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1. Introduction

A measurable function x : J ⊂R → X (X a metric space) is said to be C-meagre
if C ⊂X is non-empty and, for every closed set K ⊂X with K ∩ C = ∅; x−1(K) has
5nite Lebesgue measure. This concept of meagreness is shown to provide a unifying
framework which facilitates a variety of characterizations, extensions or generalizations
of diverse facts pertaining to asymptotic behaviour of dynamical systems.
By way of motivation, consider the initial-value problem ẋ = f(x); x(0) = � ∈ RN ,

with f : RN → RN locally Lipschitz, and denote its unique solution by x : t �→
�(t; �) de5ned on its maximal interval of existence I� = [0; �). Let g : RN → R be
continuous. Assume that x is a bounded solution of the initial-value problem (in which
case, I� = [0;∞)), then g ◦ x is uniformly continuous. If, in addition, g ◦ x ∈ L1, then
we may conclude (by an elementary observation frequently referred to as Barb>alat’s
lemma [5] (see, also, [18, Section 21, Lemma 1])) that g(x(t)) → 0 as t → 0. Since, by
boundedness, x(t) approaches, as t → ∞, its non-empty, compact, invariant !-limit set
B, we also conclude that B⊂ g−1(0). It follows that x(t) tends, as t → ∞, to the largest
invariant subset of g−1(0). This is a short proof of Theorem 1:2 of [6] (the proof in
[6] is based on arguments involving properties of the Dow generated by the diEerential
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equation and does not make use of Barb>alat’s lemma). A simple corollary is a version
of LaSalle’s invariance principle [14, Chapter 2, Theorem 6:4]: if �(t; �) : [0;∞) →
RN is a bounded solution of the initial-value problem, V : RN → R is continuously
diEerentiable, and g(x) := 〈∇V (x); f(x)〉 ≤ 0 for all x in some neighbourhood of
the orbit �([0;∞); �), then �(t; �) tends, as t → ∞, to the largest invariant subset
of g−1(0). In this paper, we present variants of the above observations (and other
related results) in contexts of systems de5ned by abstract semiDows, 5nite-dimensional
diEerential inclusions, and non-autonomous semilinear in5nite-dimensional systems. For
example, in the context of a semiDow �, we identify a class of functions g for which
convergence (as t → ∞) of x(t) = �(t; �) to the largest invariant set in g−1(0) is a
consequence of the hypothesis g ◦ x ∈ L1 without positing a priori that �([0;∞); �)
be bounded or relatively compact; as a corollary, we obtain that Lp-trajectories (1 ≤
p¡∞) of semiDows converge to 0 as t → ∞. These and other results are shown to
follow – in an entirely elementary manner – from three technical lemmas pertaining
to the concept of meagre functions. In addition, via the concept of meagreness, some
suPcient conditions for asymptotic stability of compacta in the context of semiDows
on metric spaces are presented which provide characterizations of asymptotic stability
in the context of semiDows on metric spaces with the property that every ball of
5nite radius is relatively compact. Furthermore, some characterizations of exponential
stability for linear semigroups are provided.
Whilst a subset of the results on asymptotic behaviour presented in Section 5 below

are (partially) known, we emphasize that an important aspect of the paper is the sim-
plicity of the approach by which the results are obtained in a natural and direct way.
Finally we remark that, whilst the technical lemmas on meagre functions and the
results on abstract semiDows are derived under the assumption that the underlying
space X is a metric space, most of these results (in a suitably modi5ed form) remain
true if X is a topological space or, even more generally, a sequential-convergence space
or a limit space (as adopted in [4]).

2. Notation and terminology

Throughout, X denotes a metric space, with metric �; R+ := [0;∞) and J denotes a
non-empty, measurable subset of R+. For non-empty C ⊂X; dC : X → R+ denotes its
distance function given by dC(v) := inf{�(c; v) | c ∈ C}. The function dC is globally
Lipschitz of rank 1: |dC(v) − dC(w)| ≤ �(v; w) for all v; w ∈ X . For �¿ 0; B�(C)
denotes the �-neighbourhood of C given by {v ∈ X |dC(v)¡�}; if C={c} (singleton)
then we simply write B�(c). A function x : J → X is said to approach C if dC(x(t)) →
0 as t → sup J . A function x : J → X is relatively compact if cl(x(J )) (that is, the
closure of its trajectory) is compact. A point l ∈ X is an !-limit point of x : J → X if
there exists a sequence (tn)⊂ J with tn → sup J and x(tn) → l as n → ∞; the set B(x)
of all such !-limit points is the !-limit set of x. The !-limit set B(x) is always closed,
and, if x is relatively compact, then B(x) is non-empty, compact, is approached by x
and is the smallest closed set so approached. The restriction of a function x : J → X
to I ⊂ J is denoted by x|I . Lebesgue measure on R is denoted by �.
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A function y : R+ → R+ is said to be a K-function if it continuous and strictly
increasing with y(0)=0; y is a K∞-function if it is a K-function with y(s) → ∞ as
s → ∞. A function (s; t) �→ z(s; t) ∈ R+ with domain R+ × (0;∞) is a KL-function
if, for each t, z(·; t) is a K-function and, for each s, z(s; ·) is a decreasing function.

3. Meagre functions

De�nition. Let C ⊂X be non-empty. A measurable function x : J → X is C-meagre
if for every closed set K ⊂X with K ∩ C = ∅, the set x−1(K) := {t ∈ J | x(t) ∈ K}
has 5nite measure �(x−1(K))¡∞. If X is a vector space and C = {0}, then we use
the simple term meagre in place of the more cumbersome {0}-meagre.

For measurable x : J → X and non-empty C ⊂X , it is clear that

x is C-meagre ⇒ dC ◦ x is meagre:

The converse is false in general, but is true in the case of compact C. We also remark
that the concept of a C-meagre function, with C compact, is intimately related to the
concept of convergence in measure: a sequence (fn) of measurable functions J ⊂R→
R is said to converge in measure to f : J → R if, for each �¿ 0; limn→∞ �({t ∈
J | |fn(t)− f(t)| ≥ �}) → 0 as n → ∞. The relationship is described in the following
proposition.

Proposition 1. Let C ⊂X be non-empty and compact. Let x : J → X be a measurable
function and de9ne # := dC ◦ x. The following statements are equivalent:
(i) x is C-meagre;
(ii) # is meagre;
(iii) for every �¿ 0; lim→∞ �({t ∈ J \ [0; ] | #(t) ≥ �}) = 0;
(iv) for every sequence (n)⊂R+ with n → ∞ as n → ∞; the sequence (#n) of

functions J → R+ given by

#n(t) :=

{
0; t ∈ J ∩ [0; n]

#(t); t ∈ J \ [0; n]
converges in measure to the zero function.

Proof. That (i) implies (ii) is clear. That (ii) implies (i) is a consequence of the
observation that, for every closed set K with K ∩ C = ∅,

�(x−1(K)) ≤ �({t ∈ J | #(t) ≥ �});
where � := inf k∈K dC(k)¿ 0 (positive by virtue of closedness of K and compactness
of C). Equivalence of (ii) and (iii) is a consequence of the observation that, for every
�¿ 0,

�({t ∈ J | #(t) ≥ �}) = �({t ∈ J ∩ [0; ] | #(t) ≥ �}) + �({t ∈ J \ [0; ] | #(t) ≥ �})
≤ + �({t ∈ J \ [0; ] | #(t) ≥ �}) ∀ ∈ R+:
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Finally, equivalence of (iii) and (iv) is a consequence of the observation that, for every
�¿ 0 and every sequence (n)⊂R+,

�({t ∈ J \ [0; n] | #(t) ≥ �}) = �({t ∈ J | #n(t) ≥ �}) ∀n:

As in [24], a measurable function x : J → X; X =(X; ‖·‖) a Banach space, is said to
be of (Marcinkiewicz) weak-Lp class, 1 ≤ p¡∞, written x ∈ wk-Lp(J ;X ), if there
exists a constant c¿ 0 such that

�({t ∈ J | ‖x(t)‖ ≥ %})¡ c
%p

∀%¿ 0:

It is straightforward to verify that x ∈ Lp(J ;X ) implies x ∈ wk-Lp(J ;X ). We record
a further simple fact.

Proposition 2. Let X be a Banach space. If x ∈ wk-Lp(J ;X ) for some p ∈ [1;∞);
then x is meagre.

The next result asserts that essentially-bounded functions of weak-Lp class are nec-
essarily of class Lq for all q¿p: this will prove useful in a later study of exponential
stability of linear semigroups.

Proposition 3. Let X be a Banach space. If x ∈ L∞(R+;X ) and x ∈ wk-Lp(R+;X )
for some p ∈ [1;∞); then x ∈ Lq(R+;X ) for all q¿p.

Proof. By hypothesis, there exists Q¿ 0 such that ‖x(t)‖ ≤ Q almost everywhere. For
each n ∈ N, de5ne

Sn :=
{
s
∣∣∣∣ Q2n ≤ ‖x(s)‖ ≤ Q

2n−1

}
:

Since x ∈ wk-Lp(R+;X ); �(Sn) ≤ cQ−p2np. Therefore, for all q ∈ (p;∞),∫ ∞

0
‖x(t)‖q dt =

∑
n∈N

∫
Sn
‖x(t)‖q dt ≤

∑
n∈N

Qq2−nq+q�(Sn)

≤ 2qQq−p
∑
n∈N

(
1

2q−p

)n
¡∞:

The 5nal result of this section provides another connection between meagre functions
and convergence of integrals: this will play a central rôle in a later study of global
asymptotic stability of compacta in a context of semiDows.

Proposition 4. Let M be a non-empty set of measurable functions R+ → R+. The
following statements are equivalent.
(i) There exists a KL-function ( : R+ × (0;∞) → R+ such that

�({t | #(t) ≥ %}) ≤ ((#(0); %) ∀(#; %) ∈ M× (0;∞): (1)
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(ii) There exist K-functions ) and * such that∫ ∞

0
)(#(t)) dt ≤ *(#(0)) ∀# ∈ M: (2)

Proof. (i) ⇒ (ii): Assume that (i) holds. Let (%n)n∈Z⊂(0;∞) be a bi-sequence wth
%n ¡%n+1 for all n ∈ Z and such that

lim
n→−∞ %n = 0; lim

n→∞ %n =∞:

Choose a bi-sequence (+n)n∈Z⊂(0;∞) with the properties∑
n∈Z

+n ¡∞ and
∑
n∈Z

+n((|n|; %n)¡∞:

For example, the bi-sequence given by

+0 = 1; +n =min{1; 1=((|n|; %n)}=n2 if n �= 0

suPces. De5ne * : R+ → R+ by

*(,) :=
∑
n∈Z

+n((,; %n):

By properties of ( and (+n)n∈Z, this sum converges uniformly for , in compact intervals
and so * is continuous. Moreover, by properties of (; * is strictly increasing and
*(0) = 0. Therefore, * is a K-function. De5ne ) : R+ → R+ by

)(0)=0; )(%n+1)=
n∑

m=−∞
+m ∀n∈Z;

)(%)=
1

%n+1−%n
[()(%n+1)−)(%n))%+%n+1)(%n)− %n)(%n+1)] ∀% ∈ [%n; %n+1]:

The last condition means that ) interpolates linearly on [%n; %n+1]. Evidently, ) is a
K-function.
Let #∈M be arbitrary and, for each n ∈ N, de5ne Mn := {t | #(t) ∈ [%n; %n+1)}.

Then,

*(#(0)) =
∑
n∈Z

+n((#(0); %n) ≥
∑
n∈Z

+n�({t | #(t) ≥ %n})

=
∑
n∈Z

+n
∞∑

m=n

�(Mm) =
∑
m∈Z

�(Mm)
m∑

n=−∞
+n =

∑
m∈Z

�(Mm))(%m+1)

≥
∑
m∈Z

∫
Mm

)(#(t)) dt =
∫ ∞

0
)(#(t)) dt:

(ii) ⇒ (i): Assume that (ii) holds. Then

�({t | #(t) ≥ %}))(%) ≤
∫ ∞

0
)(#(t)) dt ≤ *(#(0))

and so (a) holds with ( given by ((,; %) := *(,)=)(%).
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4. Three key lemmas

The main purpose of this section is to present three lemmas, Lemmas 6, 7 and 9
below, which form the basis for later results. These lemmas, which are unremarkable
in themselves, collectively provide a unifying framework that facilitates the derivation
of diverse results pertaining to asymptotic behaviour of dynamical systems. Loosely
speaking, Lemma 6 identi5es conditions under which meagreness implies convergence,
Lemma 7 provides a technical convenience, and Lemma 9 establishes a connection
between meagreness and !-limit sets.
In the sequel we shall repeatedly extract subsequences of sequences. In order to

avoid multiple subscripts, it is useful to note the trivial fact that a sequence (x̃n)⊂X
is a subsequence of a given sequence (xn)⊂X if, and only if, there exists a strictly
increasing map / : N → N such that x̃n = x/(n) for all n. Throughout, the symbols /
and /1 will be used to denote such strictly increasing mappings from N to N.
In the context of measurable functions # : R+ → R, the following hypothesis will

be widely invoked.

Hypothesis: (a) # is meagre; or (b) lim
t→∞

∫ t+h

t
|#()| d= 0 for some h¿ 0:

(H)

Proposition 5. Let # : R+ → R be measurable and satisfy (H). Then; for all sequences
(�n)⊂(0;∞); (bn)⊂{−1; 1} and (tn)⊂R+ with tn+1 − tn ≥ 1 for all n; there exists a
sequence (sn)⊂R+ and a subsequence (t/(n)) of (tn) such that; for all n; |#(sn)|¡�n
and bn(t/(n) − sn) ≥ 0 with t/(n) − sn → 0 as n → ∞.

Proof. For k; n ∈ N, set

Un
k := {t ∈ [tk − (bn + 1)=4n; tk − (bn − 1)=4n] | |#(t)|¡�n}:

For each 5xed n, the sets Un
k , k ∈ N, do not overlap since tk+1 − tk ≥ 1. By (H),

there exists a sequence (kn)⊂N such that, for all n, kn ¡kn+1 and Un
kn �= ∅. The result

follows by setting /(n) = kn and choosing sn ∈ Un
/(n) for all n ∈ N.

Remark. Conditions (a) and (b) in (H) are independent (in the sense that any one
does not imply the other) as the following examples illustrate: let X =R and, on R+,
de5ne functions #a, #b : R+ → R by

#a(t) :=

{
n2; t ∈ [n; n+(1=n2)]; n∈N
0; otherwise;

#b(t) :=




1; t ∈
⋃
n∈N

[n; n+ (1=n)];

0; otherwise;

then #a satis5es (a) but not (b), whilst #b satis5es (b) but not (a). However, for a
large class of functions, the conditions (a) and (b) in (H) are equivalent, as will be
shown in the corollary to Lemma 6 below.

De�nitions. Let x : J →X be measurable with non-empty !-limit set B(x). An
!-limit point l ∈ B(x) is said to be robust if, for all sequences (sn); (tn)⊂ J with
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(i) limn→∞ sn = sup J , (ii) tn ≥ sn and (iii) limn→∞(tn − sn) = 0,

lim
n→∞ x(sn) = l ⇒ lim

n→∞ x(tn) = l:

If every l ∈ B(x) is robust, then the !-limit set B(x) is said to be robust. For each
l ∈ X , de5ne

Rl(J ;X ) := {x: J → X | x measurable; l ∈ B(x); l robust}
and

R(J ;X ) := {x: J → X | x measurable; B(x) non-empty and robust}:
Whilst the class R(J ;X ) may appear somewhat obscure, it is a convenient artefact
for our purposes: in the following remarks, two concrete subclasses of R(J ;X ) are
identi5ed.

Remark. 1. If x corresponds to the orbit of a local semiDow and has non-empty !-limit
set, then x ∈ R(R+;X ) (see the proof of Theorem 10 below).
2. If x : J → X is uniformly continuous and has non-empty !-limit set, then x ∈

R(J ;X ).
3. Evidently, the converse of point 2 of this Remark is not true, since there are

trivial examples of discontinuous functions belonging to R(J ;X ). If x ∈ R(J ;X ) is
continuous and relatively compact, then x is uniformly continuous, as can be easily
shown; however, as the following example shows, it is not diPcult to construct con-
tinuous functions x ∈ R(J ;X ) such that x is not relatively compact and not uniformly
continuous. Set kn := 3n−1, n ∈ N, b1 := 1 and bn := (k2n − kn)=(k2n − 1) for all n ≥ 2.
De5ne # : R+ → R+ by

#(t) :=




0; 0 ≤ t ≤ 1;

t − kn; kn ≤ t ≤ 2kn;

kn − kn(t − 2kn); 2kn ≤ t ≤ 2kn + 1=kn;

kn − 1− bn(t − 2kn − 1=kn); 2kn + 1=kn ≤ t ≤ 3kn:

Then # is a continuous and unbounded function. Since #(2kn)− #(2kn + 1=kn) = 1 for
all n, it is clear that # is not uniformly continuous. To show that # ∈ R(R+;R), let
l ∈ B(#) = R+ and let (sn)⊂R+ be a sequence with limn→∞ sn = ∞ and such that
limn→∞ #(sn)=l. Let � ∈ (0; 1) and set Tn=[2kn−�; 2kn+�]. Then, since the sequence
(#(sn)) is bounded, elementary considerations yield the existence of N ∈ N such that
sn �∈ Tm for all n ≥ N and all m ∈ N and a routine argument then gives # ∈ R(R+;R).

4. To provide a further link between robustness and uniform continuity, let x : R+ →
X be a continuous function with B(x) �= ∅ and consider the following three statements:
(i) for each z ∈ X , there exists a neighbourhood U ⊂X of z such that either x−1(U )=

∅ or x is uniformly continuous on x−1(U );
(ii) x ∈ R(R+;X );
(iii) if U ⊂X is compact, then either x−1(U ) = ∅ or x is uniformly continuous

on x−1(U );
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It is not diPcult to show that (i) ⇒ (ii) ⇒ (iii) and that, if X is locally compact,
then all three statements are equivalent.

We now present the 5rst of the three key lemmas.

Lemma 6. Let # :R+ → R be measurable and; for �¿ 0; de9ne J� := {t ∈ R+ |
|#(t)|¡�}. Then the following statements hold:
(i) [# satis9es (H) and # ∈ R0(R+;R)] ⇔ limt→∞ #(t) = 0;
(ii) if # satis9es (H) and is continuous and there exists some �¿ 0 such that

#|J� ∈ R0(J�;R); then limt→∞ #(t) = 0.

Proof. (i) ⇒: Assume # ∈ R0(R+;R) satis5es (H). Seeking a contradiction, suppose
that limt→∞ #(t) �= 0. Then there exist �¿ 0 and (tn)⊂R+, with tn+1 − tn ≥ 1 for
all n, such that |#(tn)| ≥ �. By Proposition 5, there exists a sequence (sn)⊂R+ and
a subsequence (t/(n)) of (tn) such that limn→∞#(sn) = 0 and, for all n, t/(n) − sn ≥ 0
with t/(n) − sn → 0 as n → ∞. Since # ∈ R0(R+;R), limn→∞ #(t/(n)) = 0, yielding the
contradiction

0¡� ≤ lim
n→∞ |#(t/(n))|= 0:

⇐: Now assume limt→∞ #(t)=0. Then B(#)= {0} and # ∈ R0(R+;R). Moreover, for
all %¿ 0, �{t ∈ R+ | |#(t)| ≥ %} is 5nite and so # is meagre.
(ii) Let �¿ 0 be such that #|J� ∈ R0(J�;R). Again, seeking a contradiction, suppose

that the claim is not true. Then lim supt→∞ |#(t)|¿, for some , ∈ (0; �). Using (H)
and the continuity of # it is clear that there exists (tn)⊂R+ with tn+1 − tn ≥ 1 for all
n and such that |#(tn)| = ,. By Proposition 5, there exist a sequence (sn)⊂R+ and a
subsequence (t/(n)) of (tn) such that, for all n, |#(sn)|¡,=n and t/(n) − sn ≥ 0 with
t/(n)−sn → 0 as n → ∞. By construction, t/(n); sn ∈ J� for all n. Since #|J� ∈ R0(J�;R),
it follows that limn→∞ #(t/(n)) = 0, yielding the contradiction

0¡,= |#(t/(n))| → 0; as n → ∞:

The following corollary is a consequence of part (i) of the above lemma.

Corollary. Let # ∈ R0(R+;R). Condition (a) in (H) holds if, and only if, condition
(b) in (H) holds.

Remark. As previously mentioned in the Introduction, an elementary result, frequently
referred to as Barb>alat’s lemma and widely invoked in stability analyses of (controlled)
dynamical systems, is the following: let # : R+ → R be uniformly continuous; if

lim
t→∞

∫ t

0
#() d exists and is 5nite;

then limt→∞ #(t) = 0. This result is subsumed by Lemma 6.

De�nition. For C ⊂G⊂X , C non-empty, let DC(G) be the set of all Borel functions
g : G → R such that g−1(0)=C, g is continuous at c for all c ∈ C and inf{|g(z)| | z ∈
K ∩ G}¿ 0 for any closed set K ⊂X with K ∩ C = ∅ and K ∩ G �= ∅.
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For example, if C ⊂X is non-empty and compact, then dC ∈ DC(X ).

Next, we present the second of the three key lemmas.

Lemma 7. Let C ⊂G⊂X; C non-empty; g ∈ DC(G) and (zn)⊂G. If g(zn) → 0 as
n → ∞; then dC(zn) → 0 as n → ∞. If; in addition; C is compact; then there exists
c ∈ C and a subsequence (z/(n)) of (zn) such that z/(n) → c as n → ∞.

Proof. Assume g(zn) → 0 as n → ∞ and, for contradiction, suppose that dC(zn) 9
0 as n → ∞. Then there exist �¿ 0 and a subsequence (z/(n)) of (zn) such that
dC(z/(n)) ≥ � for all n. Let K be the closed set

K := {z ∈ X |dC(z) ≥ �}:
Then K∩C=∅, z/(n) ∈ K∩G for all n, and, since g ∈ DC(G), we have a contradiction:
inf n |g(z/(n))|¿ 0. Hence, dC(zn) → 0 as n → 0. Now assume, in addition, that C is
compact. Then there exists a sequence (cn)⊂C such that dC(zn) = �(zn; cn) → 0 as
n → ∞ and, for some subsequence (c/(n)), c/(n) → c ∈ C as n → ∞. Therefore,
z/(n) → c ∈ C as n → ∞.

Before presenting the last of the three key lemmas, we prove a preliminary result.

Proposition 8. Let x : J → X be measurable; let G⊂X with G⊃ cl (x(J )); let C ⊂G
be non-empty and compact and let g ∈ DC(G). If x ∈ R(J ;X ) and B(x) ∩ C �= ∅;
then # := g ◦ x ∈ R0(J ;R).

Proof. Since B(x) ∩ C �= ∅ it follows that 0 ∈ B(#). Let (sn); (tn)⊂ J be sequences
such that limn→∞ sn=sup J , limn→∞ #(sn)=0, tn ≥ sn and limn→∞ (tn−sn)=0. Seeking
a contradiction, suppose the claim is not true, i.e. # �∈ R0(J ;R). Then there exist a
subsequence (t/(n)) of (tn) and �¿ 0 such that |#(t/(n))| ≥ � for all n. By Lemma 7,
there exist c ∈ C and a subsequence (s/1(n)) of (s/(n)) such that limn→∞ x(s/1(n)) =
c. Since x ∈ R(J ;X ), it follows that limn→∞ x(t/1(n)) = c. Thus we arrive at the
contradiction

0¡� ≤ |#(t/1(n))| → 0 as n → ∞:

Corollary. Let C ⊂X be non-empty; let x : R+ → X be measurable; set # := dC ◦ x
and de9ne J� := {t ∈ R+ | #(t)¡�}. Then the following statements hold:
(i) if (a) C is compact; (b) x is C-meagre; and (c) x ∈ R(R+;X ); then x

approaches C;
(ii) if (a) C is compact; (b) x is C-meagre and continuous; and (c) there exists some

�¿ 0 such that x|J� ∈ R(J�;R); then x approaches C;
(iii) if (a) x is C-meagre and continuous; and (b) there exists some �¿ 0 such that

x|J� is uniformly continuous; then x approaches C.

Proof. In order to prove statement (i), we 5rst note that, by C-meagreness of x, there
exist (cn)⊂C and (tn)⊂R+ with tn → ∞ as n → ∞, such that �(x(tn); cn) → 0
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as n → ∞. Invoking compactness of C, it follows that B(x) ∩ C �= ∅. Since dC ∈
DC(X ), Proposition 8 shows that # := dC ◦ x ∈ R0(R+;R). By C-meagreness of x,
# is meagre, and the claim follows from Lemma 6, part (i). To prove statement (ii),
note that B(x) ∩ C = B(x|J�) ∩ C �= ∅. By using part (ii) (instead of part (i)) of
Lemma 6, statement (ii) can now be proved in exactly the same manner as in the
proof of statement (i). Finally, to prove statement (iii), observe that the assumptions
on x imply that # := dC ◦ x is meagre and continuous and #|J� ∈ R0(R+;R) for some
�¿ 0. Hence, by part (ii) of Lemma 6, limt→∞ #(t)=0, and thus x approaches C.

Lemma 9. Let x ∈ R(R+;X ); let G⊂X with G⊃ cl (x(R+)) and let C ⊂G be
non-empty and compact. Then the following statements hold:
(i) if g ∈ DC(G) and #= g ◦ x satis9es (H); then x approaches C and B(x)⊂C;
(ii) if g : G → R is such that |g| (that is; the map z �→ |g(z)|) is lower semicontinuous

and #= g ◦ x satis9es (H); then B(x)⊂ g−1(0).

Proof. (i) Using (H) we may conclude that there exists a sequence (tn)⊂R+ with
limn→∞ tn=∞ and such that limn→∞ #(tn)= 0. By Lemma 7, there exist c ∈ C and a
subsequence (t/(n)) of (tn) such that limn→∞ x(t/(n)) = c, showing that B(x) ∩ C �= ∅.
Therefore, by Proposition 8, # ∈ R0(R+;R). By Lemma 6 part (i), it follows that
limt→∞ #(t)=0. Again using Lemma 7, it follows that x approaches C which implies,
by compactness of C, that B(x)⊂C.
(ii) For contradiction, suppose B(x) �⊂ g−1(0). Then there exists l ∈ B(x) such that

� := |g(l)|=2¿ 0. Since l is an !-limit point, there exist (tn)⊂R+ with tn → ∞
and x(tn) → l as n → ∞. We may assume that tn+1 − tn ≥ 1 for all n. By Propo-
sition 5, there exist (sn)⊂R+ and some subsequence (t/(n)) of (tn) such that |g(x(sn))|
¡� with sn − t/(n) ≥ 0 and sn − t/(n) → 0 as n → ∞. Since x ∈ R(R+;X ), x(sn) → l
as n → ∞ which, together with lower semicontinuity of |g|, yields the contradiction:

� ≥ lim inf
n→∞ |g(x(sn))| ≥ |g(l)|= 2�¿ 0:

5. Asymptotic behaviour of dynamical systems

We now present a variety of rami5cations of Lemmas 6, 7 and 9 in qualitative
analyses of dynamical systems.

5.1. Semi?ows

Let X be a metric space. A map � : D⊂(R+ × X ) → X is a local semi?ow if
(i) D is open (in the relative topology in R+ × X ) and for each � ∈ X there exists

� ∈ (0;∞] such that D =
⋃

�∈X ([0; �)× {�});
(ii) � : D → X is continuous;
(iii) �(0; �) = � for all � ∈ X ;
(iv) if � ∈ X , t1 ∈ [0; �) and t2 ∈ [0; �(t1 ;�)), then t1+ t2 ∈ [0; �), and �(t2; �(t1; �))=

�(t1 + t2; �).
If D = R+ × X , then � is called a global semi?ow.
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In the above de5nition of semiDow, we have postulated joint continuity of the map
(t; �) �→ �(t; �). For each t ¿ 0, joint continuity at (t; �) ∈ D is implied by separate
continuity (that is, continuity of the map s �→ �(s; �) at t and continuity of the map
6 �→ �(t; 6) at �); however, this implication may fail at points (0; �) ∈ D (if � is a
(local) ?ow, then joint continuity is equivalent to separate continuity), see, for example,
[3,7]).
Let � be a local semiDow, let � ∈ X and write x(·) = �(·; �). The ensuing facts

are standard ([1,10,25]): if � ¡∞, then B(x)= ∅; B(x) is positively invariant; if x is
relatively compact, then �=∞ and B(x) is non-empty, compact, connected, invariant,
is approached by x and is the smallest closed set so approached.

5.1.1. Asymptotic behaviour of local semi?ows
The second part of the following result gives a generalization of [6, Theorem 1:2]

applicable in the context of local semiDows.

Theorem 10. Let � :D → X be a local semi?ow; let � ∈ X and assume that � =∞.
Write x(·) := �(·; �) : R+ → X; let G⊂X with G⊃ cl (x(R+)) and let C ⊂G be
non-empty and compact. Then the following statements hold:
(i) if g ∈ DC(G) and # = g ◦ x satis9es (H); then x is relatively compact and

approaches the largest invariant set in C;
(ii) if g :G → R is such that |g| is lower semicontinuous and #= g ◦ x satis9es (H);

then B(x) is contained in the largest positively invariant set in g−1(0). If; in
addition; x is relatively compact; then x approaches the largest invariant set in
g−1(0).

Proof. We 5rst show that if B(x) �= ∅, then x ∈ R(R+;X ). To this end let l ∈ B(x)
and let (sn); (tn)⊂R+ be sequences with limn→∞ sn = ∞, limn→∞ x(sn) = l, tn ≥ sn
and limn→∞ (tn − sn) = 0. Using the properties of the semiDow we have that

x(tn) = �(tn; �) = �(tn − sn; �(sn; �)) = �(tn − sn; x(sn)) → l; as n → ∞;

and so l is robust. Since l ∈ B(x) is arbitrary, we may conclude that x ∈ R(R+;X ).
To prove statement (i) we note that, by (H), there exists (tn)⊂R+ such that tn → ∞

and g(x(tn)) → 0 as n → ∞. By compactness of C and Lemma 7, there exist c ∈ C
and a subsequence (t/(n)) of (tn) such that x(t/(n)) → c as n → ∞. Thus, B(x)∩C �= ∅
and so, in particular, B(x) �= ∅. Therefore, by the above argument, x ∈ R(R+;X ).
Invoking part (i) of Lemma 9 shows that x approaches C. Since C is compact and
x is continuous it follows that x is relatively compact. Therefore x approaches B(x).
Now B(x) is the smallest closed set so approached and hence B(x)⊂C. Statement (i)
now follows since B(x) is invariant.
To prove the 5rst part of statement (ii), assume that B(x) �= ∅ (if B(x) = ∅ there is

nothing to prove). Then x ∈ R(R+;X ) and part (ii) of Lemma 9 yields B(x)⊂ g−1(0).
Since B(x) is positively invariant, it follows that B(x) is contained in the largest
positively invariant set in g−1(0). Under the additional assumption that x is relatively
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compact, x approaches its non-empty, compact, invariant !-limit set B(x)⊂ g−1(0) and
so must approach the largest invariant set in g−1(0).

Remark. An alternative derivation of the second part of statement (ii) (wherein x is
assumed to be relatively compact) is possible, based on an invariance principle due
to Ball [4, Theorem 2:3(ii)]. This alternative derivation (not given here) is, however,
non-trivial; the above approach seems to be more natural and direct.

The following corollary (which has the Davour of the Lp stability considerations in
[23]) is a consequence of part (i) of Theorem 10.

Corollary. Let X be a Banach space; let � : D → X be a local semi?ow; let � ∈ X
with � =∞ and let ) ∈ D{0}(R+) be such that )(v)¿ 0 for all v¿ 0. If∫ ∞

0
)(‖�(t; �)‖) dt ¡∞;

then limt→∞ �(t; �) = 0.

In particular, if � is a global semiDow and is Lp-stable for some p ∈ [1;∞) (in the
sense that �(·; �) ∈ Lp(R+;X ) for all �), then {0} is globally attractive.

5.1.2. Semi?ows and asymptotic stability of compacta
Let X be a metric space and let � : R+ × X → X be a global semiDow. Relative

to �, a non-empty set C ⊂X is said to be stable if, for each �¿ 0, there exists ,¿ 0
such that, for all � ∈ B,(C), �(t; �) ∈ B�(C) for all t ∈ R+; C ⊂X is said to be
globally asymptotically stable if it is both stable and globally attractive (that is, for
all � ∈ X , �(·; �) approaches C). Consider the following three statements:
(i) relative to the semiDow �, C is globally asymptotically stable;
(ii) there exists a KL-function ( such that

�({t |dC(�(t; �)) ≥ %}) ≤ ((dC(�); %) ∀(�; %) ∈ X × (0;∞); (3)

(iii) there exist K-functions ) and * such that∫ ∞

0
)(dC(�(t; �))) dt ≤ *(dC(�)) ∀� ∈ X: (4)

Theorem 11. Let non-empty C ⊂X be compact.
(a) (iii) ⇔ (ii) ⇒ (i); but (i) ; (iii).
(b) If X satis9es the compactness condition

Br(z) is relatively compact for all (r; z) ∈ (0;∞)× X; (K)

then (i); (ii) and (iii) are equivalent.

Proof. (iii) ⇔ (ii): On setting M = {dC(�(·; �))|� ∈ X }, the equivalence of (ii) and
(iii) follows by Proposition 4.
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(ii) ⇒ (i): Let (ii) hold. We will deduce (i) by establishing stability of C and global
attractivity of C.
Stability of C: Seeking a contradiction, suppose that C is not stable. Then there

exist �¿ 0 and sequences (�′k)⊂X , (tk)⊂R+ such that

dC(�′k)¡
1
k
; dC(�(tk ; �′k))¿� ∀k ∈ N: (5)

Choose sequences (kn); (ln)⊂N such that

ln+1¿kn¿ln; ∀n and lim
n→∞ ((1=kn; 1=ln) = 0: (6)

Using the fact that ( is a KL-function, sequences (kn) and (ln) with the above
properties can be de5ned recursively by setting l1 := 1 and

kn := ln +min{j ∈ N |((1=j; 1=ln)¡ 1=n}; ln+1 := kn + 1:

Setting �n := �′kn , and using (5), (6) and continuity of dC(�(·; �n)), it follows that
there exist rn; sn with 0¡rn¡sn¡ tkn , such that for all suPciently large n

dC(�(rn; �n)) =
1
ln
; dC(�(sn; �n)) = �;

1
ln
¡dC(�(s; �n))¡� ∀s ∈ (rn; sn):

Therefore, for all suPciently large n

sn − rn ≤ �({s|dC(�(s; �n)) ≥ 1=ln}) ≤ ((dC(�n); 1=ln)¡((1=kn; 1=ln);

and so, by (6),

lim
n→∞(sn − rn) = 0: (7)

By construction, limn→∞ dC(�(rn; �n)) = 0. By compactness of C, there exist c ∈ C
and a subsequence (�(r/(n); �/(n))) of (�(rn; �n)) such that limn→∞�(r/(n); �/(n)) = c.
Hence, by invoking (7), we obtain a contradiction

0¡�= dC(�(s/(n)); �/(n)))=dC(�(s/(n)− r/(n); �(r/(n); �/(n))))→ 0; as n→∞:

Therefore C is stable.
Global attractivity of C: This is an immediate consequence of hypothesis (ii) and

part (i) of Theorem 10.
(i) ⇒ (ii) if X satis9es (K): Assume that X satis5es (K) and that (i) holds. By

global attractivity of C, the following is well-de5ned for each (�; %) ∈ X × (0;∞):

60(�; %) := inf{ |dC(�(t; �))¡% ∀t ¿ } ≥ 0:

For each (r; %) ∈ R+ × (0;∞), write

6(r; %) = sup{60(�; %) |dC(�) ≤ r} ≥ 0:

We claim that 6(r; %)¡∞ for all (r; %) ∈ R+ × (0;∞). For contradiction, suppose
otherwise. Then there exist (r; %) ∈ R+ × (0;∞) and a sequence (�n)⊂X such that

60(�n; %) → ∞ as n → ∞; dC(�n) ≤ r;

dC(�(60(�n; %); �n)) = % ∀n ∈ N: (8)
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By stability of C, there exists ,¿ 0 such that

dC(�)¡, ⇒ dC(�(t; �))¡%=2 ∀t ≥ 0:

By compactness of C and condition (K), cl(Br(C)) is compact and so we may assume
(passing to a subsequence which we do not re-label) that (�n) (⊂ cl(Br(C))) converges
to �∗ with dC(�∗) ≤ r. By global attractivity of C, there exists t∗ ∈ R+ such that
dC(�(t∗; �∗))¡,=2. Fix N ∈ N suPciently large so that �(�(t∗; �n); �(t∗; �∗))¡,=2
for all n¿N . It follows that �(t∗; �n) ∈ B,(C) for all n¿N , and so

dC(�(t + t∗; �n)) = dC(�(t; �(t∗; �n)))¡%=2 ∀t ≥ 0 ∀n¿N;

contradicting (8). Therefore, 6(r; %) ∈ R+ for every (r; %) ∈ R+ × (0;∞).
On R+ × (0;∞), de5ne (0 by

(0(r; %) := sup{�({t|dC(�(t; �)) ≥ %}) |dC(�) ≤ r} ≤ 6(r; %):

Clearly, for each % ∈ (0;∞), (0(·; %) is increasing and, for each r ∈ R+, (0(r; ·) is
decreasing. De5ne (1 : R+ × (0;∞) → R+ by setting for each % ∈ (0;∞)

(1(0; %) := 0; (1(r; %) := 2r
∫ 2r

r
s−2(0(s; %) ds if r ¿ 0:

For each % ∈ (0;∞), the function (1(·; %) is continuous on R+ and it is easy to check
that

(1(r; %) ≥ (0(r; %) ∀(r; %) ∈ R+ × (0;∞): (9)

A routine calculation yields that for all r; %¿ 0

@(1
@r

(r; %) =
1
r
[2((1(r; %)− (0(r; %)) + (0(2r; %)];

which shows in combination with (9) that the function (1(·; %) is increasing for every
% ∈ (0;∞). It follows that

( : (r; %) �→ r + (1(r; %)

is a KL-function and, for all (�; %) ∈ X × (0;∞),

�({t|dC(�(t; �)) ≥ %}) ≤ (0(dC(�); %) ≤ ((dC(�); %)):

It remains only to show that, if X does not satisfy condition (K), then (i) does not
imply (iii).
(i) ; (iii) if X does not satisfy condition (K): Observe that, if X is a Banach

space, if C = {0} and if the Dow is linear (i.e. �(t; �) = S(t)�, where S = (S(t))t∈R+

is a strongly continuous semigroup of linear bounded operators), then condition (iii)
implies uniform exponential stability of S by Rolewicz’s theorem [20, Theorem 2]
(see, also, [16, Theorem 3.2.2]). Since it is well known that, for strongly continuous
semigroups of bounded linear operators on an in5nite-dimensional Banach space X ,
global asymptotic stability does not imply uniform exponential stability, it follows that
(i) cannot imply (iii).

Remark. 1. If X is a normed vector space, then condition (K) is equivalent to local
compactness of X . Therefore part (b) of the theorem implies that statements (i)–(iii)
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are equivalent in the case of a locally compact normed vector space X . Hence these
equivalences hold in particular for global semiDows generated by ordinary diEerential
equations on X = RN . In this context of ordinary diEerential equations, the equiva-
lence of (i) and (iii) in the theorem is not new: it is implicit in the integral variant
of Sontag’s concept of input-to-state stability for 5nite-dimensional controlled systems
given in [22, Theorem 1]. Moreover, in the context of ordinary diEerential equations
on X = RN , the proof of the implication (i) ⇒ (iii) (equivalently, (i) ⇒ (ii)) fol-
lows easily by converse Lyapunov theory [15, Theorem 2.9] and, furthermore, if state-
ment (iii) is modi5ed by postulating K∞ functions ) and *, then the equivalence of
(i)–(iii) remains true.
2. In proving that (i) ; (iii) in the case of a metric space X which does not satisfy

condition (K), we appealed to Rolewicz’s theorem. However, there is also a direct
argument based on a simple counterexample. Let X = ‘2(N), let (�n)⊂(0;∞) with
lim
n→∞ �n = 0 and set, for t ∈ R+,

S(t) = diagn∈N(e
−�nt):

Clearly, S is a strongly continuous semigroup of linear operators on X , and it is easy
to show that {0} is globally asymptotically stable. Let ) be an arbitrary K-function
and for m ∈ N, let �(m) = (�(m)n ) be the mth unit vector in X = ‘2(N), i.e. �(m)n = 0 if
n �= m and �(m)n = 1 if n= m. Then∫ ∞

0
)(‖S(t)�(m)‖) dt =

∞∑
k=1

∫ k

k−1
)(‖S(t)�(m)‖) dt

≥
∞∑
k=1

)(e−�mk) → ∞ as m → ∞;

showing that (iii) does not hold.

5.1.3. Characterizations of exponential stability for linear semigroups
In the proof of Theorem 11 above, reference has been made to a result by Rolewicz

on uniform exponential stability of linear semigroups. Here, we discuss in more detail
this and similar results, and provide two new characterizations of uniform exponential
stability.
Let X be a Banach space and let S=(S(t))t∈R+ be a strongly continuous semigroup

of bounded linear operators on X . The semigroup S is uniformly exponentially stable
if there exist constants a¿ 0 and M ≥ 1 such that

‖S(t)‖ ≤ Me−at ∀t ∈ R+:

Let p ∈ [1;∞). The semigroup S is Lp-stable if S(·)� ∈ Lp(R+;X ) for all � ∈ X . The
semigroup S is wk-Lp-stable if S(·)� ∈ wk-Lp(R+;X ) for all � ∈ X . The equivalence of
uniform exponential stability and Lp-stability is well known (originally proved by Datko
[8] for a Hilbert space X and p=2; the general result later established by Pazy [17]).
Here, we establish the equivalence of uniform exponential stability and wk-Lp-stability,
and also provide an equivalent to Rolewicz’s characterization [20], [16, Section 3:2]



1102 W. Desch et al. / Nonlinear Analysis 44 (2001) 1087–1109

(for related results, see also, [13,19,26]) of uniform exponential stability. We remark
that the concept of “weak Lp stability” considered in [26] diEers fundamentally from
the concept of wk-Lp-stability considered here.

Theorem 12. The following statements are equivalent:
(i) S is exponentially stable;
(ii) S is Lp-stable for some p ∈ [1;∞);
(iii) S is wk-Lp-stable for some p ∈ [1;∞);
(iv) there exists a non-decreasing function ) : R+ → R+; continuous at 0 with )(0)=0

and )(v)¿ 0 for all v¿ 0; such that )(‖S(·)�‖) ∈ L1(R+;R+) for all � ∈ X;
(v) there exists a non-decreasing function * : R+ → R+; continuous at 0 with

*(0) = 0 and *(v)¿ 0 for all v¿ 0; such that *(‖S(·)�‖) ∈ wk-L1(R+;R+) for
all � ∈ X:

Proof. As already mentioned, the equivalence of (i) and (ii) is well known. That (ii)
implies (iii) is evident. We now show that (iii) implies (ii). Assume (iii) holds. Let
� ∈ X . By Proposition 2, ‖S(·)�‖ is meagre. By part (i) of Theorem 10 applied in
the context of the global semiDow � : (t; �) �→ S(t)� and the function g ∈ D{0}(X ),
g : z �→ ‖z‖p, we may conclude that S(·)� approaches {0}. In particular, S(·)� is
bounded and so, by Proposition 3, S(·)� ∈ Lq(R+;X ) for all q¿p.
The equivalence of (i) and (iv) is a consequence of [16, Theorem 3.2.2] (a gen-

eralization of Rolewicz’s result [20, Theorem 2]). That (iv) implies (v) is evident. It
remains only to prove that (v) implies (iv). Assume (v) holds and let � ∈ X . By part
(i) of Theorem 10, S(·)� approaches {0}. Therefore, *(‖S(·)�‖) is bounded and so,
by Proposition 3 and de5ning ) := *2, )(‖S(·)�‖) ∈ L1(R+;X ).

5.2. Non-autonomous ordinary diAerential equations and diAerential inclusions

Until otherwise indicated, X = RN . Our next goal is to highlight some rami5ca-
tions of Lemmas 6, 7 and 9 in the study of asymptotic behaviour of solutions of
initial-value problems for autonomous diEerential inclusions (for background see, for
example [2,12,9]),

ẋ(t) ∈ F(x(t)); x(0) = �; x(t) ∈ X (10)

where x �→ F(x)⊂X is a non-empty-set-valued map de5ned on X . By a solution
of (10), we mean an absolutely continuous function x : I → X , de5ned on some
interval I ⊂R+ containing 0 and of non-zero length |I |, such that x(0) = � and the
diEerential inclusion in (10) is satis5ed for almost all t ∈ I ; x is a maximal solution
if it does not have a proper right extension (i.e. to an interval J , with I ⊂ J ⊂ [0;∞)
and |J |¿ |I |) which is also a solution. We note that, by Zorn’s lemma, every solution
can be extended to a maximal solution (that is, a solution on a maximal interval of
existence I). If F is upper semicontinuous and convex-compact-valued, then a solution
exists; if x : I → G is a maximal bounded solution, then sup I =∞ and x approaches
its non-empty, compact, connected, weakly-invariant !-limit set B(x) (and B(x) is the
smallest closed set approached by x). By weak invariance of B(x) we mean that, for
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each l ∈ B(x), there exists at least one maximal solution of the initial-value problem
ż ∈ F(z), z(0) = l, with trajectory in B(x).
Note that (10) subsumes not only autonomous diEerential equations but also classes

of non-autonomous diEerential equations. Let D⊂RP and f : D × RN → RN , and
consider, for example, an equation of the form ẋ(t)=f(d(t); x(t)), with d(·) measurable
and taking values in D: this equation is embedded in (10) on setting F(x) := f(D; x),
the embedding being in the sense that any solution of the diEerential equation is a
fortiori a solution of the diEerential inclusion (of course, if f is continuous and D is
compact, then, by Filippov’s lemma [11], we have equivalence of the solution sets in
the sense that x is a solution of the inclusion if, and only if, there exists measurable
t �→ d(t) ∈ D such that x is a solution of the equation).

Theorem 13. Assume that F maps bounded sets to bounded sets. Let x : R+ → X be
a bounded solution of (10). Let G⊂X with G⊃ cl(x(R+)). If g : G → R is such that
|g| is lower semicontinuous and # := g ◦ x satis9es (H); then x approaches g−1(0).

Proof. By (10), together with boundedness of x and the assumption that F maps
bounded sets to bounded sets, it follows that ẋ ∈ L∞(R+;X ) and so x is uniformly
continuous. Therefore, x ∈ R(R+;X ) and, by part (ii) of Lemma 9, B(x)⊂ g−1(0).
By boundedness of x, B(x) is non-empty and is approached by x.

A corollary of this result provides another generalization of [6, Theorem 1.2]. This
generalization is proved (by other arguments) in [21], wherein it is also shown to have
applications in adaptive control of uncertain dynamical systems.

Corollary. Assume that F is upper semicontinuous with convex; compact values. Let
x : R+ → X be a bounded solution of (10). Let G⊂X with G⊃ cl(x(R+)). If g :
G → R is such that |g| is lower semicontinuous and # := g ◦ x satis9es (H); then x
approaches the largest weakly-invariant set in g−1(0).

Proof. By properties of F , it maps bounded sets to bounded sets and so, by The-
orem 13, B(x)⊂ g−1(0). By boundedness of x and properties of F , B(x) �= ∅ is
weakly-invariant and is approached by x, and hence x(t) tends to the largest weakly-
invariant set in g−1(0) as t → ∞.

As shown in [21, Theorem 2.11], a (nonsmooth) version of LaSalle’s invariance
principle follows readily from the Corollary to Theorem 13.

Theorem 14. Let G⊂X be open and assume that F is upper semicontinuous on G
with convex; compact values. Let V : RN → R be locally Lipschitz and let Vo(z; v)
denote the Clarke directional derivative of V at z in direction v. De9ne

g : G → R; g : z �→ g(z) := − max
v∈F(z)

Vo(z; v):

If (i) g(z) ≥ 0 for all z ∈ G and (ii) x : R+ → X is a bounded solution of (10) with
cl(x(R+))⊂G; then x approaches the largest weakly-invariant set in g−1(0).
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Proof. The proof of this result can be found in [21]: here we simply sketch the argu-
ment. By upper semicontinuity of Vo(·; ·), together with properties of F , the function g
is lower semicontinuous. By boundedness of x and continuity of V , V ◦ x is bounded.
Moreover,

V (x())− V (x(t)) ≥
∫ t


g(x(s)) ds ≥ 0 ∀t;  ∈ R+; t ≥ ;

and so the bounded function V ◦ x is monotone non-increasing. It follows that∫ ∞

0
g(x(s)) ds ≤ V (x(0))− lim

t→∞V (x(t))¡∞:

The assertion now follows by the Corollary to Theorem 13.

The next result establishes that, under a weak condition on F , solutions of (10) on
R+ which are meagre with respect to C necessarily approach C.

Proposition 15. Let C ⊂X be non-empty. Assume that F is bounded on a neighbour-
hood of C. If x : R+ → X is a solution of (10) and is C-meagre; then x approach-
es C.

Proof. Let �¿ 0 be suPciently small so that F(B�(C)) is bounded. De5ne #(·) :=
dC(x(·)) and J� := {t ∈ R+ | #(t)¡�}. Since x is C-meagre, # is meagre. By
meagreness of #, 0 is an !-limit point of #|J� . If 0 ∈ B(#|J�) is robust (that is, if
#|J� ∈ R0(R+;R)), then the result follows by part (ii) of Lemma 6. To show that
#|J� ∈ R0(R+;R), it is suPcient to prove that #|J� is uniformly continuous. To this end
note that by the boundedness of F(B�(C)), ẋ|J� ∈ L∞(J�;X ). Evidently, J� is non-empty
and open (in the relative topology for R+) and so is the union of a countable disjoint
class of (relatively) open intervals:

J� =
⋃
n∈N

(sn; tn) ∩ R+:

Let ,¿ 0 be arbitrary and set % := ,=2), where ) := 1 + ‖ẋ|J�‖∞. Let s; t ∈ J�.
Without loss of generality, we assume s ≤ t. Then, for some m; n ∈ N, s ∈ (sm; tm)
and t ∈ (sn; tn) with either (i) m= n or (ii) 0¡tm ≤ sn ¡∞.
Case (i): If m= n, then

t; s ∈ (sm; tm); |t − s| ≤ % ⇒ |#(t)− #(s)|= |dC(x(t))− dC(x(s))|

≤ ‖x(t)− x(s)‖ ≤
∫ t

s
‖ẋ‖ ≤ )%¡,;

wherein the Lipschitz property of dC has been invoked.
Case (ii): Assume 0¡tm ≤ sn ¡∞. Clearly,

s ∈ (sm; tm); t ∈ (sn; tn); |t − s| ≤ % ⇒ |t − sn| ≤ % and |tm − s| ≤ %: (11)

Moreover, by de5nition of J� and continuity of #(·) = dC(x(·)),
#(tm) = #(sn) = �
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and so, by the Lipschitz property of dC ,

|#(t)− #(s)| ≤ |#(t)− #(sn)|+ |#(tm)− #(s)|
≤ ‖x(t)− x(sn)‖+ ‖x(tm)− x(s)‖: (12)

Therefore, invoking (11) and (12), we conclude

s ∈ (sm; tm); t ∈ (sn; tn); |t − s| ≤ % ⇒ |#(t)− #(s)| ≤
∫ t

sn
‖ẋ‖+

∫ tm

s
‖ẋ‖

≤ 2%)= ,

The above arguments show that |#(t) − #(s)| ≤ , whenever t; s ∈ J� and |t − s| ≤ %,
whence uniform continuity of #|J� .

The following corollary is immediate.

Corollary. Assume that F is bounded on a neighbourhood of 0. If x : R+ → X is a
solution of (10) and x ∈ Lp(R+;X ) for some 1 ≤ p¡∞, then x approaches {0}.

5.3. Non-autonomous semilinear in9nite-dimensional systems

Let X be a Banach space and let A : dom(A) → X generate a strongly continuous
semigroup S = (S(t))t∈R+ of linear bounded operators on X . Let ‖ · ‖ denote the norm
in X . Moreover, let B ∈ L(U; X−1). Here U is a Banach space (with norm ‖ · ‖U )
and X−1 is the completion of X with respect to the norm ‖x‖−1 = ‖(sI − A)−1x‖,
where s is in the resolvent set of A. DiEerent choices for s lead to equivalent norms.
The semigroup S extends to a strongly continuous semigroup on X−1 which will be
denoted by the same symbol. We assume that B is an admissible input operator for S
in the sense of Weiss [27], i.e. for each T ≥ 0 there exists aT ¿ 0 such that∥∥∥∥

∫ T

0
S(t)Bu(t) dt

∥∥∥∥
2

≤ aT

∫ T

0
‖u(t)‖2U dt for all u ∈ L2loc(R+;U ):

Finally, let N : R+×X → U; (t; y) �→ N (t; y) be continuous in t, and locally Lipschitz,
in y uniformly in t on bounded intervals. The latter condition means, that for all r; t ≥ 0
there exists L(r; t)¿ 0 such that

‖N (s; y)− N (s; z)‖U ≤ L(r; t)‖y − z‖ for all s ∈ [0; t]; y; z ∈ Br(0):

Under these conditions, for given � ∈ X , the integral equation

x(t) = S(t)�+
∫ t

0
S(t − )BN (; x()) d; t ≥ 0 (13)

has a unique continuous X -valued solution de5ned on a maximal interval of existence;
(13) can be thought of as the evolution equation of the system obtained by applying
the nonlinear feedback u(t) = N (t; x(t)) to the linear controlled system given formally
by ẋ = Ax + Bu.
Moreover, we assume that S, B and N satisfy the following assumption.
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Assumption A. For every bounded K ⊂X , there exists hK ¿ 0 and a function 6K :
[0; hK ] → R+, continuous at 0 with 6K (0) = 0 and such that, whenever h ∈ [0; hK ],
t ≥ 0 and x : [t; t + h] → K is continuous,∥∥∥∥∥

∫ t+h

t
S(t + h− )BN (; x()) d

∥∥∥∥∥ ≤ 6K (h):

A condition which only involves the nonlinearity N and which guarantees that
Assumption A is satis5ed is given by the following assumption.

Assumption B. For every bounded K ⊂X , there exists hK ¿ 0 and a function 6K :
[0; hK ] → R+, continuous at 0 with 6K (0) = 0 and such that, whenever h ∈ [0; hK ],
t ≥ 0 and x : [t; t + h] → K is continuous,∫ t+h

t
‖N (; x())‖2U d ≤ 6K (h):

If B ∈ L(U; X ), we can absorb B into N , and hence may assume, without loss of
generality, that U = X and B= I . If in addition we have A=0, then Assumption A is
just the condition introduced by Artstein in [14, Appendix A] and the integral equation
(13) is equivalent to the initial-value problem

ẋ(t) = N (t; x(t)); x(0) = �:

Proposition 16. Suppose that Assumption A holds. Let ! ∈ R and; for t ∈ R+; set
S! := (e!tS(t))t∈R+ . Then Assumption A remains valid if S is replaced by S!.

Proof. For all x ∈ X−1 we have

S!(t)x = S(t)x + !
∫ t

0
S(t − /)S!(/)x d/: (14)

Let K ⊂X be bounded, and let hK , 6K be as in Assumption A. Let h ∈ [0; hK ], t ≥ 0
and let x : [t; t + h] → K be continuous. It suPces to show that there exist a constant
ĥK ∈ (0; hK ] and a function 6̂K : [0; ĥK ] → R+, continuous at 0 with 6̂K (0) = 0, such
that ∥∥∥∥∥

∫ t+h

t
S!(t + h− )BN (; x()) d

∥∥∥∥∥ ≤ 6̂K (h) ∀h ∈ [0; ĥK ]:

Setting Ñ () := N (; x()), we have∥∥∥∥∥
∫ t+h

t

∫ t+h−

0
S(t + h− − +)S!(+)BÑ () d+ d

∥∥∥∥∥
=

∥∥∥∥∥
∫ h

0
S!(+)

(∫ t+h−+

t
S(t + h− +− )BÑ () d

)
d+

∥∥∥∥∥ :
Let a¿ 0 be such that ‖S!(t)‖ ≤ a for all t ∈ [0; hK ]. By continuity of 6K at zero,
there exists ĥK ∈ (0; hK ] such that

b := sup{6K (+) | 0 ≤ + ≤ ĥK}¡∞:
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Therefore, for all h ∈ [0; ĥK ],∥∥∥∥∥
∫ t+h

t

∫ t+h−

0
S(t + h− − +)S!(+)BÑ () d+ d

∥∥∥∥∥ ≤ abh:

Invoking (14), we obtain for all h ∈ [0; ĥK ]∥∥∥∥∥
∫ t+h

t
S!(t + h− )BN (; x()) d

∥∥∥∥∥ ≤ 6K (h) + ab|!|h= : 6̂K (h):

Proposition 17. Suppose that Assumption A holds and that x : R+ → X is a solution
of (13). If x is bounded and B(x) �= ∅; then x ∈ R(R+;X ).

Proof. Choose !∈R such that the semigroup S! := (e!tS(t))t∈R+ is exponentially
stable. Clearly

x(t) = S!(t)�+
∫ t

0
S!(t − )(BN (; x())− !x()) d:

To show that x ∈ R(R+;X ), let l ∈ B(x) and let (sn); (tn)⊂R+ be sequences with
limn→∞ sn =∞, limn→∞ x(sn) = l, tn ≥ sn for all n and limn→∞ (tn − sn) = 0. Setting

v(t) :=
∫ t

0
S!(t − )(BN (; x())− !x()) d;

it follows that limn→∞ v(sn) = l. It is suPcient to show that limn→∞ v(tn) = l. To this
end note that

v(tn) = S!(tn − sn)v(sn) + wn; (15)

where

wn :=
∫ tn

sn
S!(tn − )(BN (; x())− !x()) d:

Since the operator B is an admissible control operator for S, it is also admissible for
S!, and hence for each T ≥ 0 there exists âT ¿ 0 such that∥∥∥∥

∫ T

0
S!(t)Bu(t) dt

∥∥∥∥
2

≤ âT

∫ T

0
‖u(t)‖2U dt for all u ∈ L2loc(R+;U ):

Setting K := cl(x(R+)), it follows from the boundedness of x that K is a bounded set,
and hence k := sup{‖z‖ | z ∈ K}¡∞. Using Assumption A and Lemma 16, we may
conclude that there exist ĥK ¿ 0 and a function 6̂K : [0; ĥK ] → R+, continuous at 0
with 6̂K (0) = 0, such that, for all suPciently large n,

‖wn‖ ≤ 6̂K (tn − sn) + âĥK k|!|(tn − sn):

Therefore, limn→∞ wn=0, and combining this with the fact that limn→∞ v(sn)= l, we
obtain from (15) that limn→∞ v(tn) = l.
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5.3.1. Asymptotic behaviour of solutions to (13)
The 5nal result is, in a sense, an in5nite-dimensional, non-autonomous, version of

Theorem 10.

Theorem 18. Suppose that Assumption A holds. Let x : R+ → X be a bounded
solution of (13). Let G⊂X with G⊃ cl(x(R+)) and let C ⊂G be non-empty and
compact. Then the following statements hold:
(i) if g ∈ DC(G) and #=g◦x satis9es (H); then x is relatively compact and B(x)⊂C

(hence; in particular; x approaches C);
(ii) if g : G → R is such that |g| is lower semicontinuous and (H) holds for #= g ◦ x;

then B(x)⊂ g−1(0). If; in addition; x is relatively compact; then x approaches
g−1(0).

Proof. To prove (i), we 5rst conclude that B(x) ∩ C �= ∅ by the same argument as
previously used in the proof of statement (i) of Theorem 10. Therefore, B(x) �= ∅
and so, by Proposition 17, x ∈ R(R+;X ). By Lemma 9(i), x approaches C. Relative
compactness of x now follows by continuity of x and compactness of C, and so x
approaches B(x). Since B(x) is the smallest closed set so approached, B(x)⊂C.
To prove (ii), assume B(x) �= ∅ (if B(x) = ∅, then (ii) holds trivially). Proposi-

tion 17, x ∈ R(R+;X ) and Lemma 9(ii) then yield B(x)⊂ g−1(0). To complete the
proof, simply note that, if x is relatively compact, then x approaches B(x).

Acknowledgements

A valuable discussion with A. Ilchmann, of the University of Exeter, UK, at the
formative stage of this work is gratefully acknowledged by HL and EPR.

References

[1] H. Amann, Ordinary DiEerential Equations: An Introduction to Nonlinear Analysis, Walter de Gruyter,
Berlin, 1990.

[2] J.P. Aubin, A. Cellina, DiEerential Inclusions, Springer, Berlin, 1984.
[3] J.M. Ball, Continuity of nonlinear semigroups, J. Funct. Anal. 17 (1974) 91–103.
[4] J.M. Ball, On the asymptotic behaviour of generalized processes, with applications to nonlinear evolution

equations, J. DiEerential Equations 27 (1978) 224–265.
[5] I. Barb>alat, SystYemes d’Zequations diEZerentielles d’oscillations non linZeaires, Revue de MathZematiques

Pures et AppliquZees, Bucharest IV (1959) 267–270.
[6] C.I. Byrnes, C.F. Martin, An integral-invariance principle for nonlinear systems, IEEE Trans. Automat.

Control AC-40 (1995) 983–994.
[7] P.R. ChernoE, J.E. Marsden, Properties of In5nite-Dimensional Hamiltonian Systems, Springer, Berlin,

1974.
[8] R. Datko, Extending a theorem of A.M. Lyapunov to Hilbert space, J. Math. Anal. Appl. 32 (1970)

610–616.
[9] K. Deimling, Multivalued DiEerential Equations, Walter de Gruyter, Berlin, 1992.
[10] O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-,

Complex-, and Nonlinear Analysis, Springer, New York, 1995.



W. Desch et al. / Nonlinear Analysis 44 (2001) 1087–1109 1109

[11] A.F. Filippov, On certain questions in the theory of optimal control, SIAM J. Control 1 (1962) 76–84.
[12] A.F. Filippov, DiEerential Equations with Discontinuous Righthand Sides, Kluwer, Dordrecht, 1988.
[13] A. Ichikawa, Equivalence of Lp stability and exponential stability for a class of nonlinear semigroups,

Nonlinear Anal. Theory, Methods Appl. 8 (1984) 805–815.
[14] J.P. LaSalle, The Stability of Dynamical Systems, SIAM Regional Conference Series in Applied

Mathematics, vol. 25, SIAM, Philadelphia, 1976.
[15] Y. Lin, E.D. Sontag, Y. Wang, A smooth converse Lyapunov theorem for robust stability, SIAM

J. Control Optim. 34 (1996) 124–160.
[16] J. van Neerven, The Asymptotic Behaviour of Semigroups of Linear Operators, Birkh]auser, Basel, 1996.
[17] A. Pazy, Semigroups of Linear Operators and Applications to Partial DiEerential Equations, Springer,

New York, 1983.
[18] V.M. Popov, Hyperstability of Control Systems, Springer, Berlin, 1973.
[19] A.J. Pritchard, J. Zabczyk, Stability and stabilizability of in5nite-dimensional systems, SIAM Rev. 23

(1981) 25–52.
[20] S. Rolewicz, On uniform N -equistability, J. Math. Anal. Appl. 115 (1986) 434–441.
[21] E.P. Ryan, An integral invariance principle for diEerential inclusions with application in adaptive control,

SIAM J. Control Optim. 36 (1998) 960–980.
[22] E.D. Sontag, Comments on integral variants of ISS, Systems Control Lett. 34 (1998) 93–100.
[23] A. Strauss, Liapunov functions and Lp solutions of diEerential equations, Trans. AMS 119 (1965)

37–50.
[24] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
[25] J.A. Walker, Dynamical Systems and Evolution Equations: Theory and Applications, Plenum Press,

New York, 1980.
[26] G. Weiss, Weak Lp-stability of a linear semigroup on a Hilbert space implies exponential stability,

J. DiEerential Equations 76 (1988) 269–285.
[27] G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989) 527–545.


