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Time-varying low-gain integral control strategies are presented for asymptotic
tracking of constant reference signals in the context of exponentially stable, well-
posed, linear, infinite-dimensional, single-input–single-output, systems—subject to
globally Lipschitz, nondecreasing input and output nonlinearities. It is shown that
applying error feedback using an integral controller ensures that the tracking error
is small in a certain sense, provided that (a) the steady-state gain of the linear part
of the system is positive, (b) the reference value r is feasible in an entirely natural
sense, and (c) the positive gain function t �→ k�t� is ultimately sufficiently small
and not of class L1. Under a weak restriction on the initial data it is shown that
(a), (b), and (c) ensure asymptotic tracking. If, additionally, the impulse response
of the linear part of the system is a finite signed Borel measure, the global Lipschitz
assumption on the output nonlinearity may be considerably relaxed. © 2001 Academic

Press

Key Words: infinite-dimensional well-posed systems; input–output nonlinearities;
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1. INTRODUCTION

This present paper extends the line of work on low-gain control of
infinite-dimensional systems initiated by recent contributions [9–16].
Consider the feedback configuration shown in Figure 1, where � denotes

1 This work was supported by the UK Engineering & Physical Sciences Research Council
(Grant GR/L78086).
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FIG. 1. Low-gain control with input and output nonlinearities.

an exponentially stable, time-invariant, single-input–single-output system
with transfer function G� ϕ and ψ denote static nonlinearities, and r
denotes the reference value. In [6] the authors developed a theory of
low-gain integral control for the feedback system in Figure 1 under the
assumption that � is finite dimensional. In particular, the following prin-
ciple was established in [6]. If G�0� > 0 and if the reference value r is
feasible in an entirely natural sense, then there exists a number k∗ > 0
such that, for all nondecreasing, globally Lipschitz input nonlinearities ϕ
and all nondecreasing, locally Lipschitz and affinely sector-bounded output
nonlinearities ψ (the sector-bound assumption on ψ can be removed if ϕ
is bounded), the following statement holds: For all positive, bounded, and
continuous integrator gains k�·� (thus, in particular, for positive constant
gains), the output y�t� of the closed-loop system depicted in Figure 1 con-
verges to r as t → ∞ provided that lim supt→∞ k�t� < k∗ and k is not of
class L1.

The number k∗ is closely related to the supremum κ∗ of the set of all
numbers κ > 0 such that the function

s �→ 1+ κ
G�s�

s

is positive real: for example, if both ϕ and ψ are globally Lipschitz with
Lipschitz constants λ1 > 0 and λ2 > 0, respectively, then k∗ = κ∗/�λ1λ2�.
Formulae for the computation of κ∗ have appeared in [13] for various
classes of systems.

Under the above assumptions on �� ϕ, and ψ, the problem of tracking
feasible constant reference signals r by low-gain integral control reduces
to that of appropriately choosing the gain function k. In a purely linear
and finite-dimensional context, such a controller design approach (“tuning
regulator theory”; see [5, 17, 21]) is well known and has been successfully
applied in process control (see, for example, [3, 18]).

In the present paper we prove that, with suitable modifications, the
above principle for finite-dimensional � continues to hold when � is an
exponentially stable, well-posed, infinite-dimensional system. We remark
that the class of well-posed, linear, infinite-dimensional systems is the
largest class of distributed parameter systems for which satisfactory state-
space and frequency-domain theories are currently available (see Curtain
and Weiss [4], Salamon [23, 24], Staffans [25], and Weiss [27–30]). Well-
posed systems allow for considerable unboundedness of the control and
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observation operators, and include most distributed parameter systems
and all time-delay systems (retarded and neutral) that are of interest
in applications. The essence of our approach is to invoke a particu-
lar coordinate transformation and perform a Lyapunov-type analysis of
the transformed systems in which an infinite-dimensional generalization of
the Kalman–Yakubovich lemma plays a central role. We emphasize that the
finite-dimensional Lyapunov argument developed in [6] does not general-
ize to the infinite-dimensional case and so the stability analysis given here
is fundamentally different from that in [6].

Finally, we mention that [6] contains applications of the above principle
to the problem of tuning the integrator gain adaptively (for other con-
tributions to adaptive tuning regulator theory, see [2, 11, 15, 16, 19, 20]).
Generalizations of the finite-dimensional adaptive results in [6] to the
infinite-dimensional case are currently under investigation and will be
reported elsewhere.

2. PRELIMINARIES ON WELL-POSED LINEAR SYSTEMS

First, some notation. For a Hilbert space H and τ ≥ 0, Rτ denotes the
operator of right shift by τ on L

p
loc��+� H�, where �+ �= �0�∞�; the trun-

cation operator Pτ � Lp
loc��+� H� → Lp��+� H� is given by �Pτu��t� = u�t�

if t ∈ �0� τ� and �Pτu��t� = 0 otherwise; for α ∈ �, we define the exponen-
tially weighted Lp space L

p
α��+� H� �= �f ∈ L

p
loc��+� H�� f �·� exp�−α·� ∈

Lp��+� H��; for t1 < t2, W 1� 2��t1� t2�� H� denotes the space of all func-
tions f � �t1� t2� → H for which there exists g ∈ L2��t1� t2�� H� such that
f �t� = f �t1� +

∫ t
t1

g�s�ds for all t ∈ �t1� t2�; for an unbounded interval J ⊂
�, W

1� 2
loc �J� H� denotes the space of all functions f � J → H such that

for all t1� t2 ∈ J with t1 < t2, the restriction of f to �t1� t2� belongs to
W 1� 2��t1� t2�� H�; ��H1� H2� denotes the space of bounded linear opera-
tors from a Hilbert space H1 to a Hilbert space H2; for α ∈ �, �α �= �s ∈
��Re s > α�; the Laplace transform is denoted by �; the Fourier transform
is denoted by �; the space of finite signed Borel measures on �+ is denoted
by �; H2��α� denotes the Hardy–Lebesgue space of square-integrable
holomorphic functions defined on �α and H∞��α� denotes the space of
bounded and holomorphic functions on �α; finally a.a. (respectively, a.e.)
is the abbreviation for almost all (respectively, almost everywhere).

Remark 2.1. Each element of L1
loc��+� H� is an equivalence class of

locally integrable functions that coincide almost everywhere on �+. There-
fore, if f ∈ L1

loc��+� H�, it is not clear what we mean when we say that
f �t� converges to h ∈ H as t →∞. In this paper, we adopt the following
convention: for f ∈ L1

loc��+� H� and h ∈ H we say that limt→∞ f �t� = h if
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there exists a representative f̃ � �+ → H of f such that limt→∞ f̃ �t� = h in
the usual sense. This convention guarantees that a given f ∈ L1

loc��+� H�
has at most one limit as t →∞ and the usual algebra of limits is valid.

The concept of a well-posed, linear, infinite-dimensional system was first
defined by Salamon [23, 24]. The following equivalent definition is due to
Weiss [30] (see also the forthcoming monograph by Staffans [25]).

Definition 2.2. Let U , X, and Y be real Hilbert spaces. A well-posed
linear system with state space X, input space U , and output space Y is a
quadruple � = �T���	�F�, where

T = �Tt�t≥0 is a C0 semigroup of bounded linear operators on X;
� = ��t�t≥0 is a family of bounded linear operators from L2��+� U�

to X such that, for all τ, t ≥ 0,

�τ+t�Pτu+ Rτv� = Tt�τu+�tv� ∀u� v ∈ L2��+� U��
	 = �	t�t≥0 is a family of bounded linear operators from X to

L2��+� Y � such that 	0 = 0 and, for all τ, t ≥ 0,

	τ+tx
0 = Pτ	τx0 + Rτ	tTτx0� ∀x0 ∈ X�

F = �Ft�t≥0 is a family of bounded linear operators from L2��+� U� to
L2��+� Y � such that F0 = 0 and, for all τ, t ≥ 0,

Fτ+t�Pτu+ Rτv� = PτFτu+ Rτ�	t�τu+ Ftv�� ∀u� v ∈ L2��+� U� 
For an input u ∈ L2

loc��+� U� and initial state x0 ∈ X, the associated state
function x ∈ C��+� X� and output w ∈ L2

loc��+� Y � of � are given by

x�t� = Ttx
0 +�tPtu for all t ≥ 0� (1a)

Ptw =	tx
0 + FtPtu for a.a. t ≥ 0 (1b)

� is said to be exponentially stable if the semigroup T is exponentially stable:

ω�T� �= lim
t→∞

1
t

ln�Tt� < 0 

	∞ and F∞ denote the unique operators from X to L2
loc��+� Y � and from

L2
loc��+� U� to L2

loc��+� Y �, respectively, satisfying

	τ = Pτ	∞� Fτ = PτF∞� ∀ τ ≥ 0 (2)

If � is exponentially stable, then the operators �t and 	t are uniformly
bounded, 	∞ is a bounded operator from X to L2��+� Y �, and F∞ maps
L2��+� U� boundedly to L2��+� Y �. Since PτF∞ = PτF∞Pτ for all τ ≥ 0,
F∞ is a causal operator.
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Weiss [27] established that if α > ω�T � and u ∈ L2
α��+� U�, then F∞u ∈

L2
α��+� Y � and there exists a unique holomorphic G � �ω�T� → ��U� Y �

such that

G�s���u��s� = ���F∞u���s�� ∀ s ∈ �α� (3)

where � denotes Laplace transform. In particular, G is bounded on �α for
all α > ω�T�. The function G is called the transfer function of �.

� and its transfer function G are said to be regular if there exists a linear
operator D such that

lim
s→∞
s∈�

G�s�u = Du� ∀u ∈ U�

in which case, by the principle of uniform boundedness, it follows that
D ∈ ��U� Y �. The operator D is called the feedthrough operator of �.

The generator of T is denoted by A with domain dom�A�. Let X1 be the
space dom�A� endowed with the graph norm. The norm on X is denoted
by �·�, whilst �·�1 denotes the graph norm. Let X−1 be the completion of X
with respect to the norm �x�−1 = ��λI −A�−1x�, where λ ∈ '�A� is any
fixed element of the resolvent set '�A� of A. Then X1 ⊂ X ⊂ X−1 and
the canonical injections are bounded and dense. The semigroup T can be
restricted to a C0 semigroup on X1 and extended to a C0 semigroup on
X−1. The exponential growth constant is the same on all three spaces. The
generator on X−1 is an extension of A to X (which is bounded as an oper-
ator from X to X−1). We use the same symbol T (respectively, A) for the
original semigroup (respectively, its generator) and the associated restric-
tions and extensions. With this convention, we may write A ∈ ��X� X−1�.
Considered as a generator on X−1, the domain of A is X.

By a representation theorem due to Salamon [23] (see also Weiss [28, 29]),
there exist unique operators B ∈ ��U� X−1� and C ∈ ��X1� Y � (the control
operator and the observation operator of �, respectively) such that for all
t ≥ 0, u ∈ L2

loc��+� U�, and x0 ∈ X1,

�tPtu =
∫ t

0
Tt−τBu�τ�dτ and �	∞x0��t� = CTtx

0 

B is said to be bounded if it is so as a map from the input space U to
the state space X; otherwise, B is said to be unbounded. C is said to be
bounded if it can be extended continuously to X; otherwise, C is said to be
unbounded. The operators A, B, C (and D, in the regular case) are called
the generating operators of �.

The Lebesgue extension of C was adopted in [29] and is defined by

CLx0 = lim
t→0

C
1
t

∫ t

0
Tτx0dτ� (4)
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where dom�CL� is the set of all those x0 ∈ X for which the above limit
exists. Clearly X1 ⊂ dom�CL� ⊂ X. Furthermore, for any x0 ∈ X, we have
that Ttx

0 ∈ dom�CL� for almost all t ≥ 0 and

�	∞x0��t� = CLTtx
0 for a.a. t ≥ 0 

It is known (see [4] and [23]) that for all s, s0 ∈ '�A� with s �= s0, the
transfer function G and the generating operators are related in the manner

1
s − s0

�G�s� −G�s0�� = −C�sI −A�−1�s0I −A�−1B (5)

This identity shows that the operators A, B, and C determine G only
up to an additive constant. Under the assumption that � is regular (with
feedthrough operator D), it was shown in [27] that �sI − A�−1BU ⊂
dom�CL� for all s ∈ '�A� and the transfer function G can be expressed as

G�s� = CL�sI −A�−1B +D� ∀ s ∈ �ω�T��

which is familiar from finite-dimensional systems theory.
If � is a well-posed linear system with generating operators �A� B� C�,

then for any x0 ∈ X and u ∈ L2
loc��+� U�, the function x given by (1a) is

the unique solution of the initial-value problem

ẋ�t� = Ax�t� + Bu�t�� x�0� = x0� (6)

where the derivative on the left-hand side of (6) has, of course, to be under-
stood in X−1. In other words, if we consider the initial-value problem (6) in
the space X−1, then for any x0 ∈ X and u ∈ L2

loc��+� U�, (6) has a unique
strong solution (in the sense of Pazy [22, p. 109]) given by the variation of
parameters formula

t �→ x�t� = Ttx
0 +

∫ t

0
Tt−τ Bu�τ�dτ (7)

In the case where the input function u has additional smoothness, we have
the following result (cf. Lemma 2.5 in Salamon [24]).

Lemma 2.3. Let � = �T���	�F� be a well-posed system with state space
X, input space U , and generating operators �A� B� C�. If x0 ∈ X and u ∈
W

1� 2
loc ��+� U� are such that Ax0 + Bu�0� ∈ X, then the unique solution (7)

of the initial-value problem (6) is continuously differentiable in X.

The following lemma is essentially contained in [14]. The proof of
statement (a) is implicit in the argument establishing Lemma 2.2 of [14]
and statement (b) is part of Lemma 2.2 of [14].

Lemma 2.4. Let � = �T���	�F� be an exponentially stable well-posed
system with state space X, input space U , and generating operators �A� B� C�.
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(a) For all �x0� u� ∈ X × L∞��+� U�, the function x given by (7)
satisfies

x ∈ L∞��+� X� 
(b) If u ∈ L∞��+� U� and limt→∞ u�t� = u∞ exists, then, for all

x0 ∈ X, the function x given by (7) satisfies

lim
t→∞�x�t� +A−1Bu∞� = 0 

If � is a well-posed system with state space X, input space U , output
space Y , and generating operators �A� B� C�, then for all x0 ∈ X and u ∈
L2

loc��+� U�, the corresponding state function x of � satisfies (6) in X−1
and the corresponding output function w ∈ L2

loc��+� Y � is given by

w�t� = CLTtx
0 + �F∞u��t� for a.a. t ≥ 0 (8)

If x0 ∈ X1 and u ∈ W
1� 2

loc ��+� U� with u�0� = 0, it was shown in [23] that

w�t� = C�x�t� − �s0I −A�−1Bu�t�� +G�s0�u�t�� ∀ t ≥ 0� (9)

where s0 is an arbitrary element of '�A� and G is the transfer function
of �. If � is regular (with feedthrough operator D), then the state function
x defined by (7) satisfies x�t� ∈ dom�CL� for almost all t ≥ 0 and the
output w given by (8) can be written in the familiar form

w�t� = CLx�t� +Du�t� for a.a. t ≥ 0 

Lemma 2.5. Let � = �T���	�F� be a well-posed system with state space
X, input space U , transfer function G, and generating operators �A� B� C�, and
let s0 ∈ '�A�. For x0 ∈ X and u ∈ L2

loc��+� U�, let x and w denote the state
and output functions of �. Then

C�A− s0I�−1�x�t� − x�t0��

=
∫ t

t0

�s0C�A− s0I�−1x�τ� +w�τ� −G�s0�u�τ��dτ� ∀ t ≥ t0 ≥ 0 

In particular, if 0 ∈ '�A�, then

CA−1�x�t� − x�t0�� =
∫ t

t0

�w�τ� −G�0�u�τ��dτ� ∀ t ≥ t0 ≥ 0 

Proof. Let t1 > t0 ≥ 0 and choose sequences �x0
n� ⊂ X1 and �un� ⊂

W 1� 2��0� t1�� U�, with un�0� = 0 for all n, such that

lim
n→∞�x

0 − x0
n� = 0 and lim

n→∞�u− un�L2�0� t1�U� = 0 (10)
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Moreover, define xn to be the solution of �6� for initial value x0
n and input

un, and let wn be the corresponding output. Since Ax0
n + Bun�0� = Ax0

n ∈
X, xn is, by Lemma 2.3, continuously differentiable in X and satisfies

ẋn�t� = Axn�t� + Bun�t� �in X� ∀ t ≥ 0 

It follows that

C�A− s0I�−1ẋn�t� = C�A− s0I�−1�Axn�t� + Bun�t��
= C�xn�t� + s0�A− s0I�−1xn�t� − �s0I −A�−1Bun�t���

and hence, by (9),

C�A− s0I�−1ẋn�t� = s0C�A− s0I�−1xn�t� +wn�t� −G�s0�un�t� 
Thus, for all t ∈ �t0� t1�,

C�A− s0I�−1�xn�t� − xn�t0��

=
∫ t

t0

�s0C�A− s0I�−1xn�τ� +wn�τ� −G�s0�un�τ��dτ 

By (10) and the continuity properties of a well-posed system we have that
limn→∞ �x�t� − xn�t�� = 0 for all t ∈ �0� t1� and limn→∞ �w−wn�L2�0�t1�Y � =
0. Letting n→∞, we conclude that

C�A− s0I�−1�x�t� − x�t0��

=
∫ t

t0

�s0C�A− s0I�−1x�τ� +w�τ� − G�s0�u�τ��dτ� ∀ t ∈ �t0� t1� 
Since t1 was arbitrary, the claim follows.

For notational simplicity we assume in the rest of this section that � is
a single-input–single-output system, i.e., U = Y = �. An inspection of the
proofs shows that the results below (Lemma 2.6 and Corollary 2.7) gener-
alize in an obvious manner to well-posed systems with finite-dimensional
input and output spaces U = �m and Y = �p.

The next lemma provides a useful formula for the output (1b) if u ∈
W

1� 2
loc ��+���.
Lemma 2.6. Let � = �T���	�F� be a single-input–single-output, well-

posed system with state space X, transfer function G, and generating operators
�A� B� C�. Let s0 ∈ '�A� and set H�s� �= −C�sI −A�−1�s0I −A�−1B. Let
x0 ∈ X, u0 ∈ �, and u ∈ W

1� 2
loc ��+��� with u�0� = u0 and denote the corre-

sponding output of � by w. Then

w�t� = CLTt�x0 − �s0I −A�−1Bu0� + ��−1�H� + �u̇− s0u���t�
+G�s0�u�t� for a.a. t ∈ �+ 

In particular, if Tt0
�Ax0 + Bu0� ∈ X for some t0 ≥ 0, then w ∈

W
1� 2

loc ��t0�∞����.
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Proof. Let x0 ∈ X, u ∈ W
1� 2

loc ��+���, and τ > 0. Define

uτ�t� �=
{

u�t�� 0 ≤ t ≤ τ,
u�τ�� t > τ,

and note that u̇τ ∈ L2��+���. It is sufficient to show that

w�t� = CLTt�x0 − �s0I −A�−1Bu0� + ��−1�H� + �u̇τ − s0uτ���t�
+G�s0�uτ�t� for a.a. t ∈ �0� τ� (11)

Let α > max�0� Re s0� ω�T��. Taking the Laplace transform of the right-
hand side of (11), we obtain for all s ∈ �α, using (5),

C�sI −A�−1x0 +H�s�u0 +H�s���s − s0�ûτ�s� − u0� +G�s0�ûτ�s�
= C�sI −A�−1x0 +G�s�ûτ�s� 

Inverse Laplace transform, using (3), gives (11). Moreover, assume that
Tt0
�Ax0 + Bu0� ∈ X for some t0 ≥ 0. To prove that w ∈ W

1� 2
loc ��t0�∞����,

it is sufficient to show that the function given by the right-hand side of (11)
is in W

1� 2
loc ��t0�∞����. Since Tt0

�Ax0 + Bu0� ∈ X, we have that Tt0
�x0 −

�s0I −A�−1Bu0� ∈ X1. Consequently, the function

t �→ CLTt�x0 − �s0I −A�−1Bu0�

is continuously differentiable on �t0�∞� and hence in W
1� 2

loc ��t0�∞����.
Therefore, it is sufficient to show that the function w̃ � �→ � given by

w̃�t� =
{

e−αt��−1�H� + ũ��t� if t ≥ 0,
0 if t < 0,

where ũ = Pτ�u̇τ − s0uτ�, is in W 1� 2�����. To this end, note that the
Fourier transform ��w̃� of w̃ is given by

��w̃��ω� = ��w̃��iω� = G�α+ iω� −G�s0�
α+ iω− s0

��ũ��α+ iω� (12)

Since ũ ∈ L2��+���, it follows that the function ω �→ ��ũ��α + iω� is in
L2�����. Note also that the function ω �→ G�α+ iω� is bounded. Hence,
by (12), w̃ ∈ L2����� and, moreover, the function ω �→ ω��w̃��ω� is in
L2�����. It follows from the Fourier characterization of W 1� 2����� (see,
for example, [8, p. 165]) that w̃ ∈ W 1� 2�����.

The following corollary is an easy consequence of Lemma 2.6.
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Corollary 2.7. Let � = �T���	�F� be an exponentially stable,
single-input–single-output, well-posed system with state space X, transfer
function G, and generating operators �A� B� C�. Let x0 ∈ X, u0 ∈ �, and
u ∈ W

1� 2
loc ��+��� with u�0� = u0, and denote the corresponding output of �

by w. If u̇ ∈ L2��+��� and limt→∞ u�t� =� u∞ exists and is finite, then

lim
t→∞�w�t� − CLTt�x0 +A−1Bu0�� = G�0�u∞ 

In particular, under the additional assumption that Tt0
�Ax0 + Bu0� ∈ X for

some t0 ≥ 0,

lim
t→∞w�t� = G�0�u∞ 

Remark 2.8. Corollary 2.7 shows that, under certain smoothness assump-
tions on the input and initial data, the final-value theorem holds for a gen-
eral exponentially stable, single-input–single-output, well-posed system �.
If �−1�G� ∈ �, the latter smoothness assumptions may be relaxed: if the
impulse response of � is a finite signed Borel measure on �+, then for any
input u ∈ L2

loc��+��� with limt→∞ u�t� = u∞ and any x0 ∈ X,

lim
t→∞�w�t� − CLTtx

0� = G�0�u∞ 

Under the additional assumption that Tt0
x0 ∈ X1 for some t0 ≥ 0,

limt→∞w�t� = G�0�u∞.

Proof of Corollary 2 7. By exponential stability, 0 ∈ '�A�, and an appli-
cation of Lemma 2.6 with s0 = 0 leads to

w�t� = CLTt�x0 +A−1Bu0� + ��−1�H� + u̇��t�
+G�0�u�t� for a.a. t ∈ �+� (13)

where H�s� = �G�s� − G�0��/s. Since G ∈ H∞��α� for some α < 0, it fol-
lows that H ∈ H2��α� and hence, by the Paley–Wiener theorem, �−1�H� ∈
L2

α��+��� ⊂ L2��+���. Since by assumption u̇ ∈ L2��+���, we may infer
that

lim
t→∞��

−1�H� + u̇��t� = 0 

Combining this with (13) yields the claim.
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3. PROBLEM FORMULATION

The problem of tracking constant reference signals r will be addressed
in a context of uncertain single-input–single-output well-posed linear sys-
tems � with state space X, transfer function G, and generating operators
�A� B� C�, having a nonlinearity ϕ in the input channel and a nonlinearity
ψ in the output channel:

ẋ�t� = Ax�t� + Bϕ�u�t�� for a.a. t ∈ �+� x�0� = x0 ∈ X� (14a)

w�t� = CLTtx
0 + �F∞�ϕ ◦ u���t� for a.a. t ∈ �+� (14b)

y�t� = ψ�w�t�� for a.a t ∈ �+ (14c)

3.1. The Class 
 of Linear Systems

Let 
 denote the class of single-input–single-output well-posed linear
systems � with state space X and transfer function G satisfying

�a� � is exponentially stable; �b� G�0� > 0 

If G is the transfer function of a system � ∈ 
 , then it is readily shown
that the positive-real condition

1+ κRe
G�s�

s
≥ 0� ∀ s ∈ �0� (15)

holds for all sufficiently small κ > 0; see [16, Lemma 3.10]. Define

κ∗ �= sup�κ > 0�1+ κRe�G�s�/s� ≥ 0� ∀ s ∈ �0� (16)

Lower bounds and formulae for κ∗ may be found in [13]. The following
lemma will be invoked in a later stability analysis.

Lemma 3.1. Let � = �T���	�F� ∈ 
 with generating operators
�A� B� C� and let . > 1/κ∗. Then there exist P ∈ ��X�, P = P∗ ≥ 0,
and M ∈ ��X1��� such that

�Ax1� Px2� + �Px1� Ax2� = −�Mx1� Mx2�� ∀x1� x2 ∈ X1�

�A−1B�∗Px = Cx−
√

2.Mx� ∀x ∈ X1�

where �·� ·� denotes inner product in X.

Proof. Let G be the transfer function of �. By (5),

H�s� �= C�sI −A�−1A−1B =
{

G�s�−G�0�
s

� s ∈ '�A�� s �= 0,
G′�0�� s ∈ '�A�� s = 0.

(17)
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By exponential stability of �, H is holomorphic in �α for some α < 0.
Since . > 1/κ∗, the positive-real condition (15) guarantees the existence of
a constant ε > 0 such that

.+ReH�iω� ≥ ε� ∀ω ∈ � 

By a result in van Keulen [26] (see Theorem 3.10 and Remark 3.14 in [26]),
there exists P̃ ∈ ��X�, P̃ = P̃∗ such that

�Ax1� P̃x2� + �P̃x1� Ax2�
= 1/�2.����A−1B�∗P̃ + C�x1� ��A−1B�∗P̃ + C�x2��

∀x1� x2 ∈ X1 (18)

Setting

P �= −P̃ ∈ ��X�� M �=
√

1/�2.��C − �A−1B�∗P� ∈ ��X1����
we obtain, using (18),

�Ax1� Px2� + �Px1� Ax2� = −�Mx1� Mx2�� ∀x1� x2 ∈ X1� (19a)

�A−1B�∗Px = Cx−
√

2.Mx� ∀x ∈ X1 (19b)

By a routine argument it follows from (19a) and exponential stability of �
that P ≥ 0.

3.2. Input/Output Nonlinearities

In this section we introduce certain sets of nonlinearities that will play
a role in the sequel. Moreover, some definitions and auxiliary results are
collected. The following sets of monotone, nondecreasing nonlinearities are
first introduced:

� �= �f � �→ � � f locally Lipschitz and nondecreasing��
��λ� �= �f ∈ � � 0 ≤ �f �ξ� − f �0��ξ ≤ λξ2�∀ ξ ∈ ���

�L�λ� �= �f ∈ � � f is globally Lipschitz with Lipschitz constant λ� 
Clearly, �L�λ� ⊂ ��λ� ⊂ �.

Remark 3.2. (i) Let f ∈ ��λ�. Then f �ξ� = f �0� + γ�ξ�ξ for all ξ,
where

γ � ξ �→
{ �f �ξ� − f �0��/ξ� ξ �= 0,

λ� ξ = 0,

is upper semicontinuous and γ�ξ� ∈ �0� λ� for all ξ ∈ �.
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(ii) If f ∈ ��λ�, then for each ν ∈ �, there exists λ̃ ≥ 0 such that
the function ξ �→ f �ξ + ν� − f �ν� is of class ��λ̃�.

(iii) If f ∈ �L�λ�, then for each ν ∈ �, ξ �→ f �ξ + ν� − f �ν� is also
of class �L�λ�.

We say that a pair of nonlinearities �ϕ� ψ� is in � if ϕ ∈ �L�λ1� for some
λ1 > 0, ψ ∈ �, and at least one of the following conditions holds:

(i) ϕ is bounded or (ii) ψ ∈ ��λ2� for some λ2 > 0 

Equivalently,

� �= ��ϕ� ψ� ∈ �L�λ1� ×� � λ1 > 0� ϕ unbounded

⇒ ψ ∈ ��λ2� for some λ2 > 0� 
The proof of the following lemma is given in [14].

Lemma 3.3. Let f � � → � be locally Lipschitz and let �εn� be any
sequence with εn > 0 and limn→∞ εn = 0. Define the function f # � �→ � by

f #�ξ� �= lim sup
n→∞

f �ξ + εn� − f �ξ�
εn

 (20)

Then f # is Borel measurable and f # ∈ L∞loc�����. If g � �+ → � is absolutely
continuous, then f ◦ g is absolutely continuous and

d

dt
�f ◦ g��t� = f #�g�t��ġ�t� for a.a. t ∈ �+ 

If f ∈ �L�λ� for some λ ≥ 0, then

0 ≤ f #�ξ� ≤ λ� ∀ ξ ∈ � (21)

3.3. The Tracking Objective and Feasibility

Given � = �T���	�F� ∈ 
 and static nonlinearities ϕ, ψ � �→ �, the
tracking objective is to determine, by feedback, an input u such that, for
given r ∈ �, the output y of (14) has the property y�t� → r as t →∞ (cf.
Remark 2.1). Clearly, if this objective is achievable, then r is necessarily in
the closure of im ψ. We impose a stronger condition, namely,

5r ∩ %6 �= &� where 5r �= �v ∈ � � ψ�G�0�v� = r��
6 �= im ϕ� %6 �= clos�6�

and refer to the set


 �= �r ∈ � � 5r ∩ %6 �= &�
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as the set of feasible reference values. The next proposition shows that if
ψ is continuous and monotone, then r ∈ 
 is close to being a necessary
condition for tracking insofar as if tracking of r is achievable whilst main-
taining boundedness of ϕ ◦ u together with ultimate continuity and ultimate
boundedness of w, then r ∈ 
.

Proposition 3.4. Let � = �T���	�F� ∈ 
 and x0 ∈ X. Let ϕ� ψ �
� → � and let ψ be continuous and monotone. Let u � �+ → � be such
that ϕ ◦ u ∈ L∞��+���. If w � �+ → � given by (14b) is such that for some
τ ≥ 0, w restricted to �τ�∞� is continuous and bounded with

lim
t→∞ψ�w�t�� = r� (22)

then r ∈ 
.

Proof. By assumption, ϕ ◦ u ∈ L∞��+��� and so, by Lemma 2.4(a), the
solution x of the initial-value problem (14a) is bounded. Since by assump-
tion the function w is ultimately continuous and bounded, it has nonempty,
compact, connected ω-limit set 7. By continuity of ψ and (22), it follows
that

ψ�ω� = r� ∀ω ∈ 7 (23)
It suffices to show that 7 ∩ G�0�%6 �= &. Indeed, if there exist ω ∈ 7 and
v ∈ %6 such that ω = G�0�v, then, by (23), ψ�G�0�v� = ψ�ω� = r, showing
that 5r ∩ %6 is nonempty.

Seeking a contradiction, suppose that 7 ∩ G�0�%6 = &. Then 7 and
G�0�%6 are closed disjoint intervals and so there exist ε > 0 and β = ±1
such that

inf�βω � ω ∈ 7� − sup�βG�0�v � v ∈ %6� = 2ε 

Moreover, since w�t� approaches its compact ω-limit set 7 as t →∞, there
exists T > 0 such that

inf 7− ε < w�t� < sup 7+ ε� ∀ t > T�

and so βw�t� > inf�βω � ω ∈ 7� − ε for all t > T . Using Lemma 2.5 (with
s0 = 0), it follows that

βCA−1�x�t� − x�T ��

= β
∫ t

T
�w�τ� −G�0�ϕ�u�τ���dτ

≥
∫ t

T
�βw�τ� − sup�βG�0�v � v ∈ %6��dτ

>
∫ t

T
�inf�βω�ω ∈ 7� − ε− sup�βG�0�v � v ∈ %6��dτ

= ε�t − T �� ∀ t > T�

contradicting the boundedness of x. Therefore, 7 ∩G�0�%6 �= &.
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4. INTEGRAL CONTROL

Let � ∈ 
 , �ϕ� ψ� ∈ �L�λ1� ×�, k ∈ L∞��+���, and r ∈ �. We inves-
tigate integral control action

u�t� = u0 +
∫ t

0
k�τ��r − y�τ��dτ (24)

with prescribed time-varying gain k�·�. An application of the control (24)
to � leads to the following system of nonlinear nonautonomous differential
equations:

ẋ�t� = Ax�t� + Bϕ�u�t��� x�0� = x0 ∈ X� (25a)

u̇�t� = k�t��r − ψ�CLTtx
0 + �F∞�ϕ ◦ u���t���� u�0� = u0 ∈ � (25b)

For a ∈ �0�∞�, a continuous function

�x� u� � �0� a� → X × �

is a solution of (25) if �x� u� is absolutely continuous as an �X−1×��-valued
function, �x�0�� u�0�� = �x0� u0� and (25) is satisfied almost everywhere on
�0� a�, where the derivative in (25a) should be interpreted in the space
X−1.2

4.1. Globally Lipschitz Output Nonlinearities

If �ϕ� ψ� ∈ �L�λ1� × �L�λ2�, we have the following existence and
uniqueness result.

Lemma 4.1. Let � = �T���	�F� ∈ 
 with generating operators
�A� B� C�. Let �ϕ� ψ� ∈ �L�λ1� × �L�λ2�, r ∈ �, and k ∈ L∞��+���.
For each �x0� u0� ∈ X × �, the initial-value problem (25) has a unique
solution �x� u� � �+ → X × �.

The proof of Lemma 4.1 can be found in the Appendix.
Henceforth, we assume that the gain function k � �+ → �0�∞� satisfies

k ∈ � �= �g�g � �+ → �0�∞�� g is measurable and bounded� 

The next theorem forms the core of the paper.

2Being a Hilbert space, X−1 × � is reflexive, and hence any absolutely continuous
�X−1 × ��-valued function is a.e. differentiable and can be recovered from its derivative by
integration; see [1, Theorem 3.1, p. 10].
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Theorem 4.2. Let � = �T���	�F� ∈ 
 , �ϕ� ψ� ∈ �L�λ1� × �L�λ2�,
r ∈ 
, and k ∈ �. Let �A� B� C� be the generating operators of �. For
�x0� u0� ∈ X × �, let �x� u� � �+ → X × � be the unique solution of the
initial-value problem (25). Let k∗ = κ∗/�λ1λ2�, where κ∗ is given by (16).
Assume that lim supt→∞ k�t� < k∗. Then the following hold.

A. limt→∞ ϕ�u�t�� exists and is finite.
B. If K�t� �= ∫ t

0 k→∞ as t →∞, then

(b1) limt→∞ ϕ�u�t�� =� ϕr ∈ 5r ∩ %6,
(b2) limt→∞ �x�t� +A−1Bϕr� = 0,
(b3) �r − y�t�� ≤ e0�t� + e1�t�, where y�t� = ψ�CLTtx

0 + �F∞�ϕ ◦
u���t��, e0 ∈ L2

α��+��+� for some α < 0, and e1 ��+ → �+ is bounded with
limt→∞ e1�t� = 0,

(b4) if Tt0
�Ax0 + Bϕ�u0�� ∈ X for some t0 ≥ 0, then

limt→∞ y�t� = r,
(b5) if 5r ∩ %6 = 5r ∩6, then limt→∞ dist�u�t�� ϕ−1�ϕr�� = 0,
(b6) if 5r ∩ %6 = 5r ∩ int�6�, then u�·� is bounded.

Remark 4.3. (i) Statement (b3) says that if k ∈ � is not of class L1 and
lim supt→∞ k�t� < k∗, then the tracking error e�t� = r − y�t� that results
from an application of the integral control (24) is small in the sense that
�e� ≤ e0 + e1, where e0 ∈ L2

α��+��+� for some α < 0 and e1 ∈ L∞��+��+�
with limt→∞ e1�t� = 0. This means in particular that for any ε > 0,

lim
τ→∞µL��t ≥ τ��e�t�� ≥ ε�� = 0�

where µL denotes Lebesgue measure on �+.
(ii) In (b4) an additional assumption on the initial data is identified

such that asymptotic tracking is ensured. An inspection of the proof below
shows that if C is bounded, then asymptotic tracking occurs for arbitrary
initial data.

(iii) An immediate consequence of part B of Theorem 4.2 is the fol-
lowing: if k ∈ � is chosen such that k�t� tends to zero sufficiently slowly as
t →∞ (in the sense that k �∈ L1), then (b1)–(b6) hold.

(iv) Simple examples show that the assertions (b1)–(b6) of part B of
Theorem 4.2 are in general not true if the additional assumption k �∈ L1 is
violated.

(v) Statements (b5) and (b6) capture aspects of the qualitative
behaviour of the function u. For example, if 5r ∩ %6 = 5r ∩ 6, then (b5)
implies that u�t� converges as t → ∞, provided that the set ϕ−1�5r ∩ 6�
is a singleton.
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Proof of Theorem 4.2. Let G denote the transfer function of �.
A. By assumption, r ∈ 
, and so 5r ∩ %6 �= &. Therefore, there exists

ϕ∗ ∈ 5r ∩ %6. Since ψ ∈ �L�λ2� for some λ2 > 0, the function

ψ̃ ��→ �� ξ �→ ψ�ξ +G�0�ϕ∗� − r (26)

is in �L�λ2� [cf. Remark 3.2(iii)] and, hence, in ��λ2�. Therefore, by
Remark 3.2(i),

ψ̃�ξ� = γ�ξ�ξ� ∀ ξ ∈ �� (27)

where the function γ is defined by

γ�ξ� =
{

ψ̃�ξ�/ξ� ξ �= 0,
λ2� ξ = 0,

(28)

and satisfies 0 ≤ γ�ξ� ≤ λ2 for all ξ ∈ �. Introduce continuous functions z
and v and a function w̃ ∈ L2

loc��+��� given by

z�t� �= x�t� +A−1Bϕ�u�t��� v�t� �= ϕ�u�t�� − ϕ∗� ∀ t ≥ 0� (29)

and

w̃�t� �= w�t� −G�0�ϕ∗ for a.a. t ≥ 0� (30)

where, as in (14b), w�t� = CLTtx
0 + �F∞�ϕ ◦ u���t� for almost all t ≥ 0.

By Lemma 3.3, v̇�t� = ϕ#�u�t��u̇�t� for almost all t ∈ �0�∞�. Since �z� v� is
absolutely continuous as an �X−1 ×��-valued function, we obtain by direct
calculation, using (26),

ż�t� = Az�t� − k�t�ϕ#�u�t��A−1Bψ̃�w̃�t�� for a.a. t ≥ 0� (31a)

v̇�t� = −k�t�ϕ#�u�t��ψ̃�w̃�t�� for a.a. t ≥ 0� (31b)

with initial values z0 �= x0 +A−1Bϕ�u0� and v0 �= ϕ�u0� − ϕ∗. Invoking
(27),

ż�t� = Az�t� +A−1Bζ�t� for a.a. t ≥ 0� (32a)

v̇�t� = ζ�t� for a.a. t ≥ 0� (32b)

where

ζ�t� � = d

dt
ϕ�u�t�� = v̇�t�

= −k�t�η�t�w̃�t� with η�t� �= ϕ#�u�t��γ�w̃�t�� (33)

Note that

0 ≤ η�t� ≤ λ1λ2 =� λ� ∀ t ≥ 0 (34)
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By assumption, lim supt→∞ k�t� < k∗. Hence there exists k∗ > 0 such that

lim sup
t→∞

k�t� < k∗ < k∗ (35)

Since 1/�k∗λ� > 1/κ∗, it follows from Lemma 3.1 that there exist P ∈
��X�, P = P∗ ≥ 0, and M ∈ ��X1��� such that

�Ax1� Px2� + �Px1� Ax2� = −�Mx1� Mx2�� ∀x1� x2 ∈ X1� (36a)

�A−1B�∗Px = Cx−
√

2/�k∗λ�Mx� ∀x ∈ X1 (36b)

We investigate asymptotic properties of �z� v� using a Lyapunov approach.
To make use of Eqs. (36) (which hold in X1), we have to use an approxi-
mation argument. For this purpose, choose �z0

n� ⊂ X1 such that

lim
n→∞�z

0
n − z0� = 0 

For all n, consider the initial-value problem

ξ̇ = Aξ +A−1Bζ� ξ�0� = z0
n ∈ X1�

and define zn ��+ → X by

zn�t� �= Ttz
0
n +A−1

∫ t

0
Tt−τBζ�τ�dτ 

Clearly, zn�t� ∈ X1 for all t ≥ 0 and Azn ∈ L1
loc��+� X�. Hence, by a stan-

dard result on abstract Cauchy problems (see Pazy [22, p. 109]), zn is abso-
lutely continuous as a X-valued function and

żn�t� = Azn�t� +A−1Bζ�t� in X� for a.a. t ∈ �+ (37)

Define the absolutely continuous function

Vn ��+ → �+� t �→ �zn�t�� Pzn�t�� +G�0�v2�t� 
Differentiating Vn and using (32b), (33), (36), and (37), we have for almost
all t ∈ �+,

V̇n�t� = �Azn�t�� Pzn�t�� + �Pzn�t�� Azn�t��
+ 2�ζ�t�� �A−1B�∗Pzn�t�� + 2G�0�v�t�ζ�t�

= −�Mzn�t�� Mzn�t�� + 2
〈
ζ�t�� Czn�t� −

√
2/�k∗λ�Mzn�t�

〉
+ 2G�0�v�t�ζ�t�

= −�Mzn�t��2 − 2k�t�η�t�
×
(〈

w̃�t�� Czn�t� −
√

2/�k∗λ�Mzn�t�
〉
+G�0�v�t�w̃�t�

)
 (38)
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Invoking (34) and (35), we see that there exists t0 ≥ 0 such that

sup
t≥t0

k�t�η�t� < k∗λ (39)

Integrating (38) gives

Vn�t�−Vn�t0�

=−
∫ t

t0

�Mzn�τ��2dτ−2
∫ t

t0

k�τ�η�τ�

×
[〈

w̃�τ��Czn�τ�−
√

2/�k∗λ�Mzn�τ�
〉
+G�0�v�τ�w̃�τ�

]
dτ (40)

Observe that

lim
n→∞�zn�t� − z�t�� = 0� lim

n→∞�zn − z�L2�0� t�X� = 0� ∀ t ≥ 0 (41)

Moreover, defining ML by (4) with C and CL replaced by M and ML,
respectively, it follows from (36b) that

ML =
√
�k∗λ�/2�CL − �A−1B�∗P�

with dom�ML� = dom�CL�. Since for almost all t ≥ 0,

Czn�t�=CLz�t�=CTtz
0
n−CLTtz

0� Mzn�t�−MLz�t�=MTtz
0
n−MLTtz

0�

we have

lim
n→∞�Mzn −MLz�L2�0� t��� = 0 and

lim
n→∞�Czn − CLz�L2�0� t��� = 0� ∀ t ≥ 0 (42)

Hence, defining

V ��+ → �+� t �→ �z�t�� Pz�t�� +G�0�v2�t��
taking limits in (40) as n→∞, and invoking (41) and (42) yields

V �t� − V �t0� = −
∫ t

t0

�MLz�τ��2dτ − 2
∫ t

t0

k�τ�η�τ�
[〈

w̃�τ�� CLz�τ�

−
√

2/�k∗λ�MLz�τ�
〉
+G�0�v�τ�w̃�τ�

]
dτ (43)

Moreover, by (37),

Czn�t� = CTtz
0
n + ��−1�H� + ζ��t�� ∀ t ∈ �+� (44)
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where H�s� = C�sI −A�−1A−1B. Since ζ�t� = �d/dt��ϕ ◦ u��t� and z0 =
x0 +A−1Bϕ�u0�, taking limits in (44) as n→∞ gives

CLz�t�=CLTt�x0+A−1Bϕ�u0��+
(
�−1�H�+ d

dt
�ϕ◦u�

)
�t� for a.a t∈�+ 

Therefore, by Lemma 2.6,

CLz�t� = w�t� −G�0��ϕ ◦ u��t� = w̃�t� −G�0�v�t� for a.a. t ∈ �+ 

Using this in (43) and completing squares, we obtain

V �t� = V �t0� −
∫ t

t0

{(
MLz�τ� − k�τ�η�τ�

√
2/�k∗λ�w̃�τ�

)2

+ 2k�τ�η�τ�
[

1− k�τ�η�τ�
k∗λ

]
w̃2�τ�

}
dτ (45)

Note that, by (39), the integrand in (45) is nonnegative, implying that V
is nonincreasing on �t0�∞�. Since V is bounded below, limt→∞ V �t� exists
and is finite. Equation (45) combined with (39) moreover implies that

ζ = −kηw̃ ∈ L2��+��� (46)

Using this in (32a) and appealing to the fact that the semigroup T is expo-
nentially stable, we may conclude that z�t� → 0 in X. Combining this with
the convergence of V , we may conclude that limt→∞G�0�v2�t� exists and
is finite. Hence limt→∞ ϕ�u�t�� exists and is finite which is statement A.

B. Define

w0�t� �= CLTt�x0 +A−1Bϕ�u0���

w1�t� �=
(
�−1�H� +

d

dt
�ϕ ◦ u�

)
�t� +G�0�ϕ�u�t���

where H is given by (17). Clearly, ϕ ◦ u ∈ W
1� 2

loc ��+��� and hence an appli-
cation of Lemma 2.6 shows that

y�t� = ψ�w0�t� +w1�t�� for a.a. t ∈ �+ 

Since, by (46), �d/dt��ϕ ◦ u� = ζ ∈ L2��+���, and by part A, limt→∞ ϕ
�u�t�� =� ϕr exists and is finite, we may infer from Corollary 2.7 that

lim
t→∞w1�t� = G�0�ϕr (47)

Evidently, ϕr ∈ %6 and so, to establish (b1), it suffices to show that ϕr ∈ 5r .
Seeking a contradiction, suppose that ϕr �∈ 5r . This implies that

θ �= r − ψ�G�0�ϕr�
2

�= 0 
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Using continuity of ψ and (47), we obtain for sufficiently large s > 0,

�ψ�w1�t�� − ψ�G�0�ϕr�� ≤ �θ�� ∀ t ≥ s�

which, together with

u̇�t� = k�t��r − y�t�� = k�t��2θ+ ψ�G�0�ϕr� − ψ�w0�t� +w1�t����
implies that

−k�t���θ� + �ψ�w1�t�� − ψ�w0�t� +w1�t����
≤ u̇�t� − 2θk�t�
≤ k�t���θ� + �ψ�w1�t�� − ψ�w0�t� + w1�t����� ∀ t ≥ s 

Since θ �= 0, either θ > 0 or θ < 0. Assume θ > 0. Then

u̇�t� ≥ θk�t� − k�t��ψ�w1�t�� − ψ�w0�t� + w1�t���� ∀ t ≥ s�

which, on integration and recalling that ψ ∈ �L�λ2�, yields

u�t�−u�s�≥θ�K�t�−K�s��−
∫ t

s
k�τ��ψ�w1�τ��−ψ�w0�τ�+w1�τ���dτ

≥θ�K�t�−K�s��−λ2

∫ t

s
k�τ��w0�τ��dτ� ∀ t≥s 

By exponential stability of (32a), w0 ∈ L2
α��+��� for some α < 0, and

thus w0 ∈ L1��+���, which in turn implies that kw0 ∈ L1��+���. Since
K�t� → ∞ as t →∞, we conclude that u�t� → ∞ as t →∞; hence,

sup%6 = lim
t→∞ϕ�u�t�� = ϕr (48)

Let ϕ∗ ∈ 5r ∩ %6. Since θ > 0 and ψ is nondecreasing, it follows ϕ∗ > ϕr

and, consequently, by (48), sup%6 < ϕ∗, a contradiction. A similar argument
shows that the assumption θ < 0 also leads to a contradiction. Therefore,
we may conclude ϕr ∈ 5r ∩ %6, which is statement (b1). Statement (b2)
follows from Lemma 2.4, part (b). To prove statement (b3) first note that

�r − y�t�� = �r − ψ�w0�t� +w1�t��� = �ψ�G�0�ϕr� − ψ�w0�t� +w1�t���
≤ λ2�G�0�ϕr −w0�t� −w1�t��
≤ λ2�w0�t�� + λ2�G�0�ϕr −w1�t�� (49)

Since, by exponential stability, w0 ∈ L2
α��+��� for some α < 0 and

w1�t� → G�0�ϕr as t → ∞, statement (b3) follows by setting e0�t� �=
λ2�w0�t�� and e1�t� �= λ2�G�0�ϕr − w1�t��. If Tt0

�Ax0 + Bϕ�u0�� ∈ X for
some t0 ≥ 0, then Tt0

�x0 + A−1Bϕ�u0�� ∈ X1. Hence w0�t� converges
(exponentially) to 0 as t →∞ and (b4) follows from (47) and (49).
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Next, we establish statement (b5). Assume 5r ∩ %6 = 5r ∩ 6, which,
together with (b1), implies the existence of ξ∗ ∈ � such that ϕr = ϕ�ξ∗�.
Seeking a contradiction, suppose that dist�u�t�� ϕ−1�ϕr�� �→ 0 as t → ∞.
Then there exist ε > 0 and a sequence �tn� ∈ �+ with tn →∞ as n →∞,
such that

dist�u�tn�� ϕ−1�ϕr�� ≥ ε (50)

If the sequence �u�tn�� is bounded, we may assume without loss of gener-
ality that it converges to a finite limit u∞. By continuity, ϕ�u∞� = ϕr and
so u∞ ∈ ϕ−1�ϕr�. This contradicts (50). Therefore, we may assume that
�u�tn�� is unbounded. Extracting a subsequence if necessary, we may then
assume that either u�tn� → ∞ or u�tn� → −∞ as n → ∞: if the former
holds, then u�tn� > ξ∗ for all n sufficiently large; if the latter holds, then
u�tn� < ξ∗ for all n sufficiently large. In either case, by monotonicity of ϕ it
follows that ϕ�u�tn�� = ϕ�ξ∗� = ϕr for all n sufficiently large. Clearly, this
contradicts (50) and so statement (b5) must hold.

To prove (b6), assume that 5r ∩ %6 = 5r ∩ int�6� and, for contradiction,
suppose that u is unbounded. Then there exists a sequence �tn� ⊂ �0�∞�
with tn →∞ and �u�tn�� → ∞ as n →∞. By monotonicity of ϕ and (b1),
it then follows that either ϕr = sup 6 or ϕr = inf 6, contradicting the fact
that ϕr ∈ 5r ∩ int�6� ⊂ int�6�. Therefore, u is bounded. This completes
the proof of part B.

4.2. Locally Lipschitz Output Nonlinearities
In this subsection it is shown that the global Lipschitz assumption on ψ

may be relaxed to the requirement �ϕ� ψ� ∈ � , provided that x0 ∈ X1 =
dom�A� and µ �= �−1�G� ∈�, where � is the set of pairs of nonlinearities
introduced in Section 3.2 and � denotes the space of all finite signed Borel
measures.

The proof of the following lemma can be found in the Appendix.

Lemma 4.4. Let � = �T���	�F� ∈ 
 with transfer function G and gen-
erating operators �A� B� C�. Let r ∈ � and k ∈ L∞��+���. Assume that
�−1�G� ∈ �, �ϕ� ψ� ∈ � , and �x0� u0� ∈ X1 × �. Then the initial-value
problem (25) has a unique solution �x� u� ��+ → X × �.

Before presenting the main results of this subsection, we describe a con-
venient family of projection operators. Specifically, with each p ∈ �0�∞�,
we associate an operator Ap �� → � with the property Ap ◦ Ap = Ap

(whence the terminology projection operator), defined as

if p <∞� then Apf � ξ �→


f �−p�� ξ < −p,
f �ξ�� �ξ� ≤ p,
f �p�� ξ > p.

if p = ∞, then Apf = A∞f �= f .
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Theorem 4.5. Let � = �T���	�F� ∈ 
 with transfer function G and
generating operators �A� B� C�. Let r ∈ 
 and k ∈ �. Assume that �−1�G� ∈
�, �ϕ� ψ� ∈ � , and �x0� u0� ∈ X1 × �. Let �x� u� ��+ → X × � be the
unique solution of the initial-value problem (25). Then there exists k∗ > 0,
independent of �x0� u0� and k, such that the following hold.

A. If lim supt→∞ k�t� < k∗, then limt→∞ ϕ�u�t�� exists and is finite.

B. If lim supt→∞ k�t� < k∗ and K�t� �= ∫ t
0 k→∞ as t →∞, then

(b1) limt→∞ ϕ�u�t�� =� ϕr ∈ 5r ∩ %6,

(b2) limt→∞ �x�t� +A−1Bϕr� = 0,

(b3) limt→∞ y�t� = r, where y�t� = ψ�CLTtx
0 + �F∞�ϕ ◦ u���t��,

(b4) if 5r ∩ %6 = 5r ∩6, then limt→∞ dist�u�t�� ϕ−1�ϕr�� = 0,

(b5) if 5r ∩ %6 = 5r ∩ int�6�, then u�·� is bounded.

Proof. Set µ �= �−1(G) and define

p �= �µ���+� sup
ξ∈6

�ξ� ∈ �0�∞��

where �µ� denotes the total variation of µ.
A. Let ε > 0. Since x0 ∈ X1 it follows from the exponential stability of T

that there exists t0 ≥ 0 such that

�w�t�� ≤ �CLTtx
0� + ��µ + �ϕ ◦ u���t�� ≤ ε+ �µ���+� sup

ξ∈6

�ξ�� ∀ t ≥ t0 

Therefore,

�w�t�� ≤ p+ ε =� q ∈ �0�∞�� ∀ t ≥ t0�

and hence

ψ�w�t�� = Aqψ�w�t��� ∀ t ≥ t0 (51)

Define 5̂r �= �ξ ∈ ��Aqψ�G�0�ξ� = r�. We claim that

5̂r ∩ %6 = 5r ∩ %6 (52)

To see this, note that G�0� ≤ �µ���+�. Hence, G�0��ξ� ≤ p for all ξ ∈ %6
and, therefore, Aqψ�G�0�ξ� = ψ�G�0�ξ� for all ξ ∈ %6, which in turn
implies (52).

Since r ∈ 
, we may conclude from (52) that 5̂r �= &. Let ϕ∗ ∈ 5̂r . Since
Aqψ ∈ ��λ2� for some λ2 > 0, the function

ψ̃ ��→ �� ξ �→ Aqψ�ξ +G�0�ϕ∗� − r
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is in ��λ̃2� for some λ̃2 > 0 [cf. Remark 3.2(ii)]. Therefore, by Remark 3.2(i),

ψ̃�ξ� = γ�ξ�ξ� ∀ ξ ∈ ��

where the function γ is defined by

γ�ξ� =
{

ψ̃�ξ�/ξ� ξ �= 0,
λ̃2� ξ = 0,

and satisfies 0 ≤ γ�ξ� ≤ λ̃2 for all ξ ∈ �. Let λ1 > 0 be a Lipschitz constant
for ϕ and define

λ �= λ1λ̃2� k∗ �= κ∗/λ�

where κ∗ is given by (16). Defining z and v by (29) and w̃ by (30), it follows
by a direct calculation using (51) that the differential equations (31a) and
(31b) hold for almost all t ≥ t0. Part A now follows in exactly the same way
as the corresponding part in the proof of Theorem 4.2.

B. By part A, ϕr �= limt→∞ ϕ�u�t�� exists and is finite. Moreover, x0 ∈ X1
and, hence, by the exponential stability of T and by Theorem 6.1, part (ii)
of [7, p. 96]

lim
t→∞w�t� = lim

t→∞CTtx
0 + lim

t→∞�µ + �ϕ ◦ u���t� = G�0�ϕr (53)

In particular, w is bounded. Combining this with the local Lipschitz prop-
erty of ψ and invoking (53), part B can be derived in a similar way as the
corresponding part of Theorem 4.2.

Remark 4.6. (i) The assumption that �−1�G� ∈ � implies that � is
regular and might be difficult to verify for a given well-posed system. How-
ever, it seems that it holds for most (if not all) practical examples of expo-
nentially stable well-posed systems. In particular, if B or C is bounded, then
�−1�G� ∈� (see Lemma 2.3 in [11]).

(ii) If ϕ is bounded, then for any number q > �µ���+� supξ∈6 �ξ�, an
inspection of the proof above combined with Remark 3.2(iii) shows that
k∗ can be chosen as k∗ = κ∗/�λ1λ2�, where κ∗ is given by (16), λ1 is a
global Lipschitz constant for ϕ, and λ2 is a Lipschitz constant for ψ on
�−q� q�. Under the extra assumption that ψ is continuously differentiable,
this statement remains true for q = �µ���+� supξ∈6 �ξ�.

(iii) Parts (iii)–(v) of Remark 4.3 apply to Theorem 4.5.

5. EXAMPLE: DIFFUSION PROCESS WITH
OUTPUT DELAY

Consider a diffusion process (with diffusion coefficient a > 0 and with
Dirichlet boundary conditions) on the one-dimensional spatial domain
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I = �0� 1�, with scalar nonlinear pointwise control action (applied at point
xb ∈ I, via a nonlinearity ϕ with Lipschitz constant λ1 > 0) and delayed
(delay h ≥ 0) pointwise scalar observation (output at point xc ∈ I) with
a nonlinearity ψ in the output channel. It is assumed that xb < xc . We
formally write this single-input–single-output system as

zt�t� x� = azxx�t� x� + δ�x− xb�ϕ�u�t���
w�t� = z�t − h� xc�� y�t� = ψ�w�t���

z�t� 0� = 0 = z�t� 1�� ∀ t > 0 

For simplicity, we assume zero initial conditions:

z�t� x� = 0� ∀ �t� x� ∈ �−h� 0� × �0� 1� 
With input ϕ�u�·�� and output w�·�, this example qualifies as a well-posed
(even regular) linear system with transfer function given by

G�s� = e−shsinh�xb

√�s/a�� sinh��1− xc�
√�s/a��

a
√�s/a� sinh

√�s/a�  

Since G�0� = xb�1− xc�/a, we have for r ∈ �,

5r �= �v ∈ � � �G�0�v�3 = r� =
{

ar1/3

xb�1− xc�
}

 

From [13] we know that

κ∗ = 1
�G′�0�� =

6a2

xb�1− xc��6ha+ 1− x2
b − �1− xc�2�

 

Note the dependence of κ∗ on the time-delay h: the larger is h, the smaller
is κ∗.

In the sequel, we choose as output nonlinearity ψ ∈ � the cubic
ψ �w �→ w3 and an input nonlinearity ϕ ∈ �L�1� of saturation type,
defined as

u �→ ϕ�u� �=
{ 1� u ≥ 1,

u� u ∈ �0� 1�,
0� u ≤ 0,

in which case %6 = �0� 1�. Thus 5r ∩ %6 �= & if and only if 0 ≤ r ≤
�xb�1 − xc�/a�3 and so the set of feasible reference values 
 is given by

 = �0� �xb�1− xc�/a�3�.

It is not difficult to show that µ �= �−1�G� ∈ �. In fact, µ�E� =∫
E f �τ�dτ for some f ∈ L1��+���. Therefore, by Theorem 4.5, the

integral control

u�t� =
∫ t

0
k�τ��r − y�τ��dτ�
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FIG. 2. Performance under low-gain control.

where the gain function k is chosen according to the assumptions of
Theorem 4.5, guarantees asymptotic tracking of every constant reference
values r ∈ 
.

Further analysis (invoking application of the maximum principle for the
heat equation, which, for brevity, we omit here) confirms the physical intu-
ition that f is nonnegative valued. This implies G�0� = µ��+� = �µ���+�.
Thus, with reference to Remark 4.6(ii), k∗ can be chosen as k∗ = κ∗/�λ1λ2�,
where λ1 = 1 and λ2 = 3G�0�2.

For purposes of illustration, we adopt the values

a = 0 1� xb = 1
3 � xc = 2

3 � h = 0 5�

such that k∗ = 6561/48500 ≈ 0 135. For unit reference signal r = 1 ∈ 
,
Figure 2 depicts the behaviour of the system in each of the following three
cases of controller gain functions k:

�i� k�t� = 1/�t + 1�� �ii� k�t� =
√

1/�t + 1�� �iii� k�t� ≡ 0 13 

This figure was generated using SIMULINK simulation software within
MATLAB wherein a truncated eigenfunction expansion of order 20 was
adopted to model the diffusion process. Note that, while the constant gain
case (iii) results in the best transient response, it requires structural infor-
mation on the system to compute k∗, which may not be available in general.
For gain functions k ∈ � with k�t� → 0 as t →∞ and k /∈ L1 [as in cases
(i) and (ii)], knowledge of k∗ is not required.

APPENDIX: PROOF OF LEMMAS 4.1 AND 4.4

To prove Lemmas 4.1 and 4.4, we apply a result from [11] on the existence
of a unique maximal solution u of the abstract Volterra integrodifferential
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equation,

u̇�t� = �Fu��t�� t ≥ t0� (54a)

u�t� = ut0
�t�� t ∈ �0� t0�� (54b)

where t0 ≥ 0, ut0
∈ C��0� t0����, and the operator F �C��+��� →

L1
loc��+��� is causal and weakly Lipschitz in the following sense:
For all α ≥ 0� δ > 0� ρ > 0, and θ ∈ C��0� α����, there exists a continu-

ous function f � �0 δ� → �+, with f �0� = 0, such that∫ α+ε

α
��Fv��t� − �Fw��t��dt ≤ f �ε� sup

α≤t≤α+ε
�v�t� −w�t��

for all ε ∈ �0� δ� and for all v� w ∈ ��α� δ� ρ� θ�, where

��α� δ� ρ� θ� �= �w ∈ C��0� α+ δ���� �w�t� = θ�t� ∀ t ∈ �0� α��
�w�t� − θ�α�� ≤ ρ ∀ t ∈ �α� α+ δ�� 

A solution of the initial-value problem (54) on an interval �0� t1�, where
t1 > t0, is a function u ∈ C��0� t1����, with u�t� = ut0

�t� for all t ∈ �0� t0�,
such that u is absolutely continuous on �t0� t1� and (54a) is satisfied for
almost all t ∈ �t0� t1�.

Strictly speaking, to make sense of (54), we have to give a meaning to
�Fu��t�� t ∈ �0� t1�, when u is a continuous function defined on a finite
interval �0� t1� (recall that F operates on the space of continuous functions
defined on the infinite interval �+). This can be easily done using causality
of F � for all t ∈ �0� t1�� �Fu��t� �= �Fu∗��t�, where u∗ ��+ → � is any
continuous function with u∗�s� = u�s� for all s ∈ �0� t�.

The proof of the following result can be found in [11].

Proposition A.1. For every t0 ≥ 0 and every ut0
∈ C��0� t0����, there

exists a unique solution u of (54) defined on a maximal interval �0� tmax�, with
tmax > t0. Moreover, if tmax <∞, then

lim sup
t→tmax

�u�t�� = ∞ (55)

In the sequel we shall invoke Proposition A.1 only in the special case
t0 = 0.

For �x0� u0� ∈ X ×�, define the causal map F �C��+��� → L1
loc��+���

by

�Fu��t� �= k�t��r − ψ��	∞x0��t� + �F∞�ϕ ◦ u���t��� (56)

To proceed, we need the following lemma (see [11]).
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Lemma A.2. For all α ≥ 0, v ∈ C��0� α����, δ > 0, and ρ > 0, there
exists γ > 0 such that for all ε ∈ �0� δ� and u� w ∈ ��α� δ� ρ� v�,∫ α+ε

α
��F∞�ϕ◦u���τ�−�F∞�ϕ◦w���τ��dτ≤εγ sup

α≤τ≤α+ε
�u�τ�−w�τ�� (57)

It follows via a routine argument involving Lemma A.2 that, under the
assumptions of Lemmas 4.1 and 4.4, respectively, the operator F as defined
in (56) is weakly Lipschitz. Hence it follows from Proposition A.1 that the
initial-value problems considered in Lemmas 4.1 and 4.4 have a unique
solution u on a maximal interval of existence �0� tmax�.

To prove that tmax = ∞, let T ∈ �+ be such that T ≤ tmax. Let κ be such
that 0 ≤ �k�t�� ≤ κ for all t ≥ 0. Multiplying (25b) by u, we obtain

u�τ�u̇�τ� = u�τ�k�τ��r − ψ��	∞x0��τ� + �F∞�ϕ ◦ u���τ���
≤ κ�u�τ����r − ψ�0�� + �ψ��	∞x0��τ�
+ �F∞�ϕ ◦ u���τ�� − ψ�0��� (58)

If the hypotheses of Lemma 4.1 hold, then ψ ∈ �L�λ2� for some λ2 ≥ 0
and

�ψ��	∞x0��τ� + �F∞�ϕ ◦ u���τ�� − ψ�0��
≤ λ2��	∞x0��τ� + �F∞�ϕ ◦ u���τ�� ∀ τ ∈ �0� T � (59)

Next we show that, for some λ2 ≥ 0, (59) remains valid if the hypothe-
ses of Lemma 4.1 are replaced by the hypotheses of Lemma 4.4. Let the
latter hypotheses hold and note that �	∞x0��τ� is bounded on �+. If ϕ
is bounded, then choose λ2 ≥ 0 to be a Lipschitz constant for ψ on the
interval �−a� a�, where

a �= sup
t∈�+

��	∞x0��t�� + �µ���+� sup
ξ∈6

�ξ�

and (59) holds. If ϕ is unbounded, then ψ ∈ ��λ2� for some λ2 ≥ 0, in
which case

0 ≤ �ψ�ξ� − ψ�0��ξ ≤ λ2ξ2� ∀ ξ ∈ ��

and, again, (59) holds.
Combining (58) and (59), and estimating, we obtain that

u�τ�u̇�τ� ≤ κ��r − ψ�0��2 + λ2
2�	∞x0�2�τ� + u2�τ�

+λ2��F∞ϕ�u���τ�u�τ���� ∀ τ ∈ �0� T �� (60)

for some λ2 ≥ 0. Integrating (60) and invoking the estimate∫ t

0
��F∞ϕ�u��u� ≤

∫ t

0
�F∞�ϕ�u� − ϕ�0����u� + 1

2

( ∫ t

0
�F∞ϕ�0��2 +

∫ t

0
u2

)
�
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together with the Cauchy–Schwarz inequality and the global Lipschitz prop-
erty of ϕ, it can be readily shown that there exist positive constants β1
and β2 such that

u2�t� ≤ β1 + β2

∫ t

0
u2�τ�dτ� ∀ t ∈ �0� T � 

An application of Gronwall’s lemma then shows that u2�t� ≤ β1e
β2t for all

t ∈ �0� T �. Hence u is bounded on �0� T �. Since this holds for all T ∈ �+
with T ≤ tmax, it follows by Proposition A.1 that tmax = ∞.

Finally, to obtain a solution of (25), define

x�t� �= Ttx
0 +

∫ t

0
Tt−τBϕ�u�τ��dτ� ∀ t ≥ 0 (61)

By well-posedness, x is a continuous X-valued function and, moreover,
since A, considered as a generator on X−1, is in ��X� X−1�, the func-
tion t �→ Ax�t� is a continuous X−1-valued function. Consequently, by
Pazy [22, Theorem 2.4, p. 107], in X−1 we have

ẋ�t� = Ax�t� + Bϕ�u�t��� ∀ t ∈ �+ 

It follows that �x� u� is the unique solution of (25) defined on �+.
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