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ABSOLUTE STABILITY RESULTS FOR WELL-POSED
INFINITE-DIMENSIONAL SYSTEMS WITH APPLICATIONS TO LOW-GAIN

INTEGRAL CONTROL ∗
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2

Abstract. We derive absolute stability results for well-posed infinite-dimensional systems which, in a
sense, extend the well-known circle criterion to the case that the underlying linear system is the series
interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator
and the nonlinearity φ satisfies a sector condition of the form 〈φ(u), φ(u)− au〉 ≤ 0 for some constant
a > 0. These results are used to prove convergence and stability properties of low-gain integral feedback
control applied to exponentially stable, linear, well-posed systems subject to actuator nonlinearities.
The class of actuator nonlinearities under consideration contains standard nonlinearities which are
important in control engineering such as saturation and deadzone.
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1. Introduction

Absolute stability problems and their relations to positive-real conditions have played a prominent role in
finite-dimensional systems and control theory and have led to a number of important stability criteria for closed-
loop systems obtained by applying unity feedback controls to linear dynamical systems subject to static input
or output nonlinearities, see, for example, Aizerman and Gantmacher [1], Khalil [13], Lefschetz [14], Leonov
et al. [15] and Vidyasagar [28]. Although there is some literature on absolute stability problems in infinite
dimensions (for example, Bucci [4], Corduneanu [7], Leonov et al. [15], Logemann [17], Wexler [33, 34]), the
number of results available in the literature is fairly limited, in particular for systems with unbounded control
and observation.

In this paper we study a certain absolute stability problem for the class of well-posed infinite-dimensional
systems which are documented in Salamon [24, 25], Staffans [26, 27] and Weiss [29–32]. We remark that the
class of well-posed, linear, infinite-dimensional systems is rather general: it includes most distributed parameter
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systems and all time-delay systems (retarded and neutral) which are of interest in applications. Consider the
system shown in Figure 1, where G is the transfer function of an exponentially stable, well-posed, infinite-
dimensional, linear system and φ : U → U is a locally Lipschitz nonlinearity which, for some a ≥ 0, satisfies the
sector condition

〈φ(u), φ(u) − au〉 ≤ 0 , ∀u ∈ U, (1.1)

where U denotes the input space of the well-posed system which is assumed to be a real Hilbert space. Given
b > 0, we study the absolute stability problem of finding conditions on G such that the feedback system in
Figure 1 is stable for all locally Lipschitz φ satisfying (1.1) for some a ∈ [0, b). In Section 3 we show that if
G(0) is invertible and the positive real condition
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)
≥ 0 , s ∈ C with Re s > 0 (1.2)

holds, then, for all locally Lipschitz φ satisfying (1.1) for some a ∈ [0, b), the equilibrium of the closed-loop
system shown in Figure 1 is stable in the large. Moreover, under suitable extra assumptions on φ, we prove
that the equilibrium is semi-globally exponentially stable. These results extend, in a certain sense, a part of the
well-known circle criterion, see Remark 3.2, Part (e).

In Section 4 we apply the absolute stability results obtained in Section 3 to the low-gain integral control
problem illustrated in Figure 2, where r ∈ U is the reference vector and k > 0 is the integral gain.
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Figure 2

We assume that U = Rm, G is the transfer function of an exponentially stable well-posed system such that
G(0) is invertible and φ : Rm → Rm is a decoupled nonlinearity of the form

φ(u) = [φ1(u1), φ2(u2), . . . , φm(um)]T , ∀u = (u1, u2, . . . , um)T ∈ Rm ,
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where the functions φi : R → R are non-decreasing and globally Lipschitz with Lipschitz constants λi > 0.
Setting

K := sup{b > 0 : (1.2) holds} , λ := maxλi ,

we prove that for all k ∈ (0,K/λ) and for all reference vectors r satisfying [G(0)]−1r ∈ imφ, the error e(·) =
r− y(·) is in L2(R+,Rm). Moreover, we show that if the impulse response of the linear system (i.e. the inverse
Laplace transform of the transfer function G) is a (matrix-valued) Borel measure and if the initial condition
of the plant is “sufficiently smooth”, then e(t) → 0 as t → ∞, i.e., the output y(t) asymptotically tracks the
reference vector r. Under mild extra assumptions on r and φ, the convergence will be exponentially fast. We
remark that these results considerably improve earlier work by Logemann et al. [20] in the sense that (i) our
results guarantee better asymptotic and faster convergence properties and (ii) our results are not restricted to
single-input single-output regular systems, but apply to the wider class of multivariable well-posed systems.

The paper is organized as follows. Section 2 contains some preliminaries on well-posed infinite-dimensional
systems. Section 3 is devoted to a detailed analysis of the absolute stability problem described above. In
Section 4 we apply the absolute stability theory developed in Section 3 to derive results on the low-gain integral
control problem illustrated in Figure 2. An example of a diffusion process with output delay illustrating our
results is given in Section 5. Finally, some technicalities are relegated to the Appendix.

Notation. Let X be a real or complex Hilbert space; for τ ≥ 0, Rτ denotes the operator of the right-shift
by τ on Lploc(R+, X), where R+ := [0,∞); the truncation operator Pτ : Lploc(R+, X) → Lp(R+, X) is given
by (Pτu)(t) = u(t) if t ∈ [0, τ ] and (Pτu)(t) = 0 otherwise; for α ∈ R, we define the exponentially weighted
Lp-space Lpα(R+, X) := {f ∈ Lploc(R+, X)| f(·) exp(−α ·) ∈ Lp(R+, X)} and endow it with the norm ‖f‖p,α :=
‖f(·) exp(−α ·)‖Lp , where ‖ · ‖Lp denotes the usual norm in Lp(R+, X); for τ > 0, W 1,2([0, τ ], X) denotes the
space of all functions f : [0, τ ] → X for which there exists g ∈ L2([0, τ ], X) such that f(t) = f(0) +

∫ t
0 g(s) ds

for all t ∈ [0, τ ]; W 1,2
loc (R+, X) denotes the space of all functions f : R+ → X such that for all τ > 0, the

restriction of f to [0, τ ] belongs to W 1,2([0, τ ], X); M denotes the space of all Rm×m-valued Borel measures on
R+; for α ∈ R, we define Mα to be the space of all Rm×m-valued Borel measures on R+ with the property that
the exponentially weighted measure E 7→

∫
E
e−αtµ(dt) belongs to M; for α ∈ R, Cα := {s ∈ C |Re s > α};

H2(Cα, X) denotes the Hardy-Lebesgue space of square-integrable functions defined on Cα with values in X ;
for a Banach space Z, H∞(Cα, Z) denotes the space of bounded holomorphic functions defined on Cα with
values in Z; B(X1, X2) denotes the space of bounded linear operators from a Hilbert space X1 to a Hilbert
space X2; we write B(X) for B(X,X); the Laplace transform is denoted by L.

If X is a real Hilbert space, then its complexification is denoted by Xc. Every vector z ∈ Xc can be uniquely
expressed in the form z = x+ iy, where x, y ∈ X . In particular, X ⊂ Xc. The inner product 〈· , ·〉 on X extends
in a natural way to a (complex) inner product on Xc; a similar statement is true for a linear operator S on X
(see Halmos [12], p. 150, for details). We shall use the same symbol 〈· , ·〉 (respectively, S) for the original inner
product (respectively, operator) and the associated extensions. A linear operator S : dom(S) ⊂ Xc → Yc, where
Y is a real Hilbert space, is called real, if Sx ∈ Y for all x ∈ dom(S) ∩X .

2. Preliminaries on well-posed systems

We assemble some fundamental facts pertaining to well-posed linear systems and regular linear systems and
tailored to later requirements: the reader is referred to Salamon [24,25], Staffans [26,27] and Weiss [29–32] for
full details.

Well-posed systems. The concept of a well-posed linear system which will be used in this paper was
introduced in [32]; an equivalent definition can be found in [24]. Let U , X and Y be real Hilbert spaces and let
Σ = (T,Φ,Ψ,F) be a well-posed linear system with state space X , input space U and output space Y , i.e.

T = (Tt)t≥0 is a C0-semigroup of bounded linear operators on X ;
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Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X such that, for all τ, t ≥ 0,

Φτ+t(Pτu+ Rτv) = TtΦτu+ Φtv , ∀ u, v ∈ L2(R+, U) ;

Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y ) such that Ψ0 = 0 and, for all
τ, t ≥ 0,

Ψτ+tx
0 = PτΨτx

0 + RτΨtTτx
0 , ∀ x0 ∈ X ;

F = (Ft)t≥0 is a family of bounded linear operators from L2(R+, U) to L2(R+, Y ) such that F0 = 0 and,
for all τ, t ≥ 0,

Fτ+t(Pτu+ Rτv) = PτFτu+ Rτ (ΨtΦτu+ Ftv) , ∀ u, v ∈ L2(R+, U).

For an input u ∈ L2
loc(R+, U) and initial state x0 ∈ X , the associated state function x ∈ C(R+, X) and output

function y ∈ L2
loc(R+, Y ) of Σ are given by

x(t) = Ttx
0 + ΦtPtu , (2.1a)

Pty = Ψtx
0 + FtPtu . (2.1b)

Σ is said to be exponentially stable if the semigroup T is exponentially stable:

ω(T) := lim
t→∞

1
t

ln ‖Tt‖ < 0 .

Ψ∞ and F∞ will denote the unique operators X → L2
loc(R+, Y ) and L2

loc(R+, U)→ L2
loc(R+, Y ), respectively,

satisfying
Ψτ = PτΨ∞ , Fτ = PτF∞ ; ∀ τ ≥ 0 .

For any α > ω(T), Ψ∞ is a bounded operator from X into L2
α(R+, Y ) and F∞ maps L2

α(R+, U) boundedly
into L2

α(R+, Y ). If Σ is exponentially stable, then the operators Φt, Ψt and Ft are uniformly bounded. Since
PτF∞ = PτF∞Pτ for all τ ≥ 0, F∞ is a causal operator, called the input-output operator of Σ.

Transfer functions. Weiss [29] has established that if α > ω(T), then there exists a unique holomorphic
function G : Cω(T) → B(Uc, Yc) such that

G(s)(Lu)(s) = [L(F∞u)](s) , ∀ s ∈ Cα , ∀ u ∈ L2
α(R+, U) ,

where L denotes Laplace transform. In particular, G is bounded on Cα for all α > ω(T). Moreover, for all
s ∈ (ω(T),∞), G(s) is a real operator. The function G is called the transfer function of Σ.

Σ and its transfer function G are said to be regular if there exists a linear operator D such that

lim
s→∞, s∈R

G(s)u = Du , ∀ u ∈ U,

in which case, by the principle of uniform boundedness, it follows that D ∈ B(U, Y ) (in particular, D is real).
The operator D is called the feedthrough operator of Σ.

Control and observation operators. The generator of T is denoted by A with domain dom(A). Let
X1 be the space dom(A) endowed with the graph norm. The norm on X is denoted by ‖ · ‖, whilst ‖ · ‖1
denotes the graph norm. Let X−1 be the completion of X with respect to the norm ‖x‖−1 = ‖(λI − A)−1x‖,
where λ ∈ %(A) is any fixed element of the resolvent set %(A) of A. Then X1 ⊂ X ⊂ X−1 and the canonical
injections are bounded and dense. The semigroup T can be restricted to a C0-semigroup on X1 and extended
to a C0-semigroup on X−1. The exponential growth constant is the same on all three spaces. The generator
on X−1 is an extension of A to X (which is bounded as an operator from X to X−1). We shall use the same
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symbol T (respectively, A) for the original semigroup (respectively, its generator) and the associated restrictions
and extensions. With this convention, we may write A ∈ B(X,X−1). Considered as a generator on X−1, the
domain of A is X .

By a representation theorem due to Salamon [24] (see also Weiss [30, 31]), there exist unique operators
B ∈ B(U,X−1) and C ∈ B(X1, Y ) (the control operator and the observation operator of Σ, respectively) such
that, for all t ≥ 0, u ∈ L2

loc(R+, U) and x0 ∈ X1,

ΦtPtu =
∫ t

0

Tt−τBu(τ) dτ and (Ψ∞x0)(t) = CTtx
0.

The so-called Lebesgue extension of C, denoted by CL, is defined by

CLx
0 = lim

t→0
C

1
t

∫ t

0

Tτx
0 dτ,

where dom(CL) is the set of all those x0 ∈ X for which the above limit exists (see [31]). Clearly X1 ⊂ dom(CL)
⊂ X . Furthermore, for any x0 ∈ X , we have that Ttx

0 ∈ dom(CL) for almost every t ≥ 0 and

(Ψ∞x0)(t) = CLTtx
0 , a.e. t ≥ 0 . (2.2)

B is said to be bounded if it is so as a map from the input space U to the state space X , otherwise, B is
said to be unbounded. C is said to be bounded if it can be extended continuously to X , otherwise, C is said
to be unbounded. If T is exponentially stable, then there exist constants β1, β2 > 0 such that, for all t ≥ 0,
u ∈ L2(R+, U) and x0 ∈ X ,

‖ΦtPtu‖ =
∥∥∥∥∫ t

0

Tt−τBu(τ) dτ
∥∥∥∥ ≤ β1‖u‖L2(0,t;U), (2.3)

‖Ψ∞x0‖L2(0,t;Y ) =
(∫ t

0

‖CTτx
0‖2dτ

)1/2

≤ β2‖x0‖ . (2.4)

For any x0 ∈ X and u ∈ L2
loc(R+, U), the state trajectory x(·) defined by (2.1a) satisfies the equation

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 , a.e. t ≥ 0 . (2.5)

The derivative on the left-hand side of (2.5) has, of course, to be understood in X−1. In other words, if we
consider the initial-value problem (2.5) in the space X−1, then for any x0 ∈ X and u ∈ L2

loc(R+, U), (2.5) has
a unique strong solution (in the sense of Pazy [22], p. 109) given by the variation of parameters formula

t 7→ x(t) = Ttx
0 +

∫ t

0

Tt−τBu(τ) dτ . (2.6)

It has been shown in [24] that for any x0 ∈ X1, u ∈ W 1,2
loc (R+, U) with u(0) = 0 and s0 ∈ %(A), the output

function y(·) defined by (2.1b) can be expressed as

y(t) = C

[
Ttx

0 +
∫ t

0

Tt−τBu(τ) dτ − (s0I −A)−1Bu(t)
]

+ G(s0)u(t) , a.e. t ≥ 0 . (2.7)

If Σ is regular (with feedthrough D), then the state trajectory x(·) defined by (2.1a) satisfies x(t) ∈ dom(CL)
for almost every t ≥ 0 and the output y(t) given by (2.1b) can be written in the familiar form

y(t) = CLx(t) +Du(t) , a.e. t ≥ 0 . (2.8)
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We know from [10] and [24] that for all s, s0 ∈ %(A), s 6= s0

1
s− s0

(G(s)−G(s0)) = −C(sI −A)−1(s0I −A)−1B. (2.9)

Moreover, it has been demonstrated in [29] that, if Σ is regular (with feedthrough D), then (sI − A)−1BU ⊂
dom(CL) for all s ∈ %(A) and the transfer function G can be expressed as

G(s) = CL(sI −A)−1B +D , ∀ s ∈ Cω(T) , (2.10)

which is familiar from finite-dimensional systems theory. The operators A, B, C (and D, in the regular case)
are called the generating operators of Σ. Note that in the non-regular case, the generating operators do not
completely determine the system Σ, since A, B and C determine the input-output operator F∞ only up to an
additive constant (see (2.9)).

Four technical lemmas. In the following let Σ = (T,Φ,Ψ,F) be a well-posed linear system with state
space X , input space U , output space Y , generating operators A, B and C, input-output operator F∞ and
transfer function G. We state four lemmas on the asymptotic behaviour and the regularity of the solutions
to (2.1) and on the existence and uniqueness of solutions for a certain nonlinear feedback system with (2.1) in
the forward loop.

Lemma 2.1. Let x0 ∈ X. If u ∈ L2
loc(R+, U) and u∞ ∈ U are such that u − u∞ ∈ L2

α(R+, U) for some
α > ω(T), then the output y of Σ (given by (2.1b)) satisfies

y −G(0)u∞ ∈ L2
α(R+, Y ) .

Proof: Since α > ω(T), the function t 7→ CLTtx
0 is in L2

α(R+, Y ). Combining this with the identity

y(t) = CLTtx
0 + (F∞u)(t) , a.e. t ≥ 0 ,

it follows that it is sufficient to show that

F∞u− y∞ ∈ L2
α(R+, Y ) ,

where y∞ := G(0)u∞. Trivially, we have

F∞u− y∞ = F∞(u− u∞) + F∞(u∞)− y∞ . (2.11)

Since u − u∞ ∈ L2
α(R+, U) for some α > ω(T), we may conclude that F∞(u − u∞) ∈ L2

α(R+, Y ). Therefore,
by (2.11), the claim follows if we can show that

F∞(u∞)− y∞ ∈ L2
α(R+, Y ) . (2.12)

To this end take the Laplace transform of F∞(u∞)− y∞ to obtain

(L(F∞(u∞)− y∞))(s) =
1
s
G(s)u∞ − 1

s
y∞ =

1
s

(G(s)−G(0))u∞ . (2.13)

It is clear that the function s 7→ (G(s)−G(0))u∞/s is in H2(Cα, Y ) and therefore, appealing to a well-known
theorem due to Paley and Wiener, it follows from (2.13) that F∞(u∞)− y∞ ∈ L2

α(R+, Y ), which is (2.12). 2

Lemma 2.2. Suppose that T is exponentially stable. Then, for all x0 ∈ X and u ∈ L2(R+, U), the solution
x(·) of the initial-value problem (2.5) satisfies

lim
t→∞

‖x(t)‖ = 0 , x ∈ L2(R+, X) .
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Proof: Let x0 ∈ X and u ∈ L2(R+, U) and assume that T is exponentially stable. It has been shown in [21],
Lemma 2.2, that under these assumptions x ∈ L2(R+, X). It remains to show that limt→∞ ‖x(t)‖ = 0. To this
end note that by the exponential stability of T and (2.3), there exists β > 0 such that∥∥∥∥∫ t

s

Tt−τBu(τ) dτ
∥∥∥∥ ≤ β(∫ t

s

‖u(τ)‖2 dτ
)1/2

, t ≥ s ≥ 0 . (2.14)

Since u ∈ L2(R+, U), there exists s1 ≥ 0 such that∫ t

s

‖u(τ)‖2 dτ ≤ ε2/4β2 , t ≥ s ≥ s1 . (2.15)

Let ε > 0. By the exponential stability of T there exists s2 ≥ 0 such that

‖Ttx(s1)‖ ≤ ε/2 , ∀ t ≥ s2 . (2.16)

Now

x(t) = Tt−s1x(s1) +
∫ t

s1

Tt−τBu(τ) dτ ,

and hence, by combining (2.14–2.16), we obtain for all t ≥ s1 + s2

‖x(t)‖ ≤ ‖Tt−s1x(s1)‖+ β

(∫ t

s1

‖u(τ)‖2 dτ
)1/2

≤ ε/2 + ε/2 = ε ,

showing that limt→∞ ‖x(t)‖ = 0. 2

The following lemma can be found in Salamon [25] (more precisely, it is part of Lem. 2.5 in [25]).

Lemma 2.3. If x0 ∈ X and u ∈ W 1,2
loc (R+, U) are such that Ax0 + Bu(0) ∈ X, then the solution x(·) of the

initial-value problem (2.5) is continuously differentiable in X.

Suppose that Y = U and consider the following nonlinear system

ẋ(t) = Ax(t) +Bφ(u(t)) , x(0) = x0 ∈ X (2.17a)
u̇(t) = k{r − CLTtx

0 − [F∞(φ(u))](t)} , u(0) = u0 ∈ U , (2.17b)

where the reference vector r ∈ U , the gain parameter k ∈ R and the nonlinearity φ : U → U satisfies a local
Lipschitz condition, that is, for every bounded set W ⊂ U there exists a constant l ≥ 0 such that

‖φ(u)− φ(v)‖ ≤ l‖u− v‖ , ∀u, v ∈W .

Of course, y(t) := CLTtx
0 +[F∞(φ(u))](t) is the output of the well-posed system Σ corresponding to the initial

condition x(0) = x0 and the input φ ◦ u, and so (2.17b) may be written in the compact form u̇(t) = k(r− y(t)).
For T ∈ (0,∞], a continuous function

[0, T )→ X × U , t 7→ (x(t), u(t))

is a solution of (2.17) if (x(·), u(·)) is absolutely continuous as a (X−1×U)-valued function, (x(0), u(0)) = (x0, u0)
and the differential equations in (2.17) are satisfied almost everywhere on [0, a), where the derivative in (2.17a)
should be interpreted in the space X−1

3. An application of a well-known result on abstract Cauchy problems
3 Being a Hilbert space X−1×U is reflexive, and hence any absolutely continuous (X−1×U)-valued function is a.e. differentiable

and can be recovered from its derivative by integration, see [3], Theorem 3.1 (p. 10).
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(see Pazy [22], Th. 2.4, p. 107) shows that a continuous (X×U)-valued function (x(·), u(·)) is a solution of (2.17)
if, and only if, it satisfies the following integrated version of (2.17)

x(t) = Ttx
0 +

∫ t

0

Tt−τBφ(u(τ)) dτ , (2.18a)

u(t) = u0 + k

∫ t

0

[r − CLTτx
0 − (F∞φ(u))(τ)] dτ . (2.18b)

The next result asserts that (2.17) has a unique solution: under the assumption that Σ is regular, this has
been established in [20] (see Prop. 3.1 in [20]). An inspection of the proof in [20] shows that it carries over to
well-posed systems without any changes.

Lemma 2.4. Let φ : U → U be locally Lipschitz. For each (x0, u0) ∈ X × U , there exists a unique solution
(x(·), u(·)) of (2.17) defined on a maximal interval [0, T ). If T <∞, then

lim sup
t→T

(‖x(t)‖+ ‖u(t)‖) =∞ .

If φ is globally Lipschitz, then T =∞.

3. Absolute stability results

In the following let Σ = (T,Φ,Ψ,F) be a well-posed linear system with state space X , input space U , output
space Y = U , generating operators A, B and C, input-output operator F∞ and transfer function G. In this
section we consider the nonlinear system (2.17) with r = 0 and k = 1, i.e.,

ẋ(t) = Ax(t) +Bφ(u(t)) , x(0) = x0 ∈ X (3.1a)
u̇(t) = −CLTtx

0 − [F∞(φ(u))](t) , u(0) = u0 ∈ U . (3.1b)

We assume that φ is locally Lipschitz (in the sense of Sect. 2) and sector bounded, i.e., there exist numbers
a ≤ b such that

〈φ(v) − av, φ(v) − bv〉 ≤ 0 , ∀ v ∈ U . (3.2)

Let S[a, b] denote the set of all functions φ : U → U such that (3.2) holds. It is easy to show that (3.2) holds if
and only if ∥∥∥∥φ(v)− a+ b

2
v

∥∥∥∥ ≤ b− a
2
‖v‖ , ∀ v ∈ U .

This shows in particular, that if φ ∈ S[a, b], then the graph of φ is contained in a (non-convex) cone with vertex
at the origin. For a < b we define

S[a, b) :=
⋃

a≤c<b
S[a, c] .

Stability in the large

The zero solution of (3.1) is called stable in the large if: (i) for all (x0, u0) ∈ X ×U there exists a solution of
(3.1) on R+ (i.e. T =∞ in Lem. 2.4); and (ii) there exists a continuous, strictly increasing function p : R+ → R+

with p(0) = 0 and such that for any l > 0 the solution of (x(·), u(·)) of the initial value (3.1) satisfies

‖x0‖+ ‖u0‖ ≤ l =⇒ ‖x(t)‖+ ‖u(t)‖ ≤ p(l) , ∀ t ≥ 0 .
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Let R,S ∈ B(Uc). If
〈Rv, v〉 ≥ 0 , ∀ v ∈ Uc ,

we write R ≥ 0; if the above inequality is strict for all u ∈ Uc \ {0}, we write R > 0. Since Uc is a complex
Hilbert space, R ≥ 0 implies that R = R∗. We write S ≥ R if S −R ≥ 0.

The following theorem shows that a suitable positive real condition in terms of the transfer function G(s)/s
will ensure that the zero solution of (3.1) is stable in the large if Σ is exponentially stable and φ ∈ S[0, b).

Theorem 3.1. Suppose that Σ is exponentially stable, G(0) is invertible in B(U) and φ : U → U is locally
Lipschitz. Let (x0, u0) ∈ X × U . If there exists b > 0 such that

I +
b

2

(
1
s
G(s) +

1
s̄
G∗(s)

)
≥ 0 , ∀ s ∈ C0 , (PR)

and if φ ∈ S[0, b), then the following statements hold:
(a) the zero solution of (3.1) is stable in the large;
(b) the solution (x(·), u(·)) of (3.1) satisfies

lim
t→∞

‖x(t)‖ = 0 , x ∈ L2(R+, X) , lim
t→∞

‖φ(u(t))‖ = 0 , φ ◦ u ∈ L2(R+, U) ;

(c) under the extra assumption that dimU = 1, u∞ := limt→∞ u(t) exists, is finite and satisfies φ(u∞) = 0.

Remark 3.2. (a) Since Σ is exponentially stable, it follows that G(s)/s is holomorphic in C0. Combining this
with (PR) shows that the function I+ bG(s)/s is positive real. As in the finite-dimensional case (see Anderson
and Vongpanitlerd [2], p. 53), it can be shown that (PR) holds if and only if G(0) = G∗(0) ≥ 0 and

I +
b

2

(
1
iω

G(iω)− 1
iω

G∗(iω)
)
≥ 0 , ∀ω ∈ R \ {0}·

In this context it is interesting to note that there exists b > 0 such that (PR) holds if and only if G(0) =
G∗(0) ≥ 0 (see Logemann and Townley [21]).

(b) Note that assertion (a) implies the boundedness of the solution (x(·), u(·)) of (3.1) for all (x0, u0) ∈ X×U .
(c) If φ−1({0}) = {0} and dimU = 1, then it follows from a combination of assertions (a)–(c) that the zero

solution of (3.1) is globally asymptotically stable.
(d) Some of the statements in Theorem 3.1 remain true for time-varying sector bounded nonlinearities. More

precisely, let φ : R+ × U → U, (t, v) 7→ φ(t, v) be continuous in t and locally Lipschitz in v, uniformly in t on
bounded intervals. An inspection of the proof of Theorem 3.1 shows that statement (a) remains true for all
such φ satisfying

〈φ(t, v), φ(t, v) − cv〉 ≤ 0 , ∀ (t, v) ∈ R+ × U
for some c ∈ [0, b); furthermore, apart from the convergence of φ(t, u(t)) to 0 as t→∞, statement (b) remains
true also.

(e) Consider the feedback system shown in Figure 3, where H(s) is the (rational) transfer function of a
m-input, m-output, exponentially stable, finite-dimensional system and φ : Rm → Rm is a static nonlinearity.
The circle criterion says that if

I +
b

2
(H(iω) + H∗(iω)) ≥ 0 , ∀ω ∈ R ,

then for all locally Lipschitz φ ∈ S[0, b), the closed-loop system shown in Figure 3 is globally exponentially stable
(see [13], p. 409 and [28], p. 227). Hence Theorem 3.1 can be considered as an extension of the circle criterion
to the case where H(s) is of the form H(s) = G(s)/s with G being the transfer function of an exponentially
stable well-posed infinite-dimensional system, i.e. the plant is the series interconnection of an exponentially
stable well-posed infinite-dimensional system and an integrator.
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(f) For exponentially stable single-input single-output systems with bounded control and bounded observa-
tion, the stability properties of the zero solution of (3.1) have been investigated in [33] under the assumption
that φ is locally Lipschitz, φ(v)v > 0 for v 6= 0 and lim|v|→∞

∫ v
0 φ(w) dw = ∞. It is shown in [33] that for all

such φ, the zero solution of (3.1) is uniformly asymptotically stable in the large, provided that

Re G(iω) ≥ ε > 0 , ∀ω ∈ R , (3.3)

i.e., G is positive-real in a strict sense4. Trivially, there are many examples where (3.3) is not satisfied, whilst
(PR) holds for some b > 0. 3

Proof of Theorem 3.1: Let (x0, u0) ∈ X × U . By Lemma 2.4 the corresponding solution of the initial-value
problem (3.1), denoted by (x(·), u(·)), exists on a maximal interval [0, T ) (where 0 < T ≤ ∞) and is unique.
Set Q := G(0) and define for t ∈ [0, T )

z(t) := A−1x(t) , v(t) := Q−1(Cz(t) + u(t)) . (3.4)

We proceed in several steps.

Step 1: A differential equation for (z, v).

We claim that (z(t), v(t)) is continuously differentiable in X × U for all t ∈ (0, T ) and satisfies

ż(t) = Az(t) +A−1Bφ(u(t)) , z(0) = z0 ∈ X1 , ∀ t ∈ (0, T ) , (3.5a)
v̇(t) = −φ(u(t)) , v(0) = v0 ∈ U , ∀ t ∈ (0, T ) , (3.5b)

where z0 := A−1x0 and v0 := Q−1(CA−1x0 + u0).
Using the continuity of the functions t 7→ φ(u(t)) and

[0, T )→ X , t 7→
∫ t

0

Tt−τBφ(u(τ)) dτ ,

it follows from a well-known result on the existence of classical solutions to abstract Cauchy problems (see
Pazy [22], p. 107) that for all t ∈ (0, T ), x(t) is continuously differentiable in X−1 and (3.1a) holds. As a
consequence, z(t) is continuously differentiable in X for all t ∈ (0, T ) and (3.5a) holds. The proof of the claim
for v(t) is more difficult and requires an approximation argument. To this end let T0 ∈ (0, T ) be arbitrary.

4 If the underlying semigroup is analytic, then this result remains true for unbounded control action, see [4].
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Choose x0
n ∈ X1 and wn ∈W 1,2([0, T0], U) with wn(0) = 0 such that

lim
n→∞

‖x0 − x0
n‖ = 0 , lim

n→∞
‖φ(u)− wn‖L2(0,T ;U) = 0 . (3.6)

Consider the initial-value problem

ζ̇(t) = Aζ(t) +Bwn(t) , ζ(0) = x0
n , (3.7a)

η̇(t) = −CTtx
0
n − (F∞wn)(t) , η(0) = u0 , (3.7b)

and denote its solution by (xn(·), un(·)). Denoting the output function of Σ corresponding to the initial
value x0

n and the control wn(·) by yn(·), it is clear that the right-hand side of (3.7b) is equal to −yn(t). By
Lemma 2.3, xn is continuously differentiable in X and hence the function defined by

vn(t) := Q−1[CA−1xn(t) + un(t)] (3.8)

is absolutely continuous with derivative

v̇n(t) = Q−1
(
C[xn(t) +A−1Bwn(t)]− yn(t)

)
= Q−1

(
C[Ttx

0
n +

∫ t

0

Tt−τBwn(τ) dτ +A−1Bwn(t)]− yn(t)
)
, a.e. t ∈ [0, T0].

Invoking (2.7), we obtain

v̇n(t) = −Q−1G(0)wn(t) = −wn(t) , a.e. t ∈ [0, T0] ,

and thus

vn(t) = vn(0)−
∫ t

0

wn(τ) dτ , ∀ t ∈ [0, T0] . (3.9)

From (3.6) it follows via standard properties of well-posed systems that for all t ∈ [0, T0]

lim
n→∞

‖xn(t)− x(t)‖ = 0 , lim
n→∞

un(t) = u(t) ,

and therefore, by (3.4) and (3.8)
lim
n→∞

vn(t) = v(t) , ∀ t ∈ [0, T0] .

On the other hand, by (3.6) and (3.9)

lim
n→∞

vn(t) = v0 −
∫ t

0

φ(u(τ)) dτ , ∀ t ∈ [0, T0] ,

showing that

v(t) = v0 −
∫ t

0

φ(u(τ)) dτ , ∀ t ∈ [0, T0] ,

which upon differentiation yields (3.5b).

Step 2: Exploiting the positive-real condition (PR).

By assumption, φ ∈ S[0, b), and hence there exists b̃ ∈ (0, b) such that

φ ∈ S[0, b̃] . (3.10)
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Choose c ∈ (b̃, b). We consider the quadruple Ξ = (A,A−1B,C, c−1I) of operators, which are the generating
operators of an exponentially stable Pritchard-Salamon system5 on the spaces X1 ↪→ X (this implies that Ξ
defines an exponentially stable regular system). The function

H(s) = C(sI −A)−1A−1B +
1
c
I

is the transfer function of Ξ. By (2.9) we have

H(s) =
1
s

(G(s)−G(0)) +
1
c
I =

1
s

(G(s)−Q) +
1
c
I , ∀ s ∈ %(A), s 6= 0 .

It is not difficult to show that (PR) implies that Q = G(0) ≥ 0, and hence, in particular, Q = Q∗ (this can
be proved exactly as in the finite-dimensional case, see [2], p. 53; cf. also Rem. 3.2, Part (a)). Therefore, since
0 < c < b, (PR) guarantees the existence of a constant ε > 0 such that

H(iω) + H∗(iω) ≥ εI , ∀w ∈ R .

Consequently, by the positive-real Riccati equation theory for Pritchard-Salamon systems in van Keulen [16]
(see Th. 3.10 and Rem. 3.14 in [16]), there exists P̃ ∈ B(X), P̃ = P̃ ∗, such that

〈Ax1, P̃ x2〉+ 〈P̃ x1, Ax2〉 =
c

2
〈[(A−1B)∗P̃ + C]x1, [(A−1B)∗P̃ + C]x2〉 , ∀x1, x2 ∈ X1 . (3.11)

Setting

P := −P̃ ∈ B(X) , L :=
√
c

2
[C − (A−1B)∗P ] ∈ B(X1, U) ,

we obtain using (3.11)

〈Ax1, Px2〉+ 〈Px1, Ax2〉 = −〈Lx1, Lx2〉 , ∀x1, x2 ∈ X1 (3.12a)

(A−1B)∗Px1 = Cx1 −
√

2/cLx1 , ∀x1 ∈ X1 . (3.12b)

Moreover, by a routine argument it follows from (3.12a) and the exponential stability of the semigroup Tt that
P ≥ 0. Note that the existence of solutions L and P = P ∗ ≥ 0 to the Lure equations (3.12) is the content of
the Kalman-Yakubovich lemma in the context of the infinite-dimensional system Ξ.

Step 3: A Lyapunov-type argument.

For t ∈ [0, T ) define

V (t) := 〈z(t), Pz(t)〉+ 〈v(t), Qv(t)〉 ≥ 0 . (3.13)

By Step 1, V is continuously differentiable. Differentiating V and using (3.5, 3.12) and the definition of v (see
(3.4)) yields for all t ∈ [0, T )

V̇ (t) = −‖Lz(t)‖2 + 2〈φ(u(t)), Cz(t) −
√

2/cLz(t)〉 − 2〈φ(u(t)), Qv(t)〉
= −‖Lz(t)‖2 − 2

√
2/c 〈φ(u(t)), Lz(t)〉 − 2〈φ(u(t)), u(t)〉·

Completing the square gives for all t ∈ [0, T )

V̇ (t) = −‖Lz(t) +
√

2/cφ(u(t))‖2 +
2
c

(
‖φ(u(t))‖2 − c〈φ(u(t)), u(t)〉

)
· (3.14)

5 See [9, 16] for the concept of a Pritchard-Salamon system.
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Since c > b̃ there exists δ > 0 such that c = b̃+ δ and therefore, using (3.10), we obtain for all t ∈ [0, T )

‖φ(u(t))‖2 − c〈φ(u(t)), u(t)〉 = 〈φ(u(t)), φ(u(t)) − b̃u(t)〉 − δ〈φ(u(t)), u(t)〉

≤ −δ〈φ(u(t)), u(t)〉 ≤ −δ
b̃
‖φ(u(t))‖2 .

Using this inequality in (3.14), it follows that

V̇ (t) ≤ −2δ
b̃c
‖φ(u(t))‖2 , ∀ t ∈ [0, T ) .

Hence, since V (t) ≥ 0, integration leads to∫ t

0

‖φ(u(τ))‖2 dτ ≤ b̃c

2δ
V (0) , ∀ t ∈ [0, T ) . (3.15)

The inequality (3.15) shows that φ◦u ∈ L2(0, T ;U). Combining this with the well-posedness and the exponential
stability of Σ, we may conclude that x(t) is bounded on the interval [0, T ) and u̇ ∈ L2(0, T ;U). This implies
the boundedness of (x(t), u(t)) on [0, T ) if T <∞, and hence, by the maximality of T , it follows via Lemma 2.4
that T =∞. Therefore the solution (x(t), u(t)) exists for all t ≥ 0 and by (3.15)∫ ∞

0

‖φ(u(τ))‖2 dτ ≤ b̃c

2δ
V (0) . (3.16)

Step 4: Proof of statement (a) – stability in the large.

As an immediate consequence of the exponential stability of Σ, (2.3, 3.4, 3.13) and (3.16) there exist constants
α1, α2, α3 > 0 not depending on x0 and u0 and such that

‖x(t)‖2 ≤ α1(‖x0‖2 + V (0)) ≤ α2(‖x0‖2 + ‖A−1x0‖2 + ‖CA−1x0 + u0‖2) ≤ α3(‖x0‖2 + ‖u0‖2) . (3.17)

Moreover, as was pointed out in Step 2, (PR) implies that Q = Q∗ ≥ 0. Combining this with the invertibility
of Q, it follows from standard results on positive operators (see e.g. Rudin [23], p. 314) that the map w 7→
〈w,Qw〉1/2 defines a new norm on U which is equivalent to the original norm on U . Therefore, using (3.13),
the fact that V (t) is non-increasing and P ≥ 0, we may conclude that

‖v(t)‖2 ≤ β1V (0) ≤ β2(‖x0‖2 + ‖u0‖2) ,

for some constants β1, β2 > 0 which do not depend on x0 and u0. From the definition of v(t) (see (3.4)) it
follows that

‖Q−1u(t)‖2 ≤ 2β2(‖x0‖2 + ‖u0‖2) + 2‖Q−1CA−1x(t)‖2 .
Combining this with (3.17) yields the existence of a constant β3 > 0 (not depending on x0 and u0) such that

‖u(t)‖2 ≤ β3(‖x0‖2 + ‖u0‖2) . (3.18)

Statement (a) now follows from (3.17) and (3.18).

Step 5: Proof of statement (b) – asymptotic behaviour of x and φ ◦ u.

Note that by (3.16),

φ ◦ u ∈ L2(R+, U) , (3.19)
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and hence, by Lemma 2.2, x ∈ L2(R+, X) and limt→∞ ‖x(t)‖ = 0. It only remains to show that limt→∞ φ(u(t)) =
0. To this end note, that that by statement (a) proved in Step 4, u(·) is bounded, i.e. there exists a number
γ > 0 such that

‖u(t)‖ ≤ γ , ∀ t ≥ 0 . (3.20)

Moreover, by the exponential stability of Σ we obtain from (3.1b) and (3.19) that u̇ ∈ L2(R+, U), which implies
in particular that u(·) is uniformly continuous. By (3.20) and the local Lipschitz property of φ, the restricted
map φ|imu is globally Lipschitz, and therefore, using the uniform continuity of u(·), we may conclude that φ ◦ u
is uniformly continuous. Combining this with (3.19) and applying Barbălat’s lemma (see [13], p. 192) shows
that limt→∞ φ(u(t)) = 0.

Step 6: Proof of statement (c) – asymptotic behaviour of u.

Assume that dimU = 1, i.e. U = R. Note, that by Step 3, V∞ := limt→∞ V (t) exists and is finite (since V (·)
is non-negative and non-increasing). Combining this with the fact that limt→∞ ‖x(t)‖ = 0, we may conclude
from (3.4) and (3.13) that limt→∞ u(t) = u∞ exists and is finite. By continuity of φ and statement (b), it
follows that φ(u∞) = limt→∞ φ(u(t)) = 0. 2

In the following we introduce extra assumptions on the nonlinearity φ which will guarantee that u(t) converges
as t→∞ in the case that dimU > 1.

Corollary 3.3. Suppose that the assumptions of Theorem 3.1 hold. If there exists b > 0 such that (PR) is
satisfied, if φ ∈ S[0, b) and if the extra assumptions
(A1) φ−1({0})∩W is finite for any bounded set W ⊂ U ,
(A2) infw∈W ‖φ(w)‖ > 0 for any bounded, closed and nonempty set W ⊂ U with φ−1({0}) ∩W = ∅,
are satisfied, then statements (a) and (b) of Theorem 3.1 hold. Moreover, the limit u∞ := limt→∞ u(t) exists,
is finite and φ(u∞) = 0.

Remark 3.4. Of course, assumption (A2) is automatically satisfied if dimU < ∞. Corollary 3.3 shows in
particular that if φ−1({0}) = {0} and (A2) holds, then the zero solution of (3.1) is globally asymptotically
stable. 3

Proof of Corollary 3.3: Let (x(·), u(·)) denote the solution of (3.1). Clearly, since the assumptions of
Theorem 3.1 are satisfied, statements (a) and (b) of Theorem 3.1 hold. Therefore, in particular, imu is bounded
and

lim
t→∞

φ(u(t)) = 0 . (3.21)

By assumption (A1), the set Z := φ−1({0}) ∩ clos(imu) is finite. Moreover, by (A2) and (3.21), Z 6= ∅. Note
that since (x(·), u(·)) is the solution of (3.1), u(·) is (absolutely) continuous. So it is sufficient to show that

lim
t→∞

dist(u(t), Z) = 0 , (3.22)

since by finiteness of Z and continuity of u, (3.22) implies that for all sufficiently large t, u(t) lies in a neigh-
bourhood of exactly one point of Z and hence u∞ := limt→∞ u(t) exists with u∞ ∈ Z ⊂ φ−1({0}).

Seeking a contradiction, suppose that (3.22) is not true. Then there exist a sequence (tn) ⊂ R+ with
limn→∞ tn =∞ and a number ε > 0 such that

u(tn) 6∈ {v ∈ U : dist(v, Z) < ε} =: Zε .

Defining W := clos(imu \ Zε), it follows that W is closed, bounded and φ−1({0}) ∩W = ∅. Consequently, by
assumption (A2), there exists δ > 0 such that ‖φ(w)‖ ≥ δ for all w ∈ W . Since u(tn) ∈ W for all n ∈ N, we
obtain that ‖φ(u(tn))‖ ≥ δ for all n ∈ N, contradicting (3.21). 2
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Exponential stability

The following theorem shows that under the assumptions of Theorem 3.1 the zero solution of (3.1) is globally
exponentially stable, provided that φ ∈ S[a, b) for some a ∈ (0, b) (i.e., the nonlinearity φ is assumed to satisfy
a more restrictive sector condition than in Th. 3.1).

Theorem 3.5. Suppose that Σ is exponentially stable, G(0) is invertible and φ : U → U is locally Lipschitz. If
there exists b > 0 such that (PR) holds and if φ ∈ S[a, b) for some a ∈ (0, b), then the zero solution of (3.1) is
globally exponentially stable, that is, there exist N ≥ 1 and ν ∈ (ω(T), 0) such that for all (x0, u0) ∈ X × U the
solution (x(·), u(·)) of (3.1) satisfies

‖x(t)‖+ ‖u(t)‖ ≤ Neνt(‖x0‖+ ‖u0‖) , ∀ t ≥ 0 .

Proof: Let K be the supremum of all numbers k > 0 such that

I +
k

2

(
1
s
G(s) +

1
s̄
G∗(s)

)
≥ 0 , ∀ s ∈ C0 .

By assumption, K ≥ b > 0. Since φ ∈ S[a, b), there exists c ∈ (a, b) such that φ ∈ S[a, c]. Let δ ∈ (0, a) such
that c+ δ < K. We define

κ :=
c+ δ

2
<
K

2
, H(s) :=

1
s
G(s)

(
I +

κ

s
G(s)

)−1

, L(s) :=
1
s

(
I +

κ

s
G(s)

)−1

.

We know from [21]6 that

H, L ∈ H∞(C0,B(U)) . (3.23)

Moreover, Lemma 3.10 in [21] yields

‖H‖∞ = sup
s∈C0

‖H(s)‖ =
1
κ
· (3.24)

Setting

ψ(v) := φ(v)− κv , γ :=
c− δ

2
and using the fact that φ ∈ S[a, c] ⊂ S[δ, c], we obtain

‖ψ(v)‖ ≤ γ‖v‖ , ∀ v ∈ U . (3.25)

Clearly, κ > γ, and hence by (3.24)

γ‖H‖∞ < 1 . (3.26)

Let ε ∈ (0, δ) be sufficiently small such that the semigroup eεtTt is exponentially stable,

H, L ∈ H∞(C−ε,B(U)) , (3.27)

and

γ sup
s∈C−ε

‖H(s)‖ < 1 . (3.28)

6 The results in [21] are proved for matrix-valued G, i.e. dimU <∞. However, it is easy to see that the relevant results in [21]
extend to infinite-dimensional input spaces U .
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For all sufficiently small ε > 0, (3.27) follows via a routine argument from (3.23) and the fact that G ∈
H∞(C−ε,B(U)), whilst (3.28) is a consequence of (3.26) and (3.27) combined with the fact that a holomorphic
function which is bounded in an open vertical strip in the complex plane is uniformly continuous in any closed
vertical substrip (see [8], p. 72).

Let (x0, u0) ∈ X × U and let (x(·), u(·)) denote the solution of (3.1) which satisfies the initial conditions
x(0) = x0 and u(0) = u0. Rewrite (3.1b) in the form

u̇(t) = −(Ψ∞x0)(t)− (F∞(ψ ◦ u+ κu))(t) , a.e. t ≥ 0 . (3.29)

By Theorem 3.1, u is bounded and u̇ ∈ L2(R+, U). Thus the Laplace transforms (L(u))(s), (L(ψ ◦ u))(s)
and (L(u̇))(s) exist for all s ∈ C0 and an application of the Laplace transform to (3.29) combined with a
straightforward calculation yields

(L(u))(s) = L(s)u0 − L(s)C(sI −A)−1x0 −H(s)(L(ψ ◦ u))(s) , ∀ s ∈ C0 . (3.30)

Define bounded operators H, L from L2(R+, U) to L2(R+, U) by setting

Hv = L
−1(HL(v)) , Lv = L

−1(LL(v)) ; ∀ v ∈ L2(R+, U) .

By (3.27), H and L restrict to bounded operators from L2
−ε(R+, U) to L2

−ε(R+, U). The L2
−ε(R+, U)-induced

operator norms of H and L are given by

sup
s∈C−ε

‖H(s)‖ =: h and sup
s∈C−ε

‖L(s)‖ =: l , (3.31)

respectively. Taking inverse Laplace transforms in (3.30), we obtain

u = L−1(Lu0)− L(Ψ∞x0)−H(ψ ◦ u) .

Taking the L2
−ε-norm of Ptu (where t ≥ 0), using the causality of H and estimating gives

(∫ t

0

‖eετu(τ)‖2 dτ
)1/2

≤
(∫ ∞

0

‖eετ (L−1(Lu0))(τ)‖2 dτ
)1/2

+ l

(∫ ∞
0

‖eετCLTτx
0‖2 dτ

)1/2

+ h

(∫ t

0

‖eετψ(u(τ))‖2 dτ
)1/2

, ∀ t ≥ 0 . (3.32)

It is clear that the function s 7→ L(s)u0 is in H2(C−ε, U), and therefore by a well-known theorem due to Paley
and Wiener ∫ ∞

0

‖eετ (L−1(Lu0))(τ)‖2 dτ =
1

2π
sup
α>−ε

∫ ∞
−∞
‖L(α+ iω)u0‖2 dω ≤ N2

1 ‖u0‖2 , (3.33)

where

N1 :=
(

1
2π

sup
α>−ε

∫ ∞
−∞
‖L(α+ iω)‖2 dω

)1/2

<∞ .

Combining (3.25, 3.32, 3.33) and using the exponential stability of eεtTt, we may conclude that there exists
N2 > 0 (not depending on x0 and u0) such that(∫ t

0

‖eετu(τ)‖2 dτ
)1/2

≤ N1‖u0‖+N2‖x0‖+ γh

(∫ t

0

‖eετu(τ)‖2 dτ
)1/2

, ∀ t ≥ 0 .
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By (3.28) and (3.31), γh < 1, and therefore, u ∈ L2
−ε(R+, U), and, moreover,(∫ ∞

0

‖eετu(τ)‖2 dτ
)1/2

≤ N3(‖x0‖+ ‖u0‖) , (3.34)

where

N3 :=
max(N1, N2)

1− γh ·

Furthermore, since F∞ is bounded from L2
−ε(R+, U) to L2

−ε(R+, U) with L2
−ε-induced operator norm equal to

f∞ := sup
s∈C−ε

‖G(s)‖

and φ ∈ S[a, c], it follows from (3.34) that(∫ ∞
0

‖eετ (F∞φ(u))(τ)‖2 dτ
)1/2

≤ N3f∞c(‖x0‖+ ‖u0‖) · (3.35)

In order to obtain an exponential estimate for x(t), we multiply the integrated version of (3.1a) by eεt to obtain

eεtx(t) = eεtTtx
0 +

∫ t

0

eε(t−τ)Tt−τBe
ετφ(u(τ)) dτ , ∀ t ≥ 0 .

Using the exponential stability of the semigroup eεtTt and the fact that φ ∈ S[a, b), it follows that there exists
a constant N4 ≥ 1 (not depending on x0 and u0) such that

eεt‖x(t)‖ ≤ N4

[
‖x0‖+

(∫ t

0

‖eετu(τ)‖2 dτ
)1/2

]
, ∀ t ≥ 0 .

Combining this with (3.34) shows that

eεt‖x(t)‖ ≤ N5(‖x0‖+ ‖u0‖) , ∀ t ≥ 0 , (3.36)

for some N5 ≥ 1 (not depending on x0 and u0).
Finally, to derive an exponential estimate for u(t), let η ∈ (0, ε). Using (3.1b), a straightforward calculation

gives

d

dt
(eηtu(t)) = −e(η−ε)tCLe

εtTtx
0 − e(η−ε)t[eεt(F∞φ(u))(t)] + ηe(η−ε)t[eεtu(t)] , a.e. t ≥ 0 . (3.37)

Clearly, the functions
t 7→ e(η−ε)t , t 7→ CLe

εtTtx
0

are in L2(R+,R) and L2(R+, U), respectively. Moreover, by (3.34) and (3.35) the functions

t 7→ eεtu(t) , t 7→ eεt(F∞φ(u))(t)

are in L2(R+, U). Integrating (3.37), using the Cauchy-Schwarz inequality and invoking (3.34) and (3.35) shows
that there exists a constant N6 ≥ 1 (not depending on x0 and u0) such that

eηt‖u(t)‖ ≤ N6(‖x0‖+ ‖u0‖) , ∀ t ≥ 0 . (3.38)
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The claim now follows from (3.36) and (3.38) with N = 2 max(N5, N6) and ν = −η. 2

For W ⊂ U and a ≤ b, let SW [a, b] denote the set of all functions φ : U → U such that

〈φ(w) − aw, φ(w) − bw〉 ≤ 0 , ∀w ∈W .

For a < b we define
SW [a, b) :=

⋃
a≤c<b

SW [a, c] .

Of course, SU [a, b] = S[a, b] and SU [a, b) = S[a, b).
Theorem 3.1 and Theorem 3.5 can be used to derive the following semi-global exponential stability result.

The assumptions on the nonlinearity φ are more restrictive than in Theorem 3.1, but less restrictive than in
Theorem 3.5.

Theorem 3.6. Suppose that Σ is exponentially stable, G(0) is invertible, φ : U → U is locally Lipschitz and
there exists b > 0 such that (PR) holds. If φ ∈ S[0, b) and φ satisfies the two extra assumptions

(A3) φ ∈ SV [a, b) for some open set V ⊂ U with 0 ∈ V and some a ∈ (0, b),
(A4) infw∈W ‖φ(w)‖ > 0 for any bounded, closed, nonempty set W ⊂ U with 0 6∈W ,

then the zero solution of (3.1) is semi-globally exponentially stable, that is, for every M > 0, there exists N ≥ 1
and ν ∈ (ω(T), 0) such that for all (x0, u0) ∈ X × U with ‖x0‖ + ‖u0‖ ≤ M , the solution (x(·), u(·)) of (3.1)
satisfies

‖x(t)‖+ ‖u(t)‖ ≤ Neνt(‖x0‖+ ‖u0‖) , ∀ t ≥ 0 .

Of course, for finite-dimensional U , (A4) holds if φ−1({0}) = {0} (by the continuity of φ).

Proof of Theorem 3.6: Let M > 0. By statement (a) of Theorem 3.1, there exists R > 0 such that for all
(x0, u0) ∈ X × U with ‖x0‖+ ‖u0‖ ≤M , the solution (x(·), u(·)) of (3.1) satisfies

‖x(t)‖+ ‖u(t)‖ ≤ R , ∀ t ≥ 0 . (3.39)

Since φ ∈ S[0, b) and by assumption (A3), there exists c ∈ (a, b) such that

φ ∈ S[0, c] ∩ SV [a, c] .

Define ψ : U → U by

ψ(v) =

 φ(v) if ‖v‖ ≤ R
c

(
1− R

‖v‖

)
v + φ(

R

‖v‖v) if ‖v‖ > R .
(3.40)

Clearly, ψ is locally Lipschitz. Moreover, by Corollary A.2 in Part 1 of the Appendix, there exists ε > 0 such
that ψ ∈ S[ε, b) (this is evident in the case dimU = 1). Consequently, we may apply Theorem 3.5 to the system

ζ̇(t) = Aζ(t) +Bψ(η(t)) , ζ(0) = ζ0 , (3.41a)
η̇(t) = −CLTtx

0 − [F∞(ψ(η))](t) , η(0) = η0 , (3.41b)

to conclude that the zero solution of (3.41) is globally exponentially stable. By (3.39) and (3.40) it is clear
that for all initial conditions (x0, u0) ∈ X × U with ‖x0‖ + ‖u0‖ ≤ M , the solution (x(·), u(·)) of (3.1) is also
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a solution of (3.41). Therefore, by Theorem 3.5, there exists N ≥ 1 and ν ∈ (ω(T), 0) such that for all initial
conditions (x0, u0) ∈ X × U with ‖x0‖+ ‖u0‖ ≤M ,

‖x(t)‖+ ‖u(t)‖ ≤ Neνt(‖x0‖+ ‖u0‖) , ∀ t ≥ 0 .

2

4. Applications to low-gain integral control

In this section we apply the results in Section 3 to the so-called low-gain tracking problem described in the
Introduction (see also Fig. 2). As in Section 3, let Σ = (T,Φ,Ψ,F) be a well-posed linear system with state
space X , input space U , output space Y = U , generating operators A, B and C, input-output operator F∞
and transfer function G. In this section we assume that U = Y = Rm.

For λ > 0, let N1(λ) denote the set of all nondecreasing globally Lipschitz nonlinearities f : R→ R such that
λ is a Lipschitz constant for f . Note that if f ∈ N1(λ) and f(0) = 0, then f ∈ S[0, λ]. Moreover, for λ > 0,
Nm(λ) denotes the set of all nonlinearities f : Rm → Rm which are of the form

f(v) = [f1(v1), f2(v2), . . . , fm(vm)]T , ∀ v = (v1, v2, . . . , vm)T ∈ Rm , (4.1)

where fi ∈ N1(λ) for all i = 1, . . . ,m. Sometimes it will be convenient to write (4.1) in the form f = diag (fi).
Clearly, a nonlinearity in Nm(λ) is globally Lipschitz.

Consider the following nonlinear system

ẋ(t) = Ax(t) +Bφ(u(t)) , x(0) = x0 ∈ X (4.2a)
u̇(t) = k{r − CLTtx

0 − [F∞(φ(u))](t)} , u(0) = u0 ∈ Rm , (4.2b)

where r ∈ Rm is the reference vector, k ∈ R is a gain parameter and φ : Rm → Rm is a nonlinearity in
Nm(λ). The aim is to show that under suitable conditions on Σ, the error e(t) = r − y(t), where y(t) =
CLTtx

0 + [F∞(φ(u))](t), becomes small in some sense as t→∞.
If G is holomorphic and bounded on C−ε for some ε > 0 (which for example is the case if Σ is exponentially

stable) and G(0) = G∗(0) > 0, then it is not difficult to show that the following positive-real condition

I +
k

2

(
1
s
G(s) +

1
s̄
G∗(s)

)
≥ 0 , ∀ s ∈ C0 (4.3)

holds for all sufficiently small k > 0, see Lemma 3.10 in [21]. We define

K := sup{k > 0 : (4.3) holds}·

Recall that M denotes the space of all Rm×m-valued Borel measures on R+.

Theorem 4.1. Assume that Σ is exponentially stable and G(0) = G∗(0) > 0. Let λ > 0, φ ∈ Nm(λ),
k ∈ (0,K/λ) and let r ∈ Rm be such that

φr := [G(0)]−1r ∈ imφ . (4.4)

Then the solution (x(·), u(·)) of (4.2) is unique and exists on R+, and for each ur ∈ φ−1({φr}), there exists
N > 0 such that for all (x0, u0) ∈ X × Rm

‖x(t)− xr‖+ ‖u(t)− ur‖ ≤ N(‖x0 − xr‖+ ‖u0 − ur‖) , ∀ t ≥ 0 , (4.5)

where xr := −A−1Bφr. Moreover, the following statements hold:
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(a) limt→∞ φ(u(t)) = φr , φ ◦ u− φr ∈ L2(R+,Rm) ;
(b) limt→∞ ‖x(t)− xr‖ = 0 , x− xr ∈ L2(R+, X);
(c) e := r − y ∈ L2(R+,Rm), where y(t) = CLTtx

0 + [F∞(φ(u))](t);
(d) under the additional assumption that m = 1, the limit limt→∞ u(t) =: u∞ exists, is finite and satisfies

φ(u∞) = φr;
(e) under the additional assumption that φ−1({φr}) ∩W is finite for any bounded set W ⊂ Rm, the limit

limt→∞ u(t) =: u∞ exists, is finite and satisfies φ(u∞) = φr;
(f) under the additional assumption that L−1(G) ∈M, the error e satisfies e = e1 + e2, where e1 is a bounded

function with limt→∞ e1(t) = 0 and e2 ∈ L2
α(R+,Rm) for any α > ω(T); if additionally Tt0x

0 ∈ X1 for
some t0 ≥ 0, then limt→∞ e2(t) = 0.

Remark 4.2. (a) Whilst statement (c) of Theorem 4.1 need not imply asymptotic tracking, it does imply that
the error is small for large t in the sense that for all δ, ε > 0, there exists τ > 0 such that

µL({t ≥ τ : ‖e(t)‖ ≥ δ}) ≤ ε ,

where µL denotes the Lebesgue measure on R+.
(b) The assumption in statement (f) of Theorem 4.1 that L−1(G) ∈M implies the regularity of Σ. However,

this assumption is not very restrictive in the sense that it seems to be satisfied in all practical examples of
exponentially stable well-posed systems. In particular, it is satisfied if B or C is bounded (see Lem. 2.3 in [18]).
Statement (f) implies that limt→∞ e(t) = 0, provided that L−1(G) ∈M and Tt0x

0 ∈ X1 for some t0 ≥ 0.
(c) In applying Theorem 4.1 it is important to know the constant K or at least a lower bound for K. In

the single-input, single-output case it has been shown in [19] how K can be obtained from frequency-response
experiments performed on the linear part of the plant.

(d) In the multivariable case, the applicability of Theorem 4.1 is severely limited by the assumption G(0) =
G∗(0) > 0. If we relax this hypothesis on G(0) and only assume that det G(0) 6= 0, then there exists Γ ∈ Rm×m
such that ΓG(0) = G∗(0)Γ∗ > 0 (choose, for example, Γ = [G(0)]−1). If the control law (4.2b) is replaced by

u̇(t) = kΓ{r− CLTtx
0 − [F∞(φ(u))](t)}

and G(s) is replaced by ΓG(s) in (4.3), then the conclusions of Theorem 4.1 remain true. However, finding a
suitable “matrix gain” Γ will usually require exact knowledge of G(0).

(e) We remark that Theorem 4.1 considerably improves the main result of [20] (see Th. 3.3 in [20]) in
the sense that Theorem 4.1 (i) guarantees better asymptotic and faster convergence properties and (ii) is not
restricted to single-input single-output regular systems, but applies to the wider class of multivariable well-posed
systems. In particular, the following parts of Theorem 4.1 are new: the stability property (4.5), the fact that
φ ◦ u− φr ∈ L2(R+,Rm) and x− xr ∈ L2(R+, X) and statements (c)–(e). 3

Proof of Theorem 4.1: Let (x0, u0) ∈ X × U . By Lemma 2.4, the corresponding solution of the initial-value
problem (4.2), denoted by (x(·), u(·)), is unique and, since φ is globally Lipschitz, it exists on R+. Let ur ∈
φ−1({φr}) and introduce the nonlinearity

ψ : Rm → Rm , w 7→ φ(w + ur)− φr . (4.6)

Since φ ∈ Nm(λ), it is straightforward to show that ψ ∈ S[0, λ]. Set

z(·) := x(·)− xr , v(·) := u(·)− ur . (4.7)



ABSOLUTE STABILITY RESULTS FOR INFINITE-DIMENSIONAL SYSTEMS 415

We proceed in two steps.

Step 1: We claim that

ż(t) = Az(t) +Bψ(v(t)) , z(0) = z0 := x0 − xr ∈ X , (4.8a)
v̇(t) = −k{CLTtz

0 + [F∞(ψ(v))](t)} , v(0) = v0 := u0 − ur ∈ U , (4.8b)

where, as usual, the derivative on the left-hand side of (4.8a) has to be interpreted in X−1. Equation (4.8a)
follows easily from (4.2a). Moreover, setting

ṽ(t) := r − CLTtx
r − [F∞(φr)](t) ,

we obtain from (4.2b) that
v̇(t) = k{ṽ(t)− CLTtz

0 − [F∞(ψ(v))](t)}·
It remains to show that ṽ(t) = 0 for a.e. t ≥ 0. Using Laplace transforms and (2.9), we obtain

(L(ṽ))(s) =
r

s
− C(sI −A)−1xr − 1

s
G(s)φr

= −1
s

(G(s) −G(0))φr + C(sI −A)−1A−1Bφr = 0 ,

showing that ṽ(t) = 0 for a.e. t ≥ 0.

Step 2: For k ∈ (0,K/λ), we may apply Theorem 3.1 to (4.8) in order to derive (4.5) and

lim
t→∞

‖z(t)‖ = 0 , z ∈ L2(R+, X) , lim
t→∞

ψ(v(t)) = 0 , ψ ◦ v ∈ L2(R+,Rm) . (4.9)

Statements (a) and (b) now follow from (4.9). Furthermore, using that φ−1({φr}) = ψ−1({0}) +ur, statements
(d) and (e) are easy consequences of Theorem 3.1, Corollary 3.3 and Remark 3.4. Statement (c) follows from
Lemma 2.1, the exponential stability of Σ and statement (a). To prove statement (f), decompose e = e1 + e2,
where

e1(t) := r − [L−1(G) ? φ(u)](t) , e2(t) := −CLTtx
0 . (4.10)

Clearly, using the exponential stability of T, e2 ∈ L2
α(R+,Rm) for any α > ω(T) and limt→∞ e2(t) = 0 if

Tt0x
0 ∈ X1 for some t0 ≥ 0. Finally, since limt→∞ φ(u(t)) = φr and L−1(G) ∈ M, it follows from Gripenberg

et al. [11] (Th. 6.1, Part (ii), p. 96) that

lim
t→∞

e1(t) = r −G(0)φr = r − r = 0 .

2

Remark 4.3. Suppose that φ = diag (φi), where the functions φi : R→ R are non-decreasing. If we replace the
global Lipschitz assumption on φi by the weaker assumption that φi is locally Lipschitz and φi(·)−φi(0) ∈ S[0, b]
for some b ≥ 0, then it is not difficult to prove that the function ψ defined in (4.6) is in S[0, b̃] for some b̃ ≥ 0.
An inspection of the proof of Theorem 4.1 then shows that the conclusions of Theorem 4.1 remain true for all
sufficiently small k > 0. 3

Under certain additional assumptions on φ and r, it can be shown that the variables x, u and y converge
exponentially fast. This will be addressed in the next result, Theorem 4.5. In order to state and prove this
theorem, we need some preparation.
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Let f ∈ N1(λ). The Clarke [5, 6] generalized directional derivative f◦(v;w) of f at v in direction w is given
by

f◦(v;w) = lim sup
ξ→v
h↓0

f(ξ + hw)− f(ξ)
h

·

Define f−(·) := −f◦(·;−1) (if f is C1 with derivative f ′, then f− ≡ f ′). A point v ∈ R is said to be a critical
point (and f(v) is said to be a critical value) of f if f−(v) = 0. A point v = (v1, . . . , vm)T ∈ Rm is called a
critical point (and f(v) is said to be a critical value) of f = diag (fi) ∈ Nm(λ) if there exists j ∈ {1, . . . ,m}
such that vj is a critical point of fj . Note that if f ∈ Nm(λ) and w ∈ im f is not a critical value of f , then
f−1({w}) is a singleton.

We record the following technicality for later use. The proof can be found in the Appendix, Part 2.

Lemma 4.4. Let λ > 0 and f ∈ Nm(λ). If f(0) = 0 and 0 is not a critical point of f , then there exist a ∈ (0, λ)
and an open set V ⊂ Rm with 0 ∈ V such that f ∈ SV [a, λ].

Recall that by definition a Rm×m-valued Borel measure µ on R+ is in Mα (where α ∈ R) if the exponentially
weighted measure E 7→

∫
E e
−αtµ(dt) belongs to M. Equivalently, Mα is the space of all Rm×m-valued Borel

measures µ on R+ such that
∫∞

0
e−αt|µ|(dt) <∞, where |µ| denotes the total variation of µ.

Theorem 4.5. Assume that Σ is exponentially stable and G(0) = G∗(0) > 0. Let λ > 0, φ ∈ Nm(λ) and
k ∈ (0,K/λ). Let r ∈ Rm be such that

φr := [G(0)]−1r ∈ imφ

and φr is not a critical value of φ. Let ur be the unique element in Rm such that φ(ur) = φr and set xr :=
−A−1Bφr. Then, for given M > 0, there exist N ≥ 1 and ν ∈ (ω(T), 0) such that for all (x0, u0) ∈ X × Rm
with ‖x0 − xr‖+ ‖u0 − ur‖ ≤M , the solution (x(·), u(·)) of (4.2) satisfies

‖x(t)− xr‖+ ‖u(t)− ur‖ ≤ Neνt(‖x0 − xr‖+ ‖u0 − ur‖) , ∀ t ≥ 0 , (4.11)

and

‖φ(u(t))− φr‖ ≤ λNeνt(‖x0 − xr‖+ ‖u0 − ur‖) , ∀ t ≥ 0 . (4.12)

Moreover, for all (x0, u0) ∈ X × Rm with ‖x0 − xr‖+ ‖u0 − ur‖ ≤M , the following statements hold:
(a) for any α > ν, e := r − y ∈ L2

α(R+,Rm), where y(t) = CLTtx
0 + [F∞(φ(u))](t);

(b) under the additional assumption that L−1(G) ∈ Mα for some α < 0, the error e satisfies e = e1 + e2,
where e1 ∈ L∞β (R+,Rm) for any β ≥ max(α, ν), and e2 ∈ L2

β(R+,Rm) for any β > ω(T); if additionally
Tt0x

0 ∈ X1 for some t0 ≥ 0, then e2 ∈ L∞β (R+,Rm) for any β > ω(T).

Remark 4.6. (a) Statement (b) shows that exponentially fast asymptotic tracking is guaranteed if L−1(G) ∈
Mα for some α < 0 and Tt0x

0 ∈ X1 for some t0 ≥ 0. Again, the assumption that L−1(G) ∈ Mα for some
α < 0 is not very restrictive and seems to be satisfied in all practical examples of exponentially stable well-posed
systems. In particular, this assumption is satisfied if B or C is bounded (see Lem. 2.3 in [18]).

(b) We mention that Parts (c) and (d) of Remark 4.2 and Remark 4.3 remain relevant in the context of
Theorem 4.5.

(c) As compared to the main result in [20] (see Th. 3.3 in [20]), Theorem 4.5 is entirely new: the issue of
exponential decay is not addressed in [20]. 3

Proof of Theorem 4.5: Let (x0, u0) ∈ X × U . By Lemma 2.4, the corresponding solution of the initial-value
problem (4.2), denoted by (x(·), u(·)), is unique and exists on R+. Let ψ, z and v be defined by (4.6) and (4.7).
Clearly, by the assumptions on φ, ψ ∈ Nm(λ), ψ−1({0}) = {0} and 0 is not a critical value of ψ. Invoking
Lemma 4.4, we see that there exists a ∈ (0, λ) and an open set V ⊂ Rm with 0 ∈ V such that ψ ∈ SV [a, λ].
For k ∈ (0,K/λ) we may apply Theorem 3.6 to (4.8) in order to derive (4.11) and (4.12). Statement (a) follows
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from Lemma 2.1 and (4.12). In order to prove statement (b), we write e = e1 + e2, with e1 and e2 defined by
(4.10). The claim for e2 follows immediately from standard results on admissible observation operators. Finally,
to prove exponential convergence of e1, set µ := L−1(G). By assumption µ ∈Mα for some α < 0. The function
t 7→ ‖e1(t)‖ can be estimated as follows

‖e1(t)‖ ≤ ‖[µ ? (φ(u) − φrθ)(t)]‖+ ‖(µ ? φrθ)(t) −G(0)φr‖ , ∀ t ≥ 0 , (4.13)

where θ denotes the unit-step (Heaviside) function. Let β ≥ max(α, ν). Then, by (4.12), the function t 7→
e−βt‖φ(u(t)) − φr‖ remains bounded as t → ∞. Since µ ∈ Mα, the measure E 7→

∫
E
e−αtµ(dt) belongs to M.

Hence, by [11] (Th. 3.5, Part (i), p. 119), we may conclude that there exists M1 > 0 such that

e−βt‖[µ ? (φ(u) − φrθ)](t)‖ ≤M1 , ∀ t ≥ 0 . (4.14)

Moreover, M2 :=
∫∞

0 e−αt|µ|(dt) <∞, and thus

e−βt‖(µ ? φrθ)(t) −G(0)φr‖ ≤ ‖φr‖e−αt
∫ ∞
t

|µ|(dτ) ≤ ‖φr‖
∫ ∞

0

e−ατ |µ|(dτ) = M2‖φr‖ . (4.15)

Consequently, appealing to (4.13–4.15), we deduce that the function R+ → R, t 7→ e−βt‖e1(t)‖ is bounded. 2

5. Example: Diffusion process with output delay

Consider a diffusion process (with diffusion coefficient κ > 0 and with Dirichlet boundary conditions), on
the one-dimensional spatial domain I = (0, 1), with scalar nonlinear pointwise control action (applied at point
xb ∈ I, via a nonlinearity φ with Lipschitz constant λ > 0) and delayed (delay h ≥ 0) pointwise scalar observation
(at point xc ∈ I, xc > xb.). We formally write this diffusion process as

zt(t, x) = κzxx(t, x) + δ(x− xb)φ(u(t)), y(t) = z(t− h, xc)
z(t, 0) = 0 = z(t, 1) , for all t > 0 .

For simplicity, we assume zero initial conditions:

z(t, x) = 0 , for all (t, x) ∈ [−h, 0]× [0, 1] .

This system was analyzed in the context of low-gain integral control in [19,20]. With input φ(u(·)) and output
y(·), this example qualifies as a well-posed linear system with transfer function given by

G(s) =
e−sh sinh

(
xb
√

(s/κ)
)

sinh
(

(1− xc)
√

(s/κ)
)

κ
√

(s/κ) sinh
√

(s/κ)
·

It is not difficult to show that L−1(G) ∈ L1
α(R+,R) ⊂Mα for any α > −κπ2.

From [19] we know that

K = sup{k > 0 | (4.3) holds} =
1

|G′(0)| =
6κ2

xb(1− xc)(6hκ+ 1− x2
b − (1− xc)2)

·

Note the dependence of K on the time-delay h: the larger h, the smaller K. By Theorem 4.5, Part (b), for each
k ∈ (0,K/λ), the integral control

u(t) = k

∫ t

0

[r − y(t)] dt
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guarantees exponentially fast asymptotic tracking of every constant reference value r such that

φr =
r

G(0)
=

κr

xb(1− xc)
∈ imφ

and φr is not a critical value of φ. Note that φr does not depend on h. It is easy to see that if 0 ∈ imφ, then
the range of values of r which can be tracked becomes maximal if xc ↓ xb = 1/2.

For purposes of illustration, we adopt the following values

κ = 0.1, xb =
1
3
, xc =

2
3
, h = 1

and we consider a nonlinearity φ of saturation type, defined as follows

u 7→ φ(u) :=

 1, u ≥ 1
u, u ∈ (0, 1)
0, u ≤ 0 .

In this case, K = 243/620 ≈ 0.3919 and λ = 1. The critical values of φ are 0 and 1. For r = 1, we have

φr =
r

G(0)
=

κ

xb(1− xc)
= 0.9 ∈ [0, 1] = imφ .

In particular, φr is not a critical value of φ. In each of the following three cases of controller gains

(i) k = 0.39, (ii) k = 0.26, (iii) k = 0.13,

Figure 4 depicts the output behaviour of the system under integral control, while Figures 5 and 6 depict
the corresponding control input and integrator state, respectively. Figure 7 illustrates the evolution of the
temperature profile z(t, ·) in case (i). These figures were generated using SIMULINK Simulation Software
within MATLAB, wherein a truncated eigenfunction expansion, of order 20, was adopted to model the diffusion
process.
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Figure 4: Controlled output.
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Figure 5: Control input.
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Figure 6: Integrator state.
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Figure 7: Temperature profile in case (i) (k = 0.39).

6. Conclusions

In this paper we have proved a number of absolute stability results for well-posed infinite-dimensional systems
which guarantee, depending on the assumptions imposed on the nonlinearity, stability in the large, semi-global
exponential stability or global exponential stability. These results are certainly new in the context of infinite-
dimensional systems, but might also exhibit some novelty in the finite-dimensional case: the authors were unable
to find finite-dimensional versions of the main results in Section 3 in the literature. Our approach is based on
a particular coordinate transformation combined with a Lyapunov-type analysis of the transformed system in
which the positive-real Riccati equation theory for Pritchard-Salamon systems given in [16] plays an important
role. In Section 4 the absolute stability results were applied to the low-gain integral control problem resulting in
substantial improvements of the main result in [20]. An interesting problem for future research is the question
whether the absolute stability results in Section 3 remain true if we replace the positive-real condition (PR) by
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the less restrictive assumption that there exists q ≥ 0 such that

2
b
I + q(G(s) + G∗(s)) +

(
1
s
G(s) +

1
s̄
G∗(s)

)
≥ 0 , ∀ s ∈ C0 .

This seems to be a difficult and challenging problem: in particular, a Lyapunov stability analysis based on the
above positive-real condition (for q > 0) would involve considerably more unboundedness than the Lyapunov
analysis for the case q = 0 given in Section 3.

Appendix

Part 1

In this part of the Appendix we prove that there exists ε > 0 such that the function ψ : U → U as defined
in (3.40) is in S[ε, b), provided that φ ∈ S[0, b) and φ satisfies assumptions (A3) and (A4) of Theorem 3.6. To
this end we recall some properties of sector bounded nonlinearities which will be used freely in the following.

Let W ⊂ U and a ≤ b. For any function f : U → U we have

f ∈ SW [a, b] ⇐⇒
∥∥∥∥f(w)− a+ b

2
w

∥∥∥∥ ≤ b− a
2
‖w‖ , ∀w ∈W . (A.1)

From this it follows that if f ∈ SW [a, b], then f ∈ SW [c, d] for all numbers c and d with c ≤ a ≤ b ≤ d.
Lemma A.1. Let f : U → U be a function. Suppose that f ∈ S[0, b) for some b > 0 and that

(a) there exists a neighbourhood V ⊂ U of 0 and a number a ∈ (0, b) such that f ∈ SV [a, b);
(b) infw∈W ‖f(w)‖ > 0 for any bounded closed nonempty set W ⊂ U with 0 6∈W .

Under these conditions, for any bounded nonempty set Y ⊂ U , there exists ε > 0 such that f ∈ SY [ε, b).
Of course, Lemma A.1 is not surprising and, if dimU = 1, the result is obvious and trivial. However, the

case dimU > 1 requires a proof.

Proof of Lemma A.1: Let Y ⊂ U be bounded and nonempty. Since f ∈ S[0, b) and by assumption (a), there
exists c ∈ (a, b) such that f ∈ S[0, c] ∩ SV [a, c]. Let η > 0 be such that for all v ∈ U

‖v‖ < η ⇒ v ∈ V . (A.2)

Let d ∈ (c, b). We claim that there exists ε > 0 such that f ∈ SY [ε, d] ⊂ SY [ε, b). Seeking a contradiction,
suppose that the claim is not true. Then there exist sequences (εn) ⊂ (0, a) with limn→∞ εn = 0 and (vn) ⊂ Y
such that

〈f(vn)− εnvn, f(vn)− dvn〉 > 0 , ∀n ∈ N . (A.3)

Since f ∈ SV [a, c] ⊂ SV [εn, d], we obtain from (A.2) and (A.3) that

‖vn‖ ≥ η > 0 , ∀n ∈ N . (A.4)

By (A.3),

‖f(vn)‖2 ≥ (d+ εn)〈f(vn), vn〉 − dεn‖vn‖2 , ∀n ∈ N . (A.5)

Moreover, since f ∈ S[0, c]

‖f(vn)‖2 ≤ c〈f(vn), vn〉 , ∀n ∈ N . (A.6)



ABSOLUTE STABILITY RESULTS FOR INFINITE-DIMENSIONAL SYSTEMS 421

The set
W := clos{vn : n ∈ N}

is a bounded closed set, and, by (A.4), 0 6∈W . By assumption (b), there exists ν1 > 0 such that

‖f(vn)‖2 ≥ ν1 , ∀n ∈ N . (A.7)

Setting ν2 := supn∈N ‖vn‖2 <∞, it follows from (A.5–A.7) that

c ≥ d+ εn − εncd
ν2

ν1
, ∀n ∈ N .

Since limn→∞ εn = 0, this implies c ≥ d, in contradiction to d ∈ (c, b). 2

Corollary A.2. Suppose that φ ∈ S[0, b) satisfies the assumptions (A3) and (A4) in Theorem 3.6 and let
R > 0. Then there exists an open neighbourhood V ⊂ U of 0, a number c ∈ (a, b) and ε > 0 such that
φ ∈ S[0, c] ∩ SV [a, c] and the function ψ : U → U defined by

ψ(v) =

 φ(v) if ‖v‖ ≤ R
c

(
1− R

‖v‖

)
v + φ(

R

‖v‖v) if ‖v‖ > R

is in S[ε, b).

Proof: Since φ ∈ S[0, b) and since φ satisfies assumption (A3), it is clear that there exist an open neighbourhood
V ⊂ U of 0 and a number c ∈ (a, b) such that φ ∈ S[0, c] ∩ SV [a, c].

Let d ∈ (c, b) such that 2c− d > 0 and let δ ∈ (0, 2c− d). Setting

b(v) := φ(
R

‖v‖v)− cR

‖v‖v ,

we have for v ∈ U with ‖v‖ > R,∥∥∥∥ψ(v) − d+ δ

2
v

∥∥∥∥ ≤ 2c− d− δ
2

‖v‖+ ‖b(v)‖ =
d− δ

2
‖v‖+ (c− d)‖v‖+ ‖b(v)‖ . (A.8)

Now b : U \ {0} → U is a bounded function, and so there exists R̃ > R such that

‖b(v)‖ ≤ (d− c)‖v‖ , ∀ v ∈ ER̃ ,

where ER̃ := {v ∈ U : ‖v‖ ≥ R̃}. Combining this with (A.8) and applying (A.1) yields

ψ ∈ SER̃ [δ, d] ⊂ SER̃ [δ, b) .

To prove the claim, it remains to show that there exists ε ∈ (0, δ) such that

ψ ∈ SBR̃ [ε, b) ,

where BR̃ := {v ∈ U : ‖v‖ < R̃}. This in turn will follow from Lemma A.1 if we can prove that ψ ∈ S[0, b) and
ψ satisfies assumptions (a) and (b) of Lemma A.1. To this end we proceed in three steps.

Step 1: We show that ψ ∈ S[0, b). Using the fact that φ ∈ S[0, c], we obtain that for all v ∈ U with ‖v‖ > R∥∥∥ψ(v)− c

2
v
∥∥∥ =

∥∥∥∥ c2
(

1− R

‖v‖

)
v + φ

(
R

‖v‖v
)
− cR

2‖v‖v
∥∥∥∥ ≤ c

2

(
1− R

‖v‖

)
‖v‖+

c

2
R =

c

2
‖v‖ . (A.9)
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Since ψ(v) = φ(v) for all v ∈ U with ‖v‖ ≤ R and φ ∈ S[0, c], it follows from (A.1) and (A.9) that ψ ∈ S[0, c] ⊂
S[0, b).

Step 2: Clearly, the set VR = {v ∈ V : ‖v‖ < R} is an open neighbourhood of 0, and by construction

ψ ∈ SVR [a, b) ,

showing that ψ satisfies assumption (a) of Lemma A.1.

Step 3: To prove that ψ satisfies assumption (b) of Lemma A.1, let W ⊂ U be nonempty, bounded and closed
with 0 6∈ W . Define WR := {w ∈ W : ‖w‖ ≤ R}. Then WR is bounded and closed, and, if WR 6= ∅, we obtain
using assumption (A4) that

inf
w∈WR

‖ψ(w)‖ = inf
w∈WR

‖φ(w)‖ > 0 . (A.10)

Furthermore, for all w ∈ U with ‖w‖ ≥ R

‖ψ(w)‖ ≥ c

(
1− R

2‖w‖

)
‖w‖ −

∥∥∥∥φ( R

‖w‖w
)
− cR

2‖w‖w
∥∥∥∥ ≥ c(1− R

2‖w‖

)
‖w‖ − c

2
R = c(‖w‖ −R) ,

where in the second inequality we have used that φ ∈ S[0, c]. We see that for any η > 0

inf
‖w‖≥R+η

‖ψ(w)‖ > 0 . (A.11)

Finally, for η > 0, define

B(R, η) := {w ∈ U : R ≤ ‖w‖ ≤ R+ η}·

By assumption (A4), inf‖v‖=R ‖φ(v)‖ > 0, and hence it follows that there exist γ > 0 and η∗ > 0 such that for
all η ∈ (0, η∗)

inf
w∈B(R,η)

∥∥∥∥φ( R

‖w‖w
)∥∥∥∥ ≥ sup

w∈B(R,η)

(
c

(
1− R

‖w‖

)
‖w‖

)
+ γ . (A.12)

Therefore, since for all w ∈ U with ‖w‖ ≥ R

ψ(w) = φ

(
R

‖w‖w
)

+ c

(
1− R

‖w‖

)
w ,

we may conclude using (A.12) that

inf
w∈B(R,η)

‖ψ(w)‖ ≥ γ > 0 , ∀ η ∈ (0, η∗) .

Together with (A.10) and (A.11) this leads to

inf
w∈W

‖ψ(w)‖ > 0 ,

showing that ψ satisfies assumption (b) of Lemma A.1. 2
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Part 2

This part of the Appendix contains a proof of Lemma 4.4. We prove the following result of which
Lemma 4.4 is an easy consequence.
Lemma A.3. Let b > 0 and f ∈ N1(b). If f(0) = 0 and f−(0) > 0, then there exist constants ε > 0 and
a ∈ (0, b) such that

av2 ≤ f(v)v ≤ bv2 , ∀ v ∈ (−ε, ε) ,
i.e., f ∈ S(−ε,ε)[a, b].

Proof: Since f ∈ N1(b) and f(0) = 0 it follows easily that

f(v)v ≤ bv2 , ∀ v ∈ R .

It remains to show that there exists a ∈ (0, b) and ε > 0 such that

av2 ≤ f(v)v , ∀ v ∈ (−ε, ε) . (A.13)

Seeking a contradiction suppose that (A.13) is not true. Then there exist sequences (vn) ⊂ R \ {0} and
(an) ⊂ (0, b) with limn→∞ vn = 0 and limn→∞ an = 0 and such that

anv
2
n > f(vn)vn .

Clearly, (vn) must contain a subsequence (vnj ) with either vnj > 0 for all j ∈ N (Case 1) or vnj < 0 for all
j ∈ N (Case 2).

Case 1: Setting ξj = hj = vnj , it follows that

f(ξj − hj)− f(ξj)
hj

=
f(0)− f(ξj)

ξj
= −f(ξj)

ξj
> −anj .

This yields f◦(0;−1) ≥ 0, and hence, f−(0) ≤ 0, contradicting the hypothesis that f−(0) > 0.

Case 2: Setting ξj = 0 and hj = −vnj , we have

f(ξj − hj)− f(ξj)
hj

=
f(vnj )
|vnj |

> anj
vnj
|vnj |

= −anj .

Again, this yields f◦(0;−1) ≥ 0, and hence, f−(0) ≤ 0, contradicting the hypothesis that f−(0) > 0. 2

We would like to thank Adam D. Mawby (Bath) for performing the simulations in Section 5.
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Matematica Applicata “G. Sansone”, Università degli Studi di Firenze (1997) (to appear in Dynamics of Continuous, Discrete
and Impulsive Systems).

[5] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983).
[6] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New

York (1998).
[7] C. Corduneanu, Integral Equations and Stability of Feedback Systems. Academic Press, New York (1973).



424 H. LOGEMANN AND R.F. CURTAIN

[8] C. Corduneanu, Almost Periodic Functions. Wiley, New York (1968).
[9] R.F. Curtain, H. Logemann, S. Townley and H. Zwart, Well-posedness, stabilizability and admissibility for Pritchard-Salamon

systems. Math. Systems, Estimation and Control 7 (1997) 439–476.
[10] R.F. Curtain and G. Weiss, Well-posedness of triples of operators in the sense of linear systems theory, in Control and

Estimation of Distributed Parameter System, edited by F. Kappel, K. Kunisch and W. Schappacher. Birkhäuser Verlag, Basel
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