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The Z-transform and linear multistep stability
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This paper makes systematic use of control-theoretic methods such as the Z-transform, small-gain the-
orems and frequency-domain stability criteria in the analysis of the stability behaviour of linear multistep
methods. Some of the results in Nevanlinna’s work are recovered and a number of new boundedness and
asymptotic properties of solutions of numerical schemes are obtained. In particular, we give a careful and
detailed analysis of the nonlinear stability properties of strictly zero-stable methods.
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1. Introduction

In this paper, we consider the ordinary differential equation (ODE) problem

dy

dt
(t) = f (t, y(t)), t ∈ R+, y(0) = y0,

where f : R+ × H0 → H and H0 ⊂ H is a subspace of the (possibly finite-dimensional) complex
Hilbert space H . This is to be approximated by a linear multistep method of the form

q∑
j=0

α jUn+ j = h
q∑

j=0

β j f ((n + j)h,Un+ j ), n ∈ Z+, (1.1)

with fixed time-step h > 0 and initial data U0, . . . , Uq−1. Our main concern here is to find conditions
on h f and the method under which the difference of two numerical solutions, U 1

n − U 2
n , is bounded

uniformly with respect to n (with bound in terms of the initial data). Closely related questions are:

(i) When does the error grow at worst linearly as a function of n?

(ii) When is Un itself bounded uniformly in n?

These issues are also connected with previous work, the aim of which was to find error bounds independ-
ent of the Lipschitz constant of the nonlinearity f .

For A-stable methods, Dahlquist (1978) established that ‖U 1
n − U2

n ‖ is uniformly bounded for all
h f satisfying the monotonicity condition

Re〈 f (t, ξ1) − f (t, ξ2), ξ1 − ξ2〉H � 0, t � 0, ξ1, ξ2 ∈ H0. (1.2)
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However, for the more commonly used A(α)-stable methods, the results of Dahlquist (1978) only es-
tablished stability for disks of the form

{z ∈ C: |z − c| � R} (where c ∈ C)

contained in S, the linear stability domain of the method. More precisely, ‖U1
n − U 2

n ‖ was shown to be
bounded uniformly in n for all h f satisfying the incremental circle condition,

‖h f (t, ξ1) − h f (t, ξ2) − c(ξ1 − ξ2)‖H � R‖ξ1 − ξ2‖H , t � 0, ξ1, ξ2 ∈ H0. (1.3)

This is a less satisfactory condition for the integration of stiff systems as it implies an upper bound on h.
Related results were given by Nevanlinna (1977b).

Expanded regions of nonlinear stability for A(α)-stable methods were obtained by Nevanlinna &
Odeh (1981), who applied the theory of Popov multipliers from control theory, see Popov (1962). How-
ever, this was at the cost of additional assumptions on h f .

In this paper, our objective is to use the Z-transform method to investigate the nonlinear sta-
bility of A(α)-stable methods for h f satisfying an incremental circle condition. Although transform
methods have already been used by Nevanlinna (1977a,b), the proofs and assumptions in these papers
are somewhat difficult to follow. The presentation in this paper is in our opinion more transparent due
to a systematic use of the Z-transform and other control-theoretic techniques, such as ‘small-gain the-
orems’ (Section 4, see Remark 4.4(b)) and frequency-domain stability criteria (Sections 5 and 6, see
Remark 5.3). The methods of this paper will also form the basis of future work by the authors on Popov
multipliers in multistep stability which, in particular, will exploit insights from control theory on the
trade-off between the expansion of the stability region beyond a disk and further assumptions on the
structure of h f .

One class of new results in this paper is bounds on ‖U 1
n −U 2

n ‖ purely in terms of the initial data; i.e.
bounds independent of h f . These are especially important in applications to parabolic partial differential
equations. Additionally, we prove new results on the behaviour of (U 1

n − U 2
n ) as n → ∞ and bounds

are obtained for some classes of methods not considered in Nevanlinna (1977a,b), see Remarks 4.4(a)
and 6.7.

The objective of bounding a single solution (Un) of (1.1) leads to a consideration of the (weak)
dissipativity condition

Re〈 f (t, ξ), ξ 〉H � 0, t � 0, ξ ∈ H0, (1.4)

and the nonincremental circle condition

‖h f (t, ξ) − cξ‖H � R‖ξ‖H , t � 0, ξ ∈ H0, (1.5)

where c ∈ C and R > 0. While (1.4) is relevant for A-stable methods, (1.5) is important in the context
of A(α)-stable methods. Condition (1.5) bounds the deviation of h f (ξ) from the linear function cξ .
Assuming (1.5), we show that (Un) is bounded uniformly in n, provided that the closed disk |z −c| � R
is in S. Under mildly strengthened hypotheses, new results on the qualitative asymptotic behaviour of
Un are also shown. Stability results involving the conditions (1.4) and (1.5) can frequently be invoked to
derive corresponding ‘incremental’ results in which (1.4) and (1.5) are replaced by (1.2) and (1.3), see
Sections 4 and 6.

The methodology used in this paper requires us to first write (1.1) as a convolution identity. If (Un)
is the solution of (1.1), then one may define sequences u, r and s, such that

u(n) := Un, r(n) :=
{

αq−n, 0 � n � q,

0, n > q,
and s(n) :=

{
βq−n, 0 � n � q,

0, n > q.
(1.6)
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Method (1.1) may then be rewritten as the convolution identity

r ∗ u = s ∗ ( fh ◦ u) + v, (1.7)

where

( fh ◦ u)(n) := h f (nh,Un), n ∈ Z+, (1.8)

v(n) :=
{

(r ∗ u)(n) − (s ∗ ( fh ◦ u))(n), 0 � n � q − 1,

0, n � q,
(1.9)

and (a ∗ b)(n) = ∑n
k=0 a(n − k)b(k), n ∈ Z+, denotes the convolution between two sequences.

Further analysis makes use of the Z-transform

â(z) :=
∞∑

n=0

a(n)z−n,

for z ∈ C with |z| sufficiently large. While much of the Z-transform methodology is similar to more
familiar Fourier techniques, the Z-transform, as is well-known in control theory, is a more natural tool
in the context of stability analysis (see Section 2 for more details on the Z-transform).

The structure of the paper is as follows. In Section 2, standard results on sequences, convolutions
and Z-transforms are presented. In Section 3, the convolution identity (1.7) is proved, together with
related identities. In Section 4, we consider h f satisfying a ‘strict’ version of (1.3):

sup
t�0,ξ1,ξ2∈H0,ξ1 �=ξ2

‖h f (t, ξ1) − h f (t, ξ2) − c(ξ1 − ξ2)‖H

‖ξ1 − ξ2‖H
< R.

A straightforward proof using the ‘small-gain’ idea shows that (U 1
n − U 2

n ) is bounded uniformly in n.
In Section 5, we derive a stability criterion of a control-theoretic nature which guarantees certain
boundedness and asymptotic properties for the solutions of a nonlinear discrete-time Volterra equa-
tion. This criterion, which we expect to be of independent interest in discrete-time and sampled-data
control theory, is used in Section 6 in the context of a careful and detailed stability analysis of strictly-
zero stable methods (1.1) with h f satisfying the (nonstrict) circle condition (1.3). Some of the results of
Nevanlinna (1977a,b) are recovered and a number of new boundedness and asymptotic properties of the
solutions of (1.1) are obtained.

Notation. Let Z+ := {0, 1, 2, . . .}, N := Z+\{0} and R+ := [0, ∞). For c ∈ C and R > 0 define

B(c, R) := {z ∈ C: |z − c| < R}.
For α > 0 set

Eα := {z ∈ C: |z| > α} = C\B(0, α).

Let H be a complex Hilbert space and H0 a subspace of H . The vector space of all unilateral sequences
(defined on Z+) with values in H is denoted by S(H). For 1 � p � ∞, let l p(H) denote the l p-space
of unilateral H -valued sequences. In the special case H = C, we write l p for l p(C) and S for S(C).
For K ⊂ H a nonempty subset and ξ0 ∈ H , we define

dist(ξ0, K ) := inf
ξ∈K

‖ξ0 − ξ‖H .

For ϕ: Z+ × H0 → H and x : Z+ → H0, by slight abuse of notation, we denote the function n �→
ϕ(n, x(n)) by ϕ ◦ x .
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2. Preliminaries: convolutions and Z-transforms

For a ∈ S and b ∈ S(H), we define the ‘convolution’ a ∗ b of a and b by

(a ∗ b)(n) :=
n∑

k=0

a(n − k)b(k).

The convolution product in the space S is commutative and the sequence δ defined by

δ(n) :=
{

1, n = 0,

0, n ∈ N,

is the unit element. A sequence a ∈ S is invertible (i.e. there exists a−1 ∈ S such that a ∗ a−1 =
a−1 ∗ a = δ) if and only if a(0) �= 0.

Defining θ ∈ S by

θ(n) = 1, n ∈ Z+,

summation of a ∈ S(H), Σa, can be represented by convolution with θ :

(Σa)(n) :=
n∑

j=0

a( j) = (θ ∗ a)(n).

It is easily verifiable that

θ−1(n) :=

⎧⎪⎨
⎪⎩

1, n = 0,

−1, n = 1,

0, n � 2.

Defining the backward difference operator ∇ : S(H) → S(H) by

(∇a)(n) :=
{

a(0), n = 0,

a(n) − a(n − 1), n ∈ N,

it follows that ∇a = θ−1 ∗ a and

(Σ∇)(a) = (∇Σ)(a) = a, a ∈ S(H).

Let a ∈ S(H). The Z-‘transform’ Za of a is defined by

â(z) := (Za)(z) :=
∞∑
j=0

a( j)z− j , (2.1)

where z is a complex variable. We say that a is Z-‘transformable’ if the series in (2.1) converges
for some z = z0 ∈ C\{0}, in which case it converges absolutely for all z ∈C with |z| > |z0|. It is an
elementary fact from the theory of power series, see e.g. Conway (1978, p. 31), that a isZ-transformable
if and only if

ra := lim sup
n→∞

‖a(n)‖1/n
H < ∞,
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in which case (2.1) converges absolutely if |z| > ra and diverges if |z| < ra . For η > ra we have that

â(η eiω) =
∞∑

k=0

(a(k)η−k)e−ikω, ω ∈ [0, 2π),

showing that the function ω �→ â(η eiω) is the discrete Fourier transform of the sequence (a(k)η−k)k∈Z+ .
If a ∈ S(H) is Z-transformable, then, for every η > ra , the function â is holomorphic and bounded on
Eη. Conversely, if η > 0 and A: Eη → H is holomorphic and bounded, then a ∈ S(H) defined by

a(n) := 1

2π i

∫
|z|=ν

A(z)zn−1dz = νn

2π

∫ 2π

0
A(ν eiω)eniωdω, where ν > η,

is the unique Z-transformable sequence (with ra � η) such that â(z) = A(z) for all z ∈ Eη and we
write a = Z−1(A).

Under the Z-transform, convolutions become multiplications: if a ∈ S and b ∈ S(H) are Z-
transformable, then a ∗ b is Z-transformable and

(̂a ∗ b)(z) = â(z)b̂(z), z ∈ C s.t. |z| > max{ra, rb}.
For a, b ∈ l1(H) ⊂ l2(H) the ‘Parseval–Bessel’ identity holds:

∞∑
k=0

〈a(k), b(k)〉H = 1

2π

∫ 2π

0
〈â(eiω), b̂(eiω)〉H dω.

A sequence a ∈ S(H) is said to be exponentially decaying if there exist η ∈ (0, 1) and M > 0 such that

‖a(n)‖H � Mηn, n ∈ Z+.

Note that a ∈ S(H) is exponentially decaying if and only if ra < 1.
The following three results contain some standard results on convolutions andZ-transforms and will

be used freely in the following sections.

LEMMA 2.1 Assume that a ∈ l1 and let 1 � p �∞. The following statements hold:

(a) ‖a ∗ b‖l p(H) � ‖a‖l1‖b‖l p(H) for all b ∈ l p(H).

(b) The l2-induced norm of the operator l2(H) → l2(H), b �→ a ∗ b, is given by

sup
ω∈[0,2π)

|â(eiω)| = sup
|z|�1

|â(z)|.

(c) If b ∈ S(H), then

lim
n→∞ b(n) = 0 =⇒ lim

n→∞(a ∗ b)(n) = 0.

Proof. We refer to Desoer & Vidyasagar (1975, p. 244) for the proof of part (a) and to Partington (1997,
p. 85) for part (b). To prove part (c), assume that b(n) → 0 as n → ∞. For every n ∈ Z+, let mn denote
the largest integer less than or equal to n/2. Since

(a ∗ b)(n) =
mn∑
k=0

a(n − k)b(k) +
n∑

k=mn+1

a(n − k)b(k),
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we obtain

‖(a ∗ b)(n)‖H � ‖b‖l∞(H)

∑
k�n/2

|a(k)| + ‖a‖l1 sup
k�n/2

‖b(k)‖H .

By assumption b(k) → 0 as k → ∞ and, since a ∈ l1,

lim
n→∞

∑
k�n/2

|a(k)| = 0.

Consequently, (a ∗ b)(n) → 0 as n → ∞. �
For every a ∈ S, we define

‖a‖L(l p,lq ) := sup
b∈l p(H)

b �=0

‖a ∗ b‖lq (H)

‖b‖l p(H)
.

It is convenient to set ‖a‖L(l p) := ‖a‖L(l p,l p). If ‖a‖L(l p,lq ) < ∞, then the operator b �→ a ∗ b is
bounded from l p(H) into lq(H) and the norm of this operator is given by ‖a‖L(l p,lq ). Lemma 2.1 says
that, for a ∈ l1,

‖a‖L(l p) � ‖a‖l1 , 1 � p �∞,

and

‖a‖L(l2) = sup
ω∈[0,2π)

|â(eiω)| = sup
|z|�1

|â(z)|.

Furthermore, if a ∈ l1, it is easy to see that ‖a‖L(l1) = ‖a‖L(l∞) = ‖a‖l1 .
In the following, if a ∈ S and k ∈ N, then

ak := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
k factors

.

For ξ ∈ C, define

ϑξ := (0, 1, ξ, ξ 2, ξ3, . . .).

Note that ϑ̂ξ (z) = 1/(z − ξ).
A rational function A is said to be ‘proper’ if lim|z|→∞ |A(z)| < ∞.

LEMMA 2.2 Let A be a proper rational function. Then there exists a Z-transformable sequence a ∈ S
such that a = Z−1(A) and a is of the form

a = γ δ +
m∑

k=1

mk∑
j=1

γk jϑ
j
zk , (2.2)

where γ, γk j ∈ C are suitable coefficients, the zk are the poles of A and mk denotes the multiplicity
of zk .
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Proof. If pk is the principal part of the Laurent expansion of A at zk , then

pk(z) =
mk∑
j=1

γk j

(z − zk) j
,

where the γk j are suitable constants. The function B := A −∑m
k=1 pk is a rational function without any

poles, and hence B must be a polynomial. Since A is proper, it follows that B is a constant polynomial
equal to some γ ∈ C. Therefore, A = γ + ∑m

k=1 pk , and thus a := Z−1(A) is of the form (2.2). �
The following corollary is an immediate consequence of Lemma 2.2.

COROLLARY 2.3 For a proper rational function A, the following statements hold:

(a) If A is holomorphic in E1, then Z−1(A) is exponentially decaying; in particular, Z−1(A) ∈ l1.

(b) If A is holomorphic in E1 and has only simple poles {zk}m
k=1 on the complex unit circle, then

Z−1(A) = a0 +
m∑

k=1

γkϑzk ,

where a0 ∈ S is exponentially decaying and γk denotes the residue of A at zk .

3. The method as a convolution identity

We assume throughout the paper that the method (1.1) has coefficients α0, . . . , αq , β0, . . . , βq ∈ R with
αq > 0 and that the polynomials

ρ(z) :=
q∑

j=0

α j z
j , σ (z) :=

q∑
j=0

β j z
j (3.1)

are coprime. We observe that

r̂(z) = z−qρ(z), ŝ(z) = z−qσ(z), z ∈ C, (3.2)

where r and s are given by (1.6). The method is said to be ‘consistent’ if ρ(1) = 0 and ρ′(1) = σ(1).
A polynomial p(z) satisfies the ‘root condition’ if

p(z) = 0 implies either |z| < 1, or |z| = 1 and p′(z) �= 0.

The method (1.1) is said to be ‘zero-stable’ if ρ satisfies the root condition. The method (1.1) is ‘strictly
zero-stable’ if it is zero-stable and z = 1 is the only root of ρ on the complex unit circle. The ‘linear
stability domain’ S for method (1.1) is the set

S := {ζ ∈ C: ρ(z) − ζσ (z) satisfies the root condition}.
We emphasise that the properties of consistency, zero-stability and strict zero-stability will only be
assumed where indicated.

In applications, the boundedness of several related quantities is considered: the numerical solu-
tion, the numerical error and the difference between two numerical solutions. The following lemma is
applicable in all these cases.
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LEMMA 3.1 Suppose that Dn ∈ H for n � q, and that ϕ: Z+ × H0 → H . Suppose also that Xn ∈ H0,
n ∈ Z+, satisfies

q∑
j=0

α j Xn+ j =
q∑

j=0

β jϕ(n + j, Xn+ j ) + Dn+q , n ∈ Z+.

Then, for x ∈ S(H0) given by x(n) = Xn , n ∈ Z+, and r, s ∈ S as defined in (1.6),

r ∗ x = s ∗ (ϕ ◦ x) + v, (3.3)

where v is given by

v(n) :=
{

(r ∗ x)(n) − (s ∗ (ϕ ◦ x))(n), 0 � n � q − 1,

Dn, n � q.

Proof. Considering the left-hand side of (3.3), the finite support of r implies that

(r ∗ x)(n + q) =
n+q∑
k=0

r(n + q − k)x(k) =
q∑

j=0

r(q − j)x(n + j) =
q∑

j=0

α j Xn+ j , n ∈ Z+.

Similarly, considering the right-hand side of (3.3),

(s ∗ (ϕ ◦ x))(n + q) + v(n + q) =
q∑

j=0

β jϕ(n + j, Xn+ j ) + Dn+q , n ∈ Z+.

Hence, (r ∗ x)(n) = (s ∗ (ϕ ◦ x))(n) + v(n) for all n � q. By definition of v it now follows that (3.3)
holds. �

Consider the ODE problem,

dy

dt
(t) = f (t, y(t)), t ∈ R+, y(0) = y0, (3.4)

where f : R+ × H0 → H satisfies suitable regularity conditions. We describe three situations in numer-
ical analysis to which Lemma 3.1 applies.

Case 1 (The numerical solution). For the method given by (1.1), Lemma 3.1 may be applied with

Xn := Un ; ϕ(n, ξ) := h f (nh, ξ), ξ ∈ H0; Dn+q := 0, n ∈ Z+.

Case 2 (The numerical error). Let y be the solution of (3.4). The ‘truncation error’ Tn+q ∈ H , n ∈ Z+,
is defined by

q∑
j=0

α j y((n + j)h) = h
q∑

j=0

β j f ((n + j)h, y((n + j)h)) + hTn+q , n ∈ Z+.

Lemma 3.1 may be applied with

Xn := y(nh) − Un, n ∈ Z+,

ϕ(n, ξ) := h f (nh, y(nh)) − h f (nh, y(nh) − ξ), n ∈ Z+, ξ ∈ H0,

Dn := hTn, n � q,

where Un is the solution of (1.1).
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Case 3 (Difference of two numerical solutions). If U1
n ,U 2

n ∈ H0, n ∈ Z+, are two solutions of (1.1),
then Lemma 3.1 may be applied with

Xn := U 1
n − U 2

n , n ∈ Z+,

ϕ(n, ξ) := h f (nh,U 1
n ) − h f (nh,U1

n − ξ), n ∈ Z+, ξ ∈ H0,

Dn := 0, n ∈ Z+.

4. A simple circle criterion

In this section, the initial aim is to establish boundedness of (Un), a solution of (1.1), under the assump-
tion that f satisfies the circle condition (1.5):

‖h f (t, ξ) − cξ‖H � R‖ξ‖H , t � 0, ξ ∈ H0.

This is related to the incremental circle condition (1.3) assumed by Dahlquist (1978, Section 5) in
investigating the problem of bounding the difference between two solutions of (1.1). For the case of
bounding a single solution (Un), the results of Dahlquist (1978, Section 5), proved using G-norms and
Möbius maps, imply that if B(c, R) ⊂ S and f satisfies (1.5) then ‖Un‖H is bounded uniformly in n.
In Sections 5 and 6, we give a different proof of this result, using the convolution representation of the
method, Z-transform theory and summation by parts.

Here, we give a simple proof of a somewhat weaker result, using the convolution representation
derived in Case 1 of Section 3, by means of a technique known as the small-gain argument in control
theory, see e.g. Desoer & Vidyasagar (1975) and Vidyasagar (1993). This essentially means that the
nonlinear bound is obtained as a perturbation of a linear, constant coefficient, problem: in this case, the
numerical solution of

dy

dt
= c

h
y.

Such an argument is feasible because ‖(r − cs)−1 ∗ s‖L(l2) can be ‘exactly’ expressed in terms of the
polynomials ρ(z) and σ(z) (see (3.2)) and thus be related to the stability domain S, as in the following
lemma.

LEMMA 4.1 For c ∈ C and R > 0, the following equivalences hold for method (1.1):

B(c, R) ⊂ S ⇐⇒ inf
|z|�1

|ρ(z)/σ (z) − c| � R ⇐⇒ sup
|z|�1

|σ(z)/(ρ(z) − cσ(z))| � 1/R.

Proof. Assuming B(c, R) ⊂ S, we deduce that B(c, R) ⊂ int(S). Hence, if ζ ∈ B(c, R), then ρ(z) −
ζσ(z) = 0 implies that |z| < 1. Thus,

inf
|z|�1

|ρ(z)/σ (z) − c| � R, (4.1)

or, equivalently,

sup
|z|�1

|σ(z)/(ρ(z) − cσ(z))| � 1/R. (4.2)

Conversely, assume (4.2) or, equivalently, (4.1) holds. For ζ ∈ C\S, there exists z0 ∈ C with |z0| � 1
and such that ρ(z0) − ζσ(z0) = 0. Thus, by (4.1), |ζ − c| � R, which implies ζ ∈ C\B(c, R). We
deduce that B(c, R) ⊂ S. �
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For m ∈ Z+, let P(m): S(H) → S(H) be the projection such that

(P(m)a)(n) =
{

a(n), 0 � n � m,

0, n > m,
n ∈ Z+, a ∈ S(H).

The following properties of P(m) are readily verified.

LEMMA 4.2 For a ∈ S, b ∈ l2(H), limm→∞ ‖P(m)b − b‖l2(H) = 0 and

P(m)(a ∗ b) = P(m)a ∗ P(m)b, ‖P(m)b‖l2(H) � ‖b‖l2(H), m ∈ Z+.

The following theorem is the main result of this section.

THEOREM 4.3 Assume that for some c ∈ C and R > 0, B(c, R) ⊂ S and that

‖h f (nh, ξ) − cξ‖H � R1‖ξ‖H , (n, ξ) ∈ Z+ × H0, (4.3)

for some R1 < R. Then the solution of (1.1) satisfies

sup
n�0

‖Un‖H �
( ∞∑

n=0

‖Un‖2
H

)1/2

� γ

⎛
⎝q−1∑

j=0

‖U j‖2
H

⎞
⎠1/2

,

where

γ := R

R − R1

maxω∈[0,2π) |ρ(eiω)| + (R1 + |c|) maxω∈[0,2π) |σ(eiω)|
minω∈[0,2π) |(ρ − cσ)(eiω)| . (4.4)

Proof. As c ∈ int(S), ρ(z) − cσ(z) = 0 implies |z| < 1. Also, by Lemma 4.1, σ
ρ−cσ (z) and zq

(ρ−cσ)(z)
are proper rational functions. Hence, by Corollary 2.3 part (a) and Lemma 2.1,

‖(r − cs)−1 ∗ s‖L(l2) = max
ω∈[0,2π)

∣∣∣∣ σ

ρ − cσ
(eiω)

∣∣∣∣ = 1

minω∈[0,2π)

∣∣∣∣ ρ
σ (eiω) − c

∣∣∣∣
� 1

R
,

‖(r − cs)−1‖L(l2) = 1

minω∈[0,2π) |(ρ − cσ)(eiω)| =: µ,

where, of course, (r − cs)−1 denotes the inverse of r − cs with respect to convolution. By (1.9),

r ∗ u = s ∗ ( fh ◦ u) + v, (4.5)

where fh : Z+ × H0 → H is given by

fh(n, ξ) := h f (nh, ξ), (n, ξ) ∈ Z+ × H0. (4.6)

Hence, for m � q,

u(m) = P(m)((r − cs)−1 ∗ s ∗ ( fh ◦ u(m) − cu(m))) + P(m)((r − cs)−1 ∗ v), (4.7)
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where u(m) := P(m)u. From Lemma 4.2,

‖u(m)‖l2(H) � R−1‖ fh ◦ u(m) − cu(m)‖l2(H) + µ‖v‖l2(H).

Now, (4.3) implies that

‖ fh ◦ u(m) − cu(m)‖l2(H) =
(

m∑
n=0

‖h f (nh, u(n)) − cu(n)‖2
H

)1/2

� R1‖u(m)‖l2(H).

Hence, using R1 < R,

‖u(m)‖l2(H) �
R1

R
‖u(m)‖l2(H) + µ‖v‖l2(H) � µR

‖v‖l2(H)

R − R1
. (4.8)

To bound ‖v‖l2(H), we deduce from (1.9) and m � q that

v(n) :=
{

(r ∗ u(m))(n) − (s ∗ ( fh ◦ u(m)))(n), 0 � n � q − 1,

0, n � q.

Now,

‖ fh ◦ u(m)‖l2(H) � |c|‖u(m)‖l2(H) + ‖ fh ◦ u(m) − cu(m)‖l2(H) � (|c| + R1)‖u(m)‖l2(H).

Using ‖r‖L(l2) = maxω∈[0,2π) |ρ(eiω)| and ‖s‖L(l2) = maxω∈[0,2π) |σ(eiω)| to bound ‖v‖l2(H) in (4.8),
we deduce that (

m∑
n=0

‖u(n)‖2
H

)1/2

� γ

⎛
⎝q−1∑

j=0

‖u( j)‖2
H

⎞
⎠1/2

, m � q.

The proof is completed by letting m tend to ∞. �
REMARK 4.4

(a) While Theorem 4.3 has some overlap with a result by Nevanlinna (1977b) (see Theorem 3.1 in
Nevanlinna, 1977b, with θ < 1 in the notation of Nevanlinna, 1977b), there are considerable
differences:

(a1) The approach adopted in Nevanlinna (1977b) considers f that are independent of t and
requires that the map I − ah f is bijective and its inverse is globally Lipschitz,1 where a is
a constant which appears in a frequency-domain condition involving ρ and σ (in particular
1/a ∈ int(S)), making the application of the main result in Nevanlinna (1977b) potentially
awkward if a �= 0 (which, e.g. is the case if S is bounded).

(a2) The condition in Nevanlinna (1977b) on the linear stability domain involves disks with
centre on the real axis (see p. 60 in Nevanlinna, 1977b), while Theorem 4.3 allows for
disks with centre anywhere in the complex plane.

1An inspection of the proof of Theorem 3.1 in Nevanlinna (1977b) shows that, if it is the aim to obtain bounds on the numerical
solution rather than the error, then the global Lipschitz assumption on (I −ah f )−1 can be replaced by a global linear boundedness
condition, i.e. supξ∈H (‖(I − ah f )−1ξ‖H /‖ξ‖H ) < ∞.
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(b) The proof of Theorem 4.3 is essentially a combined application of ‘loop-transformation’ and
small-gain ideas familiar in control theory (see Desoer & Vidyasagar, 1975; Vidyasagar, 1993):
loop-transformation applied to (4.5) gives (4.7) which satisfies the small-gain condition, as fol-
lows from the assumption that R1 < R.

(c) Note that Theorem 4.3 cannot be applied if f is bounded and there exists a z ∈ E1 such that
ρ(z) = 0 (the latter is true if (1.1) is consistent), as follows from Lemma 4.1 and (4.3).

(d) Using a routine argument involving exponential weighting, the conclusions of Theorem 4.3 can
be strengthened (without changing the assumptions). In fact, it may be shown that there exist
Γ > 0 and η ∈ (0, 1), depending only on c, R, R1 and the method (ρ, σ ), such that the solution
of (1.1) satisfies

‖Un‖H � Γ ηn

⎛
⎝q−1∑

j=0

‖U j‖2
H

⎞
⎠1/2

, n ∈ Z+.

We now return to the problem of bounding the difference between two solutions of (1.1). Before
stating our result, we make an observation on the relationship between the two circle conditions (1.3)
and (1.5), the proof of which is self-evident.

LEMMA 4.5 Suppose that (U 1
n )n∈Z+ and (U2

n )n∈Z+ are two solutions of (1.1) and that Condition (1.3),

‖h f (t, ξ1) − h f (t, ξ2) − c(ξ1 − ξ2)‖H � R‖ξ1 − ξ2‖H , t � 0, ξ1, ξ2 ∈ H0,

is satisfied for some c ∈ C and R > 0. Then,

q∑
j=0

α j (U
1
n+ j − U2

n+ j ) =
q∑

j=0

β jψ(n + j,U 1
n+ j − U2

n+ j ), n ∈ Z+,

where ψ : Z+ × H0 → H , defined by

ψ(n, ξ) := h f (nh, ξ + U 2
n ) − h f (nh,U 2

n ), n ∈ Z+, ξ ∈ H0,

satisfies the (nonincremental) circle condition

‖ψ(n, ξ) − cξ‖ � R‖ξ‖, n ∈ Z+, ξ ∈ H0.

The following result, bounding ‖U 1
n −U 2

n ‖, follows from a combination of Theorem 4.3 and Lemma
4.5 (or by analogy with the proof of Theorem 4.3).

COROLLARY 4.6 Assume that for some c ∈ C and R > 0, B(c, R) ⊂ S and that

‖h f (nh, ξ1) − h f (nh, ξ2) − c(ξ1 − ξ2)‖H � R1‖ξ1 − ξ2‖H , n ∈ Z+, ξ1, ξ2 ∈ H0, (4.9)

for some R1 < R. Let (U1
n ) and (U 2

n ) be two solutions of (1.1). Then

sup
n�0

‖U1
n − U 2

n ‖H �
( ∞∑

n=0

‖U 1
n − U 2

n ‖2
H

)1/2

� γ

⎛
⎝q−1∑

j=0

‖U 1
j − U 2

j ‖2
H

⎞
⎠1/2

,

where γ is given by (4.4).
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A conclusion similar to Corollary 4.6 is obtained, under weaker assumptions, in Corollary 6.8. Both
these results are directly comparable to the work of Dahlquist (1978, Section 5).

5. A stability result for a class of nonlinear discrete-time Volterra equations

Consider the nonlinear discrete-time Volterra equation

x(n) =
n∑

j=0

g(n − j)ϕ( j, x( j)) + w(n),

where the convolution kernel g: Z+ → C, the (time-dependent) nonlinearity ϕ: Z+ × H0 → H and the
forcing function w: Z+ → H are given. The above equation can be written in the more compact form

x = g ∗ (ϕ ◦ x) + w. (5.1)

A solution of (5.1) is a H0-valued function x defined on Z+ satisfying (5.1). Trivially, there exists at
least one solution (a unique solution, respectively) of (5.1) if, for every n ∈ Z+, the map

H0 → H, ξ �→ ξ − g(0)ϕ(n, ξ)

is surjective (bijective, respectively).
The subspace of all functions w ∈ S(H) which admits a decomposition of the form w = w0θ +w1,

where w0 ∈ H and w1 ∈ l p(H), is denoted by H + l p(H) =: m p(H). Endowed with the norm

‖w‖m p(H) := ‖w0‖H + ‖w1‖l p(H),

the space m p(H) is complete. We say that a subset of H is ‘precompact’ if its closure is compact.
Occasionally, we shall impose the following assumption on ϕ.

The function ϕ does not depend on t and ϕ−1(0) ∩ B

is precompact for every bounded set B ⊂ H .

}
(5.2)

It will be explicitly stated when (5.2) is assumed to hold.
The following theorem is the main result of this section. We use the convention a/∞ := 0 for a ∈ R.

THEOREM 5.1 Let g = g0θ + g1, where g0 ∈ (0, ∞) and g1 ∈ l1, let ϕ be sector-bounded in the sense
that there exists d ∈ (0, ∞] such that

Re〈ϕ(n, ξ), ξ 〉H � −‖ϕ(n, ξ)‖2
H/d, (n, ξ) ∈ Z+ × H0, (5.3)

and assume that there exists ε � 0 such that

1/d + Re ĝ(eiω) � ε, ω ∈ (0, 2π). (5.4)

(A) If ε > 0 and w ∈ m2(H), then every solution x of (5.1) has the following properties:

(A1) There exists a constant K > 0 (depending only on ε, d and g, but not on w) such that

‖x‖l∞(H) + ‖∇x‖l2(H) + ‖ϕ ◦ x‖l2(H) + (‖Re〈ϕ ◦ x, x〉H‖l1)1/2

+ ‖Σ(ϕ ◦ x)‖l∞(H) � K‖w‖m2(H). (5.5)
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(A2) The limit limn→∞ ‖x(n)‖H exists and is finite; in particular, if dim H = 1, then limn→∞
x(n) exists.

(A3) If (5.2) holds and if

infξ∈B∩H0 ‖ϕ(ξ)‖ > 0 for every bounded closed

set B ⊂ H such that ϕ−1(0) ∩ B = ∅,

}
(5.6)

then limn→∞ dist(x(n), ϕ−1(0)) = 0.

(B) If ε = 0 and w ∈ m1(H), then every solution x of (5.1) has the following properties:

(B1) There exists a constant K > 0 (depending only on d and g, but not on w) such that

‖x‖l∞(H) +
(∥∥∥∥Re

〈
ϕ ◦ x, x + 1

d
(ϕ ◦ x)

〉
H

∥∥∥∥
l1

)1/2

+ ‖Σ(ϕ ◦ x)‖l∞(H) � K‖w‖m1(H).

(5.7)

(B2) If (5.2) holds and if

supξ∈B∩H0
Re〈ϕ(ξ), ξ + ϕ(ξ)/d〉 < 0 for every bounded

closed set B ⊂ H such that ϕ−1(0) ∩ B = ∅,

}
(5.8)

then limn→∞ dist(x(n), ϕ−1(0)) = 0.

REMARK 5.2

(a) Under the assumptions of statement (A1) (respectively, statement (B1)) of Theorem 5.1 and
the additional assumptions that ϕ does not depend on time, ϕ is continuous and H0 is closed,
it follows from (5.5) (respectively, (5.7)) that, if the limit limn→∞ x(n) =: x∞ exists, then
x∞ ∈ ϕ−1(0).

(b) Assume that ϕ does not depend on t . If dim H < ∞ and ϕ is continuous, then assumption (5.2)
is satisfied. If additionally H0 is closed, then (5.6) also holds.

Proof of Theorem 5.1. We have

x − g ∗ (ϕ ◦ x) = w,

or equivalently,

x − g1 ∗ (ϕ ◦ x) − g0(θ ∗ (ϕ ◦ x)) = w. (5.9)

Forming the inner product with (ϕ ◦ x)( j) and summing from 0 to n in (5.9) yields,

n∑
j=0

〈(ϕ ◦ x)( j), w( j)〉H =
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H −
n∑

j=0

〈(ϕ ◦ x)( j), (g1 ∗ (ϕ ◦ x))( j)〉H

− g0

n∑
j=0

〈(ϕ ◦ x)( j),
j∑

l=0

(ϕ ◦ x)(l)〉H . (5.10)
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A simple proof by induction on n yields,

2Re
n∑

j=0

〈
(ϕ ◦ x)( j),

j∑
l=0

(ϕ ◦ x)(l)

〉
H

=
∥∥∥∥∥∥

n∑
j=0

(ϕ ◦ x)( j)

∥∥∥∥∥∥
2

H

+
n∑

j=0

‖(ϕ ◦ x)( j)‖2
H . (5.11)

Taking real parts in (5.10) and using (5.11) gives,

Re
n∑

j=0

〈(ϕ ◦ x)( j), w( j)〉H = Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H − g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j)

∥∥∥∥∥∥
2

H

− Re
n∑

j=0

〈(ϕ ◦ x)( j), (g1 ∗ (ϕ ◦ x))( j)〉H

− g0

2

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H . (5.12)

Noting that ĝ1(z) = ĝ(z) − g0z/(z − 1) and

Re
eiω

eiω − 1
= 1

2
, ω ∈ (0, 2π),

we obtain using (5.4)

Re ĝ1(e
iω) = Re ĝ(eiω) − g0

2
� ε − 1

d
− g0

2
, ω ∈ (0, 2π). (5.13)

Define v: Z+ → H by

v( j) =
{

(ϕ ◦ x)( j), if 0 � j � n,

0, otherwise.

Invoking the Parseval–Bessel identity and using (5.13), we derive that

Re
∞∑
j=0

〈v( j), (g1 ∗ v)( j)〉H = 1

2π

∫ 2π

0
Re〈v̂(eiω), (ĝ1 ∗ v)(eiω)〉H dω

� 1

2π

(
ε − 1

d
− g0

2

) ∫ 2π

0
‖v̂(eiω)‖2

H dω

=
(

ε − 1

d
− g0

2

) ∞∑
j=0

‖v( j)‖2
H .

Hence,

Re
n∑

j=0

〈(ϕ ◦ x)( j), (g1 ∗ (ϕ ◦ x))( j)〉H �
(

ε − 1

d
− g0

2

) n∑
j=0

‖(ϕ ◦ x)( j)‖2
H . (5.14)
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Combining (5.12) and (5.14) gives

Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H + 1

d

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H − ε

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H

− g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j)

∥∥∥∥∥∥
2

H

� Re
n∑

j=0

〈(ϕ ◦ x)( j), w( j)〉H . (5.15)

To prove part (A), assume that ε > 0 and w = w0θ + w1, where w0 ∈ H and w1 ∈ l2(H). Combining
the identity

g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j)

∥∥∥∥∥∥
2

H

+ Re
n∑

j=0

〈(ϕ ◦ x)( j), w0〉H = g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j) + w0

g0

∥∥∥∥∥∥
2

H

− 1

2g0
‖w0‖2

H

(5.16)
with (5.15) yields

Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H + 1

d

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H − ε

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H

− g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j) + w0

g0

∥∥∥∥∥∥
2

H

� Re
n∑

j=0

〈(ϕ ◦ x)( j), w1( j)〉H − 1

2g0
‖w0‖2

H . (5.17)

In the following, K > 0 is a generic constant which will be suitably adjusted in every step and depends
only on ε, d and g, but not on n or w. Invoking the inequality

Re〈(ϕ ◦ x)( j), w1( j)〉H � −‖(ϕ ◦ x)( j)‖H‖w1( j)‖H � −ε

2
‖(ϕ ◦ x)( j)‖2

H − 1

2ε
‖w1( j)‖2

H ,

we obtain from (5.17) after rearrangement

ε

2

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H + g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j) + w0

g0

∥∥∥∥∥∥
2

H

− Re
n∑

j=0

〈
(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)

〉
H

� 1

2ε

n∑
j=0

‖w1( j)‖2
H + 1

2g0
‖w0‖2

H

� K‖w‖2
m2(H)

, n ∈ Z+. (5.18)

By the sector condition (5.3), we have that

−Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)〉H � 0, n ∈ Z+,
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showing that the left-hand side of (5.18) is the sum of three nonnegative terms. Inequality (5.18) is the
key estimate from which we will derive part (A) of the theorem.

By (5.18) we obtain immediately that

‖ϕ ◦ x‖l2(H) + ‖Σ(ϕ ◦ x)‖l∞(H) � K‖w‖m2(H). (5.19)

Combining (5.18) and (5.19), we conclude that

(‖Re〈ϕ ◦ x, x〉H‖l1)1/2 � K‖w‖m2(H). (5.20)

Furthermore,

‖(g1 ∗ (ϕ ◦ x))(n)‖H � ‖g1 ∗ (ϕ ◦ x)‖l2(H) � ‖g1‖l1‖ϕ ◦ x‖l2(H), n ∈ Z+,

and thus, invoking (5.9),

‖x(n)‖H � ‖(g1 ∗ (ϕ ◦ x))(n)‖H + g0‖(θ ∗ (ϕ ◦ x))(n)‖H + ‖w(n)‖H

� ‖g1‖l1‖ϕ ◦ x‖l2(H) + g0‖Σ(ϕ ◦ x)‖l∞(H) + ‖w‖m2(H), n ∈ Z+. (5.21)

It follows from (5.19) and (5.21) that

‖x‖l∞(H) � K‖w‖m2(H). (5.22)

By (5.9) we have that

∇x = ∇(g1 ∗ (ϕ ◦ x)) + g0∇(θ ∗ (ϕ ◦ x)) + ∇w = ∇(g1 ∗ (ϕ ◦ x)) + g0(ϕ ◦ x) + ∇w.

Since ϕ ◦ x ∈ l2(H) by (5.19), g1 ∈ l1 and ∇w ∈ l2(H), we conclude that ∇x ∈ l2(H). Furthermore,
it follows from (5.19) that ‖∇x‖l2(H) � K‖w‖m2(H). Together with (5.19), (5.20) and (5.22) this yields
(5.5), completing the proof of statement (A1).

To prove statement (A2), note that, by (5.12),

g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j)

∥∥∥∥∥∥
2

H

+ Re
n∑

j=0

〈(ϕ ◦ x)( j), w0〉H

= Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H − Re
n∑

j=0

〈(ϕ ◦ x)( j), w1( j)〉H − g0

2

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H

− Re
n∑

j=0

〈(ϕ ◦ x)( j), (g1 ∗ (ϕ ◦ x))( j)〉H . (5.23)

By completing the square on the left-hand side of (5.23) (see (5.16)), we obtain

g0

2

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j) + w0

g0

∥∥∥∥∥∥
2

H

= 1

2g0
‖w0‖2

H + Re
n∑

j=0

〈(ϕ ◦ x)( j), x( j)〉H

− g0

2

n∑
j=0

‖(ϕ ◦ x)( j)‖2
H − Re

n∑
j=0

〈(ϕ ◦ x)( j), w1( j)〉H

− Re
n∑

j=0

〈(ϕ ◦ x)( j), (g1 ∗ (ϕ ◦ x))( j)〉H . (5.24)
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By statement (A1), ϕ ◦ x ∈ l2(H) and Re〈ϕ ◦ x, x〉H ∈ l1. Since w1 ∈ l2(H) and g1 ∈ l1, we see that
the right-hand side of (5.24) converges as n → ∞ and so the limit

l := lim
n→∞

∥∥∥∥∥∥
n∑

j=0

(ϕ ◦ x)( j) + w0

g0

∥∥∥∥∥∥
H

= lim
n→∞

∥∥∥∥(θ ∗ (ϕ ◦ x))(n) + w0

g0

∥∥∥∥
H

(5.25)

exists and is finite. Now g1 ∗ (ϕ ◦ x) ∈ l2(H), implying that (g1 ∗ (ϕ ◦ x))(n) → 0 as n → ∞ and thus,
by (5.9),

lim
n→∞(x(n) − g0(θ ∗ (ϕ ◦ x))(n)) = w0. (5.26)

Equations (5.25) and (5.26) imply that ‖x(n)‖H → g0l as n → ∞. If dim H = 1, then, since
(∇x)(n) → 0 as n → ∞ (by statement (A1)), we conclude that limn→∞ x(n) exists, completing
the proof of statement (A2).

To prove statement (A3), assume that the additional assumptions (5.2) and (5.6) are satisfied. Since
x is bounded, there exists a closed bounded set B ⊂ H such that x(n) ∈ B for all n ∈ Z+. It follows
from (5.2) that ϕ−1(0) ∩ B is precompact. Consequently, for given η > 0, ϕ−1(0) ∩ B is contained in a
finite union of open balls with radius η, each ball centred at some point in clos(ϕ−1(0) ∩ B). Denoting
this union by Bη, we claim that x(n) ∈ Bη for all sufficiently large n. This is trivially true if B ⊂ Bη.
If not, then the set C := B\Bη is nonempty. Moreover, C is bounded and closed with ϕ−1(0) ∩ C = ∅,
and so infξ∈C∩H0 ‖ϕ(ξ)‖ > 0 by (5.6). We know from statement (A1) that ϕ ◦ x ∈ l2(H), hence
limn→∞(ϕ ◦ x)(n) = 0, and so also in this case x(n) ∈ Bη for all sufficiently large n. This implies that

lim
n→∞ dist(x(n), ϕ−1(0) ∩ B) = 0

and, a fortiori,

lim
n→∞ dist(x(n), ϕ−1(0)) = 0,

completing the proof of statement (A3).
We proceed to prove part (B) of the theorem. To this end, assume that, in (5.4), ε = 0 and that

w = w0θ + w1, where w0 ∈ H and w1 ∈ l1(H). Setting

Φ(n) :=
n∑

j=0

(ϕ ◦ x)( j) = (Σ(ϕ ◦ x))(n), n ∈ Z+, and Φ(−1) := 0,

we invoke (5.15), with ε = 0, to obtain

Re
n∑

j=0

〈
(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)

〉
H

− g0

2
‖Φ(n)‖2

H

� Re〈Φ(n), w0〉H + Re
n∑

j=0

〈Φ( j) − Φ( j − 1), w1( j)〉H . (5.27)

Partial summation yields the identity

n∑
j=0

〈Φ( j) − Φ( j − 1), w1( j)〉H =
n∑

j=0

〈Φ( j), w1( j) − w1( j + 1)〉H + 〈Φ(n), w1(n + 1)〉H ,
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which, combined with (5.27), leads to

g0

2
‖Φ(n)‖2

H − Re
n∑

j=0

〈
(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)

〉
H

� ‖w0‖H‖Φ(n)‖H + 2‖w1‖l1(H) max
0� j�n

‖Φ( j)‖H + ‖w1‖l1(H)‖Φ(n)‖H .

Hence,

g0

2
‖Φ(n)‖2

H − Re
n∑

j=0

〈
(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)

〉
H

� 3‖w‖m1(H) max
0� j�n

‖Φ( j)‖H , n ∈ Z+. (5.28)

In the following, K > 0 is a generic constant which will be suitably adjusted in every step and depends
only on d and g, but not on n or w. By the sector condition (5.3),

−Re
n∑

j=0

〈
(ϕ ◦ x)( j), x( j) + 1

d
(ϕ ◦ x)( j)

〉
H
� 0, n ∈ Z+,

and thus we may conclude from (5.28) that

‖Φ(n)‖ � K‖w‖m1(H), n ∈ Z+. (5.29)

This implies that

‖Σ(ϕ ◦ x)‖l∞(H) = sup
n�0

‖Φ(n)‖ � K‖w‖m1(H). (5.30)

Using (5.29) in (5.28) shows that(∥∥∥∥Re

〈
ϕ ◦ x, x + 1

d
(ϕ ◦ x)

〉
H

∥∥∥∥
l1

)1/2

� K‖w‖m1(H). (5.31)

To establish that x is bounded, note that, by (5.9),

x = (g0δ + g1 ∗ θ−1) ∗ (θ ∗ (ϕ ◦ x)) + w. (5.32)

It is clear that g0δ + g1 ∗ θ−1 ∈ l1 and, by (5.30),

sup
n�0

‖(θ ∗ (ϕ ◦ x))(n)‖H = ‖Σ(ϕ ◦ x)‖l∞(H) � K‖w‖m1(H).

Consequently, invoking (5.32),

‖x‖l∞(H) � ‖g0δ + g1 ∗ θ−1‖l1‖θ ∗ (ϕ ◦ x)‖l∞(H) + ‖w‖l∞(H) � K‖w‖m1(H),

which together with (5.30) and (5.31) shows that (5.7) holds, completing the proof of statement (B1).
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FIG. 1. Equation (5.1) as a feedback system.

To prove statement (B2), assume that the additional assumptions (5.2) and (5.8) are satisfied. Since
x is bounded, there exists a closed bounded set B ⊂ H such that x(n) ∈ B for all n ∈ Z+. It follows
from (5.2) that ϕ−1(0) ∩ B is precompact. Consequently, for given η > 0, ϕ−1(0) ∩ B is contained in a
finite union of open balls with radius η, each ball centred at some point in clos(ϕ−1(0) ∩ B). Denoting
this union by Bη, we claim that x(n) ∈ Bη for all sufficiently large n. This is trivially true if B ⊂ Bη. If
not, then the set C := B\Bη is nonempty. Define ψ : H0 → (−∞, 0] by

ψ(ξ) := Re〈ϕ(ξ), ξ + ϕ(ξ)/d〉H .

Since C is bounded and closed with ϕ−1(0) ∩ C = ∅, assumption (5.8) implies that

sup
v∈C∩H0

ψ(v) < 0.

We know from statement (B1) that ψ ◦ x ∈ l1, hence limn→∞(ψ ◦ x)(n) = 0, and so also in this case
x(n) ∈ Bη for all sufficiently large n. This implies that

lim
n→∞ dist(x(n), ϕ−1(0) ∩ B) = 0,

completing the proof of statement (B2). 2

REMARK 5.3 Noting that (5.1) describes the feedback system shown in Fig. 1, Theorem 5.1 can be
viewed as a stability result in the spirit of the frequency-domain criteria for feedback system stability
(see Corduneanu, 1973; Desoer & Vidyasagar, 1975; Vidyasagar, 1993). Most of the control-theoretic
literature on this subject considers continuous-time systems. The two statements of Theorem 5.1 form
the discrete-time counterparts to recent continuous-time stability results given in Curtain et al. (2003,
2004). Note that the Condition (5.3) allows for a large class of bounded nonlinearities ϕ. The conjunction
of convolution kernels g of the form g = g0θ +g1 with g0 > 0 and g1 ∈ l1 (so that g �∈ l1) and bounded
nonlinearities ϕ is a distinguishing feature of Theorem 5.1.

Next, we derive a version of Theorem 5.1 which yields stability properties of the difference of two
solutions of (5.1). In this context, the following incremental sector condition

Re〈ϕ(n, ξ1) − ϕ(n, ξ2), ξ1 − ξ2〉H � −‖ϕ(n, ξ1) − ϕ(n, ξ2)‖2
H/d, n ∈ Z+, ξ1, ξ2 ∈ H0 (5.33)

is relevant. Note that if ϕ is ‘unbiased’, i.e.

ϕ(n, 0) = 0, n ∈ Z+,

then, trivially, (5.3) is implied by (5.33). Moreover, we will see that, if (5.33) holds, but ϕ is not unbiased,
then for the purpose of stability analysis, (5.1) can be be replaced by a modified Volterra equation,
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the nonlinearity of which is unbiased and satisfies (5.33) (and hence (5.3)). To this end, assume that
(5.33) holds, let w1, w2 be forcing functions and let x1 and x2 be corresponding solutions of (5.1), i.e.
xi = g ∗ (ϕ ◦ xi ) + wi for i = 1, 2. Define a new nonlinearity ψ as in Lemma 4.5,

ψ : Z+ × H0 → H, (n, ξ) �→ ϕ(n, ξ + x2(n)) − ϕ(n, x2(n)). (5.34)

Then ψ is unbiased,

ψ(n, x1(n) − x2(n)) = ϕ(n, x1(n)) − ϕ(n, x2(n)), n ∈ Z+,

and ψ satisfies the same incremental sector condition as ϕ. Therefore, in particular,

Re〈ψ(n, ξ), ξ 〉H � −‖ψ(n, ξ)‖2
H/d, (n, ξ) ∈ Z+ × H0.

The difference x1 − x2 satisfies the Volterra equation

x1 − x2 = g ∗ (ψ ◦ (x1 − x2)) + w1 − w2.

Combining these observations with Theorem 5.1 yields the following result.

COROLLARY 5.4 Let g = g0θ + g1, where g0 ∈ (0, ∞) and g1 ∈ l1, let ϕ be incrementally sector-
bounded in the sense that (5.33) holds for some d ∈ (0, ∞] and assume that there exists ε � 0 such
that (5.4) is satisfied. Let x1 and x2 be solutions of (5.1) corresponding to forcing functions w1 and w2,
respectively, and set ∆x := x1 − x2 and ∆w := w1 − w2.

(A) If ε > 0 and ∆w ∈ m2(H), then the following statements hold:

(A1) There exists a constant K > 0 (depending only on ε, d and g, but not on w1 and w2) such
that

‖∆x‖l∞(H) + ‖∇(∆x)‖l2(H) + ‖ϕ ◦ x1 − ϕ ◦ x2‖l2(H) + ‖Σ(ϕ ◦ x1 − ϕ ◦ x2)‖l∞(H)

+ (‖Re〈ϕ ◦ x1 − ϕ ◦ x2,∆x〉H‖l1)1/2 � K‖∆w‖m2(H).

(A2) The limit limn→∞ ‖(∆x)(n)‖H exists and is finite; in particular, if dim H = 1, then
limn→∞(∆x)(n) exists.

(B) If ε = 0 and ∆w ∈ m1(H), then there exists a constant K > 0 (depending only on d and g, but
not on w1 and w2) such that

‖∆x‖l∞(H) +
(∥∥∥∥Re

〈
ϕ ◦ x1 − ϕ ◦ x2,∆x + 1

d
(ϕ ◦ x1 − ϕ ◦ x2)

〉
H

∥∥∥∥
l1

)1/2

+ ‖Σ(ϕ ◦ x1 − ϕ ◦ x2)‖l∞(H) � K‖∆w‖m1(H).

6. Application of Theorem 5.1 and Corollary 5.4 to linear multistep stability

In this section, we use Theorem 5.1 and Corollary 5.4 to derive results on the asymptotic behaviour of
the solutions of (1.1). Recall that a rational function A (with possibly complex coefficients) is called
‘positive’ if

Re A(z) � 0 for all z ∈ C with |z| > 1 and such that z is not a pole of A.

The following lemma lists some simple (and well-known) properties of positive rational functions.
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LEMMA 6.1 Let A be a rational function such that A(z) �≡ 0. If A is positive, then the following
statements hold:

(a) If z ∈ C is a zero of A, then |z| � 1.

(b) If z ∈ C is a pole of A, then |z| � 1.

(c) lim|z|→∞ A(z) exists, is finite and not equal to zero.

(d) If eiν is a zero of A for some ν ∈ [0, 2π), then it is simple (i.e. A′(eiν) �= 0).

(e) If eiν is a pole of A for some ν ∈ [0, 2π), then it is simple (i.e. (1/A)′(eiν) �= 0) and e−iν

res(A, eiν) > 0, where res(A, eiν) denotes the residue of A at z = eiν .

Note that part (c) says that a nontrivial positive rational function has no zeros or poles at ∞.

Proof of Lemma 6.1. The proof is essentially routine and therefore we do not give a complete proof here.
We only derive part (e) (parts (a)–(d) are even easier to prove). To this end, assume that eiν is a pole of
A. Then

A(z) = (z − eiν)−m B(z),

where m is a positive integer and B is a rational function which is holomorphic at z = eiν and
B(eiν) �= 0. For ε > 0 and ω ∈ [−π/2, π/2], we define

zε,ω := eiν(1 + ε eiω).

It is clear that |zε,ω| > 1 and so, for ε > 0 and ω ∈ [−π/2, π/2],

0 � εmRe A(zε,ω) = cos(mω)Re(e−imν B(zε,ω)) + sin(mω)Im(e−imν B(zε,ω)). (6.1)

Since B(zε,ω) → B(eiν) as ε → 0 (uniformly in ω), it follows from (6.1) that m = 1 (because otherwise
there would exist ε > 0 and ω ∈ [−π/2, π/2] such that the right-hand side of (6.1) is negative).
Consequently, the pole at z = eiν is simple. Considering (6.1) when m = 1, choosing ω to be −π/2, 0
and π/2 and letting ε → 0, shows that Im(e−iν B(eiν)) = 0 and Re(e−iν B(eiν)) � 0. Since B(eiν) �= 0,
we conclude that e−iν B(eiν) > 0. The claim now follows from the fact that res(A, eiν) = B(eiν). 2

The next result shows that the inclusion of a disk of the form B(−c, c) (where c > 0) in the linear
stability domain of (1.1) is equivalent to the positivity of the rational function 1/(2c) + σ/ρ, where ρ
and σ are given by (3.1).

LEMMA 6.2 Let c > 0. Then

B(−c, c) ⊂ S ⇐⇒ 1/(2c) + σ/ρ is positive.

Moreover, if B(−c, c) ⊂ S, then the following statements hold:

(a) Method (1.1) is zero-stable.

(b) If ρ(eiν) = 0 for some ν ∈ [0, 2π), then e−iνσ (eiν)/ρ ′(eiν) > 0.

Proof. A straightforward calculation shows that, for all z ∈ C such that ρ(z) �= 0, the following
equivalences hold:

|ρ(z)/σ (z) + c| � c ⇔ (1/c2)|ρ(z)|2|1 + cσ(z)/ρ(z)|2 � |σ(z)|2

⇔ 1/(2c) + Re(σ (z)/ρ(z)) � 0.
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Now, by Lemma 4.1, B(−c, c) ⊂ S if and only if inf|z|�1 |ρ(z)/σ (z)+c| � c, showing that the inclusion
B(−c, c) ⊂ S is equivalent to the positivity of 1/(2c) + σ/ρ. Statements (a) and (b) are now immediate
consequences of Lemma 6.1. �

The following proposition shows that if B(−c, c) ⊂ S, then B(−c, c) ⊂ S.

PROPOSITION 6.3 Let c > 0. If B(−c, c) ⊂ S, then B(−c, c) ⊂ S.

Proof. Let ζ be on the boundary of B(−c, c), i.e. |ζ + c| = c. We have to show that ζ ∈ S. To this end,
let z0 ∈ C be such that

ρ(z0) − ζσ (z0) = 0. (6.2)

Since B(−c, c) ⊂ S, it is clear that |z0| � 1. Therefore, it is sufficient to prove that if |z0| = 1, then

ρ′(z0) − ζσ ′(z0) �= 0. (6.3)

So let us assume that |z0| = 1. If ζ = 0, then ρ(z0) = 0. By part (b) of Lemma 6.2, ρ′(z0) − ζσ ′(z0) =
ρ′(z0) �= 0, and so (6.3) holds. Hence, w.l.o.g. we may assume that ζ �= 0. Using that |ζ + c| = c, a
routine calculation shows that

Re(1/ζ ) = −1/(2c).

Invoking Lemma 6.2, we see that the rational function A := σ/ρ − 1/ζ is positive. It follows from (6.2)
that A(z0) = 0. By part (d) of Lemma 6.1, A′(z0) �= 0 and so

0 �= A′(z0) = (ρ(z0) − ζσ(z0))σ
′(z0) − (ρ′(z0) − ζσ ′(z0))σ (z0)

ρ2(z0)
= − (ρ′(z0) − ζσ ′(z0))σ (z0)

ρ2(z0)
,

showing that (6.3) holds. �
For later purposes, it is convenient to introduce the following assumption on f .

The function f does not depend on t and f −1(0) ∩ B

is precompact for every bounded set B ⊂ H .

}
(6.4)

It will be explicitly stated when (6.4) is assumed to hold.
We are now in the position to formulate the main result of this section. Recall that the function

fh : Z+×H0 → H is defined in (4.6). As in Section 3, we use the (functional) notation u := (Un)n∈Z+ ∈
S(H) (i.e. u(n) = Un for all n ∈ Z+) for a solution (Un)n∈Z+ of (1.1).

THEOREM 6.4 Assume that method (1.1) satisfies the following two conditions: ρ(1) = 0 and ρ(eiω) �=
0 for all ω ∈ (0, 2π).

(A) Assume that there exists 0 < c < ∞ such that

‖h f (nh, ξ) + cξ‖H � c‖ξ‖H , (n, ξ) ∈ Z+ × H0. (6.5)

Under these conditions the following statements hold:

(A1) If B(−c0, c0) ⊂ S for some c0 > c, then there exists a constant K > 0 (depending only
on c0, c and (ρ, σ )) such that, for every solution (Un)n∈Z+ =: u of (1.1),

‖u‖l∞(H) + ‖∇u‖l2(H) + ‖ fh ◦ u‖l2(H) + (‖Re〈 fh ◦ u, u〉H‖l1)1/2 + ‖Σ( fh ◦ u)‖l∞(H)

� K

⎛
⎝q−1∑

k=0

‖u(k)‖2
H

⎞
⎠1/2

.
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Furthermore, the limit limn→∞ ‖u(n)‖H exists and is finite (in particular, if dim H = 1,
u(n) converges as n → ∞). If (6.4) holds and infξ∈B∩H0 ‖ f (ξ)‖ > 0 for every bounded
closed set B ⊂ H such that f −1(0) ∩ B = ∅, then limn→∞ dist(u(n), f −1(0)) = 0.

(A2) If B(−c, c) ⊂ S, then there exists a constant K > 0 (depending only on c and (ρ, σ )) such
that, for every solution (Un)n∈Z+ =: u of (1.1),

‖u‖l∞(H) +
(∥∥∥∥Re

〈
fh ◦ u, u + 1

2c
( fh ◦ u)

〉
H

∥∥∥∥
l1

)1/2

+ ‖Σ( fh ◦ u)‖l∞(H)

� K
q−1∑
k=0

‖u(k)‖H .

If (6.4) holds and if supξ∈B∩H0
Re〈 f (ξ), ξ + h f (ξ)/(2c)〉 < 0 for every bounded closed

set B ⊂ H such that f −1(0) ∩ B = ∅, then limn→∞ dist(u(n), f −1(0)) = 0.

(B) Assume that

Re〈 f (nh, ξ), ξ 〉H � 0, (n, ξ) ∈ Z+ × H0. (6.6)

If {z ∈ C: Re z < 0} ⊂ S, then there exists a constant K > 0 (depending only on (ρ, σ )) such
that, for every solution (Un)n∈Z+ =: u of (1.1),

‖u‖l∞(H) + (‖Re〈 fh ◦ u, u〉H‖l1)1/2 + ‖Σ( fh ◦ u)‖l∞(H)

� K
q−1∑
k=0

(‖u(k)‖H + ‖h f (kh, u(k))‖H ).

If (6.4) holds and if supξ∈B∩H0
Re〈 f (ξ), ξ 〉 < 0 for every bounded closed set B ⊂ H such that

f −1(0) ∩ B = ∅, then limn→∞ dist(u(n), f −1(0)) = 0.

REMARK 6.5

(a) In the scalar case (i.e. H = C) the inequality (6.5) is equivalent to the condition that h f (nh, ξ)/
ξ ∈ B(−c, c) for all (n, ξ) ∈ Z+ × C with ξ �= 0.

(b) Assume that there exist c1, h1 > 0 such that

‖h1 f (t, ξ) + c1ξ‖H � c1‖ξ‖H , (t, ξ) ∈ R+ × H0 (6.7)

and B(−c1, c1) ⊂ S, so that the conclusions of part (A2) hold for c = c1 and h = h1. Letting
h2 ∈ (0, h1) and setting c2 := c1h2/h1 < c1, it follows trivially from (6.7) that

‖h2 f (t, ξ) + c2ξ‖H � c2‖ξ‖H , (t, ξ) ∈ R+ × H0,

showing that the conclusions of part (A1) hold for c = c2, h = h2 and c0 = c1.

(c) We emphasise that Theorem 6.4 deals with a situation which is not captured by Theorem 4.3.
In particular, Theorem 4.3 cannot be applied if f is bounded (see Remark 4.4(c)), while the
assumptions in Theorem 6.4 allow for a large class of bounded functions f .
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Proof of Theorem 6.4. Since u(n) := Un , it follows from Section 3 that

u = g ∗ ( fh ◦ u) + r−1 ∗ v, (6.8)

where g := r−1 ∗ s and

v(n) :=
{

(r ∗ u)(n) − (s ∗ ( fh ◦ u))(n), 0 � n � q − 1,

0, n � q.

Clearly, (6.8) is of the form (5.1): in order to apply Theorem 5.1 (with g = r−1 ∗s, ϕ = fh , w = r−1 ∗v
and d = 2c), we need to verify the relevant assumptions. It follows from the hypotheses on ρ and S,
via part (a) of Lemma 6.2 that (1.1) is strictly zero-stable. The residue of ĝ at z = 1 is given by
g0 := σ(1)/ρ ′(1) and, by part (b) of Lemma 6.2, g0 > 0. Invoking part (b) of Corollary 2.3, we obtain
that g1 := g − g0θ ∈ l1. Consequently, g is of the form required for an application of Theorem 5.1.
Furthermore, Lemma 6.2 shows that

1/(2c) + Re ĝ(eiω) = 1/(2c) + Re(σ (eiω)/ρ(eiω)) � ε, ω ∈ (0, 2π), (6.9)

with ε > 0 under the assumptions of (A1) and with ε = 0 under the assumptions of (A2). Also note
that under the assumptions of (B), (6.9) remains true with ε = 0 and c = ∞. Consequently, (5.4) in
Theorem 5.1 holds under the assumptions of both part (A) and part (B). Next we observe that (6.5) is
equivalent to

Re〈 fh(n, ξ), ξ 〉H � −1/(2c)‖ fh(n, ξ)‖2
H , (n, ξ) ∈ Z+ × H0. (6.10)

Note that for c = ∞, inequality (6.10) is equivalent to (6.6). Therefore, ϕ = fh satisfies the sector
condition (5.3) in Theorem 5.1. To show that w = r−1 ∗ v satisfies the required assumption, we note
that by strict zero-stability, combined with statement (b) of Corollary 2.3, there exists r1 ∈ l1 such that

r−1 = γ θ + r1, where γ := 1/ρ ′(1).

Hence,

w = r−1 ∗ v = γ θ ∗ v + r1 ∗ v = γΣv + r1 ∗ v.

Setting

w0 := γ

q−1∑
k=0

v(k), w1 := w − w0θ,

it is clear that w1 ∈ l1(H) ⊂ l2(H). Consequently, w ∈ m1(H) ⊂ m2(H), so that w satisfies the
requirement of Theorem 5.1. Furthermore,

‖w0‖H � |γ |‖v‖l1(H) � |γ |√q‖v‖l2(H) (6.11)

and

‖γ θ ∗ v − w0θ‖l1(H) � |γ |(q − 1)‖v‖l1(H), ‖γ θ ∗ v − w0θ‖l2(H) � |γ |(q − 1)‖v‖l2(H).

The last two inequalities imply

‖w1‖l1(H) � (‖r1‖l1 + |γ |(q − 1))‖v‖l1(H), ‖w1‖l2(H) � (‖r1‖L(l2) + |γ |(q − 1))‖v‖l2(H). (6.12)
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To estimate ‖w‖m p(H) in terms of u(0), u(1), . . . , u(q − 1), we consider parts (A) and (B) separately.
To prove part (A), we use (6.5) to obtain

‖v‖l p(H) � L p

⎛
⎝q−1∑

k=0

‖u(k)‖p
H

⎞
⎠1/p

, p = 1, 2, (6.13)

where L1 := ‖r‖l1(H) + 2c‖s‖l1(H) and

L2 := ‖r‖L(l2) + 2c‖s‖L(l2) = max
ω∈[0,2π)

|ρ(eiω)| + 2c max
ω∈[0,2π)

|σ(eiω)|.

Inequality (6.13) together with (6.11) yields

‖w0‖H � L1|γ |
q−1∑
k=0

‖u(k)‖H , ‖w0‖H � L2|γ |√q

⎛
⎝q−1∑

k=0

‖u(k)‖2
H

⎞
⎠1/2

. (6.14)

Furthermore, by (6.12)–(6.14),

‖w‖m p(H) � Mp

⎛
⎝q−1∑

k=0

‖u(k)‖p
H

⎞
⎠1/p

, p = 1, 2,

for suitable Mp > 0. Part (A) follows now from Theorem 5.1.
To prove part (B), we estimate

‖v‖l1(H) � L
q−1∑
k=0

(‖u(k)‖H + ‖h f (kh, u(k))‖H ), (6.15)

where L := max(‖r‖l1 , ‖s‖l1). Therefore, by (6.11),

‖w0‖H � L|γ |
q−1∑
k=0

(‖u(k)‖H + ‖h f (kh, u(k))‖H ). (6.16)

Furthermore, by (6.12), (6.15) and (6.16),

‖w‖m1(H) � M
q−1∑
k=0

(‖u(k)‖H + ‖h f (kh, u(k))‖H ),

for some suitable M > 0. Part (B) follows now from Theorem 5.1. 2

EXAMPLE 6.6

(a) Let ρ and σ be given by ρ(z) = z − 1 and σ(z) = 1 (Euler’s method). It is clear that S =
B(−1, 1). Define f : R → R by

f (ξ) :=
{−2ξ, ξ � −2,

4, ξ < −2,
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so that f (ξ)/ξ ∈ B(−1, 1) for all ξ �= 0. It follows from part (a) of Remark 6.5 that the
conclusions of statements (A1) of Theorem 6.4 hold if h ∈ (0, 1), while statements (A2) of the
same theorem applies if h = 1. In particular, the numerical solution (Un)n∈Z+ converges to 0 as
n → ∞ for every choice of h ∈ (0, 1). If h = 1, then (Un)n∈Z+ does not converge in general as
n → ∞ (e.g. if U0 = 2, then Un = (−1)n2 for all n ∈ Z+).

(b) Let ρ and σ be given by ρ(z) = (3/2)z2 − 2z + 1/2 and σ(z) = z2 (two-step backwards
differentiation method). Define f : R2 → R2 by

f (ξ1, ξ2) := (−2ξ3
1 + ξ2, −ξ1 − ξ3

2 ).

Then {z ∈ C : Re z < 0} ⊂ S and 〈 f (ξ), ξ 〉 < 0 for all ξ ∈ R2\{0}. Hence, the conclusions
of statement (B) of Theorem 6.4 hold for every h > 0. In particular, the numerical solution
(Un)n∈Z+ converges to 0 as n → ∞ for every h > 0.

While Theorem 6.4 has some overlap with results by Nevanlinna (1977a,b), there are also consid-
erable differences. Theorem 6.4 assumes ρ to be strictly zero-stable, rather than merely zero-stable as
in Nevanlinna (1977a,b); on the other hand, numerous aspects of Theorem 6.4 are more general than
in Nevanlinna (1977a,b), the assumptions in Theorem 6.4 are easier to check than those in Nevanlinna
(1977a,b) and some of the conclusions are stronger as compared to Nevanlinna (1977a,b). The following
remark gives more details.

REMARK 6.7

(a) The same comment as in statement (a1) of Remark 4.4 applies in the context of comparing
Theorem 6.4 with the main result in Nevanlinna (1977b).

(b) The situation considered in part (B) of Theorem 6.4 is dealt with in Nevanlinna (1977b) under the
additional assumption that the method is strictly stable at infinity, i.e. the roots of σ are contained
in the open unit disk B(0, 1).

(c) The constant K in Theorem 6.4 does not depend on h in contrast to Theorem 3.1 in Nevanlinna
(1977b) (see Remark 3.1 in Nevanlinna, 1977b). Moreover, Theorem 3.1 in Nevanlinna (1977b)
does not give estimates for ‖∇u‖l2(H), ‖ fh ◦u‖l2(H), ‖Re〈 fh ◦u, u〉H‖l1 and ‖∑( fh ◦u)‖l∞(H).

(d) Let ρ, σ and f be as in part (a) of Example 6.6. Let a ∈ R be such that 1/a ∈ int(S), which holds
if and only if a ∈ (−∞, −1/2). A routine calculation shows that for every a ∈ (−∞, −1/2)

b := − inf
|z|�1

ρ(z)

σ (z) − aρ(z)
= 0.

Set c := −1/(2a). Then, using the notation of Nevanlinna (1977b), D(a, b) = D(a, 0) =
B(−c, c). For given a ∈ (−∞, −1/2), Theorem 3.1 in Nevanlinna (1977b) applies for all 0 <
h < −1/(2a). Note that if h = −1/(2a), then

(I − ah f )(ξ) = ξ + f (ξ)/2 = 0, ξ � −2,

so that (I − ah f ) is not invertible. Consequently, Theorem 3.1 in Nevanlinna (1977b) does not
apply in this case (see part (a) of this remark). Furthermore, if a = −1/2, then 1/a =
−2 �∈ int(S). It follows that Theorem 3.1 in Nevanlinna (1977b) is not applicable (see p. 60 in
Nevanlinna, 1977b). In particular, Theorem 3.1 in Nevanlinna (1977b) does not give a result for
the stepsize h = 1.
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(e) Using Theorem 6.4, it was shown in Example 6.6 that (for certain values of h) the numerical
solution (Un)n∈Z+ converges to 0 as n → ∞. It seems to be difficult to obtain these convergence
properties by applying the results in Nevanlinna (1977a) on the behaviour of (Un)n∈Z+ at infinity.
In part (a) of Example 6.6, the method is not A-stable, while A-stability is assumed throughout in
Nevanlinna (1977a). Furthermore, in part (b) of Example 6.6 the nonlinearity f is not a gradient
field, and hence Corollary 2 in Nevanlinna (1977a) (which assumes that the nonlinearity is a
gradient mapping) cannot be used.

The following result is a version of Theorem 6.4 which yields stability properties of the difference
of two solutions of method (1.1).

COROLLARY 6.8 Assume that the method (1.1) satisfies the following two conditions: ρ(1) = 0 and
ρ(eiω) �= 0 for all ω ∈ (0, 2π).

(A) Assume that there exists 0 < c < ∞ such that

‖h f (nh, ξ1) − h f (nh, ξ2) + c(ξ1 − ξ2)‖H � c‖ξ1 − ξ2‖H , n ∈ Z+, ξ1, ξ2 ∈ H0.

Let (U 1
n )n∈Z+ =: u1 and (U2

n )n∈Z+ =: u2 be solutions of (1.1) and set ∆u := u1 − u2. Then the
following statements hold:

(A1) If B(−c0, c0) ⊂ S for some c0 > c, then there exists a constant K > 0 (depending only
on c0, c and (ρ, σ )) such that

‖∆u‖l∞(H) + ‖∇(∆u)‖l2(H) + ‖ fh ◦ u1 − fh ◦ u2‖l2(H)

+ ‖Σ( fh ◦ u1 − fh ◦ u2)‖l∞(H) + (‖Re〈 fh ◦ u1 − fh ◦ u2,∆u〉H‖l1)1/2

� K

⎛
⎝q−1∑

k=0

‖(∆u)(k)‖2
H

⎞
⎠1/2

.

Furthermore, the limit limn→∞ ‖(∆u)(n)‖H exists and is finite; in particular, if dim H =
1, then limn→∞(∆u)(n) exists.

(A2) If B(−c, c) ⊂ S, then there exists a constant K > 0 (depending only on c and (ρ, σ )) such
that

‖∆u‖l∞(H) +
(∥∥∥∥Re

〈
fh ◦ u1 − fh ◦ u2,∆u + 1

2c
( fh ◦ u1 − fh ◦ u2)

〉
H

∥∥∥∥
l1

)1/2

+ ‖Σ( fh ◦ u1 − fh ◦ u2)‖l∞(H) � K
q−1∑
k=0

‖(∆u)(k)‖H .

(B) Assume that

Re〈 f (nh, ξ1) − f (nh, ξ2), ξ1 − ξ2〉H � 0, n ∈ Z+, ξ1, ξ2 ∈ H0.

Let (U 1
n )n∈Z+ =: u1 and (U 2

n )n∈Z+ =: u2 be solutions of (1.1) and set ∆u := u1 − u2. If
{z ∈ C: Re z < 0} ⊂ S, then there exists a constant K > 0 (depending only on (ρ, σ ))
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such that

‖∆u‖l∞(H) + (‖Re〈 fh ◦ u1 − fh ◦ u2,∆u〉H‖l1)1/2 + ‖Σ( fh ◦ u1 − fh ◦ u2)‖l∞(H)

� K
q−1∑
k=0

(‖(∆u)(k)‖H + ‖h f (kh, u1(k)) − h f (kh, u2(k))‖H ).

Corollary 6.8 follows from an application of Corollary 5.4 and arguments are similar to those used
in the proof of Theorem 6.4.

Finally, noting that for f in part (a) of Example 6.6, ( f (ξ1) − f (ξ2))/(ξ1 − ξ2) ∈ B(−1, 1) for
all ξ1, ξ2 ∈ R, ξ1 �= ξ2, and, for f in part (b) of Example 6.6, 〈 f (ξ1) − f (ξ2), ξ1 − ξ2〉 < 0 for all
ξ1, ξ2 ∈ R2, ξ1 �= ξ2, it follows that a suitably modified version of Remark 6.7 holds for Corollary 6.8.
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