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a b s t r a c t

We derive absolute stability results of Popov and circle-criterion types for infinite-
dimensional discrete-time systems in an input–output setting. Our results apply to
feedback systems inwhich the linear part is the series interconnection of an l2-stable linear
system and an integrator and the nonlinearity satisfies a sector condition which allows for
saturation and deadzone effects. The absolute stability theory is then used to prove tracking
and disturbance rejection results for integral control schemes in the presence of input and
output nonlinearities. Applications of the input–output theory to state-space systems are
also provided.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Absolute stability problems and their relations to positive-real conditions have played a prominent role in systems and
control theory and have led to a number of important stability criteria for unity feedback controls applied to linear dynamical
systems subject to static input or output nonlinearities, the Popov and circle criteria being the most prominent examples
(see, e.g., [1–4] for the continuous-time and [1,3,5] for the discrete-time cases).
In this paper, we study an absolute stability problem for the discrete-time feedback system shown in Fig. 1. The

input–output operator G is linear, shift-invariant and bounded from l2(Z+,U) into itself, ϕ : Z+ × U → U is a (time-
varying) nonlinearity (where U is a real Hilbert space) and J is the strictly causal discrete-time integrator given by

(Jv)(n) =
n−1∑
j=0

v(j), for functions v : Z+ → U .
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Fig. 1. Feedback system.

The two main stability theorems in Section 2 are a result of Popov type (Theorem 2.1) and a result of circle-criterion
type (Theorem 2.2). The former is restricted to single-input–single-output systems (i.e., U = R) and time-independent
nonlinearities ϕ. In a sense, these results form the discrete-time counterparts of the continuous-time stability theorems
obtained in [6]. We emphasize that in contrast to previous results in the literature on absolute stability of discrete-time
systems (see, e.g., [1,3,5,7–10], most of which deal with finite-dimensional systems), the two main results in Section 2
(Theorems 2.1 and 2.2) consider feedback systems, where the linear part contains an integrator (meaning in particular
that the linear system is not input–output stable) and where at the same time the lower gain infv∈U ‖ϕ(v)‖/‖v‖ of the
nonlinearity ϕ is allowed to be equal to zero (which for example is the case for bounded nonlinearities such as saturation).
One of the motivations for studying this situation is its importance in Section 3, where we use the absolute stability results
from Section 2 to develop an input–output theory of low-gain integral control in the presence of (possibly saturating) input
and/or output nonlinearities. The low-gain integral control problem has its roots in control engineering, where it is often
required that the output y of a system tracks a constant reference signal ρ, i.e., the error e(n) := y(n)− ρ should converge
to 0 as n→∞. It is well known that for linear power-stable single-input–single-output systems with positive steady-state
gain (i.e., G(1) > 0, where G denotes the transfer function), this can be achieved by feeding the error into an integrator
with sufficiently small positive gain parameter and then closing the feedback loop (see [11]). In Section 3, we develop
generalizations of this result to linear systems subject to input and/or output nonlinearities. The main results in Section 3
(Theorems 3.2 and 3.4) constitute the discrete-time counterpart of the continuous-time low-gain integral control theory
developed in [6,12]. We close the paper with Section 4 which is devoted to applications of the input–output results in
Sections 2 and 3 to infinite-dimensional state-space systems.
In a forthcoming paper (see [13]), the authors will apply the discrete-time theory developed in this paper to low-gain

sampled-data integral control of well-posed linear infinite-dimensional continuous-time systems subject to actuator and
sensor nonlinearities.
Notation and terminology. Let X be a Banach space andU be a Hilbert space.We defineR+ := [0,∞) andZ+ := {0, 1, . . .}.
Let F(Z+, X) denote the set of X-valued functions defined on Z+. We define functions δ and ϑ in F(Z+,R) by

δ(n) :=
{
1, n = 0
0, n ≥ 1 and ϑ(n) := 1, ∀ n ∈ Z+.

For 1 ≤ p ≤ ∞, let lp(Z+, X) denote the lp-space of unilateral X-valued sequences. The subspace of all functions
w ∈ F(Z+, X) which admit a decomposition of the form w = w1 + w2ϑ , where w1 ∈ lp(Z+, X) and w2 ∈ X is denoted by
mp(Z+, X) := lp(Z+, X) + X . Endowed with the norm ‖w‖mp := ‖w1‖lp + ‖w2‖, the space mp(Z+, X) is complete. In the
special case X = R, we set F(Z+) := F(Z+,R), lp(Z+) := lp(Z+,R) andmp(Z+) := mp(Z+,R).
We define E := {z ∈ C : |z| > 1}, the exterior of the closed unit disc. Let H∞(E, X) denote the space of bounded

holomorphic functions defined on E with values in X; H2(E,U) denotes the Hardy–Lebesgue space of square-integrable
holomorphic functions defined in Ewith values in U . We set H∞(E) := H∞(E,C) and H2(E) := H2(E,C). If f ∈ H2(E,U),
then the non-tangential limits

f (eiθ ) := lim
z→eiθ , z∈E

f (z)

exist for almost every θ ∈ [0, 2π) and the function θ 7→ f (eiθ ) is in L2(∂E,U). Moreover, it is well known that a function
f : E→ U belongs to H2(E,U) if and only if there exists u ∈ l2(Z+,U) such that Z u = f , where Z u denotes Z -transform
of u, that is (Z u)(z) =

∑
∞

j=0 u(j)z
−j for all z ∈ E. We will frequently use the notation û = Z u. The Parseval–Bessel identity

says that, for u, v ∈ l2(Z+,U),
∞∑
j=0

〈u(j), v(j)〉 =
1
2π

∫ 2π

0
〈̂u(eiθ ), v̂(eiθ )〉dθ.

We write H∞(E) := H∞(E,C) and H2(E) := H2(E,C).
For z ∈ X , a set Sz ⊂ X is called a sphere centred at z if there exists η ≥ 0 such that Sz = {v ∈ X : ‖v − z‖ = η}. For a

function f ∈ F(Z+, X) and a subset V ⊂ X , we say that f (n) approaches V as n→∞ if dist(f (n), V ) = infv∈V ‖f (n)−v‖ →
0. For a set V ⊂ X , we denote by cl(V ) the closure of V in X and by int(V ) the interior of V . We useB(X1, X2) to denote the
space of bounded linear operators from a Banach space X1 to a Banach space X2; we setB(X) := B(X, X). The resolvent set
of A ∈ B(X) is denoted by %(A).
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Fig. 2. Feedback system.

For N ∈ Z+, we define the projection PN : F(Z+, X)→ F(Z+, X) by (PN f )(n) = f (n) if n ≤ N and (PN f )(n) = 0 if n > N .
We define the right-shift operator S : F(Z+, X)→ F(Z+, X) by (Sv)(n) = 0 if n = 0 and (Sv)(n) = v(n − 1) if n ≥ 1. The
forward difference operator 1 : F(Z+, X) → F(Z+, X) is defined by (1v)(n) := v(n + 1) − v(n), for all n ∈ Z+ and the
backward difference operator ∇ : F(Z+, X) → F(Z+, X) is defined by ∇ = S1 + δI , that is, (∇v)(n) := v(0) if n = 0 and
(∇v)(n) = v(n)− v(n− 1) if n ≥ 1. The discrete-time integratorJ : F(Z+, X)→ F(Z+, X) is defined by

(Jv)(n) :=


0, n = 0
n−1∑
j=0

v(j), n ≥ 1.

2. Discrete-time absolute stability results

We consider an absolute stability problem for the feedback system shown in Fig. 2. The input–output operator G ∈
B(l2(Z+,U)) is shift-invariant, that is, SG = GS, ϕ : Z+ × U → U is a time-dependent nonlinearity and r : Z+ → U is the
input of the feedback system (or forcing function). Since the operator G is shift-invariant, it is causal, i.e., PNGPN = PNG for
all N ∈ Z+. By causality, G extends to a shift-invariant operator from F(Z+,U) into itself. We shall use the same symbol G
to denote the original operator on l2(Z+,U) and its shift-invariant extension to F(Z+,U).
The feedback system shown in Fig. 2 is described by the equation
u = r − (JG)(ϕ ◦ u), (2.1)

where, by slight abuse of notation, ϕ ◦ u denotes the function n 7→ ϕ(n, u(n)). Trivially, (2.1) is equivalent to
1u = 1r − G(ϕ ◦ u), u(0) = r(0),

an initial-value problem associated with a nonlinear Volterra difference equation. It is clear that there exists a unique
solution u ∈ F(Z+,U) of (2.1). As is well known (see, for example, [14]), a shift-invariant operator G ∈ B(l2(Z+,U))
has a transfer function G ∈ H∞(E,B(U)) in the sense that

(Z (Gu))(z) = G(z)(Z (u))(z), ∀ u ∈ l2(Z+,U),∀ z ∈ E.
We introduce the following assumption.

(A) The limit G(1) := limz→1,z∈E G(z) exists and

lim sup
z→1,z∈E

∥∥∥∥ 1
z − 1

(G(z)− G(1))
∥∥∥∥ <∞.

2.1. A stability result of Popov type

Throughout this subsection, U = R and ϕ is time independent. The following result is a stability criterion of Popov type.

Theorem 2.1. Let G ∈ B(l2(Z+)) be a shift-invariant operator with transfer function G satisfying assumption (A) and let
ϕ : R → R be a non-decreasing locally integrable nonlinearity. Assume that G(1) > 0 and there exist numbers q ≥ 0, ε > 0
and a > 0 such that

ϕ(v)v ≥
1
a
ϕ2(v), ∀ v ∈ R, (2.2)

and

1
a
+ Re

[(
q
eiθ
+

1
eiθ − 1

)
G(eiθ )

]
≥ ε, a.e. θ ∈ (0, 2π). (2.3)

Let r ∈ m2(Z+) and let u : Z+ → R be the unique solution of (2.1). Then the following statements hold.
1. There exists a constant K (which depends only on q, ε, a and G, but not on r) such that,

‖u‖l∞ + ‖∇u‖l2 + ‖ϕ ◦ u‖l2 + (‖(ϕ ◦ u)u‖l1)
1/2
+ sup
n≥0

∣∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)

∣∣∣∣∣ ≤ K‖r‖m2 . (2.4)
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2. The limits

u∞ := lim
n→∞

u(n), lim
n→∞

n∑
j=0

(ϕ ◦ u)(j),

exist, are finite and, if ϕ is continuous, ϕ(u∞) = 0.

Proof. We have

u+ (JG)(ϕ ◦ u) = r, (2.5)

or equivalently,

∇u+ SG(ϕ ◦ u) = ∇r. (2.6)

We now write (2.5) in a slightly more convenient form, namely,

u+ H(ϕ ◦ u)+ G(1)J(ϕ ◦ u) = r, (2.7)

where H := JG− G(1)J . It is clear that this operator is shift-invariant with transfer function H given by

H(z) =
1
z − 1

[G(z)− G(1)], ∀ z ∈ E. (2.8)

From assumption (A) and from the fact that G ∈ H∞(E), we conclude that H ∈ H∞(E), and hence H ∈ B(l2(Z+)).
Multiplying (2.6) by q and then adding (2.7) gives

q(∇u)(j)+ u(j)+ Gq(ϕ ◦ u)(j)+ G(1)(J(ϕ ◦ u))(j) = q(∇r)(j)+ r(j), ∀ j ∈ Z+, (2.9)

where Gq := qSG+ H . Invoking (2.8), we see that the transfer function Gq of Gq is given by

Gq(z) :=
q
z
G(z)+

1
z − 1

[G(z)− G(1)], ∀ z ∈ E.

Multiplying (2.9) by (ϕ ◦ u)(j) and summing from 0 to n yields

q
n∑
j=0

(ϕ ◦ u)(j)(∇u)(j)+
n∑
j=0

(ϕ ◦ u)(j)u(j)+
n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)+ G(1)
n∑
j=1

(ϕ ◦ u)(j)
j−1∑
k=0

(ϕ ◦ u)(k)

= q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)+
n∑
j=0

(ϕ ◦ u)(j)r(j). (2.10)

A simple proof by induction shows that

2
n∑
j=1

(ϕ ◦ u)(j)
j−1∑
k=0

(ϕ ◦ u)(k) =

(
n∑
j=0

(ϕ ◦ u)(j)

)2
−

n∑
j=0

(ϕ ◦ u)2(j). (2.11)

Combining (2.11) with (2.10) gives

q
n∑
j=0

(ϕ ◦ u)(j)(∇u)(j)+
n∑
j=0

(ϕ ◦ u)(j)u(j)+
n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+
G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)

)2
−

G(1)
2

n∑
j=0

(ϕ ◦ u)2(j) = q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)+
n∑
j=0

(ϕ ◦ u)(j)r(j). (2.12)

We note that

ReGq(eiθ ) = Re
[(
q
eiθ
+

1
eiθ − 1

)
G(eiθ )

]
+

G(1)
2
, a.e. θ ∈ (0, 2π). (2.13)

Combining (2.13) with (2.3), we see that

ReGq(eiθ ) = Re
[(
q
eiθ
+

1
eiθ − 1

)
G(eiθ )

]
+

G(1)
2
≥ ε −

1
a
+

G(1)
2
. (2.14)

Define v : Z+ → R by

v(j) =
{
(ϕ ◦ u)(j), if 0 ≤ j ≤ n,
0, otherwise.
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Invoking the Parseval–Bessel identity, taking real parts and using (2.14), we derive that

∞∑
j=0

v(j)(Gqv)(j) =
1
2π

∫ 2π

0
|v̂(eiθ )|2ReGq(eiθ )dθ

≥
1
2π

(
ε −

1
a
+

G(1)
2

)∫ 2π

0
|v̂(eiθ )|2 dθ

=

(
ε −

1
a
+

G(1)
2

) ∞∑
j=0

v2(j).

Hence,

n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j) ≥
(
ε −

1
a
+

G(1)
2

) n∑
j=0

(ϕ ◦ u)2(j). (2.15)

Combining (2.15) and (2.12) gives

q
n∑
j=0

(ϕ ◦ u)(j)(∇u)(j)+
n∑
j=0

(ϕ ◦ u)(j)u(j)+
(
ε −

1
a

) n∑
j=0

(ϕ ◦ u)2(j)+
G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)

)2

≤ q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)+
n∑
j=0

(ϕ ◦ u)(j)r(j). (2.16)

Defining the functionΦ : R→ R byΦ(v) :=
∫ v
0 ϕ(σ)dσ and using the fact that ϕ is non-decreasing, we estimate the first

term on the LHS of (2.16) as follows:

n∑
j=0

(ϕ ◦ u)(j)(∇u)(j) ≥
n∑
j=1

∫ u(j)

u(j−1)
ϕ(σ)dσ +

∫ u(0)

0
ϕ(σ)dσ

=

∫ u(n)

0
ϕ(σ)dσ

= Φ(u(n)), ∀ n ∈ Z+. (2.17)

By assumption r = r1 + r2ϑ , where r1 ∈ l2(Z+) and r2 ∈ R. Using this decomposition of r and invoking estimate (2.17), we
obtain from (2.16) that

qΦ(u(n))+
n∑
j=0

(ϕ ◦ u)(j)u(j)+
(
ε −

1
a

) n∑
j=0

(ϕ ◦ u)2(j)+
G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)

)2
−

n∑
j=0

(ϕ ◦ u)(j)r2

≤ q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)+
n∑
j=0

(ϕ ◦ u)(j)r1(j). (2.18)

We estimate the RHS of (2.18) (using the inequality 2αβ ≤ εα2 + β2/ε for non-negative numbers α and β) as follows:

n∑
j=0

|(ϕ ◦ u)(j)[q(∇r)(j)+ r1(j)]| ≤
1
2
ε

n∑
j=0

(ϕ ◦ u)2(j)+
1
2ε

n∑
j=0

[q(∇r)(j)+ r1(j)]2. (2.19)

Using (2.19) in (2.18) and combining the last two terms on the LHS of (2.18) by completing the square, we arrive at

qΦ(u(n))+
n∑
j=0

[
(ϕ ◦ u)(j)u(j)−

1
a
(ϕ ◦ u)2(j)

]
+
ε

2

n∑
j=0

(ϕ ◦ u)2(j)+
G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

≤
1
2ε

n∑
j=0

[q(∇r)(j)+ r1(j)]2 +
1
2
[G(1)]−1r22

≤ L‖r‖2m2 , ∀ n ∈ Z+, (2.20)
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where L depends only on q, ε and G(1) and we have used the fact that ∇r = r1 − Sr1 + r2δ and so ‖∇r‖l2 ≤ 2‖r1‖l2 + |r2|.
By sector condition (2.2) we have that

n∑
j=0

[
(ϕ ◦ u)(j)u(j)−

1
a
(ϕ ◦ u)2(j)

]
≥ 0.

Furthermore, Φ is non-negative (since ϕ(0) = 0 and ϕ is non-decreasing) and thus, all terms on the LHS of (2.20) are
non-negative. Inequality (2.20) is the key estimate from which we shall derive the theorem.
Proof of Statement 1. In the following, K > 0 is a generic constant which will be suitably adjusted in every step and depends
only on q, ε, a and G, but not on n or r . From (2.20) we obtain

ε

2

n∑
j=0

(ϕ ◦ u)2(j) ≤ L‖r‖2m2 , ∀ n ∈ Z+.

Hence,

‖ϕ ◦ u‖l2 ≤ K‖r‖m2 . (2.21)

Again, by (2.20),

G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2
≤ L‖r‖2m2 , ∀ n ∈ Z+.

Consequently,∣∣∣∣∣
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∣∣∣∣∣
2

≤ K‖r‖2m2 ,

and so∣∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)

∣∣∣∣∣ ≤ K‖r‖m2 , ∀ n ∈ Z+.

Hence,

sup
n≥0

∣∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)

∣∣∣∣∣ ≤ K‖r‖m2 . (2.22)

Again starting with (2.20), we obtain the inequality
n∑
j=0

[
(ϕ ◦ u)(j)u(j)−

1
a
(ϕ ◦ u)2(j)

]
≤ L‖r‖2m2 , ∀ n ∈ Z+.

It follows that

0 ≤
n∑
j=0

(ϕ ◦ u)(j)u(j) ≤ L‖r‖2m2 +
1
a

∞∑
j=0

(ϕ ◦ u)2(j) ≤ K‖r‖2m2 , ∀ n ∈ Z+,

where we have used (2.21). Consequently,

(‖(ϕ ◦ u)u‖l1)
1/2
≤ K‖r‖m2 . (2.23)

Using the boundedness of H together with (2.21) gives

|(H(ϕ ◦ u))(j)| ≤ ‖H(ϕ ◦ u)‖l2 ≤ K‖r‖m2 . (2.24)

Invoking (2.7), we arrive at

|u(j)| ≤ |(H(ϕ ◦ u))(j)| + |G(1)‖(J(ϕ ◦ u))(j)| + |r(j)|
≤ |(H(ϕ ◦ u))(j)| + |G(1)‖(J(ϕ ◦ u))(j)| + ‖r‖m2 . (2.25)

Taking the supremum and appealing to (2.22) and (2.24), we obtain from (2.25) that

‖u‖l∞ = sup
n≥0
|u(n)| ≤ K‖r‖m2 . (2.26)
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By (2.6), we have that

∇u = ∇r − SG(ϕ ◦ u). (2.27)

Since ϕ ◦ u ∈ l2(Z+) by (2.21), G ∈ B(l2(Z+)) and ∇r ∈ l2(Z+) we conclude that ∇u ∈ l2(Z+). Furthermore, by (2.21) the
l2-norm of the RHS of (2.27) is bounded by K‖r‖m2 , and thus ‖∇u‖l2 ≤ K‖r‖m2 . Combining this with (2.21), (2.22), (2.23)
and (2.26), it is clear that (2.4) holds.
Proof of Statement 2. We note that, by (2.12),

G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)

)2
−

n∑
j=0

(ϕ ◦ u)(j)r2 =
G(1)
2

n∑
j=0

(ϕ ◦ u)2(j)− q
n∑
j=0

(ϕ ◦ u)(j)(∇u)(j)

−

n∑
j=0

(ϕ ◦ u)(j)u(j)−
n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)+ q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)+
n∑
j=0

(ϕ ◦ u)(j)r1(j). (2.28)

Completing the square on the LHS of (2.28), we obtain

G(1)
2

(
n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2
=
1
2
[G(1)]−1r22 −

n∑
j=0

(ϕ ◦ u)(j)u(j)−
n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+

n∑
j=0

(ϕ ◦ u)(j)r1(j)+
G(1)
2

n∑
j=0

(ϕ ◦ u)2(j)

+ q
n∑
j=0

(ϕ ◦ u)(j)(∇r)(j)− q
n∑
j=0

(ϕ ◦ u)(j)(∇u)(j). (2.29)

By statement 1, ϕ ◦ u ∈ l2(Z+), ∇u ∈ l2(Z+) and (ϕ ◦ u)u ∈ l1(Z+). Since r1 ∈ l2(Z+) and Gq ∈ B(l2(Z+)), it follows that
(ϕ ◦ u)Gq(ϕ ◦ u), (ϕ ◦ u)r1, (ϕ ◦ u)2, (ϕ ◦ u)(∇r) and (ϕ ◦ u)(∇u) are in l1(Z+), so that the RHS of (2.29) has a finite limit as
n→∞. Hence,

λ := lim
n→∞

(
n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2
exists and is finite. Setw(n) :=

∑n
j=0(ϕ◦u)(j). By statement 1,ϕ◦u ∈ l

2(Z+), so that, in particular, (ϕ◦u)(j)→ 0 as j→∞.
Hence, (1w)(n) = (ϕ ◦ u)(n+ 1)→ 0 and we see that

∑n
j=0(ϕ ◦ u)(j) converges to one of the points [G(1)]

−1r2 ±
√
λ. To

prove that limn→∞ u(n) exists, it is sufficient to show that

lim
n→∞

(u(n)+ G(1)(J(ϕ ◦ u))(n)) = r2. (2.30)

By (2.7), Eq. (2.30) is equivalent to the claim that limn→∞(H(ϕ ◦ u))(n) = 0. The later follows from the fact that,
H ∈ B(l2(Z+)) and ϕ ◦ u ∈ l2(Z+). Therefore, u∞ := limn→∞ u(n) exists and is finite. Finally, since by statement 1,
ϕ ◦ u ∈ l2(Z+), it is clear that, if ϕ is continuous, then ϕ(u∞) = 0. �

In a sense, Theorem 2.1 forms the discrete-time counterpart of a continuous-time stability result proved in [6] (see
Theorem 3.1 in [6]). In the literature on discrete-time systems, the result closest to Theorem 2.1 is part (b) of Theorem
5 on p. 192 in [1]. However, there it is assumed that the linear system is l2-stable, whilst in the present paper the linear
system is given by GJ , which is not lp-stable for any p ≥ 1.

2.2. A stability result of circle-criterion type

In this subsection,U is an arbitrary real or complex (possibly infinite-dimensional) Hilbert space.We consider the system
shown in Fig. 2 with time-varying ϕ. The following theorem is a stability result of circle-criterion type.

Theorem 2.2. Let G ∈ B(l2(Z+,U)) be a shift-invariant operator with transfer function G satisfying assumption (A) with G(1)
invertible, and let ϕ : Z+ × U → U be a time-varying nonlinearity. Assume that there exist self-adjoint P ∈ B(U), invertible
Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a number ε > 0 such that

Re 〈ϕ(n, v),Qv〉 ≥ 〈ϕ(n, v), Pϕ(n, v)〉, ∀ n ∈ Z+, v ∈ U, (2.31)

and

P +
1
2

[
1

eiθ − 1
QG(eiθ )+

1
e−iθ − 1

G∗(eiθ )Q ∗
]
≥ εI, a.e. θ ∈ (0, 2π). (2.32)
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Let r ∈ m2(Z+,U), that is, r = r1 + r2ϑ with r1 ∈ l2(Z+,U) and r2 ∈ U, and let u : Z+ → U be the unique solution of (2.1).
Then the following statements hold.

1. There exists a constant K (which depends only on ε, P , Q and G, but not on r) such that,

‖u‖l∞ + ‖∇u‖l2 ++‖ϕ ◦ u‖l2 + (‖Re 〈(ϕ ◦ u),Qu〉‖l1)
1/2
+ sup
n≥0

∥∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥ ≤ K‖r‖m2 . (2.33)

2. We have,

lim
n→∞

(
u(n)+ G(1)

n∑
j=0

(ϕ ◦ u)(j)

)
= r2; (2.34)

in particular limn→∞ u(n) exists if and only if limn→∞
∑n
j=0(ϕ ◦ u)(j) exists, in which case

lim
n→∞

u(n) = r2 − G(1) lim
n→∞

n∑
j=0

(ϕ ◦ u)(j). (2.35)

3. There exists a sphere S0 ⊂ U centred at 0, such that

lim
n→∞

dist(u(n),G(1)[QG(1)]−1/2S0) = 0, (2.36)

in particular, if dimU = 1, then limn→∞ u(n) and limn→∞
∑n
j=0(ϕ ◦ u)(j) exist.

4. If we relax condition (2.31) and only require that for some n0 > 0,

Re 〈ϕ(n, v),Qv〉 ≥ 〈ϕ(n, v), Pϕ(n, v)〉, ∀ n ≥ n0,∀ v ∈ U, (2.37)

then the LHS of (2.33) is still finite (but no longer bounded in terms of ‖r‖m2 ) and statements 2 and 3 remain valid.
5. Under the additional assumptions
(B) ϕ does not depend on time,
(C) ϕ−1(0) ∩ B is precompact for every bounded set B ⊂ U,
(D) infv∈B ‖ϕ(v)‖ > 0 for every bounded, closed, non-empty set B ⊂ U such that ϕ−1(0) ∩ B = ∅,
we have that limn→∞ dist(u(n), ϕ−1(0)) = 0.

6. If the additional assumptions (B)–(D) of statement 5 hold and if the intersection cl(ϕ−1(0)) ∩ G(1)[QG(1)]−1/2S0 is totally
disconnected for every sphere S0 ⊂ U centred at 0, then u(n) converges as n→∞.

Remark 2.3. (i) If dimU < ∞ and assumption (B) holds, then assumption (D) is satisfied. Moreover, if dimU < ∞,
assumption (B) holds and ϕ is continuous, then assumption (C) is satisfied.
(ii) Theorem 2.2 forms the discrete-time counterpart of a continuous-time stability result proved in [6] (see Theorem

3.3 in [6]). In the literature on discrete-time systems, the result closest to Theorem 2.2 is case (2) of Theorem 37 on p. 370
in [3]. However, there it is assumed that the impulse response of the linear system is in l1 (implying that the linear system
is lp-stable for every p ≥ 1): this assumption is not satisfied for the linear system with input–output operator given by GJ .

Before proving Theorem 2.2, we state a slightly simplified version of this result (where P and Q are scalars and P ≥ 0) in
the form of a corollary which is convenient in the context of applications of Theorem 2.2 to integral control (see Section 3).

Corollary 2.4. Let G ∈ B(l2(Z+,U)) be a shift-invariant operator with transfer function G satisfying assumption (A) with G(1)
invertible and G(1) = G∗(1) ≥ 0, and let ϕ : Z+ × U → U be a time-varying nonlinearity. Assume that there exist numbers
ε > 0 and a > 0 such that

Re 〈ϕ(n, v), v〉 ≥
1
a
‖ϕ(n, v)‖2, ∀ v ∈ U, (2.38)

and

1
a
I +
1
2

[
1

eiθ − 1
G(eiθ )+

1
e−iθ − 1

G∗(eiθ )
]
≥ εI, a.e. θ ∈ (0, 2π). (2.39)

Then, for all r ∈ m2(Z+,U), the conclusions of Theorem 2.2 hold with P = (1/a)I and Q = I .

Proof of Theorem 2.2. Since u satisfies (2.1), we conclude that

Qu(j)+ (GQ (ϕ ◦ u))(j)+ QG(1)(J(ϕ ◦ u))(j) = Qr(j), ∀ j ∈ Z+, (2.40)

where the operator GQ := Q (JG− G(1)J) is shift-invariant with transfer function GQ given by

GQ (z) :=
1
z − 1

Q [G(z)− G(1)], ∀ z ∈ E.
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From assumption (A) and from the fact that G ∈ H∞(E,B(U)), we conclude that GQ ∈ H∞(E,B(U)), and hence
GQ ∈ B(l2(Z+,U)).
Forming the inner product with (ϕ ◦ u)(j), taking real parts and summing from 0 to n in (2.40) yields

Re
n∑
j=0

〈(ϕ ◦ u)(j),Qu(j)〉 + Re
n∑
j=0

〈(ϕ ◦ u)(j), (GQ (ϕ ◦ u))(j)〉

+ Re
n∑
j=1

〈
(ϕ ◦ u)(j),QG(1)

j−1∑
k=0

(ϕ ◦ u)(k)

〉
= Re

n∑
j=0

〈(ϕ ◦ u)(j),Qr(j)〉. (2.41)

Since, by assumption, QG(1) = [QG(1)]∗ ≥ 0, the square root [QG(1)]1/2 of QG(1) exists. A simple proof by induction then
yields the following identity

Re
n∑
j=1

〈
(ϕ ◦ u)(j),QG(1)

j−1∑
k=0

(ϕ ◦ u)(k)

〉
=
1
2

∥∥∥∥∥[QG(1)]1/2 n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥
2

−
1
2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (2.42)

Combining (2.41) with (2.42) gives

Re
n∑
j=0

〈(ϕ ◦ u)(j),Qu(j)〉 + Re
n∑
j=0

〈(ϕ ◦ u)(j), (GQ (ϕ ◦ u))(j)〉

+
1
2

∥∥∥∥∥[QG(1)]1/2 n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥
2

−
1
2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2

= Re
n∑
j=0

〈(ϕ ◦ u)(j),Qr(j)〉. (2.43)

Now an argument very similar to that in the proof of Theorem 2.1 can be adopted: invoking the Parseval–Bessel identity
and the frequency-domain condition (2.32), it can be shown that

Re
n∑
j=0

〈(ϕ ◦ u)(j), (GQ (ϕ ◦ u))(j)〉

≥ ε

n∑
j=0

‖(ϕ ◦ u)(j)‖2 −
n∑
j=0

〈(ϕ ◦ u)(j), P(ϕ ◦ u)(j)〉 +
1
2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2, (2.44)

which together with (2.43) can be used to derive the key inequality

Re
n∑
j=0

〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉 +
ε

2

n∑
j=0

‖(ϕ ◦ u)(j)‖2 +
1
2

∥∥∥∥∥[QG(1)]1/2
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥∥
2

≤
1
2ε

∞∑
j=0

‖Qr1(j)‖2 +
1
2
‖[QG(1)]1/2[G(1)]−1r2‖2

≤ L‖r‖2m2 , ∀ n ∈ Z+, (2.45)

where L depends only on ε,G and Q . By the sector condition (2.31),

Re 〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉 ≥ 0, ∀ j ∈ Z+,

showing that all terms on the LHS of (2.45) are non-negative.
Proof of Statement 1. In the following, K > 0 is a generic constant which will be suitably adjusted in every step and depends
only on ε, P , Q and G, but not on n or r . Invoking (2.45), it now follows easily (see proof of Theorem 2.1) that

‖u‖l∞ + ‖∇u‖l2 + ‖ϕ ◦ u‖l2 + sup
n≥0

∥∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥ ≤ K‖r‖m2 . (2.46)

Furthermore, by (2.31) and (2.45),

0 ≤ Re
n∑
j=0

〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉 ≤ L‖r‖2m2 , ∀ n ∈ Z+,
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Since,

|Re 〈(ϕ ◦ u)(j),Qu(j)〉| ≤ |Re 〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉| + |Re 〈(ϕ ◦ u)(j), P(ϕ ◦ u)(j)〉|

it follows that,
n∑
j=0

|Re 〈(ϕ ◦ u)(j),Qu(j)〉| ≤ L‖r‖2m2 + ‖P‖
∞∑
j=0

‖(ϕ ◦ u)2(j)‖ ≤ K‖r‖2m2 , ∀ n ∈ Z+,

where we have used (2.46). Consequently,

(‖Re 〈(ϕ ◦ u),Qu〉‖l1)
1/2
≤ K‖r‖m2 ,

which combined with (2.46) shows that (2.33) holds.
Proof of Statement 2. Since (ϕ ◦ u)(n)→ 0 as n→∞ (by statement 1) and Q is invertible, it follows from (2.40) that (2.34)
is equivalent to the claim that

lim
n→∞

(GQ (ϕ ◦ u))(n) = 0.

Since GQ ∈ B(l2(Z+,U)) and ϕ ◦ u ∈ l2(Z+,U), we conclude that GQ (ϕ ◦ u)(n) → 0 as n → ∞. It is now clear that if
limn→∞ u(n) exists, then, by (2.34), limn→∞

∑n
j=0(ϕ ◦ u)(j) exists and (2.35) follows trivially.

Proof of Statement 3. We re-write (2.43) as follows:

1
2

∥∥∥∥∥[QG(1)]1/2
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥∥
2

=
1
2
‖[QG(1)]1/2[G(1)]−1r2‖2 − Re

n∑
j=0

〈(ϕ ◦ u)(j),Qu(j)〉 + Re
n∑
j=0

〈(ϕ ◦ u)(j),Qr1(j)〉

− Re
n∑
j=0

〈(ϕ ◦ u)(j), (GQ (ϕ ◦ u))(j)〉 +
1
2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (2.47)

The RHS of (2.47) has a finite limit as n→∞ since Re 〈(ϕ ◦ u),Qu〉, 〈(ϕ ◦ u),Qr1〉, 〈(ϕ ◦ u),GQ (ϕ ◦ u)〉 and ‖(ϕ ◦ u)‖2 are
in l1(Z+,C). Hence we have that,

lim
n→∞

∥∥∥∥∥[QG(1)]1/2
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥∥
exists. Set

λ := lim
n→∞

∥∥∥∥∥[QG(1)]1/2
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥∥ . (2.48)

Now using (2.34) and writing f (n) :=
∑n
j=0(ϕ ◦ u)(j)we have,

lim
n→∞

(u(n)− r2 + G(1)f (n)) = 0. (2.49)

Let g(n) := [QG(1)]1/2(f (n) − [G(1)]−1r2). Then from (2.48) we have limn→∞ ‖g(n)‖ = λ, that is, g(n) approaches the
sphere S0 of radius λ centred at 0 as n→∞. So by (2.49),

0 = lim
n→∞

(u(n)− r2 + G(1)f (n)) = lim
n→∞

(u(n)+ G(1)[QG(1)]−1/2g(n))

and we see that u(n) approaches the set G(1)[QG(1)]−1/2S0. Finally if dimU = 1, then the sphere S0 consists of just one or
two points. To see that the sequence u(n) does not oscillate between small neighbourhoods of each of these two points, we
observe that (∇u)(n)→ 0 as n→∞ (since∇u ∈ l2(Z+,U) by statement 1). Therefore, limn→∞ u(n) exists. It is now clear
from statement 2 that limn→∞

∑n
j=0(ϕ ◦ u)(j) exists.

Proof of Statement 4. In proving statement 4, we use (2.45), the only problem being that the sector condition now only holds
whenever j ≥ n0. Hence the first term on the LHS of (2.45) could have either sign. However, setting

Γ := Re
n0∑
j=0

|〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉|
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we see from (2.45) that for all n ≥ n0,

Re
n∑
j=n0

〈(ϕ ◦ u)(j),Qu(j)− P(ϕ ◦ u)(j)〉 +
ε

2

n∑
j=0

‖(ϕ ◦ u)(j)‖2 +
1
2

∥∥∥∥∥[QG(1)]1/2
(

n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥∥
2

≤ Γ +
1
2ε

n∑
j=0

‖Qr1(j)‖2 +
1
2
‖[QG(1)]1/2[G(1)]−1r2‖2. (2.50)

Now by (2.37), the first term on the LHS of (2.50) is non-negative, so that all terms on the LHS of (2.50) are non-negative.
The same arguments invoked in the proof of statements 1–3 can now be used to complete the proof of statement 4.
Proof of Statement 5. Assume that the additional assumptions (B), (C) and (D) are satisfied. Since u is bounded, there exists a
closed bounded set B ⊂ U such that u(n) ∈ B for all n ∈ Z+. It follows from (C) that ϕ−1(0)∩B is precompact. Consequently,
for given η > 0, ϕ−1(0) ∩ B is contained in a finite union of open balls with radius η, each ball centred at some point in
cl(ϕ−1(0)∩B). Denoting this union by Bη , we claim that u(n) ∈ Bη for all sufficiently large n. This is trivially true if B ⊂ Bη . If
not, then the set C := B\Bη is non-empty. Moreover, C is bounded and closedwith ϕ−1(0)∩C = ∅ and so infv∈C ‖ϕ(v)‖ > 0
by (D). We know from statement 1 that ϕ ◦ u ∈ l2(Z+,U), hence limn→∞(ϕ ◦ u)(n) = 0, and so also in this case u(n) ∈ Bη
for all sufficiently large n. This implies that

lim
n→∞

dist(u(n), ϕ−1(0) ∩ B) = 0 (2.51)

and, a fortiori,

lim
n→∞

dist(u(n), ϕ−1(0)) = 0, (2.52)

completing the proof of statement 5.
Proof of Statement 6. To verify statement 6, we note that, by (2.51) and precompactness of ϕ−1(0)∩B, the set {u(n) : n ∈ Z+}
is precompact. Consequently, the ω-limit setΩ of u is non-empty, compact and is approached by u(n) as n→∞. Invoking
(2.52), we see that Ω ⊂ cl(ϕ−1(0)). Furthermore, by statement 3, we know that u(n) approaches G(1)[QG(1)]−1/2S0 for
some sphere S0 ⊂ U centred at 0, henceΩ ⊂ G(1)[QG(1)]−1/2S0. Hence,

Ω ⊂ cl(ϕ−1(0)) ∩ G(1)[QG(1)]−1/2S0. (2.53)

By statement 1, (∇u)(n) → 0 as n → ∞. Consequently, by a standard result, it follows that Ω is connected. On the
other hand, by hypothesis, cl(ϕ−1(0)) ∩ G(1)[QG(1)]−1/2S0 is totally disconnected, implying via (2.53) that Ω is totally
disconnected. As a consequence,Ω must consist of exactly one point, or, equivalently, u(n) converges as n→∞. �

Remark 2.5. In addition to the strictly causal operator J , there is another ‘‘natural’’ discrete-time integrator, namely JI :=
J + I , that is,

(JIv)(n) =
n∑
j=0

v(j), ∀ n ∈ Z+,∀ v ∈ F(Z+,U), (2.54)

which is an integrator with feedthrough operator equal to I . Obviously, if G is not strictly causal, then the equation

u = r − (JIG)(ϕ ◦ u), (2.55)

may not have any solution or may have multiple solutions. Trivially, if, for every n ∈ Z+, the map

U → U, ξ 7→ ξ + G(∞)ϕ(n, ξ),

where G(∞) := limz→∞ G(z), is surjective (bijective, respectively), then (2.55) has at least one solution (a unique solution,
respectively). Furthermore, it is easy to see that, if we replace (2.1) by (2.55) and (2.3) by

1
a
+ Re

[(
q+

eiθ

eiθ − 1

)
G(eiθ )

]
≥ ε, a.e. θ ∈ (0, 2π), (2.56)

and (2.32) by,

P +
1
2

[
eiθ

eiθ − 1
QG(eiθ )+

e−iθ

e−iθ − 1
G∗(eiθ )Q ∗

]
≥ εI, a.e. θ ∈ (0, 2π),

then the conclusions of Theorems 2.1 and 2.2 remain valid for every solution of (2.55) and furthermore, in the case of
Theorem 2.1, the range of values for a can be extended to include a = ∞ (this allows the inclusion of certain cubic
nonlinearities).



4780 J.J. Coughlan, H. Logemann / Nonlinear Analysis 71 (2009) 4769–4789

Fig. 3. Integral control in the presence of an input nonlinearity.

3. Application to integral control in the presence of input/output nonlinearities

In this section we apply Theorem 2.1 and Corollary 2.4 to derive results on low-gain integral control in the presence of
input/output nonlinearities and output disturbances. Throughout this section it is assumed that U = R.

3.1. Integral control in the presence of input nonlinearities

Consider the feedback system shown in Fig. 3, where ρ ∈ R is a constant, k ∈ R is a gain parameter, u0 ∈ R is the initial
state of the integrator (or, equivalently, the initial value of u), ϕ : R→ R is a static input nonlinearity andG ∈ B(l2(Z+)) is a
shift-invariant operator with transfer function denoted by G. The function g models the effect of non-zero initial conditions
of the system with input–output operator G and the function d is an external disturbance.
The feedback system shown in Fig. 3 is described by the following equation

u = u0ϑ + kJ(ρϑ − g − d− G(ϕ ◦ u)). (3.1)
Trivially, (3.1) can be written in the form

(1u)(n) = k[ρ − (g(n)+ d(n)+ (G(ϕ ◦ u))(n))], n ∈ Z+, u(0) = u0 ∈ R,
an initial-value problem associated with a nonlinear Volterra difference equation. It is easy to show that (3.1) has a unique
solution u ∈ F(Z+).
The aim in this subsection is to choose the gain parameter k such that the tracking error,
e(n) := ρ − (g(n)+ d(n)+ (G(ϕ ◦ u))(n)) = (1u)(n)/k

converges to 0 as n→∞.
In Theorem 3.2, the main result of this subsection, we shall impose the following assumption on G.
(A′) The limits

G(1) := lim
z→1,z∈E

G(z) and G′(1) := lim
z→1,z∈E

G(z)− G(1)
z − 1

exist, and, furthermore,

lim sup
z→1,z∈E

∣∣∣∣G(z)− G(1)− (z − 1)G′(1)
(z − 1)2

∣∣∣∣ <∞.
Remark 3.1. (i) Note that if G satisfies assumption (A′), then G satisfies assumption (A).
(ii) If G extends analytically into a neighbourhood of 1, then (A′) holds.

We define

f (G) := sup
q≥0

{
essinfθ∈(0,2π)Re

[(
q
eiθ
+

1
eiθ − 1

)
G(eiθ )

]}
.

If the transfer function G of G satisfies assumption (A), then it can be shown that−∞ < f (G) ≤ −G(1)/2, see [15].
For a ∈ (0,∞), we letS (a) denote the set of all functions ϕ : R→ R satisfying the sector condition
0 ≤ ϕ(v)v ≤ av2, ∀ v ∈ R.

Trivially, ϕ ∈ S (a) if and only if ϕ(v)v ≥ ϕ2(v)/a for all v ∈ R.

Theorem 3.2. Let G ∈ B(l2(Z+)) be a shift-invariant operator with transfer function G. Assume that assumption (A′) holds with
G(1) > 0, that Jg ∈ m2(Z+), d = d1 + d2ϑ with Jd1 ∈ m2(Z+) and d2 ∈ R. Let ϕ : R → R be locally Lipschitz continuous
and non-decreasing. Let ρ ∈ R, assume that (ρ − d2)/G(1) ∈ imϕ and let u be the solution of (3.1). Under these conditions the
following statements hold.
1. If ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞), then there exists a constant k∗ ∈ (0,∞) (depending on G, ϕ and ρ) such that for
all k ∈ (0, k∗), the limit limn→∞ u(n) =: u∞ exists and satisfies ϕ(u∞) = (ρ − d2)/G(1),

e = 1u/k ∈ l2(Z+) and ϕ ◦ u− ϕ(u∞)ϑ ∈ l2(Z+),

so that, in particular, limn→∞ e(n) = 0.
2. If ϕ is globally Lipschitz continuous with Lipschitz constant λ > 0, then the conclusions of statement 1 are valid with
k∗ = 1/|λf (G)|.
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Remark 3.3. (i) Note that in statement 2 of Theorem 3.2, the constant k∗ depends only on G and the Lipschitz constant of ϕ,
but not on ρ.
(ii) It can be shown that g and d1 satisfy the assumptions in Theorem 3.2 if (Jg)(n), (Jd1)(n) converge to finite limits as

n→∞ and the functions n 7→
∑
∞

k=n g(k), n 7→
∑
∞

k=n d1(k) are in l
2(Z+), see [15] for details.

(iii) Another sufficient condition for g and d1 to satisfy the assumptions in Theorem 3.2 is that the functions j 7→ g(j)jα
and j 7→ d1(j)jα are in l2(Z+) for some α > 1, see [15] for details.
(iv) In general d2 is unknown, but it is reasonable to assume that d2 ∈ [α, β], where α and β are known constants. The

condition

(ρ − α)/G(1), (ρ − β)/G(1) ∈ imϕ

does not involve d2 and is sufficient for (ρ−d2)/G(1) to be in imϕ. Furthermore, ifϕ is continuous and limξ→±∞ ϕ(ξ) = ±∞,
then the assumption (ρ − d2)/G(1) ∈ imϕ is automatically satisfied.

Proof of Theorem 3.2. Choose uρ ∈ R such that ϕ(uρ) = (ρ − d2)/G(1) (such a uρ exists, since, by assumption,
(ρ − d2)/G(1) ∈ imϕ). Let u ∈ F(Z+) be the unique solution of (3.1) and set v := u − uρϑ ∈ F(Z+). Moreover, we
define ϕ̃ : R→ R by,

ϕ̃(ξ) := ϕ(ξ + uρ)− ϕ(uρ), ∀ ξ ∈ R.

Then by (3.1),

v = u0ϑ − uρϑ + kJ(ρϑ − g − d)− kJϕ(uρ)Gϑ − kJ(G(̃ϕ ◦ v)).

Hence it follows that

v = r − kJ(G(̃ϕ ◦ v)), (3.2)

where the function r is given by

r = u0ϑ − uρϑ − kJ(g + d1 + ϕ(uρ)Gϑ − (ρ − d2)ϑ). (3.3)

In order to apply Theorem 2.1 to Eq. (3.2), we first show that r ∈ m2(Z+), that is, r satisfies the relevant assumption in
Theorem 2.1. Since by assumption Jg, Jd1 ∈ m2(Z+), we immediately see that

u0ϑ − uρϑ − kJ(g + d1) ∈ m2(Z+).

Therefore, by (3.3), it is sufficient to show that the function

n 7→ (J(ϕ(uρ)Gϑ − (ρ − d2)ϑ))(n) = ϕ(uρ)(J(Gϑ − G(1)ϑ))(n)

belongs tom2(Z+), where we have used that ϕ(uρ) = (ρ − d2)/G(1). Note that

J(Gϑ − G(1)ϑ) = J(Gϑ − G(1)ϑ)− G′(1)ϑ + G′(1)ϑ. (3.4)

By assumption (A′), J(Gϑ − G(1)ϑ)− G′(1)ϑ ∈ l2(Z+). Hence it follows from (3.4) that J(Gϑ − G(1)ϑ) ∈ m2(Z+).
Proof of Statement 1. Since ϕ is non-decreasing, locally Lipschitz continuous and satisfies ϕ − ϕ(0) ∈ S (a) for some
a ∈ (0,∞), a routine argument shows that there exists b ∈ (0,∞) such that ϕ̃ ∈ S (b). Define k∗ := 1/|bf (G)| ∈ (0,∞).
Let k ∈ (0, k∗) and set ε := 1

2 (1/b+ kf (G)). Then ε > 0 and we can choose some q > 0 such that

essinfθ∈(0,2π)Re
[(
q
eiθ
+

1
eiθ − 1

)
G(eiθ )

]
≥ f (G)−

ε

k
=
ε − 1/b
k

.

Thus

1
b
+ Re

[(
q
eiθ
+

1
eiθ − 1

)
kG(eiθ )

]
≥ ε, a.e. θ ∈ (0, 2π),

and (2.3) holdswith a replaced by b andG replaced by kG. An application of Theorem2.1 to (3.2) nowyields that limn→∞ v(n)
exists and is finite, ϕ̃ ◦ v ∈ l2(Z+) and ∇v ∈ l2(Z+). Consequently, we have limn→∞ u(n) =: u∞ exists and is finite,

ϕ(u∞) = ϕ(uρ) = (ρ − d2)/G(1) and ϕ ◦ u− ϕ(u∞) ∈ l2(Z+).

We note that 1v = 1u and since ∇v ∈ l2(Z+), we have 1u ∈ l2(Z+). Therefore, e = 1u/k ∈ l2(Z+), and hence, in
particular, limn→∞ e(n) = 0.

Proof of Statement 2. Noting that, by hypothesis, ϕ is non-decreasing and globally Lipschitz with Lipschitz constant λ > 0, it
is easy to show that ϕ̃ ∈ S (λ). Now the arguments in the proof of statement 1 apply with b replaced by λ. �
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Fig. 4. Integral control in the presence of input and output nonlinearities.

3.2. Integral control in the presence of input and output nonlinearities

In this subsection, we generalize the feedback scheme considered in Section 3.1, to allow for a time-varying gain and
nonlinearities in the output as well as in the input.
Consider the feedback system shown in Fig. 4, where κ : Z+ → R is a time-varying gain, the operator G ∈ B(l2(Z+)) is

shift-invariant with transfer function denoted by G, ϕ : R→ R and ψ : R→ R are static input and output nonlinearities,
respectively, ρ ∈ R is a constant reference value, u0 ∈ R is the initial state of the integrator (or, equivalently, the initial
value of u), the function g models the effect of non-zero initial conditions of the system with input–output operator G and
the function d is an external disturbance.
The feedback system shown in Fig. 4 is described by the equation

u = u0ϑ + J(κ(ρϑ − d− ψ(g + G(ϕ ◦ u)))). (3.5)

Trivially, (3.5) is equivalent to the initial-value problem

(1u)(n) = κ(n)(ρ − d(n)− ψ(g(n)+ (G(ϕ ◦ u))(n))), n ∈ Z+, u(0) = u0 ∈ R. (3.6)

It is easy to show that (3.5) has a unique solution u ∈ F(Z+). The objective is to determine gain functions κ such that the
tracking error

e(n) := ρ − y(n) = ρ − d(n)− ψ(g(n)+ (G(ϕ ◦ u))(n))

converges to 0 as n→∞.
We introduce the set of feasible reference values

R(G, ϕ, ψ) := {ψ(G(1)v) : v ∈ cl(imϕ)}.
It is clear thatR(G, ϕ, ψ) is an interval, provided thatϕ andψ are continuous. It can be shown that ifϕ andψ are continuous,
then ρ ∈ R(G, ϕ, ψ) is close to being a necessary condition for tracking insofar as, if tracking of ρ is achievable, whilst
maintaining boundedness of ϕ ◦ u andw, then ρ ∈ R(G, ϕ, ψ); see [15] for details.
We define,

f0(G) := essinfθ∈(0,2π)Re
[

G(eiθ )
eiθ − 1

]
.

If the transfer function G of G satisfies assumption (A), then−∞ < f0(G) ≤ −G(1)/2, see [15].

Theorem 3.4. Let G ∈ B(l2(Z+)) be a shift-invariant operator with transfer function G. Assume that assumption (A) holds with
G(1) > 0, g ∈ l2(Z+, ), d = d1 + d2ϑ with d1 ∈ l1(Z+), d2 ∈ R and n 7→

∑
∞

j=n |d1(j)| ∈ l
2(Z+), ϕ : R→ R and ψ : R→ R

are non-decreasing and globally Lipschitz continuous with Lipschitz constants λ1 > 0 and λ2 > 0, ρ − d2 ∈ R(G, ϕ, ψ) and
κ : Z+ → R is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0(G)|. (3.7)

Let u : Z+ → R be the unique solution of (3.5). Then the following statements hold.
1. The limit (ϕ ◦ u)∞ := limn→∞ ϕ(u(n)) exists and is finite and ∇(ϕ ◦ u) ∈ l2(Z+).
2. The signalsw = g + G(ϕ ◦ u) and y = ψ ◦ w + d have finite limits satisfying

lim
n→∞

w(n) = G(1)(ϕ ◦ u)∞, lim
n→∞

y(n) = ψ(G(1)(ϕ ◦ u)∞)+ d2.

3. If κ 6∈ l1(Z+), then limn→∞ y(n) = ρ , or equivalently, limn→∞ e(n) = 0.
4. If ρ − d2 is an interior point of R(G, ϕ, ψ), then u is bounded.

Remark 3.5. (i) A sufficient condition for d1 to satisfy the assumptions in Theorem 3.4 is that the function j 7→ d1(j)jα is in
l2(Z+) for some α > 1, see [15] for details.
(ii) Note that it is not necessary to know f0(G) or the constant λ in order to apply Theorem 3.4: if κ is chosen such that

κ(n) → 0 as n → ∞ and κ 6∈ l1(Z+) (e.g. κ(n) = (1 + n)−p with p ∈ (0, 1]), then the conclusions of statement 3 hold.
However, from a practical point of view, gain functions κ with limn→∞ κ(n) = 0might not be appropriate, since the system
essentially operates in open loop as n→∞.
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(iii) In general d2 is unknown, but it is reasonable to assume that d2 ∈ [α, β], where α and β are known constants. The
condition

ρ − α, ρ − β ∈ R(G, ϕ, ψ)

does not involve d2 and is sufficient for ρ−d2 to be inR(G, ϕ, ψ). Furthermore, if ϕ andψ are continuous, limξ→±∞ ϕ(ξ) =
±∞ and limξ→±∞ ψ(ξ) = ±∞, then R(G, ϕ, ψ) = R and it is clear that ρ − d2 ∈ R(G, ϕ, ψ).
(iv) Theorem 3.4 can be viewed as a generalization of Theorem 3.2, allowing for input as well as output nonlinearities.

However, since |f0(G)| ≥ |f (G)|, the range of integrator gains achieving asymptotic tracking is smaller in Theorem 3.4 than
in Theorem 3.2.
Proof of Theorem 3.4. Let u : Z+ → R be the unique solution of (3.5).We shall prove Theorem3.4 by applying Corollary 2.4
to the equation satisfied by the input signal

w = g + G(ϕ ◦ u)

of the output nonlinearity ψ , modified with an offset which depends on ρ and d2. Since ρ − d2 ∈ R(G, ϕ, ψ), there exists
ϕρ ∈ cl(imϕ) satisfying

ψ(G(1)ϕρ) = ρ − d2.

Set

w̃ := w − G(1)ϕρϑ = g + G(ϕ ◦ u)− G(1)ϕρϑ. (3.8)

Furthermore, we define ψ̃ : R→ R by

ψ̃(ξ) := ψ(ξ + G(1)ϕρ)− ρ + d2, ∀ ξ ∈ R.

Note that ψ̃(0) = 0, and so, since ψ is non-decreasing and globally Lipschitz with Lipschitz constant λ2, we have

0 ≤ ψ̃(ξ)ξ ≤ λ2ξ 2, ∀ ξ ∈ R. (3.9)

Using (3.6),

1u = κ(ρϑ − d− ψ(g + G(ϕ ◦ u))) = κ(ρϑ − d− ψ(w̃ + G(1)ϕρ)) = −κ(d1 + ψ̃ ◦ w̃).

Defining

bu(n) :=


(1(ϕ ◦ u))(n)
(1u)(n)

, if (1u)(n) 6= 0,

0, if (1u)(n) = 0,

it follows that,

(1(ϕ ◦ u))(n) = bu(n)(1u)(n) = −bu(n)κ(n)d1(n)− bu(n)κ(n)ψ̃(w̃(n))

= d̃1(n)− (N ◦ w̃)(n), ∀ n ∈ Z+, (3.10)

where the function N : Z+ × R→ R is defined by

N(n, ξ) := bu(n)κ(n)ψ̃(ξ), ∀ (n, ξ) ∈ Z+ × R

and d̃1 : Z+ → R is defined by

d̃1(n) := bu(n)κ(n)d1(n), ∀ n ∈ Z+.

Since ϕ is non-decreasing and globally Lipschitz with Lipschitz constant λ1, we see that 0 ≤ bu(n) ≤ λ1. Combining this
with (3.9) yields

0 ≤ N(n, ξ)ξ ≤ λ1λ2κ(n)ξ 2, ∀ (n, ξ) ∈ Z+ × R. (3.11)

It follows from (3.10) that,

ϕ ◦ u = ϕ(u0)ϑ − J d̃1 − J(N ◦ w̃). (3.12)

Applying G to both sides of (3.12), and using the fact that, by shift-invariance, G commutes with J , we obtain

G(ϕ ◦ u) = ϕ(u0)Gϑ − GJd̃1 − J(G(N ◦ w̃)).

Invoking (3.8) yields

w̃ = r − J(G(N ◦ w̃)), (3.13)

where

r := g − G(1)ϕρϑ + ϕ(u0)Gϑ − GJd̃1.



4784 J.J. Coughlan, H. Logemann / Nonlinear Analysis 71 (2009) 4769–4789

Proof of Statement 1. Clearly, (3.13) is of the form (2.1) with u and ϕ replaced by w̃ and N respectively. Therefore we may
apply Corollary 2.4, provided the relevant assumptions are satisfied. By (3.7) there exists a > 0 satisfying

λ1λ2 lim sup
n→∞

κ(n) < a < 1/|f0(G)|. (3.14)

By the definition of f0(G), there exists ε > 0 such that

1
a
+ Re

G(eiθ )
eiθ − 1

≥ ε, a.e. θ ∈ (0, 2π).

Moreover, it follows from (3.11) and (3.14) that there exists n0 ≥ 0 such that

0 ≤ N(n, ξ)ξ ≤ aξ 2, ∀ n ≥ n0, ∀ ξ ∈ R.

The above two inequalities show that (2.38) and (2.39) hold with ϕ, Q and P replaced by N , I and 1/a, respectively. In order
to apply Corollary 2.4, it remains to verify that r ∈ m2(Z+). To this end note that

r = g + G(1)(ϕ(u0)ϑ − ϕρϑ)+ ϕ(u0)(Gϑ − G(1)ϑ)− GJd̃1. (3.15)

Since bu and κ are bounded, d1 ∈ l1(Z+) and by assumption the function n 7→
∑
∞

j=n |d1(j)| ∈ l
2(Z+), we deduce that

d̃1 = buκd1 ∈ l1(Z+) and

n 7→
∞∑
j=n

|̃d1(j)| ∈ l2(Z+). (3.16)

Since d̃1 ∈ l1(Z+), there exists σ ∈ R such that,

lim
n→∞

(J̃d1)(n) = σ .

From (3.16) we deduce that J̃d1 − σϑ ∈ l2(Z+). We have,

GJ̃d1 = G(J̃d1 − σϑ)+ σGϑ. (3.17)

Noting that Gϑ = (Gϑ − G(1)ϑ) + G(1)ϑ and that Gϑ − G(1)ϑ ∈ l2(Z+) (since, by assumption (A), the function
z 7→ (G(z) − G(1))/(z − 1) is in H2(E)), we deduce that Gϑ ∈ m2(Z+). Using this, the fact that G ∈ B(l2(Z+)) and
J̃d1− σϑ ∈ l2(Z+), we obtain from (3.17) that GJ̃d1 ∈ m2(Z+). Since Gϑ −G(1)ϑ ∈ l2(Z+) and, by assumption, g ∈ l2(Z+),
we conclude from (3.15) that r ∈ m2(Z+). Invoking (3.12), an application of statement 4 of Theorem 2.2 to (3.13) now yields
that

1(ϕ ◦ u) = −d̃1 − (N ◦ w̃) ∈ l2(Z+),

and the limit

lim
n→∞

(ϕ ◦ u)(n) = ϕ(u0)− σ − lim
n→∞

(J(N ◦ w̃))(n)

exists and is finite, completing the proof of statement 1.
Proof of Statement 2. Using the shift-invariance of G, a simple calculation shows that

G(ϕ ◦ u) = H(1(ϕ ◦ u))+ ϕ(u0)(Gϑ − G(1)ϑ)+ G(1)(ϕ ◦ u), (3.18)

where H := JG − G(1)J . Since H ∈ B(l2(Z+)) and 1(ϕ ◦ u) ∈ l2(Z+), it follows that H(1(ϕ ◦ u)) ∈ l2(Z+). Furthermore,
Gϑ − G(1)ϑ ∈ l2(Z+) and (ϕ ◦ u)∞ = limn→∞(ϕ ◦ u)(n) exists and is finite (by statement 1). Consequently, we deduce
from (3.18) that

lim
n→∞

(G(ϕ ◦ u))(n) = G(1)(ϕ ◦ u)∞.

Sincew = g + G(ϕ ◦ u) and g ∈ l2(Z+), we obtain

lim
n→∞

w(n) = G(1)(ϕ ◦ u)∞.

Consequently,

y∞ := lim
n→∞

y(n) = lim
n→∞

(ψ ◦ w)(n)+ d2 = ψ(G(1)(ϕ ◦ u)∞)+ d2,

where we have used that d1(n)→ 0 as n→∞.
Proof of Statement 3. We know by statement 2 that y(n) → y∞ as n → ∞. Seeking a contradiction, suppose that y∞ < ρ
(the case y∞ > ρ can be treated in an analogous way). Setting ε := ρ − y∞ > 0 and by taking n0 ≥ 0 large enough, we
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have ρ − y(n) ≥ ε/2 whenever n ≥ n0. Hence we see that,

(1u)(n) = κ(n)(ρ − y(n)) ≥ κ(n)
ε

2
, ∀ n ≥ n0.

Summing the above inequality from n0 tom− 1 gives

u(m) ≥ u(n0)+
ε

2

m−1∑
k=n0

κ(k)→∞, m→∞.

Consequently, since ϕ is non-decreasing,

ϕ := sup
v∈R

ϕ(v) = (ϕ ◦ u)∞.

Hence, by statement 2, y∞ = ψ(G(1)ϕ) + d2. Since ρ − d2 ∈ R(G, ϕ, ψ) (by assumption) and using the fact that ψ is
non-decreasing and G(1) > 0, we obtain

ρ ≤ supR(G, ϕ, ψ)+ d2 = ψ(G(1)ϕ)+ d2 = y∞,

contradicting the supposition that y∞ < ρ. Setting ϕ := infv∈R ϕ(v), an analogous argument shows that if y∞ > ρ, then
necessarily y∞ = ψ(G(1)ϕ)+ d2, which likewise leads to a contradiction since ρ ≥ ψ(G(1)ϕ)+ d2.
Proof of Statement 4. By statement 1, the limit (ϕ ◦ u)∞ = limn→∞(ϕ ◦ u)(n) exists and is finite. We consider the following
two cases.
Case 1: κ 6∈ l1(Z+).
If κ 6∈ l1(Z+), then by statements 2 and 3, ρ−d2 = ψ(G(1)(ϕ ◦u)∞). Unboundedness of uwould imply that there exists

a sequence (vn)with limn→∞ |vn| = ∞ and such that,

ρ − d2 = lim
n→∞

ψ(G(1)ϕ(vn)).

Since the function v 7→ ψ(G(1)ϕ(v)) is non-decreasing, this would in turn yield ρ − d2 = supR(G, ϕ, ψ) or ρ − d2 =
infR(G, ϕ, ψ), showing that umust be bounded if ρ − d2 is an interior point of R(G, ϕ, ψ).
Case 2: κ ∈ l1(Z+).
By statement 2 we know that ρϑ − y is bounded. With κ ∈ l1(Z+) it now follows that κ(ρϑ − y) ∈ l1(Z+). Since

1u = κ(ρϑ − y), we conclude that u is bounded. �

If in the feedback equations (3.1) and (3.5), the integrator J is replaced by JI = J + I (cf. Remark 2.5), then results similar
to Theorems 3.2 and 3.4 can be proved (see [15] for details).
Finally, Theorems 3.2 and 3.4 constitute the discrete-time counterpart of the continuous-time low-gain integral control

theory developed in [6,12]. Related discrete-time integral control results can be found in [16,17]: however, whilst similar in
spirit, the relevant results in [16,17] are less general than Theorems 3.2 and 3.4 (for example, the choice of integrator gain is
more restricted, the underlying linear system is assumed to be regular, output nonlinearities are not included). Moreover,
the treatment in [16,17] is based exclusively on state-space methods (assuming power stability of the linear subsystem) in
contrast to the input–output methodology adopted in Sections 2 and 3 of the current paper.

4. Applications to discrete-time state-space systems

This section is devoted to applications of the results in Sections 2 and 3 to infinite-dimensional discrete-time state-space
systems. Consider the discrete-time system

x(n+ 1) = Ax(n)+ Bv(n), x(0) = x0 ∈ X, (4.1a)
w(n) = Cx(n)+ Dv(n), (4.1b)

with state-space X (a Banach space), input space U (a Hilbert space), output space U , A ∈ B(X), B ∈ B(U, X), C ∈ B(X,U)
and D ∈ B(U).
The solution x of (4.1a) is given by

x(n) =

A
nx0 +

n−1∑
j=0

An−1−jBv(j), n ≥ 1,

x0, n = 0.

(4.2)

The formula for the input–output operator G of (4.1) is

(Gv)(n) =


n−1∑
j=0

CAn−1−jBv(j)+ Dv(n), n ≥ 1,

Dv(0), n = 0,

∀ v ∈ F(Z+,U). (4.3)
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Let G denote the transfer function of the system (4.1). Then, for |z| greater than the spectral radius of A,
G(z) = C(zI − A)−1B+ D.

The operator A is said to be power stable if there exist M > 0 and µ ∈ (0, 1) such that ‖An‖ ≤ Mµn for all n ∈ Z+. By
definition, the system (4.1) is power stable if A is power stable. We say that system (4.1) is strongly stable if the following four
conditions are satisfied:
(i) G is l2-stable, that is, G ∈ B(l2(Z+,U)), or, equivalently, the transfer function G ∈ H∞(E,B(U)).
(ii) A is strongly stable, i.e., for all ξ ∈ X , Anξ → 0 as n→∞.
(iii) There exists α ≥ 0 such that,∥∥∥∥∥ ∞∑

j=0

AjBv(j)

∥∥∥∥∥ ≤ α‖v‖l2 , ∀ v ∈ l2(Z+,U). (4.4)

(iv) There exists β ≥ 0 such that,(
∞∑
j=0

‖CAjξ‖2
)1/2
≤ β‖ξ‖, ∀ ξ ∈ X . (4.5)

Trivially, if system (4.1) is power stable, then system (4.1) is strongly stable. The converse is not true: a counterexample
can be found in [15].

Remark 4.1. If system (4.1) is strongly stable and 1 ∈ %(A), then G ∈ H∞(E,B(U)) and G extends analytically to a
neighbourhood of 1, so that assumption (A′) (and hence (A)) is satisfied.

To obtain state-space versions of the results in Sections 2 and 3, it is useful to state the following two lemmas, the proofs of
which can be found in the Appendix.

Lemma 4.2. Assume that A is strongly stable and (4.4) holds. Then there exists K ≥ 0 such that, for all x0 ∈ X and v ∈ l2(Z+,U),
the solution x of (4.1a) satisfies

‖x‖l∞ ≤ K(‖x0‖ + ‖v‖l2).

Moreover, limn→∞ x(n) = 0.

Lemma 4.3. Assume that A is strongly stable, 1 ∈ %(A) and (4.4) holds. Let v ∈ F(Z+,U) be such that ∇v ∈ l2(Z+,U). Then
for all x0 ∈ X, the solution x of (4.1a) satisfies

lim
n→∞

(x(n)− (I − A)−1Bv(n)) = 0.

In the following, for the sake of brevity, we give state-space interpretations of Theorems 2.2 and 3.4 only. Theorems 2.1 and
3.2 have similar state-space interpretations.
Let ϕ : Z+ × U → U be a (time-dependent) static nonlinearity and consider system (4.1), with input nonlinearity

v = ϕ ◦ u in feedback interconnection with the integrator1u = −w, that is,

x(n+ 1) = Ax(n)+ B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (4.6a)

u(n+ 1) = u(n)− Cx(n)− D(ϕ ◦ u)(n), u(0) = u0 ∈ U, (4.6b)
where as before, by slight abuse of notation, ϕ ◦ u denotes the function n 7→ ϕ(n, u(n)).
The following result is a state-space version of Theorem 2.2.

Theorem 4.4. Assume that system (4.1) is strongly stable, 1 ∈ %(A) andG(1) is invertible. Let ϕ : Z+×U → U be a nonlinearity.
Suppose there exist self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a number ε > 0 such that
(2.31) and (2.32) hold. Let (x, u) be the unique solution of (4.6). Then there exists a constant K ≥ 0 (which depends only on
(A, B, C,D), Q , P and ε, but not on u0 and x0) such that

‖x‖l∞ + ‖u‖l∞ + ‖∇u‖l2 + ‖ϕ ◦ u‖l2 + (‖Re 〈(ϕ ◦ u),Qu〉‖l1)
1/2
+ sup
n≥0

∥∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥
≤ K(‖x0‖ + ‖u0‖). (4.7)

Moreover, limn→∞ x(n) = 0 and statements 2–6 of Theorem 2.2 hold with r2 = u0 − C(I − A)−1x0 in (2.34) and (2.35).

Note that (4.7) implies in particular that the equilibrium (0, 0)of (4.6) is stable in the large. Furthermore, under the additional
assumption that conditions (B)–(D) of Theorem 2.2 hold, it follows from Theorem 4.4 that the equilibrium (0, 0) of (4.6) is
asymptotically stable, provided that there exists a neighbourhood V ⊂ U of 0 such that ϕ−1(0) ∩ V = {0} and globally
asymptotically stable, provided that ϕ−1(0) = {0}.
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Proof of Theorem 4.4. Let (x, u) be the unique solution of (4.6). It follows from (4.6b) that

u = u0ϑ − J(Cx+ D(ϕ ◦ u)).

Invoking (4.2) and (4.3), we see that u satisfies

u = r − J(G(ϕ ◦ u)), (4.8)

where r ∈ F(Z+,U) is defined by

r(n) :=

u
0
−

n−1∑
j=0

CAjx0, n ≥ 1,

u0, n = 0.

In order to apply Theorem 2.2 to (4.8), we need to verify the relevant assumptions. It is clear (see Remark 4.1), thatG satisfies
assumption (A). To show that r ∈ m2(Z+,U), we first note that,

n−1∑
j=0

CAjx0 = C(I − A)−1x0 − CAn(I − A)−1x0, ∀ n ≥ 1.

Hence

r(n) = u0 − C(I − A)−1x0 + CAn(I − A)−1x0, ∀ n ∈ Z+.

Writing r = r1+ r2ϑ , where r1(n) := CAn(I−A)−1x0 for all n ∈ Z+ and r2 := u0−C(I−A)−1x0, we see that r ∈ m2(Z+,U),
since, by (4.5), r1 ∈ l2(Z+,U). Thus, an application of Theorem 2.2 shows that there exists a constant K1 ≥ 0 (not depending
on r) such that

‖u‖l∞ + ‖∇u‖l2 + ‖ϕ ◦ u‖l2 + (‖Re 〈(ϕ ◦ u),Qu〉‖l1)
1/2
+ sup
n≥0

∥∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)

∥∥∥∥∥ ≤ K1‖r‖m2 . (4.9)

It also follows immediately that statements 2–6 of Theorem 2.2 hold with r2 = u0 − C(I − A)−1x0 in (2.34) and (2.35).
Furthermore, since ϕ ◦ u ∈ l2(Z+,U), it follows from Lemma 4.2 that x ∈ l∞(Z+,U), limn→∞ x(n) = 0 and

‖x‖l∞ ≤ K2(‖x0‖ + ‖ϕ ◦ u‖l2), (4.10)

for some suitable constant K2 ≥ 0 (not depending on x0 and u). Moreover, using (4.5) we deduce

‖r‖m2 =

(
∞∑
j=0

‖CAj(I − A)−1x0‖2
)1/2
+ ‖u0 − C(I − A)−1x0‖

≤ β‖(I − A)−1x0‖ + ‖u0 − C(I − A)−1x0‖,

for some β ≥ 0. Therefore,

‖r‖m2 ≤ K3(‖x
0
‖ + ‖u0‖), (4.11)

for some suitable constant K3 ≥ 0 (not depending on x0 and u0). Combining (4.9)–(4.11) shows that there exists a constant
K ≥ 0 (not depending on x0 and u0) such that (4.7) holds. �

Next we present a state-space version of Theorem 3.4. Let ϕ : R → R be an input and ψ : R → R be an output
nonlinearity, let ρ ∈ R be a reference value, κ : Z+ → R a time-varying gain, d an external disturbance, and consider the
discrete-time system (4.1), with input nonlinearity v = ϕ ◦ u, in feedback interconnection with the integrator 1u =
κ(ρϑ − d− ψ ◦ w), that is,

x(n+ 1) = Ax(n)+ B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (4.12a)
w(n) = Cx(n)+ D(ϕ ◦ u)(n), (4.12b)

u(n+ 1) = u(n)+ κ(n)(ρ − d(n)− (ψ ◦ w)(n)), u(0) = u0 ∈ R. (4.12c)

We define the tracking error e := ρ − d− ψ ◦ w.

Theorem 4.5. Assume that system (4.1) is strongly stable, 1 ∈ %(A) and G(1) > 0. Let ϕ : R → R and ψ : R → R be
non-decreasing and globally Lipschitz continuous with Lipschitz constants λ1 > 0 and λ2 > 0. Suppose that d = d1 + d2ϑ with
d1 ∈ l1(Z+), d2 ∈ R and n 7→

∑
∞

j=n |d1(j)| ∈ l
2(Z+), ρ−d2 ∈ R(G, ϕ, ψ) and κ : Z+ → R is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0(G)|.
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Let (x, u) be the unique solution of (4.12). Then the following statements hold.
1. The limit (ϕ ◦ u)∞ := limn→∞ ϕ(u(n)) exists and is finite, ∇(ϕ ◦ u) ∈ l2(Z+) and limn→∞ x(n) = (I − A)−1B(ϕ ◦ u)∞.
2. The signalsw and y := ψ ◦ w + d have finite limits satisfying

lim
n→∞

w(n) = G(1)(ϕ ◦ u)∞, lim
n→∞

y(n) = ψ(G(1)(ϕ ◦ u)∞)+ d2.

3. If κ 6∈ l1(Z+), then limn→∞ y(n) = ρ , or equivalently,

lim
n→∞

e(n) = 0.

4. If ρ − d2 is an interior point of R(G, ϕ, ψ), then u is bounded.
Proof. Let (x, u) be the unique solution of (4.12). As a consequence of (4.12b) and (4.12c) we have that

u = u0ϑ + J(κ(ρϑ − d− ψ ◦ (Cx+ D(ϕ ◦ u)))).

Invoking (4.2) and (4.3), we see that u satisfies

u = u0ϑ + J(κ(ρϑ − d− ψ(g + G(ϕ ◦ u)))), (4.13)

where g(n) := CAnx0. In order to apply Theorem 3.4 to (4.13), we need to verify the relevant assumptions. It is clear (see
Remark 4.1) that G satisfies assumption (A). By (4.5)(

∞∑
j=0

‖CAjx0‖2
)1/2
≤ β‖x0‖,

for some β ≥ 0, hence g ∈ l2(Z+). Statements 2–4 now follow immediately from the application of Theorem 3.4 to (4.13). It
remains to show that statement 1 holds. Again applying Theorem 3.4 to (4.13), we obtain that (ϕ ◦ u)∞ := limn→∞ ϕ(u(n))
exists and is finite and ∇(ϕ ◦ u) ∈ l2(Z+). Lemma 4.3 shows that limn→∞ x(n) = (I − A)−1B(ϕ ◦ u)∞. �

Appendix

Proof of Lemma 4.2. By (4.2) we have,

‖x(n)‖ ≤ ‖An‖‖x0‖ +

∥∥∥∥∥n−1∑
j=0

An−1−jBv(j)

∥∥∥∥∥ , ∀ n ≥ 1. (A.1)

Defining

ṽ(j) :=
{
v(n− 1− j), if 0 ≤ j ≤ n− 1,
0, if j ≥ n,

it follows from (4.4) that,∥∥∥∥∥n−1∑
j=0

An−1−jBv(j)

∥∥∥∥∥ =
∥∥∥∥∥ ∞∑
j=0

AjB̃v(j)

∥∥∥∥∥ ≤ α‖̃v‖l2 ≤ α‖v‖l2 , ∀ n ≥ 1, (A.2)

for some α ≥ 0. Noting that A is strongly stable, an application of the uniform boundedness principle to {An}n∈N yields that
‖An‖ ≤ K1 for some constant K1 ≥ 0 and for all n ∈ Z+. Therefore, by (A.1) and (A.2),

‖x(n)‖ ≤ K1‖x0‖ + α‖v‖l2 , ∀ n ∈ Z+.

Consequently, with K := max{K1, α},

‖x‖l∞ ≤ K(‖x0‖ + ‖v‖l2).

It remains to show that limn→∞ x(n) = 0. To this end note that, by (4.1a),

x(n) = An−mx(m)+
n−1∑
j=m

An−1−jBv(j), ∀ n ≥ m+ 1. (A.3)

Defining

ṽ(j) :=
{
v(n− 1− j), 0 ≤ j ≤ n−m− 1,
0, j ≥ n−m,

it follows that
n−1∑
j=m

An−1−jBv(j) =
n−m−1∑
j=0

AjB̃v(j), ∀ n ≥ m+ 1.



J.J. Coughlan, H. Logemann / Nonlinear Analysis 71 (2009) 4769–4789 4789

Invoking (4.4), we obtain∥∥∥∥∥n−1∑
j=m

An−1−jBv(j)

∥∥∥∥∥ =
∥∥∥∥∥n−m−1∑
j=0

AjB̃v(j)

∥∥∥∥∥ ≤ α
(
n−1∑
j=m

‖v(j)‖2
)1/2

, ∀ n ≥ m+ 1, (A.4)

for some α ≥ 0. Let ε > 0. Since v ∈ l2(Z+,U), there existsm ≥ 0 such that

n−1∑
j=m

‖v(j)‖2 ≤
∞∑
j=m

‖v(j)‖2 ≤
ε2

4α2
, ∀ n ≥ m+ 1. (A.5)

By strong stability of A, there existsm1 ≥ 1 such that

‖Anx(m)‖ ≤ ε/2, ∀ n ≥ m1. (A.6)

Combining (A.3)–(A.6), we obtain

‖x(n)‖ ≤ ‖An−mx(m)‖ +

∥∥∥∥∥n−1∑
j=m

An−1−jBv(j)

∥∥∥∥∥ ≤ ε

2
+
ε

2
= ε, ∀ n ≥ m+m1,

showing that limn→∞ ‖x(n)‖ = 0. �

Proof of Lemma 4.3. By hypothesis, 1 ∈ %(A), and thus, by (4.1a),

(I − A)−1x(n+ 1) = (I − A)−1Ax(n)+ (I − A)−1Bv(n). (A.7)

Noting that (I − A)−1A = (I − A)−1 − I , we obtain from (A.7),

(I − A)−1(1x)(n) = −(x(n)− (I − A)−1Bv(n)). (A.8)

Moreover, by (4.1a),

(1x)(n+ 1) = A(1x)(n)+ B(1v)(n). (A.9)

Since, by assumption,1v ∈ l2(Z+,U), an application of Lemma 4.2 to (A.9) yields

lim
n→∞

(1x)(n) = 0.

Consequently, taking the limit as n→∞ in (A.8), we conclude that

lim
n→∞

(x(n)− (I − A)−1Bv(n)) = 0. �
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