for a class of Lur’e systems which is a variation
of (1.1), namely

ẋ(t) = Ax(t) + B f (Cx(t) − v(t)), t ≥ 0 x(0) = x0 ∈ R
n, (1.2)

where the interpretation of the terms in (1.2) is the same as that in (1.1). System (1.2)
can be thought of as a closed-loop system obtained by linear feedback applied to the
linear system (A, B, C) subjected to an input nonlinearity f :

ẋ(t) = Ax(t) + B f (w(t)), y(t) = Cx(t), w(t) = y(t) − v(t) t ≥ 0.

see Fig. 2. We derive a CICS criterion for Lur’e systems of the form (1.2) and use it
to generalize a well-known result on integral control for linear systems to this class of
nonlinear systems.

Furthermore, we consider a class of non-negative (also known as positive) Lur’e
systems, cf. [6,36,37,44]. As an instance of a positive control system [15], these arise
naturally in a variety of applied contexts: a common key feature is that their state
variables, which may represent population abundances, chemical concentrations or
economical quantities (such as prices) are, necessarily, non-negative. In a popula-
tion model, the nonlinear term f may describe Allee effects [8] or density-dependent
recruitment owing to decreased survival rates or increased competition for resources at
lower and higher population abundances, respectively. In a chemical reaction model, f
may describe a nonlinear reaction rate between certain reagents. Unforced biological,
ecological and chemical models often admit (at least) two equilibria: the zero equilib-
rium and some non-zero equilibrium, the latter corresponding to the co-existence of
populations or chemical compounds. The control v in (1.1) may model immigration

Fig. 2 Block diagram of the
controlled Lur’e system (1.2) f (A,B,C)
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in a population model or the addition of a new reagent in a chemical reaction model.
Our main result for non-negative Lur’e systems is a sufficient condition for a “quasi
CICS” property which, for zero control v = 0, have two equilibria (see Theorem 6.6).
In this context, we shall make contact with recent work [6] on stability properties of
non-negative Lur’e systems: a certain “repeller” or “persistence” property established
in [6] will play a pivotal role in the proof of Theorem 6.6.

The paper is organized as follows. In Sects. 2 and 3, we discuss a number of pre-
liminaries and prove necessary conditions for CICS, respectively. Section 4 is devoted
to sufficient conditions for the CICS property for (1.1), the main result being Theo-
rem 4.3, from which several CICS criteria are derived as corollaries. These criteria have
the flavour of well-known absolute stability results (complex Aizerman conjecture,
circle criterion and small gain). Sections 5 and 6 consider systems of the form (1.2) and
non-negative versions of (1.1), respectively. We present some concluding comments
in Sect. 7.
Notation and terminology For a set S, the symbol #S denotes the cardinality of S
(if S is infinite, then we write #S = ∞). The set of positive integers is denoted by
N and R and C denote the fields of real and complex numbers, respectively. We set
R+ := {r ∈ R : r ≥ 0}. For n ∈ N,Rn and C

n denote the usual real and complex n-
dimensional vector spaces, respectively, both equipped with the 2-norm denoted by‖·‖.

For m ∈ N, let Rn×m and C
n×m denote the normed linear spaces of n × m matrices

with real and complex entries, respectively, both equipped with the operator norm
induced by the 2-norm, also denoted by ‖ · ‖. Given M ∈ R

m×n , we let im M denote
the image of M , that is, the linear subspace spanned by the columns of M . A matrix
M ∈ C

n×n is said to be Hurwitz if all its eigenvalues have negative real parts. Note that
Hurwitz matrices are necessarily invertible. If M is additionally real, with components
mi j , then it is said to be reducible if there exist non-empty disjoint subsets J1, J2 ⊆
{1, . . . , n} such that J1 ∪ J2 = {1, . . . , n} and mi j = 0 for all (i, j) ∈ J1 × J2. We
say that M is irreducible if M is not reducible. We refer the reader to [5,27] for more
details on irreducible matrices.

Let M = (mi j ) ∈ R
n×m and N = (ni j ) ∈ R

n×m . We write

M ≥ N if mi j ≥ ni j for all i and j,

M > N if M ≥ N and M 
= N ,

M � N if mi j > ni j for all i and j.

We say that M is non-negative if M ≥ 0. The matrix M is called positive if M � 0.
A square matrix M = (mi j ) ∈ R

n×n is said to be Metzler (or essentially non-negative
or quasi positive) if all its off-diagonal entries of M are non-negative, that is, mi j ≥ 0
for all 1 ≤ i, j ≤ n with i 
= j . It is well known (and straightforward to prove) that
M ∈ R

n×n is Metzler if, and only if, eMtξ ∈ R
n+ for all ξ ∈ R

n+ and all t ≥ 0 (see,
for example, [26]).

For K ∈ C
m×p and r > 0, set

BC(K , r) := {Z ∈ C
m×p : ‖Z − K‖ < r},

the open (complex) ball in C
m×p, centred at K and of radius r .
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A square rational matrix-valued function s �→ H(s) of a complex variable s is said
to be positive real if for every s ∈ C with Re s ≥ 0, which is not a pole of H, the
matrix [H(s)]∗ + H(s) is positive semi-definite. As usual, if H is a proper rational
matrix-valued function which does not have any poles in the closed right-half plane
Re s ≥ 0, then we define its H∞-norm by

‖H‖H∞ := sup
Re s≥0

‖H(s)‖ = sup
ω∈R

‖H(iω)‖.

More details on H∞-norms can be found in, for example, [29].
We recall the definitions of certain classes of comparison functions. Let K denote

the set of all continuous functions ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ is strictly
increasing. Moreover,

K∞ := {ϕ ∈ K : ϕ(s) → ∞ as s → ∞}.
We denote by KL the set of functions ψ : R+ × R+ → R+ with the follow-
ing properties: ψ(· , t) ∈ K for every t ≥ 0, and ψ(s, · ) is non-increasing with
limt→∞ ψ(s, t) = 0 for every s ≥ 0. Following the convention of [39], we do not
impose continuity in the definition of a KL function. By [39, Proposition 7], it follows
that a discontinuous KL-function can be bounded from above by a continuous one.
For more details on comparison functions the reader is referred to [22].

The linear space of (equivalence classes of) locally essentially bounded functions
f : R+ → R

n is denoted by L∞
loc(R+,Rn). If f ∈ L∞

loc(R+,Rn), then

‖ f ‖L∞(0,t) := ess sup
τ∈[0,t]

‖ f (τ )‖ < ∞ ∀ t ≥ 0.

As usual, L∞(R+,Rn) denotes the space of all essentially bounded functions R+ →
R

n . For f ∈ L∞(R+,Rn), we write

‖ f ‖L∞ := ‖ f ‖L∞(0,∞) = ess sup
τ∈[0,∞)

‖ f (τ )‖.

Finally, we use the symbol θ to denote the constant function R+ → R given by
θ(t) = 1 for all t ≥ 0.

2 Preliminaries and definitions

Consider the forced Lur’e system (1.1), where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, f :

R
p → R

m is locally Lipschitz, v ∈ L∞
loc(R+,Rn) is a control (forcing, input) function.

If v = 0, then we will refer to (1.1) as the uncontrolled system (1.1). Frequently, the
input v will be of the form v = Ew, where E ∈ R

n×q and w ∈ L∞
loc(R+,Rq). If

q = m and E = B, then (1.1) can be written in the form

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ R
n, y(t) = Cx(t)

u(t) = v(t) + f (y(t))

}
t ≥ 0.

123



Math. Control Signals Syst.  (2017) 29:4 Page 7 of 50  4 

Let x(· ; x0, v) denote the unique maximally defined forward solution of the initial-
value problem (1.1). We say that (xe, ve) ∈ R

n × R
n is an equilibrium pair of (1.1)

if Axe + B f (Cxe) + ve = 0, that is, if xe is an equilibrium of the (autonomous)
differential equation

ẋ(t) = Ax(t) + B f (Cx(t)) + ve, x(0) = x0 t ≥ 0. (2.1)

It is clear that if, for some v∞ ∈ R
n and x0 ∈ R

n, x(t; x0, v∞θ) con-
verges to x∞ as t → ∞, then (x∞, v∞) is an equilibrium pair of (1.1). An
equilibrium pair (xe, ve) is said to be globally asymptotically stable (GAS), if
xe is a globally asymptotically stable equilibrium of (2.1). Obviously, if (0, 0)

is an equilibrium pair of (1.1), then (0, 0) is GAS if, and only, if the equilib-
rium 0 of the uncontrolled Lur’e system (1.1) is GAS. We say that an equilibrium
pair (xe, ve) of (1.1) is input-to-state stable (ISS) if there exist ψ ∈ KL and
ϕ ∈ K such that, for every x0 ∈ R

n , every v ∈ L∞
loc(R+,Rn), and all t ≥

0,

‖x(t; x0, v) − xe‖ ≤ ψ(‖x0 − xe‖, t) + ϕ(‖v − veθ‖L∞(0,t))

= ψ(‖x0 − xe‖, t) + ϕ

(
ess sup
τ∈[0,t]

‖v(τ) − ve‖
)

.

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

In the following, let G be the transfer function of the linear system specified by
the triple (A, B, C), that is, G(s) = C(s I − A)−1 B, where s is a complex variable.
Applying output feedback of the form u = K y + w to (A, B, C), where K ∈ R

m×p

and w is an input signal, leads to the closed-loop linear system specified by (A +
BK C, B, C), the transfer function of which shall be denoted by GK . It is readily seen
that

GK (s) = C(s I − AK )−1 B = C(s I − A − BK C)−1 B = G(s)(I − K G(s))−1,

where, for notational convenience, we have set AK := A + BK C .
Let SC(A, B, C) denote the set of complex stabilizing output feedback gains for

the linear system (A, B, C), that is,

SC(A, B, C) := {K ∈ C
m×p : AK is Hurwitz}.

Moreover, we define

SR(A, B, C) := SC(A, B, C) ∩ R
m×p,

the set of real stabilizing output feedback gains for (A, B, C). Note that SR(A, B, C)

and SC(A, B, C) may be empty. In principle, the Nyquist stability criterion can be
used to check for non-emptiness of SR(A, B, C) or SC(A, B, C): this is particularly
straightforward in the case m = p = 1. If A is Hurwitz, then trivially SR(A, B, C)

is non-empty. Furthermore, if m = p, (A, B, C) is stabilizable and detectable and
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G + cI is positive real for some c > 0, then BC(−ρ I, ρ) ⊆ SC(A, B, C), where
ρ := 1/(2c).

The next theorem is a stability result for Lur’e systems that will be a key tool
throughout this paper.

Theorem 2.1 Let K ∈ SR(A, B, C) and set γ := 1/‖GK ‖H∞ (where γ := ∞ if
‖GK ‖H∞ = 0). The following statements hold.

1. If γ < ∞ and

‖ f (z) − K z‖ < γ ‖z‖ ∀ z ∈ R
p, z 
= 0,

then the equilibrium 0 of the uncontrolled system (1.1) is GAS.
2. If γ < ∞ and there exists α ∈ K∞ such that

‖ f (z) − K z‖ ≤ γ ‖z‖ − α(‖z‖) ∀ z ∈ R
p,

then the equilibrium pair (0, 0) of (1.1) is ISS.
3. If γ = ∞, then the conclusions in statements (1) and (2) hold for every locally

Lipschitz f : Rp → R
m such that f (0) = 0.

Statements (1) and (2) are consequences results in [17,18] and [36], respectively.
The scenario considered in statement (3), wherein ‖GK ‖H∞ = 0 (or, equivalently,
GK (s) ≡ 0), is not very interesting, but is included for mathematical completeness.
Note that ‖GK ‖H∞ = 0 if, and only if, ‖G‖H∞ = 0. Consequently, if (A, B) is
controllable ((C, A) is observable) and C 
= 0 (B 
= 0), then ‖GK ‖H∞ 
= 0. A proof
of Theorem 2.1 can be found in the Appendix.

The following proposition is a special case of a well-known result from ISS theory.

Proposition 2.2 Assume that (0, 0) is an ISS equilibrium pair of (1.1). Then (1.1) has
the 0-converging-input converging-state property: for every x0 ∈ R

n and for every
v ∈ L∞(R+,Rn) such that v(t) → 0 as t → ∞, we have that x(t; x0, v) → 0 as
t → ∞.

We emphasize that ISS is not a necessary condition for (1.1) to have the 0-
converging-input converging-state property (0-CICS property), see Example 4.5
further below. We now introduce a concept which strengthens the notion of the 0-
CICS property and is the primary focus of the present paper.

Definition 2.3 We say that (1.1) has the converging-input converging-state property
(CICS property) if, for every v∞ ∈ R

n , there exists x∞ ∈ R
n such that, for all x0 ∈ R

n
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and all v ∈ L∞(R+,Rn) with limt→∞ v(t) = v∞,1

lim
t→∞ x(t; x0, v) = x∞.

If (1.1) has the CICS property and if f (0) = 0 (that is, the origin is an equilibrium
of the uncontrolled Lur’e system (1.1)), then clearly (1.1) has the 0-CICS property.

The CICS property enables us to define steady-state gains for the Lur’e system (1.1).
Indeed, assuming that (1.1) has the CICS property, the map

�is : Rn → R
n, v∞ �→ x∞

is well defined and is said to be the input-to-state steady-state gain (ISSS gain). The
map

�io : Rn → R
p, v∞ �→ C�is(v

∞) = Cx∞

is said to be the input-to-output steady-state gain (IOSS gain). In particular, if (1.1)
has the CICS property, then, for every v∞, the point x∞ := �is(v

∞) is a globally
attractive equilibrium of the system

ẋ(t) = Ax(t) + B f (Cx(t)) + v∞θ(t) x(0) = x0 t ≥ 0.

3 A necessary condition for CICS

In this short section, we derive a necessary condition for the CICS property. In the
following, the map

FK : Rp → R
p, z �→ z − GK (0)( f (z) − K z),

where K ∈ SR(A, B, C), will play a key role. For a set W ⊆ R
p, we shall denote the

preimage of W under FK by F−1
K (W ). For w ∈ R

p, it is convenient to set F−1
K (w) :=

F−1
K ({w}). We note two simple, but important, properties of FK :

FK (im C) ⊆ im C, F−1
K (im C) ⊆ im C, (3.1)

a proof of which is contained in the Appendix. The next proposition describes proper-
ties of the map FK and shows how FK relates to equilibrium pairs (x∞, v∞) of (1.1).

1 As an element in L∞(R+,Rn), strictly speaking, v is not a function, but an equivalence class of functions.
Therefore, we should clarify what we mean by

lim
t→∞ v(t) = v∞. (∗)

We say that (∗) holds, if ‖v−v∞θ‖L∞(t,∞) → 0 as t → ∞, or equivalently, if there exists a representative
w in the equivalence class v such that w(t) → v∞ as t → ∞.
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Proposition 3.1 Assume that K ∈ SR(A, B, C).

1. Let v ∈ L∞(R+,Rn) have a limit v∞ := limt→∞ v(t) and assume that, for
some x0 ∈ R

n, the limit x∞ := limt→∞ x(t; x0, v) exists. Then (x∞, v∞) is an
equilibrium pair of (1.1),

x∞ = −A−1
K

(
B( f (Cx∞) − K Cx∞) + v∞), (3.2)

where AK := A + BK C, and FK (Cx∞) = −C A−1
K v∞.

2. Let v∞ ∈ R
n and assume that there exists x∞ ∈ R

n such that, for all x0 ∈
R

n, x(t; x0, v∞θ) → x∞ as t → ∞. Then #F−1
K (−C A−1

K v∞) = 1.
3. Let v∞ ∈ R

n, y∞ ∈ F−1
K (−C A−1

K v∞) and set x∞ := −A−1
K (B( f (y∞) −

K y∞) + v∞). Then Cx∞ = y∞ and (x∞, v∞) is an equilibrium pair of (1.1).

Proof of Proposition 3.1. To prove statement (1), set x(t) := x(t; x0, v) and note that
x satisfies

ẋ(t) = AK x(t) + B( f (Cx(t)) − K Cx(t)) + v(t) for a.e. t ≥ 0.

Since AK is Hurwitz, it follows immediately that (3.2) holds. As an immediate con-
sequence of (3.2), we have

0 = AK x∞ + B( f (Cx∞) − K Cx∞) + v∞ = Ax∞ + B f (Cx∞) + v∞,

showing that (x∞, v∞) is an equilibrium pair of (1.1). Furthermore, applying C to
both sides of (3.2) and rearranging shows that FK (Cx∞) = −C A−1

K v∞.
We proceed to prove statement (2). By statement (1), x∞ satisfies (3.2), and

Cx∞ ∈ F−1
K (−C A−1

K v∞), showing that F−1
K (−C A−1

K v∞) 
= ∅. Let y1, y2 ∈
F−1

K (−C A−1
K v∞). It remains to show that y1 = y2. To this end, set

ξi := −A−1
K (B( f (yi ) − K yi ) + v∞), i ∈ {1, 2}. (3.3)

Then

FK (yi ) = yi − GK (0)( f (yi ) − K yi ) = yi − Cξi − C A−1
K v∞, i ∈ {1, 2},

But FK (yi ) = −C A−1
K v∞ for i ∈ {1, 2} and so, yi = Cξi for i ∈ {1, 2}. Consequently,

by (3.3),

AK ξi + B( f (Cξi ) − K Cξi ) + v∞ = 0, i ∈ {1, 2},

and so

Aξi + B f (Cξi ) + v∞ = 0, i ∈ {1, 2},
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showing that (ξ1, v
∞) and (ξ2, v

∞) are equilibrium pairs of (1.1). Hence, x(t; ξi , v
∞θ)

= ξi for all t ≥ 0 and it follows from the hypothesis that ξ1 = x∞ = ξ2. Thus,
y1 = Cξ1 = Cξ2 = y2, completing the proof.

To prove statement (3), note that

Cx∞ = GK (0)( f (y∞) − K y∞) − C A−1
K v∞ = y∞ − FK (y∞) − C A−1

K v∞ = y∞.

Therefore,

Ax∞ + B f (Cx∞) + v∞ = AK x∞ + B( f (y∞) − K y∞) + v∞ = 0,

showing that (x∞, v∞) is an equilibrium pair of (1.1). ��
The following consequence of Proposition 3.1 provides, in terms of FK , a necessary
condition for the CICS property to hold.

Corollary 3.2 Let K ∈ SR(A, B, C). If the Lur’e system (1.1) has the CICS property,
then #F−1

K (z) = 1 for all z ∈ im C.

It follows from (3.1) and Corollary 3.2 that, if (1.1) has the CICS property, then
the restriction of FK to im C provides a bijection from the subspace im C into itself.

Proof of Corollary 3.2. Let z ∈ im C . Then there exists v∞ ∈ R
n such that z =

−C A−1
K v∞. By the CICS property, it is clear that there exists x∞ ∈ R

n , such that for all
x0 ∈ R

n, x(t; x0, v∞θ) → x∞ as t → ∞. Hence, by statement (2) of Proposition 3.1,
#F−1

K (z) = #F−1
K (−C A−1

K v∞) = 1. ��

4 Sufficient conditions for CICS

In this section, we provide conditions which ensure that the Lur’e system (1.1) has
the CICS property. The main result is Theorem 4.3 which, in turn, yields a host of
sufficient conditions for the CICS property, formulated as Corollaries 4.8, 4.10, 4.11,
4.15 and 4.16.

The next result provides conditions which guarantee certain surjectivity and injec-
tivity properties of the map FK . We denote the restriction of FK to im C by F̂K . It
follows from (3.1) that F̂K maps into im C and we define the co-domain of F̂K to be
equal to im C .

Proposition 4.1 Let Y ⊆ im C be nonempty, K ∈ SR(A, B, C), set γ :=
1/‖GK ‖H∞ (where γ := ∞ if ‖GK ‖H∞ = 0) and assume that f satisfies the
condition:

(A) ‖ f (z + ξ) − f (ξ) − K z‖ < γ ‖z‖ for all ξ ∈ Y and all z ∈ R
p, z 
= 0.

The following statements hold.

1. #F−1
K (z) = 1 for every z ∈ im C such that F−1

K (z) ∩ Y 
= ∅.
2. If

‖GK (0)‖ < ‖GK ‖H∞ , (4.1)

then FK is surjective.
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3. If there exists ζ ∈ R
p such that

γ ‖z‖ − ‖ f (z + ζ ) − f (ζ ) − K z‖ → ∞ as ‖z‖ → ∞, (4.2)

then FK is surjective.
4. If Y = im C and (4.1) or (4.2) hold, then F̂K is bijective.

Before we prove Proposition 4.1, we state and prove a simple lemma which will
be a convenient tool in the following. In particular, it will be useful in the proof of
Proposition 4.1.

Lemma 4.2 Let g : Rp → R
m be an arbitrary function and let r > 0.

1. If there exists ζ ∈ R
p such that

r‖z‖ − ‖g(z + ζ ) − g(ζ )‖ → ∞ as ‖z‖ → ∞, (4.3)

then, for every ξ ∈ R
p,

r‖z‖ − ‖g(z + ξ) − g(ξ)‖ → ∞ as ‖z‖ → ∞.

2. If g is continuous,‖g(z)‖ < r‖z‖ for all non-zero z ∈ R
p and r‖z‖−‖g(z)‖ → ∞

as ‖z‖ → ∞, then there exists α ∈ K∞ such that ‖g(z)‖ ≤ r‖z‖−α(‖z‖) for all
z ∈ R

p.

Proof To prove statement (1), let ξ ∈ R
p, set w := z + ξ − ζ and note that

r‖z‖ − ‖g(z + ξ) − g(ξ)‖ = r‖w + ζ − ξ‖ − ‖g(w + ζ ) − g(ζ ) + g(ζ ) − g(ξ)‖.

Consequently,

r‖z‖ − ‖g(z + ξ) − g(ξ)‖ ≥ r‖w‖ − ‖g(w + ζ ) − g(ζ )‖ − r‖ζ − ξ‖
−‖g(ζ ) − g(ξ)‖,

and since ‖w‖ → ∞ as ‖z‖ → ∞, the claim follows from (4.3).
To prove statement (2), define β : R+ → R+ by

β(s) := inf‖z‖≥s

(
r‖z‖ − ‖g(z)‖) s ≥ 0.

Then β is continuous (by the continuity of g), β(0) = 0, β(s) > 0 for s > 0, β

is nondecreasing, β(s) → ∞ as s → ∞ and ‖g(z)‖ ≤ r‖z‖ − β(‖z‖) for all
z ∈ R

p. Therefore, setting α(s) := (1 − e−s)β(s), it is clear that α ∈ K∞ and
‖g(z)‖ ≤ r‖z‖ − α(‖z‖) for all z ∈ R

p, completing the proof. ��
Proof of Proposition 4.1. If GK (0) = 0, then FK (z) = z for all z ∈ R

p. Conse-
quently, the maps FK and F̂K are bijective and there is nothing to prove. Let us now
assume that GK (0) 
= 0. Then, ‖GK ‖H∞ 
= 0, and so, 0 < γ < ∞.
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To prove statement (1), let z ∈ im C and assume that F−1
K (z) ∩ Y 
= ∅. Let

ξ1 ∈ F−1
K (z) ∩ Y and ξ2 ∈ F−1

K (z). To establish that #F−1
K (z) = 1, it suffices to show

that ξ1 = ξ2. Since FK (ξ1) = FK (ξ2), it follows that

‖ξ2 − ξ1‖ = ‖GK (0)
(

f (ξ2) − f (ξ1) − K (ξ2 − ξ1)
)‖.

If ξ1 
= ξ2, then, by condition (A),

‖ξ2 − ξ1‖ < ‖GK (0)‖γ ‖ξ2 − ξ1‖ ≤ ‖ξ2 − ξ1‖,

which is impossible. Hence, ξ1 = ξ2.
We proceed to prove statement (2). To show surjectivity of FK , note that, by [32,

Theorem 9.36], it is sufficient to prove that FK is coercive, that is,

1

‖z‖〈FK (z), z〉 → ∞ as ‖z‖ → ∞. (4.4)

To establish (4.4), we note that, for all z ∈ R
p,

1

‖z‖〈FK (z), z〉 = ‖z‖ + 1

‖z‖〈GK (0)( f (z) − K z), z〉 ≥ ‖z‖
−‖GK (0)‖‖ f (z) − K z‖,

and hence

1

‖z‖〈FK (z), z〉 ≥ ‖z‖ − ‖GK (0)‖(‖ f (z) − f (ξ) − K z‖ + ‖ f (ξ)‖) ∀ z ∈ R
p,

(4.5)

where ξ ∈ Y . By condition (A),

‖ f (z + ξ) − f (ξ) − K z‖ ≤ γ ‖z‖ ∀ z ∈ R
p.

Consequently, for all z ∈ R
p,

‖ f (z) − f (ξ) − K z‖ ≤ ‖ f (z − ξ + ξ) − f (ξ) − K (z − ξ)‖ + ‖K ξ‖
≤ γ ‖z − ξ‖ + ‖K ξ‖,

and thus,

‖ f (z) − f (ξ) − K z‖ ≤ γ ‖z‖ + (‖K‖ + γ )‖ξ‖ ∀ z ∈ R
p, (4.6)

Setting

κ := ‖GK (0)‖(‖ f (ξ)‖ + (‖K‖ + γ )‖ξ‖), (4.7)
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and invoking (4.5) and (4.6), we conclude that

1

‖z‖〈FK (z), z〉 ≥ (1 − γ ‖GK (0)‖)‖z‖ − κ ∀ z ∈ R
p.

Now, by hypothesis, ‖GK (0)‖ < ‖GK ‖H∞ , or, equivalently, 1 − γ ‖GK (0)‖ > 0,
implying that (4.4) holds, and so surjectivity of FK follows.

To prove statement (3), let ξ ∈ Y . By hypothesis and statement (1) of Lemma 4.2
(applied to g(z) = f (z) − K z),

γ ‖z‖ − ‖ f (z + ξ) − f (ξ) − K z‖ → ∞ as ‖z‖ → ∞.

Together with assumption (A) and an application of statement (2) of Lemma 4.2 this
shows that there exists α ∈ K∞ such that

‖ f (z + ξ) − f (ξ) − K z‖ ≤ γ ‖z‖ − α(‖z‖) ∀ z ∈ R
p.

An argument very similar to that leading to (4.6) yields

‖ f (z) − f (ξ) − K z‖ ≤ γ ‖z‖ − α(‖z − ξ‖) + (‖K‖ + γ )‖ξ‖ ∀ z ∈ R
p,

Together with (4.5) this implies

1

‖z‖〈FK (z), z〉 ≥ (1 − γ ‖GK (0)‖)‖z‖ + ‖GK (0)‖α(‖z − ξ‖) − κ ∀ z ∈ R
p,

with κ defined by (4.7). Now 1−γ ‖GK (0)‖ ≥ 1−γ ‖GK ‖H∞ = 0 and (4.4) follows,
showing that FK is coercive and hence surjective.

Finally, to prove statement (4), assume that Y = im C and that (4.1) or (4.2) are
satisfied. Then the map FK is surjective (as follows from statement (2) if (4.1) holds
and from statement (3) if (4.2) holds). Surjectivity of FK , (3.1) and statement (1)
guarantee that #F−1

K (z) = 1 for all z ∈ im C . Writing F−1
K (z) = {yz} for every

z ∈ im C and, once again, invoking (3.1), we conclude that yz ∈ im C and bijectivity
of F̂K follows. ��

For τ ≥ 0, we define the left-shift operator �τ by (�τ v)(t) = v(t + τ) for all
t ≥ 0, where v is an arbitrary function R+ → R

n . A subset V ⊆ L∞(R+,Rn) is said
to be equi-convergent to v∞ ∈ R

n if, for every ε > 0, there exists τ ≥ 0 such that

‖�τv − v∞θ‖L∞ ≤ ε ∀ v ∈ V.

The following theorem is the main result of this section.

Theorem 4.3 Let Y ⊆ im C be nonempty, K ∈ SR(A, B, C), v∞ ∈ R
n and set

γ := 1/‖GK ‖H∞ (where γ := ∞ if ‖GK ‖H∞ = 0). Assume that condition (A)
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holds and that F−1
K (−C A−1

K v∞)∩Y 
= ∅. Then #F−1
K (−C A−1

K v∞) = 1 and, writing
{y∞} = F−1

K (−C A−1
K v∞), the pair (x∞, v∞), where

x∞ := −A−1
K (B( f (y∞) − K y∞) + v∞), (4.8)

is an equilibrium pair of system (1.1). Furthermore, Cx∞ = y∞ and the following
statements hold.

1. The equilibrium pair (x∞, v∞) is GAS, and, for every x0 ∈ R
n and every v ∈

L∞(R+,Rn) such that limt→∞ v(t) = v∞, we have that either x(t; x0, v) → x∞
or ‖x(t; x0, v)‖ → ∞ as t → ∞.

2. Under the additional assumption that, for some ζ ∈ R
p,

γ ‖z‖ − ‖ f (z + ζ ) − f (ζ ) − K z‖ → ∞ as ‖z‖ → ∞, (4.9)

(x∞, v∞), with x∞ given by (4.8), is an ISS equilibrium pair of (1.1) and there
exist ψ1, ψ2 ∈ KL and ϕ ∈ K such that, for all (x0, v) ∈ R

n × L∞(R+,Rn) and
all t ≥ 0,

‖x(t; x0, v) − x∞‖ ≤ ψ1(‖x0 − x∞‖, t) + ψ2(‖v − v∞θ‖L∞ , t)

+ϕ(‖�t/2(v − v∞θ)‖L∞). (4.10)

In particular, for every x0 ∈ R
n and every v ∈ L∞(R+,Rn) such that limt→∞ v(t) =

v∞,

lim
t→∞ x(t; x0, v) = x∞,

and the convergence is uniform in the following sense: given a set of inputs V ⊆
L∞(R+,Rn) which is equi-convergent to v∞ and κ > 0, then the set of solutions

{x(· ; x0, v) : (x0, v) ∈ R
n × V such that ‖x0‖ + ‖v‖L∞ ≤ κ},

is equi-convergent to x∞.

Before proving Theorem 4.3, we provide some commentary.

Remark 4.4 (a) Assumption (A) is an incremental condition which is weaker than a
global Lipschitz condition, since (A) only needs to hold for all ξ ∈ Y . We mention
that the number 1/‖GK ‖H∞ appearing on the right-hand side of the inequality in
assumption (A) is equal to the structured complex stability radius of the Hurwitz
A + BK C with respect to the perturbation structure given by B and C , see [16].

(b) The set Y ⊆ im C should be interpreted as the set of all “achievable” output
limits. Indeed, if K ∈ SR(A, B, C), condition (A) is satisfied and there exists ζ

such that (4.9) holds, then, for every y∞ ∈ Y , there exists v∞ ∈ R
n such that

FK (y∞) = −C A−1
K v∞ and, by Theorem 4.3, Cx(t; x0, v) → y∞ as t → ∞ for

every x0 and every v convergent to v∞.
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(c) It may appear that y∞ and x∞ depend on K , but this is not the case. Indeed,
let non-empty Y ⊆ im C and v∞ ∈ R

n be given, let K1, K2 ∈ SR(A, B, C)

and set γi := 1/‖GKi ‖H∞ , where i = 1, 2. Assume that condition (A) holds with
K = Ki and γ = γi and F−1

Ki
(−C A−1

Ki
v∞)∩Y 
= ∅ for i = 1, 2. By Theorem 4.3,

the pre-image F−1
Ki

(−C A−1
Ki

v∞) is a singleton, the element of which we denote
by y∞

i . Defining, as in (4.8),

x∞
i := −A−1

Ki
(B( f (y∞

i ) − Ki y∞
i ) + v∞), i = 1, 2,

it follows from Theorem 4.3 that (x∞
1 , v∞) and (x∞

2 , v∞) are globally asymp-
totically stable equilibrium pairs, which obviously implies that x∞

1 = x∞
2 .

Consequently, y∞
1 = Cx∞

1 = Cx∞
2 = y∞

2 . In particular, if Y = im C
and there exists ζi ∈ R

p such that (4.9) holds with K = Ki and ζ = ζi

for i = 1, 2, the map F̂Ki is bijective for i = 1, 2 (by Proposition 4.1) and
F̂−1

K1
(C A−1

K1
w) = F̂−1

K2
(C A−1

K2
w) for all w ∈ R

n .
(d) A (conservative) sufficient condition for (4.9) is that there exists ρ ∈ (0, γ ) and

ζ ∈ R
p such that

‖ f (z + ζ ) − f (ζ ) − K z‖ ≤ ρ‖z‖ ∀ z ∈ R
p. (4.11)

We give a simple example which satisfies (4.9), but for which there does not exist
ρ ∈ (0, γ ) such that (4.11) holds. Consider p = m = γ = 1, K = 0 and

f : R+ → R+, z �→ 0.9z + 0.1(z sin z − ln(1 + z)),

and note that

|z| − |g(z)| = 0.1z(1 − sin z) + 0.1 ln(1 + z) ≥ 0.1 ln(1 + z) ∀ z ∈ R.

Consequently, the divergence condition (4.9) holds (as does condition (A)), but
there does not exist ρ ∈ (0, 1) such that (4.11) holds.

(e) The estimate (4.10) is the result of a suitable modification of an ISS estimate (see
the proof below for details). The three terms on the right-hand side, all of which
converge to 0 as t → ∞, relate, respectively, to the initial “error” x0 − x∞, the
L∞-norm of v − v∞θ over the entire time interval [0,∞) and the L∞-norm of
v − v∞θ over [t/2,∞) (the latter converging to 0 as t → ∞). Note that the
KL-functions ψ1 and ψ2 and the K-function ϕ only depend on v∞ and x∞ and
hence (4.10) is uniform in x0 and v. Furthermore, (4.10) evidently implies CICS
and the equi-convergence property formulated towards the end of statement (2)
of Theorem 4.3. ♦

Proof of Theorem 4.3. By hypothesis, assumption (A) holds and F−1
K (−C A−1

K v∞) ∩
Y 
= ∅, and thus, statement (1) of Proposition 4.1 yields that #F−1

K (−C A−1
K v∞) = 1.

For x∞ given by (4.8), it follows from statement (3) of Proposition 3.1 that (x∞, v∞)
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is an equilibrium pair of (1.1) and Cx∞ = y∞. Define f̃ : Rp → R
m by

f̃ (z) := f (z + y∞) − f (y∞) ∀ z ∈ R
p.

A straightforward calculation shows that

A(z + x∞) + B f
(
C(z + x∞)

)+ v∞ = Az + B f̃ (Cz) ∀ z ∈ R
n . (4.12)

Moreover, since y∞ ∈ Y , it follows from assumption (A) that

‖ f̃ (z) − K z‖ < γ ‖z‖ ∀ z ∈ R
p, z 
= 0. (4.13)

To prove statement (1), note that, by (4.12), a function x satisfies

ẋ(t) = Ax(t) + B f (Cx(t)) + v∞θ(t) ∀ t ≥ 0, (4.14)

if, and only if, x̃ := x − x∞θ satisfies

˙̃x(t) = Ax̃(t) + B f̃ (Cx̃(t)) ∀ t ≥ 0. (4.15)

Consequently, the equilibrium x∞ of (4.14) is GAS if, and only if, the equilibrium
0 of (4.15) is GAS. Invoking (4.13) in conjunction with statements (1) and (3) of
Theorem 2.1 shows that the equilibrium 0 of (4.15) is GAS and hence, x∞ is a GAS
equilibrium of system (4.14). An application of [41, Theorem 1] (or, alternatively, of
[25, Theorem 4.3]) allows us to conclude that, for x0 ∈ R

n and v ∈ L∞(R+,Rn) with
v(t) → v∞ as t → ∞, we have that either x(t; x0, v) → x∞ or ‖x(t; x0, v)‖ → ∞
as t → ∞, completing the proof of statement (1).

We proceed to prove statement (2). To this end, let v ∈ L∞
loc(R+,Rn) and set

ṽ = v − v∞θ . Invoking (4.12) shows that a function x solves (1.1) if, and only if,
x̃ := x − x∞θ solves

˙̃x(t) = Ax̃(t) + B f̃ (Cx̃(t)) + ṽ(t) for almost all t ≥ 0. (4.16)

Consequently, the equilibrium pair (x∞, v∞) of (1.1) is ISS if, and only if, the equi-
librium pair (0, 0) of (4.16) is ISS. By (4.9) and statement (1) of Lemma 4.2,

γ ‖z‖ − ‖ f̃ (z) − K z‖ → ∞ as ‖z‖ → ∞.

This, together with (4.13) and statement (2) of Lemma 4.2, shows that there exists
α ∈ K∞ such that ‖ f̃ (z)− K z‖ ≤ γ ‖z‖−α(‖z‖) for z ∈ R

p. Statements (2) and (3)
of Theorem 2.1 now show that (0, 0) is an ISS equilibrium pair of the system (4.16)
and thus, the equilibrium pair (x∞, v∞) of (1.1) is ISS. Consequently, there exist
ψ ∈ KL and ϕ ∈ K such that

‖x(t; x0, v) − x∞‖ ≤ ψ(‖x0 − x∞‖, t) + ϕ(‖v − v∞θ‖L∞(0,t))

∀ x0 ∈ R
n, ∀ v ∈ L∞

loc(R+,Rn), ∀ t ≥0. (4.17)
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It remains to show that (4.10) holds. To this end, let x0 ∈ R
n and v ∈ L∞(R+,Rn)

and note that, by the state transition property of system (1.1),

x(t; x0, v) = x(t/2; x(t/2; x0, v),�t/2v) ∀ t ≥ 0.

Hence, by (4.17),

‖x(t; x0, v) − x∞‖ ≤ ψ(‖x(t/2; x0, v) − x∞‖, t/2)

+ϕ(‖�t/2v − v∞θ‖L∞) ∀ t ≥ 0.

Another application of (4.17) yields

‖x(t; x0, v) − x∞‖ ≤ ψ(ψ(‖x0 − x∞‖, t/2) + ϕ(‖v − v∞θ‖L∞), t/2)

+ϕ(‖�t/2(v − v∞θ)‖L∞) ∀ t ≥ 0.

Consequently, defining ψ1, ψ2 ∈ KL by

ψ1(s, t) := ψ(2ψ(s, t/2), t/2) and ψ2(s, t) := ψ(2ϕ(s), t/2) ∀ s, t ≥ 0,

we obtain, for t ≥ 0,

‖x(t; x0, v) − x∞‖ ≤ ψ1(‖x0 − x∞‖, t) + ψ2(‖v − v∞θ‖L∞ , t)

+ϕ(‖�t/2(v − v∞θ)‖L∞),

which is (4.10). ��
We illustrate the conclusions of Theorem 4.3 with some simple examples.

Example 4.5 Consider the one-dimensional Lur’e system

ẋ(t) = −x(t) + f (x(t)) + v(t) t ≥ 0. (4.18)

Note that here n = 1, A = −1 and B = C = 1. We choose K = 0 and so

GK (s) = G0(s) = G(s) = 1

s + 1
.

Since ‖G‖H∞ = G(0) = 1, we have γ = 1.

(a) Let f : R → R be given by

f (z) = z − sign(z)(1 − e−|z|) ∀ z ∈ R. (4.19)

Since

f ′(z) = 1 − e−|z| ∀ z ∈ R,
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the mean-value theorem guarantees that

| f (z + ξ) − f (ξ)| < |z| ∀ ξ, z ∈ R, z 
= 0.

Furthermore,

F0(z) = z − f (z) = sign(z)(1 − e−|z|) ∀ z ∈ R,

and so, F0(R) = (−1, 1). Setting Y := im C = R, we see that, for every
v∞ ∈ (−1, 1), the assumptions of statement (1) of Theorem 4.3 are satisfied.
Therefore, if v∞ ∈ (−1, 1), then, for all x0 ∈ R and all v ∈ L∞(R+,R) such
that limt→∞ v(t) = v∞, we have that either x(t; x0, v) → x∞ = F−1

0 (v∞) or
|x(t; x0, v)| → ∞ as t → ∞. We show that divergence is not possible. Seeking
a contradiction, suppose that there exist v∞ ∈ (−1, 1), v ∈ L∞(R+,R) with
limt→∞ v(t) = v∞ and x0 ∈ R such that |x(t; x0, v)| → ∞ as t → ∞. Setting
x(t) := x(t; x0, v), we have that either x(t) → ∞ or x(t) → −∞ as t → ∞. If
x(t) → ∞ as t → ∞, then there exists τ ≥ 0 such that

ẋ(t) = −1 + e−x(t) + v(t) ≤ (v∞ − 1)/2 < 0 ∀ t ≥ τ.

But this implies that x(t) → −∞ as t → ∞, providing the desired contradiction.
Similarly, if x(t) → −∞ as t → ∞, then there exists τ ≥ 0 such that

ẋ(t) = 1 − ex(t) + v(t) ≥ (v∞ + 1)/2 > 0 ∀ t ≥ τ,

showing that x(t) → ∞ as t → ∞, which is impossible.
The above analysis shows in particular that the system (4.18) has the 0-CICS
property. Note that the equilibrium pair (0, 0) of (4.18) is not ISS (since the input
v(t) ≡ 1 + ε, ε > 0, produces an unbounded solution).

(b) Consider again system (4.18), but now with f : R → R given by

f (z) = z − sat(z)e−|z|, ∀ z ∈ R,

where sat(z) := z for |z| ≤ 1 and sat(z) := sign(z) for |z| > 1. Set Y := {0} and
let v∞ = 0. Since,

| f (z)| < |z| ∀ z 
= 0,

the assumptions of statement (1) of Theorem 4.3 are satisfied and it follows that
y∞ = x∞ = 0, the equilibrium 0 of the uncontrolled system (4.18) is GAS,
and, for every x0 ∈ R and every v ∈ L∞(R+,R) with limt→∞ v(t) = 0, either
x(t; x0, v) → 0 or |x(t; x0, v)| → ∞ as t → ∞. Divergence is possible: indeed,
with v given by v(t) = 2/(t + e), it is straightforward to verify that x(t; 1, v) =
ln(t + e). ♦
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Example 4.6 Consider the two-dimensional Lur’e system

ẋ1(t) = −x1(t) + x2(t) − f (2x1(t) + x2(t)) + v1(t)

ẋ2(t) = −x1(t) − 3x2(t) + 3 f (2x1(t) + x2(t)) + v2(t)

}
t ≥ 0, (4.20)

with nonlinearity f ∈ F , where F is the set of all of continuously differentiable
functions f : R → R such that

f (0) = 0, f ′(z) ≥ 0 ∀ z ∈ R,

f ′(z) ≤ 1/2 ∀ z ∈ R\(3, 4) and max
y∈[3,4] f ′(z) = 2.

}
(4.21)

Setting

A :=
(−1 1

−1 −3

)
, B :=

(−1
3

)
, C := (

2 1
)
,

it is clear that system (4.20) is of the form (1.1). The matrix A is Hurwitz (−2 is an
eigenvalue of algebraic multiplicity two) and the transfer function of the linear system
(A, B, C) is G(s) = (s + 4)/(s + 2)2. Choosing K = 0, we have

‖GK ‖H∞ = ‖G0‖H∞ = ‖G‖H∞ = G(0) = 1,

and thus, γ = 1. It follows from (4.21) that |z| − | f (z)| → ∞ as |z| → ∞ and
so, (4.9) holds with ζ = 0. Using elementary calculus, it is not difficult to show that,
for every ξ ∈ R\(1, 6), there exists aξ ∈ (0, 1) such that

| f (z + ξ) − f (ξ)| ≤ aξ |z| ∀ z ∈ R.

Hence, condition (A) holds with Y := R\(1, 6). Furthermore, F0(z) = FK (z) =
z − f (z), and so, using (4.21),

F0(Y ) = (−∞, 1 − f (1)] ∪ [6 − f (6),∞) ⊇ (−∞, 1/2] ∪ [6,∞).

According to statement (2) of Theorem 4.3, for every v∞ = (v∞
1 , v∞

2 )T ∈ R
2 such

that

(5v∞
1 + 3v∞

2 )/4 = −C A−1v∞ ∈ F0(Y ),

there exists x∞ ∈ R such that, for all x0 ∈ R and all v ∈ L∞(R+,R) with
limt→∞ v(t) = v∞, the solution x(t, x0, v) of (4.20) converges to x∞ as t → ∞.

Let ξ0 ∈ (1, 6). Then it is not difficult to show that there exists f ∈ F such that

sup
z 
=0

| f (z + ξ0) − f (ξ0)|
|z| = sup

z 
=0

f (z + ξ0) − f (ξ0)

z
> 1, (4.22)
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and it is clear that condition (A) does not hold for ξ = ξ0. We claim that, for v∞ =
(v∞

1 , v∞
2 )T ∈ R

2 such that

(5v∞
1 + 3v∞

2 )/4 = −C A−1v∞ = F0(ξ0), (4.23)

there does not exist x∞ ∈ R
2 such that limt→∞ x(t, x0, v) = x∞ for all x0 ∈ R

2 and
all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞. To this end note that, by (4.22), there
exists z0 
= 0 such that

f (z0 + ξ0) − f (ξ0)

z0
> 1,

and thus

z0(F0(z0 + ξ0) − F0(ξ0)) < 0.

Now (4.21) guarantees that

F0(z) → ±∞ as z → ±∞,

and hence there exists ξ1 
= ξ0 such that F0(ξ0) = F0(ξ1). As a consequence,
#F−1

0 (−C A−1v∞) > 1, and so, by statement (2) of Proposition 3.1, it follows that
there does not exist x∞ ∈ R

2 such that limt→∞ x(t, x0, v) = x∞ for all x0 ∈ R
2 and

all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞.
To illustrate the last point, we consider a specific example: fix ξ0 = 7/2 ∈ (1, 6)

and let f ∈ F be given by

f (z) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z

2
z ∈ (−∞, 3)

q(z) z ∈ [3, 4]
z − 4

2
+ 3 z ∈ (4,∞),

(4.24)

where q(z) := −2z3 + 21z2 − 143z/2 + 81 (Fig. 3).
It is straightforward to verify that the function f belongs to F , in particular:

f (3) = 3/2, f (4) = 3, f ′(3) = 1/2 = f ′(4) and max
z∈[3,4] f ′(z) = f ′(ξ0) = 2.

The last identity shows that condition (4.22) holds. Moreover, F0(ξ0) = ξ0 − f (ξ0) =
5/4, and thus, v∞ := (2,−5/3)T satisfies (4.23). A straightforward argument shows
that F−1

0 (5/4) = {5/2, 7/2, 9/2}. Calculating x∞ = −A−1(B f (y∞) + v∞) for
y∞ ∈ {5/2, 7/2, 9/2}, we see that (x∞, v∞) is an equilibrium pair for every x∞ of
the form

x∞ =
(

13/12
x∞

2

)
, where x∞

2 ∈ {1/3, 4/3, 7/3}.
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Fig. 3 Graph of f from (4.24)
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In particular, there does not exist x∞ ∈ R
2 such that limt→∞ x(t, x0, v) = x∞ for all

x0 ∈ R
2 and all v ∈ L∞(R+,R2) with limt→∞ v(t) = v∞. ♦

The following corollary is a consequence of statement (1) of Theorem 4.3.

Corollary 4.7 Let K ∈ SR(A, B, C), set γ := 1/‖GK ‖H∞ (where γ := ∞ if
‖GK ‖H∞ = 0), assume that (A) holds with Y := F−1

K (im C) ⊆ im C and set V :=
{w ∈ R

n : −C A−1
K w ∈ FK (Y )}. Furthermore, assume that, for every x0 ∈ R

n and
every v ∈ L∞(R+,Rn) such that limt→∞ v(t) = v∞ ∈ V, the function Cx(· ; x0, v)

is bounded. Then, for every v∞ ∈ V, #F−1
K (−C A−1

K v∞) = 1 and, for every x0 ∈
R

n and every v ∈ L∞(R+,Rn) such that limt→∞ v(t) = v∞ ∈ V, we have that
x(t; x0, v) → x∞ as t → ∞, where x∞ := −A−1

K (B( f (y∞) − K y∞) + v∞) with
y∞ given by {y∞} = F−1

K (−C A−1
K v∞).

Note that usually rank C = p, in which case im C = R
p, Y = R

p and FK (Y ) =
FK (Rp) = im FK .

Proof of Corollary 4.7. Let v∞ ∈ V and set z := −C A−1
K v∞. Obviously, z ∈ im C

and it follows from the definitions of the sets Y and V that F−1
K (z) ∩ Y 
= ∅. Conse-

quently, by Proposition 4.1, #F−1
K (−C A−1

K v∞) = #F−1
K (z) = 1.

To prove the convergence property, let x0 ∈ R
n, v∞ ∈ V and let v ∈ L∞(R+,Rn)

be such that v(t) → v∞ as t → ∞ and write x(t) := x(t; x0, v). By hypothesis,
Cx is bounded, and so, since x satisfies ẋ = AK x + B( f (Cx) − K Cx) + v, the
Hurwitz property of AK guarantees that x is bounded. An application of statement (1)
of Theorem 4.3 shows that x(t) → x∞ as t → ∞, completing the proof. ��

The next result, a corollary of statement (2) of Theorem 4.3, provides a sufficient
condition for the CICS property.

Corollary 4.8 Let K ∈ SR(A, B, C) and set γ := 1/‖GK ‖H∞ (where γ := ∞ if
‖GK ‖H∞ = 0). If there exists ζ ∈ R

p such that (4.9) holds and f satisfies
(B) ‖ f (z + ξ) − f (ξ) − K z‖ < γ ‖z‖ for all ξ ∈ im C and all z ∈ R

p, z 
= 0,

then (1.1) has the CICS property.
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Proof The map FK is surjective, as follows from hypothesis (B), (4.9) and statement
(3) of Proposition 4.1. Hence, by (3.1),

F−1
K (−C A−1

K v∞) ∩ im C 
= ∅ ∀ v∞ ∈ R
n .

Invoking statement (2) of Theorem 4.3 (with Y = im C) shows that the Lur’e sys-
tem (1.1) has the CICS property. ��

As an illustration of Corollary 4.7, consider the system (4.18) with f given by (4.19)
and K = 0, see part (a) of Example 4.5. In this case, γ = 1, Y = R and V =
F0(R) = (−1, 1). As has been shown in part (a) of Example (4.5), assumption (A)
holds with Y = R and Cx(· ; x0, v) = x(· ; x0, v) is bounded for all x0 ∈ R and all
convergent v ∈ L∞(R+,Rn) with limit in (−1, 1). Consequently, all assumptions of
Corollary 4.7 are satisfied and so, for all x0 ∈ R and all v ∈ L∞(R+,Rn) such that
limt→∞ v(t) = v∞, we have that limt→∞ x(t; x0, v) = x∞, where x∞ is given by
{x∞} = F−1

0 (v∞). Note that the system does not have the CICS property, since the
input v(t) ≡ 1 + ε, ε > 0, generates a divergent state trajectory. Moreover, note that
Corollary 4.8 does not apply: whilst assumption (B) is satisfied, there does not exist
ζ ∈ R such that (4.9) holds.

We give a sufficient condition for (B) to hold. The proof is routine and is, therefore,
left to the reader.

Lemma 4.9 Assume that f : Rp → R
m is continuously differentiable,with derivative

denoted by D f . Let � ⊆ R
p be a set which does not have any accumulation points.

If

‖(D f )(z) − K‖ < γ ∀ z ∈ R
p\�,

then condition (B) holds.

In the following, we shall derive a number of further corollaries which will provide
“interpretations” of Corollary 4.8 in terms of the complex Aizerman conjecture, small-
gain theorems and circle criteria, respectively.

The next result is reminiscent of the complexified Aizerman conjecture [17,18,36].

Corollary 4.10 Let K ∈ R
m×p, r > 0 and assume that BC(K , r) ⊆ SC(A, B, C). If

‖ f (z + ξ) − f (ξ) − K z‖ < r‖z‖ ∀ ξ ∈ im C, ∀ z ∈ R
p, z 
= 0 (4.25)

and there exists ζ ∈ R
p such that

r‖z‖ − ‖ f (z + ζ ) − f (ζ ) − K z‖ → ∞ as ‖z‖ → ∞, (4.26)

then (1.1) has the CICS property.

Corollary 4.10 says, roughly speaking, that linear stability (namely BC(K , r) ⊆
SC(A, B, C)) implies CICS for all nonlinearities f satisfying the “incremental” ball
condition (4.25) and the divergence property (4.26).
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Proof of Corollary 4.10. By hypothesis BC(K , r) ⊆ SC(A, B, C) and so, AK =
A + BK C is Hurwitz and BC(0, r) ⊆ SC(AK , B, C). Thus, appealing to elementary
stability radius theory [16,18] (see also the proof of Theorem 2.1 in the Appendix),
we have that r ≤ 1/‖G‖H∞ . The claim follows now from Corollary 4.8. ��
Consider the following incremental small-gain condition:

(B′) For every ξ ∈ im C , there exists αξ ∈ K∞ such that

‖GK ‖H∞
‖ f (z + ξ) − f (ξ) − K z‖

‖z‖ ≤ 1 − αξ (‖z‖)
‖z‖ ∀ z ∈ R

p, z 
= 0, (4.27)

We are now in the position to state a “nonlinear” small-gain criterion for the CICS
property.

Corollary 4.11 Let K ∈ SR(A, B, C). If f satisfies (B′), then (1.1) has the CICS
property.

Proof It is clear that if (B′) is satisfied, then (B) and (4.9) hold. Thus, the claim follows
from Corollary 4.8. ��

Note that (B′) is not a small-gain condition in the sense of classical input–output
theory of feedback systems (as presented, for example, in [11,13,14,23,45]): whilst,
for every fixed ξ ∈ im C , the right-hand side of (4.27) is smaller than 1 for all z 
= 0,
it is in general not uniformly bounded away from 1. Indeed, it is possible that, for
fixed ξ , the right-hand side of (4.27) is converging to 1 as ‖z‖ → 0 or ‖z‖ → ∞.
Therefore, rather than comparing Corollary 4.11 with classical small-gain theorems
[11,13,14,23,45], it is more appropriate to view it in the context of “modern” nonlinear
ISS small-gain results, see for example [10,21,36,43].

If im C = R
p, then condition (B) implies that fK : Rp → R

m, z �→ f (z) − K z
is globally Lipschitz and γ is a Lipschitz constant for fK . If the map fK is globally
Lipschitz and has a Lipschitz constant λ < γ , then

‖GK ‖H∞
‖ fK (z + ξ) − fK (ξ)‖

‖z‖ ≤ λ

γ
< 1 ∀ z, ξ ∈ R

p, z 
= 0. (4.28)

This inequality, a (incremental) small-gain condition in the sense of classical input–
output theory, is sufficient for (B′) to hold. Consequently, (4.28) is a sufficient condition
for the CICS property.

In the following example, we present a simple nonlinearity f such that f satisfies
condition (B), fK has minimal Lipschitz constant equal to γ and (4.9) holds.

Example 4.12 Let

A :=
⎛
⎝−2 −1 0

1 −1 −1
−1 0 0

⎞
⎠ , B :=

⎛
⎝0

0
1

⎞
⎠ , C := (1, 0, 0).
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The characteristic polynomial of A is det(s I − A) = (s + 1)3. Hence, A is Hurwitz
and so may choose K = 0, leading to

GK (s) = G0(s) = G(s) = 1

(s + 1)3 .

A routine argument shows that

‖G‖H∞ = G(0) = 1,

and thus γ = 1/‖G‖H∞ = 1. In the following, we consider the Lur’e system

ẋ = Ax + B f (Cx) + v, where f (z) = sign(z) ln(1 + |z|). (4.29)

The function f is continuously differentiable and

f ′(0) = 1 and 0 < f ′(z) < 1 ∀ z 
= 0.

It follows from Lemma 4.9 that condition (B) is satisfied. Moreover, trivially, |z| −
| f (z)| → ∞ as |z| → ∞, and so, Corollary 4.8 guarantees that (4.29) has the CICS
property. Finally, note that f is globally Lipschitz with minimal Lipschitz constant
equal to γ = 1. ♦

Remark 4.13 If the assumptions of Corollary 4.8 hold, then, by Proposition 4.1, the
map F̂K : im C → im C restricting FK to im C is bijective and the ISSS gain of (1.1)
can be written as

�is(z) = −A−1
K (B( fK ◦ F̂−1

K )(−C A−1
K z) + z) ∀ z ∈ R

n, (4.30)

where fK (z) := f (z) − K z. Similarly, the IOSS gain of (1.1) can expressed as

�io(z) = F̂−1
K (−C A−1

K z) ∀ z ∈ R
n . (4.31)

Note that if A is Hurwitz, f = 0 and K = 0, then (1.1) “collapses” to the linear
system

ẋ = Ax + v, y = Cx,

which has transfer function H(s) = C(s I − A)−1. In this case, FK (z) = F0(z) = z
for all z ∈ R

n and �io(z) = −C A−1z = H(0)z, that is, the familiar linear steady-state
gain is recovered. ♦

Statement (1) of the next proposition demonstrates that, under the assumptions of
Corollary 4.8, the maps �is and �io (the steady-state gains) are continuous.

Proposition 4.14 Let K ∈ SR(A, B, C) and set γ := 1/‖GK ‖H∞ (where γ := ∞ if
‖GK ‖H∞ = 0).
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1. If the assumptions of Corollary 4.8 hold, then the steady-state gains �is and �io
are continuous.

2. If the mapRp → R
m, z �→ f (z)−K z is globally Lipschitz with Lipschitz constant

λ < γ, then �is and �io are globally Lipschitz.

Proof To prove statement (1), we note that, in light of Remark 4.13, it is sufficient
to show that F̂−1

K : im C → im C is continuous. To this end, let w ∈ im C be fixed,
but arbitrary, set ξ := F̂−1

K (w) ∈ im C and define f̃ : R
p → R

p by f̃ (z) :=
f (z + ξ) − f (ξ) for all z ∈ R

p. Invoking the divergence assumption (4.9) and
statement (1) of Lemma 4.2 shows that

γ ‖z‖ − ‖ f̃ (z) − K z‖ → ∞ as ‖z‖ → ∞,

and so by statement (2) of Lemma 4.2, there exists α ∈ K∞ such that

1

γ
‖ f̃ (z) − K z‖ ≤ ‖z‖ − α(‖z‖) ∀ z ∈ R

p . (4.32)

We now use (4.32) to estimate

‖F̂K (z) − F̂K (ξ)‖ = ‖z − GK (0)( f (z) − K z) − (ξ − GK (0)( f (ξ) − K ξ))‖
= ‖z − ξ‖ − 1

γ
‖ f̃ (z − ξ) − K (z − ξ)‖

≥ α(‖z − ξ‖) ∀ z ∈ im C.

Thus,

‖z − ξ‖ ≤ α−1(‖F̂K (z) − F̂K (ξ)‖) ∀ z ∈ im C,

where α−1 ∈ K∞, as α ∈ K∞. Invoking the invertibility of F̂K and the definition of
ξ , we see that

‖F̂−1
K (z) − F̂−1

K (w)‖ ≤ α−1(‖z − w‖) ∀ z ∈ im C.

In particular, we obtain that F̂−1
K is continuous at w. As w ∈ im C was arbitrary,

continuity of F̂−1
K follows.

The proof of statement (2) is similar to that of statement (1). Indeed, we have that

‖F̂K (z) − F̂K (ξ)‖ ≥ ‖z − ξ‖ − 1

γ
‖ f (z) − K z − ( f (ξ) − K ξ)‖

≥
(

1 − λ

γ

)
‖z − ξ‖ ∀ z, ξ ∈ im C,

which implies that

‖F̂−1
K (z) − F̂−1

K (ξ)‖ ≤ γ

γ − λ
‖z − ξ‖ ∀ z, ξ ∈ im C,
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showing that F̂−1
K is globally Lipschitz. Consequently, invoking formulas (4.30) and

(4.31), the steady-state gains �is and �io inherit the global Lipschitz property from
that of their constituents. ��

Next we present, in form of two corollaries, sufficient conditions for the CICS
property which are reminiscent of the well-known circle criterion (see, for example,
[14,23,36,45]).

Corollary 4.15 Let K1, K2 ∈ R
m×p. Assume that (A, B, C) is stabilizable and

detectable, (I − K2G)(I − K1G)−1 is positive real,

〈 f (z+ξ)− f (ξ)−K1z, f (z+ξ)− f (ξ)−K2z〉 < 0 ∀ ξ ∈ im C, ∀ z ∈R
p, z 
= 0,

(4.33)

and there exist ζ ∈ R
p and α ∈ K∞ such that

〈 f (z + ζ ) − f (ζ ) − K1z, f (z + ζ ) − f (ζ ) − K2z〉 ≤ −α(‖z‖)‖z‖ ∀ z ∈ R
p.

(4.34)

Then the Lur’e system (1.1) has the CICS property.

Proof We shall rewrite the Lur’e system in a form which will allow the application of
Corollary 4.8. For ξ ∈ R

p, define fξ : Rp → R
m by

fξ (z) = f (z + ξ) − f (ξ) ∀ z ∈ R
p (4.35)

Setting

L := 1

2
(K1 − K2) and M := 1

2
(K1 + K2),

we have that

〈 fξ (z) − K1z, fξ (z) − K2z〉 = 〈 fξ (z) − (M + L)z, fξ (z) − (M − L)z〉
= ‖ fξ (z) − Mz‖2 − ‖Lz‖2 ∀ z ∈ R

p

Note that in conjunction with (4.33) (or, alternatively, (4.34) could be invoked) this
implies ker L = {0}. Thus L∗L is invertible and L� := (L∗L)−1L∗ ∈ R

p×m is a left
inverse of L . Define the nonlinearity g : Rm → R

m by g(z) := f (L�z) − K1L�z for
all z ∈ R

m and consider the Lur’e system

ẋ = AK1 x + Bg(LCx) + v, (4.36)

where AK1 := A + BK1C . The linear state space system (AK1 , B, LC) has transfer
function

H(s) = LC(s I − AK1)
−1 B = LGK1(s), where GK1 = G(I − K1G)−1.
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It is obvious that x is solves the original Lur’e system ẋ = Ax + B f (Cx) + v if, and
only if, x solves (4.36). Therefore, it is sufficient to show that (4.36) has the CICS
property. To this end, set K := −L L�. Using, mutatis mutandis, arguments from [36,
proof of Corollary 3.10], it follows that K ∈ SR(AK1 , B, LC),

γ := 1/‖HK ‖H∞ ≥ 1, where HK := H(I − K H)−1,

there exists β ∈ K∞ such that

‖g(z + Lζ ) − g(Lζ ) − K z‖ ≤ ‖z‖ − β(‖z‖) ≤ γ ‖z‖ − β(‖z‖) ∀ z ∈ R
m,

and

‖g(z + η) − g(η) − K z‖ < ‖z‖ ≤ γ ‖z‖ ∀ η ∈ im (LC), ∀ z ∈ R
m, z 
= 0.

Consequently, the assumptions of Corollary 4.8 are satisfied in the context of the Lur’e
system (4.36) and therefore, (4.36) has the CICS property, completing the proof. ��

Recall that a rational square matrix H is said to be strictly positive real if there
exists ε > 0 such the rational matrix function s �→ H(s − ε) is positive real.

Corollary 4.16 Let K1, K2 ∈ R
m×p. Assume that ker(K1 − K2) = {0}, (A, B, C) is

stabilisable and detectable, (I − K2G)(I − K1G)−1 is strictly positive real and

〈 f (z + ξ) − f (ξ) − K1z, f (z + ξ) − f (ξ) − K2z〉 ≤ 0 ∀ ξ ∈ im C, ∀ z ∈ R
p.

(4.37)

Then the Lur’e system (1.1) has the CICS property.

Proof Set M := K2 − K1, let ξ ∈ im C and define fξ : Rp → R
m by (4.35). Then,

mutatis mutandis, arguments from [36, proof of Corollary 3.13] can be invoked to
show that there exists k > 0 and μ > 0 such that, for all κ ∈ (0, k), the rational matrix
function

(I − (K2 + κ M)G)(I − (K1 − κ M)G)−1

is positive real and

〈 fξ (z) − (K1 − κ M)z, fξ (z) − (K2 + κ M)z〉 ≤ −μκ(κ + 1)‖z‖2 ∀ z ∈ R
p.

It follows that the conditions of Corollary 4.15 hold (with α(s) = μκ(κ + 1)s and K1
and K2 replaced by K1 −κ M and K2 +κ M , respectively). Hence, (1.1) has the CICS
property. ��

Note that the assumptions in Corollary 4.16 are essentially identical to those in
the “classical” circle criterion which guarantees global asymptotic stability (see [13,
Theorem 5.1], [14, Corollary 5.8] and [23, Theorem 7.1], the only difference being
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that (4.37) is the incremental version of the standard sector condition in the circle
criterion.

We further note that Corollary 4.16 is reminiscent of the main result in [35] which
provides a description of the steady-state error of single-input single-output Lur’e sys-
tems of the form (1.2) in response to a class of polynomial inputs (including unbounded
signals such as ramps) under the assumption that the conditions of the SISO circle
criterion are met. Whilst the CICS property is not mentioned in [35], part (1) of [35,
Theorem] can be interpreted in CICS terms.

We emphasize that Corollaries 4.15 and 4.16 are not equivalent. Indeed, the latter
is more conservative than the former as is illustrated by the following simple example.

Example 4.17 Consider the one-dimensional Lur’e system

ẋ(t) = f (x(t)) + v(t) x(0) = x0 t ≥ 0, (4.38)

with f : R → R given by f (z) = −sign(z) ln(1+|z|). The function f is continuously
differentiable, f ′(0) = −1 and −1 < f ′(z) < 0 for all z 
= 0. Obviously, (4.38) is of
the form (1.1) with (A, B, C) = (0, 1, 1), and so G(s) = 1/s. Let K1 < K2 and note
that

1 − K2G(s)

1 − K1G(s)
= s − K2

s − K1
(4.39)

is (strictly) positive real if, and only if, K2 ≤ 0 (K2 < 0).
Now if K1 < K2 < 0, then, for every ξ ∈ R,

( f (z + ξ) − f (ξ) − K1z)( f (z + ξ) − f (ξ) − K2z) > 0, |z| sufficiently large,

and we conclude that Corollary 4.16 does not apply.
However, choosing K1 < −1 and K2 = 0, it is not difficult to show that the con-

ditions of Corollary 4.15 are satisfied. Indeed, for K1 < −1 and K2 = 0, the rational
function in (4.39) is positive real and, by the mean-value theorem for differentiation,

( f (z + ξ) − f (ξ) − K1z)( f (z + ξ) − f (ξ)) < 0 ∀ ξ, z ∈ R, z 
= 0. (4.40)

Furthermore, it is clear that

sign(z)( f (z)/z − K1) f (z) → −∞ as |z| → ∞,

which, together with (4.40), shows that there exists α ∈ K∞ such that

( f (z) − K1z) f (z) ≤ −α(|z|)|z| ∀ z ∈ R.

We have now established that the assumptions of Corollary 4.15 hold (with K1 <

−1, K2 = 0 and ζ = 0) and consequently, system (4.38) has the CICS property. ♦
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5 The CICS property for another class of Lur’e systems

In this short section, we consider forced Lur’e systems of the form

ẋ(t) = Ax(t) + B f (Cx(t) − v(t)), x(0) = x0 ∈ R
n

y(t) = Cx(t)

}
t ≥ 0, (5.1)

where, as in Sects. 2–4, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, f : R

p → R
m, y

denotes the output and v ∈ L∞
loc(R+,Rp) is the control (forcing, input) function.

In the uncontrolled case (v = 0), the Lur’e systems (1.1) and (5.1) are identical.
As has been pointed out in Sect. 1, the Lur’e system (5.1) can be thought of as a
closed-loop system obtained by applying the linear feedback w = y −v to the system
ẋ = Ax + B f (w) (a linear system with input nonlinearity), see Fig. 2.

Let x̂(· ; x0, v) denote the unique maximally defined forward solution of the initial-
value problem (5.1). The CICS property can be defined as before: Lur’e system (5.1)
is said to have the CICS property if, for every v∞ ∈ R

p, there exists x∞ ∈ R
n

such that limt→∞ x̂(t; x0, v) = x∞ for all x0 ∈ R
n and all v ∈ L∞(R+,Rp) with

limt→∞ v(t) = v∞.
The following corollary provides a sufficient condition for (5.1) to have the CICS

property.

Proposition 5.1 Let K ∈ SR(A, B, C), assume that ‖GK ‖H∞ > 0 and set γ :=
1/‖GK ‖H∞ . Furthermore, assume that there exists ζ ∈ R

p such that (4.9) holds and
f satisfies

(C) ‖ f (z + ξ) − f (ξ) − K z‖ < γ ‖z‖ for all ξ, z ∈ R
p, z 
= 0.

Then the map FK is bijective and, for all v∞ ∈ R
p, all x0 ∈ R

n and all v ∈
L∞(R+,Rp) with limt→∞ v(t) = v∞,

lim
t→∞ x̂(t; x0, v) = x∞ := −A−1

K B( f (y∞ − v∞) − K y∞),

where y∞ ∈ R
p is given by y∞ := F−1

K (−(I + GK (0)K )v∞) + v∞ and satisfies
y∞ = Cx∞. In particular, the Lur’e system (5.1) has the CICS property.

Remark 5.2 Note that under the assumptions of Proposition 5.1, it is natural to define
the IOSS gain of (5.1) to be the map v∞ �→ F−1

K

( − (I + GK (0)K )v∞) + v∞.
Proposition 5.1 allows us to extend a classical result on integral control to Lur’e
systems of the form (5.1). To this end, assume that the assumptions of Proposition 5.1
are satisfied, f (0) = 0 and the linear system (A, B, C) contains an integrator, that is,
G has a Laurent expansion of the form

G(s) =
∞∑

j=−1

G j s
j for all sufficiently small |s|, s 
= 0,

where G j ∈ R
p×m and G−1 
= 0. If G−1 K is invertible, then GK (0)K = −I and so,

y∞ = F−1
K (0) + v∞ = v∞ (where we have used that f (0) = 0), showing that every
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input v with limit v∞ produces an output y converging also to v∞, or equivalently,
the IOSS gain of (5.1) is equal to the identity. ♦

Proof of Proposition 5.1. It follows from statement (3) of Proposition 4.1 that FK is
surjective. Injectivity of FK can be shown by an argument similar to that used in the
proof of statement (1) of Proposition 4.1.

To prove the convergence property, let x0 ∈ R
n, v∞ ∈ R

p and v ∈ L∞(R+,Rp)

such that v(t) → v∞ as t → ∞. Setting x̃(t) := x̂(t; x0, v)− x∞, ṽ(t) := v(t)−v∞
and f̃ (z) := f (z + y∞ − v∞) − f (y∞ − v∞), a routine calculation shows that x̃
satisfies

˙̃x(t) = Ax̃(t) + B f̃ (Cx̃(t) − ṽ(t)) for almost all t ≥ 0.

Consequently, writing w := B
[

f (Cx̃ − ṽ) − f (Cx̃)
]
, it follows that

˙̃x(t) = Ax̃(t) + B f̃ (Cx̃(t)) + w(t) for almost all t ≥ 0, (5.2)

and we note that (5.2) is a forced Lur’e system of the form (1.1). Note that the
hypotheses on f combined with Lemma 4.2 guarantee that there exists α ∈ K∞ such
that ‖ f̃ (z) − K z‖ ≤ γ ‖z‖ − α(‖z‖) for all z ∈ R

p. Consequently, by Theorem 2.1,
the equilibrium pair (0, 0) of (5.2) is ISS. Moreover, hypothesis (C) implies that

‖w(t)‖ ≤ ‖B‖(γ + ‖K‖)‖ṽ(t)‖ ∀ t ≥ 0,

showing that w(t) → 0 as t → ∞ (note that γ < ∞ by hypothesis). An application
of Proposition 2.2 now shows that x̃(t) → 0 as t → ∞ and thus, x̂(t; x0, v) → x∞
as t → ∞.

It remains to show that y∞ = Cx∞. To see this, note that Cx∞ = GK (0)( f (y∞ −
v∞) − K y∞). Hence,

y∞ − Cx∞ = y∞ − v∞ − GK (0)( f (y∞ − v∞) − K (y∞ − v∞))

+ (I + GK (0)K )v∞,

and so,

y∞ − Cx∞ = FK (y∞ − v∞) + (I + GK (0)K )v∞.

But FK (y∞ − v∞) = −(I + GK (0)K )v∞, implying that y∞ = Cx∞. ��

6 CICS properties for non-negative Lur’e systems

In this section, we study non-negative Lur’e systems, which, as has already been
indicated in Sect. 1, arise naturally in a variety of applied contexts, such as population
dynamics and chemical reaction models, cf. [6,36,37,44]. We will restrict attention
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to models with scalar feedback f (m = p = 1 and f is a scalar function), that is, we
consider forced Lur’e systems of the form

ẋ(t) = Ax(t) + b f (cTx(t)) + v(t), x(0) = x0 ∈ R
n+

y(t) = cTx(t)

}
t ≥ 0, (6.1)

so that, in particular, the linear system (A, b, cT) is a single-input, single-output (SISO)
system. We assume that the following positivity conditions hold:

(P1) A ∈ R
n×n is Metzler and b, c ∈ R

n+, b, c > 0,
(P2) f : R+ → R+ is locally Lipschitz.

Furthermore, we only consider non-negative control (forcing, input) functions, that
is, v ∈ L∞

loc(R+,Rn+).
As before, we denote the unique maximally defined forward solution of the initial-

value problem (6.1) by x(· ; x0, v). It is well known that if (P1) and (P2) hold, then for
all non-negative initial states x0 ∈ R

n+ and v ∈ L∞
loc(R+,Rn+), the solution x(t; x0, v)

remains in the non-negative orthant Rn+ for all t ∈ [0, ω), where [0, ω), 0 < ω ≤ ∞
denotes the maximal interval of existence. If ω < ∞, then ‖x(t; x0, v)‖ → ∞ as
t → ω. If (P1) and (P2) hold, then we will refer to (6.1) as a non-negative Lur’e
system.

For later purposes, we introduce a further positivity assumption on the linear system
(A, b, cT).

(P3) The matrix A + bcT is irreducible.

Note that A+bcT is irreducible if, and only, if A+kbcT is irreducible for every k > 0.
Let s �→ G(s) = cT(s I − A)−1b denote the transfer function of the linear SISO

system (A, b, cT). A proof of the following result can be found in [6].

Proposition 6.1 If A is Hurwitz and (P1) holds, then

‖G‖H∞ = G(0) ≥ 0.

Under the additional assumption that (P3) is satisfied we have

‖G‖H∞ = G(0) > 0.

It follows from Proposition 6.1 that if A is Hurwitz, (P1) holds and (A, b) is con-
trollable or (cT, A) is observable, then G(0) > 0.

Theorem 6.2 Let Y ⊆ R+ be nonempty and assume that (P1) and (P2) hold and A
is Hurwitz. Set γ := 1/G(0) (where γ := ∞ if G(0) = 0) and assume further that∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ Y × R+ such that z 
= ξ, (6.2)

and

γ z − f (z) → ∞ as z → ∞. (6.3)
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Then the following statements hold.

1. The map

F : R+ → R, z �→ z − G(0) f (z) (6.4)

has the following properties: R+ ⊆ F(R+) and #F−1(z) = 1 for every z ∈ R

such that F−1(z) ∩ Y 
= ∅.
2. Let v∞ ∈ R+ and assume that F−1(−cT A−1v∞)∩Y 
= ∅. Then, #F−1(−cT A−1

v∞) = 1 and, for all x0 ∈ R
n and all v ∈ L∞(R+,Rn+) such that limt→∞ v(t) =

v∞,

lim
t→∞ x(t; x0, v) = −A−1(b f (y∞) + v∞) =: x∞ ∈ R

n+,

where {y∞} = F−1(−cT A−1v∞) and x∞ satisfies cTx∞ = y∞ ≥ 0.

Proof We extend f to R by defining

f̃ : R → R, z �→
{

f (z), for z ≥ 0
f (0), for z < 0,

Using (6.2), it is straightforward to show that

∣∣∣∣∣ f̃ (z + ξ) − f̃ (ξ)

z

∣∣∣∣∣ < γ ∀ ξ ∈ Y, ∀ z ∈ R, z 
= 0.

Consequently,

| f̃ (z + ξ) − f̃ (ξ)| < γ |z| ∀ ξ ∈ Y, ∀ z ∈ R, z 
= 0. (6.5)

Furthermore, by (6.3),

γ |z| − | f̃ (z + ξ) − f̃ (ξ)| → ∞ as |z| → ∞. (6.6)

Defining F̃ : R → R by F(z) = z − G(0) f̃ (z), an application of Proposition 4.1
shows that F̃ is surjective and

# F̃−1(z) = 1 for every z ∈ R such that F̃−1(z) ∩ Y 
= ∅. (6.7)

Now F̃(z) < −G(0) f (0) ≤ 0 for all z < 0 and so surjectivity of F̃ implies that
R+ ⊆ F̃(R+) = F(R+). Moreover, let z ∈ R be such that F−1(z) ∩ Y 
= ∅. If w ∈
F−1(z) ⊆ R+, then z = F(w) = F̃(w), and so F−1(z) ⊆ F̃−1(z). Consequently,
F̃−1(z) ∩ Y 
= ∅, whence, by (6.7), #F−1(z) = # F̃−1(z) = 1, completing the proof
of statement (1).
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To prove statement (2), let v∞ ∈ R+ be such that F−1(−cT A−1v∞) ∩ Y 
= ∅. It
follows from the proof of statement (1) that

F−1(−cT A−1v∞) ∩ Y ⊆ F̃−1(−cT A−1v∞) ∩ Y 
= ∅. (6.8)

Let x0 ∈ R
n+ and let v ∈ L∞(R+,Rn+) be such that limt→∞ v(t) = v∞. Setting

x(t) := x(t; x0, v), it is clear that x(t) ∈ R
n+ for t ≥ 0, implying that cTx(t) ≥ 0 for

all t ≥ 0. Consequently, x is a solution of

ζ̇ = Ax + b f̃ (cTζ ) + v. (6.9)

Appealing to (6.5), (6.6) and (6.8), an application of statement (2) of Theorem 4.3 to
the Lur’e system (6.9) then shows that

# F̃−1(−cT A−1v∞) = 1, (6.10)

and

lim
t→∞ x(t) = −A−1(b f̃ (y∞) + v∞), (6.11)

where {y∞} = F̃−1(−cT A−1v∞). By hypothesis, F−1(−cT A−1v∞) ∩ Y 
= ∅ and
thus, invoking (6.8) and (6.10), we obtain that

#F−1(−cT A−1v∞) = 1.

Finally, since −cT A−1v∞ ≥ 0, we have y∞ ≥ 0, implying that f (y∞) = f̃ (y∞)

and {y∞} = F−1(−cT A−1v∞). In particular, the right-hand side of (6.11) is equal to
−A−1

(
b f (y∞) + v∞) and the proof is complete. ��

As an immediate consequence of Theorem 6.2 we obtain the following result.

Corollary 6.3 Assume that (P1) and (P2) hold and A is Hurwitz. Set γ := 1/G(0)

(where γ := ∞ if G(0) = 0) and assume further that

∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ R+ × R+ such that z 
= ξ, (6.12)

and (6.3) is satisfied. Then, for every v∞ ∈ R
n+, #F−1(−cT A−1v∞) = 1, with F

given by (6.4), and the non-negative Lur’e system (6.1) has the CICS property: for all
x0 ∈ R

n+ and all v ∈ L∞(R+,Rn+) with limt→∞ v(t) = v∞,

lim
t→∞ x(t; x0, v) = −A−1(b f (y∞) + v∞) = x∞ ∈ R

n+,

where {y∞} = F−1(−cT A−1v∞).
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The following lemma (which is an immediate consequence of the mean-value the-
orem for differentiation) provides a sufficient condition for (6.12) to hold.

Lemma 6.4 Assume that f : R+ → R+ is continuously differentiable and let � ⊆
R+ be a subset which does not have any accumulation points. If

| f ′(z)| < γ, ∀ z ∈ R+\�,

then (6.12) holds for all (ξ, z) ∈ R+ × R+ such that z 
= ξ .

Example 6.5 Non-negative Lur’e systems of the form (6.1) with

A :=

⎛
⎜⎜⎜⎜⎝

−a1 0 · · · 0

a2 −a3
. . .

...

. . .
. . . 0

0 a2n−2 −a2n−1

⎞
⎟⎟⎟⎟⎠ , b :=

⎛
⎜⎜⎜⎝

b1
0
...

0

⎞
⎟⎟⎟⎠ , c :=

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ ,

where ai > 0 for all i ∈ {1, . . . , 2n − 1} and b1 > 0, arise in both, population
modelling [12] and reaction kinetics, see, for example, [28, Section 7.2]. Obviously,
A is Metzler and Hurwitz. In a population dynamics context, the a2k−1 represent
mortality rates, the a2k represent growth rates into the next stage class and f models
nonlinear recruitment. The function v could model, for example, immigration effects.

Here we consider the following specific example of the above structure.

A :=
⎛
⎝−1 0 0

1 −1/2 0
0 1 −2

⎞
⎠ , b :=

⎛
⎝2

0
0

⎞
⎠ , c :=

⎛
⎝0

0
1

⎞
⎠ , (6.13)

Then,

G(s) = cT(s I − A)−1b = 2

(s + 1/2)(s + 1)(s + 2)
,

and a routine argument shows that

‖G‖H∞ = G(0) = 2,

whence γ = 1/‖G‖H∞ = 1/2. We consider the non-negative Lur’e system

ẋ = Ax + b f (cTx) + v (6.14)

for three different nonlinearities f : R+ → R+.

(a) Let f (z) = z/(z + 2) for z ≥ 0. Then, f ′(z) = 2(z + 2)−2 and so,

f ′(0) = 1

2
and f ′(z) <

1

2
, ∀ z > 0.
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Fig. 4 a State components generated by input signal shown in b and given by (6.15). The non-zero initial
states x0 have been chosen randomly

By Lemma 6.4, condition (6.12) holds. Furthermore, (6.3) is trivially satisfied.
Consequently, Corollary 6.3 guarantees that (6.14) has the CICS property.

(b) Let f (z) = 1/(z + 2) for z ≥ 0. Then, f ′(z) = −(z + 2)−2, and, arguing as in
part (a), we see that (6.14) has the CICS property.

Figure 4a displays numerical simulations of the state trajectories generated by the
input signals v1 and v2 given by

v j (t) =
⎛
⎝0

1
0

⎞
⎠w j (t), with

w1(t) := 1

1 + e−0.8(t−10)
,

w2(t) := 1 + (−1)S(t)(0.65)�t/10�,
(6.15)

where �z� ∈ N0 denotes the largest integer less or equal to z ∈ R+ and the “switching
function” S : R+ → {0, 1} is defined by

S(t) :=
{

0, �t/10� even,

1, �t/10� odd.

The functions w1 and w2 are plotted in Fig. 4b. Obviously, w1(t) → 1 and w2(t) → 1
as t → ∞, and so

lim
t→∞ v1(t) = lim

t→∞ v2(t) = (0, 1, 0)T =: v∞.

By the CICS property, the limit

lim
t→∞ x(t; x0, v j ) =: x∞

exists, is independent of j ∈ {1, 2} and the initial condition x0 and is given by x∞ =
−A−1

(
b f (y∞) + v∞), where {y∞} = F−1(−cT A−1v∞) (see Corollary 6.3). The

123



Math. Control Signals Syst.  (2017) 29:4 Page 37 of 50  4 

condition for y∞ can be expressed in the form

y∞ − G(0) f (y∞) + cT A−1v∞ = 0,

which is a quadratic equation in y∞ and has non-negative solution y∞ = 1.5616.
Now x∞ can be computed and we obtain

x∞ =
⎛
⎝0.5615

3.1231
1.5615

⎞
⎠ ,

see Fig. 4a for an illustration.

(c) Let f (z) = 2z/(z + 1) for z ≥ 0, in which case

f (z) − f (ξ) = 2(z − ξ)

(z + 1)(ξ + 1)
∀ (ξ, z) ∈ R+ × R+.

Note that, for any ξ ∈ [0, 3], there exists z ≥ 0, z 
= ξ , such that

∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ ≥ 1

2
= γ.

In particular, for ξ = 3:

f (3)

3
= f (0) − f (3)

0 − 3
= 1

2
= γ.

On the other hand, for every ξ > 3:

∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ <
1

2
= γ ∀ z ≥ 0.

It is obvious that z/2 − f (z) → ∞ as z → ∞, and so, Theorem 6.2, with Y :=
(3,∞), can be applied to (6.14). To this end, note that the function F : R+ → R+
is given by

F(z) = z − G(0) f (z) = z − 4z

z + 1
,

and so, F(Y ) = (0,∞). Now,

A−1 :=
⎛
⎝−1 0 0

−2 −2 0
−1 −1 −1/2

⎞
⎠ ,
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and thus, −cT A−1 = (1, 1, 1/2), showing that

−cT A−1v∞ > 0 ∀ v∞ ∈ R
3+\{0}.

Consequently,

F−1(−cT A−1v∞) ∩ Y 
= ∅ ∀ v∞ ∈ R
3+\{0}.

Theorem 6.2 guarantees that, for every v∞ ∈ R
3+\{0}, there exists x∞ ∈ R

3+ such
that limt→∞ x(t; x0, v) = x∞ for all x∞ ∈ R

3+ and all v ∈ L∞(R+,R3+) with
limt→∞ v(t) = v∞.

To consider a specific numerical example, let

v∞ =
⎛
⎝1/4

1/4
1

⎞
⎠ ,

in which case, −cT A−1v∞ = 1. Now F−1(1) = {2 + √
5}, and so y∞ = 2 +√

5, f (y∞) = (1 + √
5)/2, and

x∞ = −A−1(b f (y∞) + v∞) = (1 + √
5)

⎛
⎝1

2
1

⎞
⎠+

⎛
⎝1/4

1
1

⎞
⎠ .

Finally, we comment on input functions v which converge to 0: there does not exist x∞
such that limt→∞ x(t; x0, v) = x∞ for all x0 ∈ R

3+ and all v ∈ L∞(R+,R3+) with
limt→∞ v(t) = 0. Indeed, this follows from the fact that, for v = 0, the system (6.14)
has two equilibria in R

3+, namely (0, 0, 0) and (3, 6, 3)T. Also note that F−1(0) =
{0, 3} and thus #F−1(0) > 1 (cf. Proposition 3.1). ♦

In the context of the Lur’e system discussed in part (c) of Example 6.5, it is interest-
ing to note that the non-zero equilibrium x∗ = (3, 6, 3)T of the uncontrolled system is
asymptotically stable with region of attraction equal to R

3+\{0}. This gives rise to the
following question: does x(t; x0, v) converge to x∗ for all non-zero initial conditions
x0 ∈ R

3+ and all v ∈ L∞(R+,R3+) with limt→∞ v(t) = 0? We shall now state and
prove a CICS result which implies that the answer to the question is “yes”.

Theorem 6.6 Assume that (P1)–(P3) hold and A is Hurwitz. Set γ := 1/G(0) and
assume further that f (0) = 0, there exists y∗ > 0 such that f (y∗) = γ y∗, (6.3) is
satisfied,

lim inf
z→0

f (z)

z
> γ, (6.16)

and ∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ [y∗,∞) × (0,∞), z 
= ξ. (6.17)
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Then the following statements hold.

1. The points 0 and x∗ := −γ y∗ A−1b are equilibria of the uncontrolled system
ẋ = Ax + b f (cTx).

2. The map

F∗ : [y∗,∞) → R+, z �→ z − G(0) f (z)

is a bijection.
3. The non-negative Lur’e system (6.1) has the following “quasi-CICS” property: for

all x0 ∈ R
n+, all v∞ ∈ R

n+ and all v ∈ L∞(R+,Rn+) such that ‖x0‖+‖v‖L∞ > 0
and limt→∞ v(t) = v∞,

lim
t→∞ x(t; x0, v) = −A−1(b f (y∞) + v∞) = x∞ ∈ R

n+,

where y∞ = F∗−1(−cT A−1v∞). In particular, if v∞ = 0, then y∞ = y∗ and
x∞ = x∗ = −γ y∗ A−1b.

Proof Since f (0) = 0, it is obvious that 0 is an equilibrium of ẋ = Ax + b f (cTx).
Invoking the hypothesis that f (y∗) = γ y∗, a straightforward calculation shows that
x∗ is also an equilibrium of ẋ = Ax + b f (cTx), completing the proof of statement
(1).

To prove statements (2) and (3), let x0, v∞ ∈ R
n+ and v ∈ L∞(R+,Rn+) be such

that ‖x0‖ + ‖v‖L∞ > 0 and limt→∞ v(t) = v∞. We consider two cases: x0 
= 0 and
x0 = 0.
Case 1: x0 
= 0.

Invoking (P1)–(P3) and conditions (6.16) and (6.17), it follows from [6, Proposi-
tion 4.12] that there exist ε ∈ (0, y∗) and τ ≥ 0 such that

cTx(t; x0, v) ≥ ε ∀ t ≥ τ. (6.18)

Consider

f̃ : R → R, z �→
{

f (z + y∗) − f (y∗), for z ≥ −y∗ + ε

f (ε) − f (y∗), for z < −y∗ + ε

and

F̃ : R → R, z �→ z − G(0) f̃ (z),

and note that, since f (y∗) = γ y∗,

F̃(z) = z + y∗ − G(0) f (z + y∗) = F∗(z + y∗) ∀ z ≥ 0. (6.19)

In particular, F̃(0) = 0 and, by (6.3) and (6.17),

F̃(z) > 0, ∀ z > 0 and F̃(z) → ∞ as z → ∞,
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implying that F̃(R+) = R+ and so

F̃−1(z) ∩ R+ 
= ∅ ∀ z ∈ R+. (6.20)

Next, we prove that

∣∣∣∣∣ f̃ (z + ξ) − f̃ (ξ)

z

∣∣∣∣∣ < γ ∀ ξ ∈ R+, ∀ z ∈ R, z 
= 0. (6.21)

To see this, let ξ ≥ 0. Then, invoking (6.17), we obtain that, for non-zero z ≥
−(ξ + y∗) + ε,

∣∣∣∣∣ f̃ (z + ξ) − f̃ (ξ)

z

∣∣∣∣∣ =
∣∣∣∣ f (z + ξ + y∗) − f (ξ + y∗)

z + ξ + y∗ − (ξ + y∗)

∣∣∣∣ < γ.

Furthermore, for z < −(ξ + y∗) + ε, we have |z| = −z > ξ + y∗ − ε > 0 and so

∣∣∣∣∣ f̃ (z + ξ) − f̃ (ξ)

z

∣∣∣∣∣ =
∣∣∣∣ f (ε) − f (ξ + y∗)

z

∣∣∣∣ <

∣∣∣∣ f (ε) − f (ξ + y∗)
ε − (ξ + y∗)

∣∣∣∣ < γ,

where the last inequality follows from (6.17). Therefore, (6.21) holds. Consequently,

| f̃ (z + ξ) − f̃ (ξ)| < γ |z| ∀ ξ ∈ R+, ∀ z ∈ R, z 
= 0. (6.22)

Moreover, by (6.3),

γ |z| − | f̃ (z + ξ) − f̃ (ξ)| → ∞ as |z| → ∞. (6.23)

Setting x∗ := −A−1b f (y∗) = −γ y∗ A−1b and

x̃(t) := x(t + τ ; x0, v) − x∗ ∀ t ≥ 0,

we have, by (6.18),

cT x̃(t) = cTx(t + τ ; x0, v) − y∗ ≥ −y∗ + ε ∀ t ≥ 0,

where we have used that cTx∗ = y∗. Consequently,

f̃ (cT x̃(t)) = f (cTx(t + τ ; x0, v)) − f (y∗) ∀ t ≥ 0,

and so, x̃ satisfies

˙̃x(t) = Ax̃(t) + b f̃ (cT x̃(t)) + (�τ v)(t) for almost all t ≥ 0, (6.24)
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where, as before, �τ denotes the left-shift by τ . Appealing to (6.20), (6.22) and (6.23),
we may apply Theorem 4.3 (with K = 0 and Y = R+) in the context of the controlled
Lur’e system (6.24) and obtain that

# F̃−1(z) = 1 ∀ z ∈ R+ (6.25)

and

lim
t→∞ x̃(t) = −A−1(b f̃ (ỹ∞) + v∞) =: x̃∞, (6.26)

where {ỹ∞} = F̃−1(−cT A−1v∞}. Equations (6.19), (6.20) and (6.25) show that F∗
is a bijection. Finally, setting y∞ := ỹ∞ + y∗, we obtain from (6.19), that y∞ =
F∗−1(−cT A−1v∞), and, by (6.26),

x(t; x0, v) → x̃∞ + x∗ = −A−1(b( f (y∞) − γ y∗) + v∞) − γ y∗ A−1b

= −A−1(b f (y∞) + v∞)

as t → ∞.
Case 2: x0 = 0.

Then, by hypothesis, ‖v‖L∞ > 0 and thus, there exists t0 ≥ 0 such that

x(t0; 0, v) =
∫ t0

0
eA(t0−s)(b f (cTx(s; 0, v)) + v(s))ds ≥

∫ t0

0
eA(t0−s)v(s)ds > 0.

The function ζ defined by ζ(t) := x(t + t0; 0, v) satisfies

ζ̇ (t) = Aζ(t) + b f (cTζ(t)) + (�t0v)(t), ζ(0) = x(t0; 0, v) > 0 t ≥ 0,

and so, by case 1,

lim
t→∞ x(t; 0, v) = lim

t→∞ ζ(t) = −A−1(b f (y∞) + v∞) = x∞,

completing the proof. ��
Example 6.7 Here we re-visit part (c) of Example 6.5: A, b and c are given by (6.13)
and f (z) = 2z/(z + 1) for all z ≥ 0. It is readily verified that A + bcT is irreducible,
that is, condition (P3) is satisfied. We recall that the uncontrolled Lur’e system (6.14)
has two equilibria, namely 0 and x∗ = (3, 6, 3)T (the latter being asymptotically stable
with domain of attractionR3+\{0}, as follows from [6]) and that γ = 1/‖G‖H∞ = 1/2.
We note that f (3) = 3/2 = 3γ, lim inf z→0( f (z)/z) = f ′(0) = 2, and∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ =
∣∣∣∣ 2

(z + 1)(ξ + 1)

∣∣∣∣ <
1

2
∀ (ξ, z) ∈ [3,∞) × (0,∞) such that z 
= ξ.

We may now apply Theorem 6.6 (with y∗ = 3) and obtain that the Lur’e system under
consideration has the quasi-CICS property (in the sense of Theorem 6.6).

123



 4 Page 42 of 50 Math. Control Signals Syst.  (2017) 29:4 

0 10 20 30 40 50 60
0

2

4

6

8

10

12

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

tt

v
j
(t
)

2

(a)

w2(t)
w1(t)

x − x∗
2

x − x∞
2

(b) slangistupnIsrorreetatS

Fig. 5 Numerical simulations: panel a shows the norm of state errors for x0 = 0 corresponding to the
input signals shown in panel b

Consider the input signals v1 and v2 given by v j (t) = w j (t)(0, 1, 0)T, where

w1(t) = 1

1 + e−0.8(t−10)
and w2(t) =

⎧⎪⎨
⎪⎩

0, 0 ≤ t ≤ 10,

sin
(

2(t−10)
25

)
, 10 < t ≤ 10 + 25π

2 ,

0, 10 + 25π
2 < t,

see panel (b) of Fig. 5 for an illustration. Note that v1(t) → (0, 1, 0)T and v2(t) →
(0, 0, 0)T as t → ∞. By Theorem 6.6, for all x0 ∈ R

3+, x(t; x0, v1) → x∞ and
x(t; x0, v2) → x∗ as t → ∞, where

x∞ = −A−1

⎡
⎣b f (y∞) +

⎛
⎝0

1
0

⎞
⎠
⎤
⎦ =

⎛
⎝3.2361

8.4721
4.2361

⎞
⎠ .

Panel (a) of Fig. 5 shows plots of ‖x(t; x0, v1)− x∞‖2 (solid line) and ‖x(t; x0, v2)−
x∗‖2 (dotted line) for x0 = 0. In particular, we see that the state trajectory x(t; 0, v2)

is at the zero equilibrium for 0 ≤ t ≤ 10 since the input v2 is zero in this time interval.
On the interval (10, 10+25π/2), v2 is positive and correspondingly, x(t; 0, v2) moves
away from the origin and eventually converges to x∗. ♦

We state a lemma which provides a sufficient condition for (6.17) to hold. The proof
of the lemma is given in the Appendix.

Lemma 6.8 Assume that f : R+ → R+ is continuously differentiable, f (0) =
0, f ′(z) ≥ 0 for all z ≥ 0, f ′(0) > γ, f ′ is non-increasing and limz→∞ f ′(z) < γ .
Then there exists y∗ > 0 such that f (y∗) = γ y∗ and∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ = f (z) − f (ξ)

z − ξ
< γ ∀ (ξ, z) ∈ [y∗,∞) × (0,∞), z 
= ξ.
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The next lemma specifies an interval such that, for all γ in that interval, the so-called
Ricker nonlinearity, relevant in the context of models from ecology and population
dynamics, satisfies condition (6.17). As with Lemma 6.8, the proof of Lemma 6.9 may
be found in the Appendix.

Lemma 6.9 Let f : R+ → R+ be given by

f (z) = ze−ρz ∀ z ≥ 0, (6.27)

where ρ > 0 is a parameter, and let γ ∈ [e−2, 1). Then y∗ := 1/ρ ln(1/γ ) > 0 is
the unique positive solution of f (y∗) = γ y∗ and (6.17) holds.

Example 6.10 Consider the Lur’e system (6.14) in Example 6.5, with A, b and c
given by (6.13). Let f : R+ → R+ be the Ricker nonlinearity given by (6.27),
where ρ > 0 is fixed, but arbitrary. Then conditions (P1)–(P3) hold, A is Hurwitz and
γ = 1/‖G‖H∞ = 1/2. Furthermore,

lim inf
z→0

( f (z)/z) = f ′(0) = 1 > 1/2, z/2 − f (z) → ∞ as z → ∞,

and, by Lemma 6.9, (6.17) is satisfied. Consequently, the Lur’e system (6.14) has the
quasi-CICS property in the sense of Theorem 6.6. ♦

7 Conclusions

We have considered the CICS property for forced Lur’e systems and have derived a
number of necessary and sufficient conditions for CICS. Our motivation has been to
study to what extent the appealing CICS property exhibited by linear systems extends
to Lur’e systems, and, more broadly, to investigate the effect of convergent additive
forcing on the state and output of Lur’e systems. The CICS property for Lur’e systems
leads to explicit formulae for the resulting asymptotic state x∞ and output y∞ in terms
of the input limit v∞ and enabled us to extend the concept of steady-state gain to
Lur’e systems. The theory developed is in the spirit of absolute stability theory and
makes use of recent ISS results for Lur’e systems [36]. In particular, several of our
sufficient conditions for CICS are reminiscent of the complex Aizerman conjecture,
the circle criterion and nonlinear ISS small gain theorems. Finally, for non-negative
Lur’e systems, we have derived a “quasi CICS” property which applies to systems
which when uncontrolled have two equilibria (one of which is the origin), a common
scenario in the context of biological, ecological and chemical models. The proof of
our quasi CICS result rests on a recent persistence result [6] for non-negative Lur’e
systems.

In future work on forced Lur’e systems, we are planning to investigate the relation-
ship between the concepts of CICS, convergent systems [30] and various notions of
incremental stability [2]. One aim is to derive sufficient conditions for the response to
(almost) periodic inputs to be asymptotically (almost) periodic.
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Appendix A

In this Appendix, we give proofs of Theorem 2.1, Lemma 6.8 and Lemma 6.9. We
also derive the inclusions in (3.1).

Proof of Theorem 2.1. Since K ∈ SR(A, B, C), the matrix AK = A + BK C is
Hurwitz. The structured complex stability radius of AK with respect to the weights B
and C is defined by

rC(AK , B, C) := inf{‖P‖ : P ∈ C
m×p such that AK + B PC is not Hurwitz}.

It is well known [16,18] that

rC(AK , B, C) = 1/‖GK ‖H∞ = γ. (A.1)

To prove statements (1) and (2), let x0 ∈ R
n and write x(t) := x(t; x0, 0). Obviously,

x satisfies ẋ = AK x + B fK (Cx), where fK : Rp → R
m is defined by

fK (z) = f (z) − K z ∀ z ∈ R
p. (A.2)

By hypothesis, ‖ fK (z)‖ < γ ‖z‖ for all non-zero z ∈ R
p and thus the claim follows

from (A.1) and [18, Theorem 5.6.22] or [17, Corollary 3.15]. Moreover, by (A.1),
BC(K , γ ) ⊆ SC(A, B.C), and thus, statement (2) is a consequence of [36, Theo-
rem 3.2].

We proceed to prove statement (3). To this end, let f : R
p → R

m be locally
Lipschitz and such that f (0) = 0. We show that the equilibrium pair (0, 0) of (1.1) is
ISS. Let x0 ∈ R

n and v ∈ L∞
loc(R+,Rn) be arbitrary and set x(t) := x(t; x0, v). Then

ẋ = AK x + B fK (Cx) + v, where fK is defined by (A.2). Thus, by the variation-of-
parameters formula,

x(t) = eAK t x0 +
∫ t

0
eAK (t−s)(B fK (Cx(s)) + v(s))ds ∀ t ∈ [0, ω), (A.3)

where 0 < ω ≤ ∞ and [0, ω) is the maximal interval of existence of the forward
solution x . Note that, since f is not necessarily affine linearly bounded, finite escape
time cannot be ruled out at this stage. Now CeAK t B is the inverse Laplace transform
of GK and hence CeAK t B = 0 for all t ∈ R. Consequently, it follows from (A.3),

Cx(t) = CeAK t x0 +
∫ t

0
CeAK (t−s)v(s)ds ∀ t ∈ [0, ω). (A.4)
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Since AK is Hurwitz, it follows that Cx is bounded on any bounded subinterval of
[0, ω) and thus, by (A.3), x is also bounded on any bounded subinterval of [0, ω). We
may, therefore, conclude that ω = ∞.

By the Hurwitz property of AK , there exist M ≥ 1 and μ > 0 such that

‖eAK t‖ ≤ Me−μt ∀ t ≥ 0.

Combining this with (A.4) shows that there exist positive constants M1 and M2 such
that, for all x0 ∈ R

n and v ∈ L∞
loc(R+,Rn),

‖Cx(t)‖ ≤ M1e−μt‖x0‖ + M2‖v‖L∞(0,t) ∀ t ≥ 0. (A.5)

Moreover, let η ∈ K be such that

‖B‖‖ fK (z)‖ ≤ η(‖z‖) ∀ z ∈ R
p. (A.6)

The existence of such a function η follows from the continuity of fK and the fact that
fK (0) = 0. Invoking (A.5) and (A.6), we obtain

‖B‖‖ fK (Cx(t))‖ ≤ η1(e
−μt‖x0‖) + η2(‖v‖L∞(0,t)) ∀ t ≥ 0, (A.7)

where the K-functions η1 and η2 are defined by η1(s) = η(2M1s) and η2(s) =
η(2M2s).

Next we estimate the term I (t) := ∫ t
0 eAK (t−s) B fK (Cx(s))ds. To this end, writing

I (t) =
∫ t/2

0
eAK (t−s) B fK (Cx(s))ds +

∫ t

t/2
eAK (t−s) B fK (Cx(s))ds,

we note that, by (A.7),

‖I (t)‖ ≤ Me−(μ/2)t (η1(‖x0‖) + η2(‖v‖L∞(0,t)))

∫ t/2

0
e−μ(t/2−s)ds

+ M

μ
(η1(e

−(μ/2)t‖x0‖) + η2(‖v‖L∞(0,t))) ∀ t ≥ 0.

Consequently,

‖I (t)‖ ≤ M

μ
(e−(μ/2)tη1(‖x0‖) + η1(e

−(μ/2)t‖x0‖) + 2M

μ
η2(‖v‖L∞(0,t)) ∀ t ≥ 0.

Furthermore,

∥∥∥∥
∫ t

0
eAK (t−s)v(s)ds

∥∥∥∥ ≤ M

μ
‖v‖L∞(0,t) ∀ t ≥ 0,
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and therefore, by (A.3),

‖x(t)‖ ≤ Me−μt‖x0‖ + M

μ
(e−(μ/2)tη1(‖x0‖) + η1(e

−(μ/2)t‖x0‖))

+ M

μ
(2η2(‖v‖L∞(0,t)) + ‖v‖L∞(0,t)) ∀ t ≥ 0.

Hence, defining ψ ∈ KL and ϕ ∈ K by

ψ(s, t) := Me−μt s + M

μ
(e−(μ/2)tη1(s) + η1(e

−(μ/2)t s)) and

ϕ(s) := M

μ
(2η2(s) + s)

respectively, we conclude that, for every x0 ∈ R
n and every v ∈ L∞

loc(R+,Rn),

‖x(t; x0, v)‖ = ‖x(t)‖ ≤ ψ(‖x0‖, t) + ϕ(‖v‖L∞(0,t)) ∀ t ≥ 0,

showing that the equilibrium pair (0, 0) of (1.1) is ISS. ��
Proof of (3.1) To prove the first inclusion, let z ∈ im C , so that z = Cw for some
w ∈ R

n . Then

FK (z) = FK (Cw) = Cw − GK (0)( f (Cw) − K Cw)

= C[w + A−1
K B( f (Cw) − K Cw)] ∈ im C.

For the proof of the second inclusion assume that z ∈ F−1
K (im C), so that FK (z) = Cw,

for some w ∈ R
n . Then

z = FK (z) + GK (0)( f (z) − K z) = C
[
w − A−1

K B( f (z) − K z)
] ∈ im C ,

as required. ��
Proof of Lemma 6.8. It follows immediately from the hypotheses that there exist y∗ >

y∗ > 0 such that f (y∗) = γ y∗, f ′(y∗) = γ, f ′(z) > γ if z ∈ [0, y∗) and f ′(z) < γ

if z > y∗. We consider two cases.
Case 1: ξ ≥ y∗ and z > y∗, z 
= ξ .

In this case,

| f (z) − f (ξ)| =
∣∣∣∣
∫ z

ξ

f ′(s)ds

∣∣∣∣ < γ |z − ξ |.

Case 2: ξ ≥ y∗ and z ∈ (0, y∗].
Note that, by Case 1, | f (y∗) − f (ξ)| ≤ γ |y∗ − ξ | and thus,

| f (z) − f (ξ)| ≤ | f (z) − f (y∗)| + γ |y∗ − ξ | = γ |y∗ − ξ | + γ y∗ − f (z).
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Now

f (z) =
∫ z

0
f ′(s)ds > γ z,

and we conclude that

| f (z) − f (ξ)| < γ |ξ − y∗| + γ (y∗ − z) = γ |z − ξ |.

In both cases we have

| f (z) − f (ξ)| < γ |z − ξ |,

completing the proof. ��
Proof of Lemma 6.9. Note that, as z decreases from 2/ρ to 0, f (z)/z = e−ρz increases
strictly monotonically from e−2 to 1. Consequently, for every,γ ∈ [e−2, 1), there exists
a unique y∗ ∈ (0, 2/ρ] such that f (y∗) = γ y∗.

To prove that (6.17) holds, we initially assume that γ ∈ (e−2, 1) and deal with the
case γ = e−2 separately. We proceed in several steps.

Step 1 A routine calculation shows

min
z≥0

f ′(z) = f ′(2/ρ) = −e−2, f ′(z) > −e−2 ∀ z ≥ 0, z 
= 2/ρ.

Since γ > e−2, we conclude that

f ′(z) > −γ ∀ z ≥ 0, (A.8)

and hence, by the mean-value theorem for differentiation,

f (z) − f (ξ)

z − ξ
> −γ ∀ z ≥ 0, ∀ ξ ≥ y∗, z 
= ξ. (A.9)

Step 2 Note that f ′(z) < γ for all z ∈ [y∗, 2/ρ] (which follows because f ′(0) > γ, f ′
is non-increasing on [0, 2/ρ] and f (y∗) = γ y∗). Since f ′(z) < 0 < γ for all z > 2/ρ,
we obtain, via the mean-value theorem for differentiation,

f (z) − f (ξ)

z − ξ
< γ ∀ z, ξ ≥ y∗, z 
= ξ. (A.10)

Step 3 Let ξ ≥ y∗ and z ∈ (0, y∗). By (A.9) and (A.10),

| f (y∗) − f (ξ)| ≤ γ |y∗ − ξ |, (A.11)
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Moreover, invoking again (A.9) and using that f (z) > γ z, we obtain

−γ <
f (y∗) − f (z)

y∗ − z
<

γ (y∗ − z)

y∗ − z
= γ,

and so

| f (z) − f (y∗)| < γ |z − y∗|. (A.12)

Now | f (z)− f (ξ)| ≤ | f (z)− f (y∗)|+| f (y∗)− f (ξ)|, and thus, by (A.11) and (A.12),

| f (z) − f (ξ)| < γ |z − y∗| + γ |y∗ − ξ | = γ (|z − y∗| + |y∗ − ξ |).

Since z < y∗ ≤ ξ , we have |z − y∗| + |y∗ − ξ | = |z − ξ | and conclude

∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ < γ ∀ z ∈ (0, y∗), ∀ ξ ≥ y∗. (A.13)

Step 4 Combining (A.9), (A.10) and (A.13), we arrive at

∣∣∣∣ f (z) − f (ξ)

z − ξ

∣∣∣∣ < γ ∀ (ξ, z) ∈ [y∗,∞) × (0,∞) such that z 
= ξ,

which is (6.17).
Finally, let us consider the case wherein γ = e−2. Then y∗ = 2/ρ and so f ′(y∗) =

f ′(2/ρ) = −e−2 = −γ , implying that (A.8) does not hold for z = y∗. We will show
that nevertheless (A.9) remains valid in this case. To this end, note that

f ′(z) > −γ ∀ z ≥ 0, z 
= y∗ (A.14)

From the mean-value theorem we immediately obtain that

f (z) − f (ξ)

z − ξ
> −γ ∀ z, ξ ≥ y∗, z 
= ξ. (A.15)

Let z ∈ (0, y∗) and ξ ≥ y∗. Then

f (z) − f (ξ) = f (z) − f (y∗) + f (y∗) − f (ξ) ≤ f (z) − f (y∗) + γ (ξ − y∗),
(A.16)

where we have used (A.15). Yet another application of the mean-value theorem shows
that there exists θ ∈ (z, y∗) such that

f (z) − f (y∗)
z − y∗ = f ′(θ) > −γ,
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where the inequality follows from (A.14). Consequently, f (z) − f (y∗) < γ (y∗ − z),
and so, invoking (A.16), we arrive at f (z) − f (ξ) < γ (ξ − z), or equivalently,

f (z) − f (ξ)

z − ξ
> −γ.

We have now shown that (A.9) still holds in the case wherein γ = e−2. Steps 2–4
remain valid without change and, therefore, we conclude that (6.17) is satisfied in the
case under consideration, completing the proof. ��
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