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a b s t r a c t

We consider persistence and stability properties for a class of forced discrete-time difference equations
with three defining properties: the solution is constrained to evolve in the non-negative orthant, the
forcing acts multiplicatively, and the dynamics are described by so-called Lur’e systems, containing both
linear and non-linear terms. Many discrete-time biological models encountered in the literature may be
expressed in the form of a Lur’e system and, in this context, the multiplicative forcing may correspond
to harvesting, culling or time-varying (such as seasonal) vital rates or environmental conditions. Drawing
upon techniques from systems and control theory, and assuming that the forcing is bounded, we provide
conditions under which persistence occurs and, further, that a unique non-zero equilibrium is stable with
respect to the forcing in a sense which is reminiscent of input-to-state stability, a concept well-known
in nonlinear control theory. The theoretical results are illustrated with several examples. In particular,
we discuss how our results relate to previous literature on stabilization of chaotic systems by so-called
proportional feedback control.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider persistence and stability properties of forced
discrete-time nonlinear models which take the form

x∇
= Ax + bh(cT x, u) , x(0) = x0 , (1.1)

and which are constrained to evolve in the non-negative orthant
of n-dimensional Euclidean space. Here x∇ denotes the image of x
under the left-shift operator, that is, x∇ (t) = x(t +1) for all t ∈ Z+,
where Z+ denotes the set of non-negative integers. Further, x0 ∈

Rn
+
, A ∈ Rn×n

+ , b, c ∈ Rn
+
with cT denoting the transpose of c , and
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h : R2
+

→ R+ is a (nonlinear) function. The scalar-valued non-
negative sequence u plays the role of a forcing term (sometimes
termed and understood as a control or disturbance).

Models of the form (1.1) arise and have subsequently been
studied in a variety of contexts, by a range of academic disciplines,
and with a spectrum of techniques. The system (1.1) is an example
of a positive system, and, in the special case that u is constant, it
is a positive dynamical system, see [1–4]. The state variables of
positive systems are constrained to evolve in positive cones and,
in the present context, the positive cone is simply Rn

+
, viewed

as a subset of real n-dimensional Euclidean space, equipped with
the usual partial ordering of componentwise inequality between
vectors. Moreover, when y ↦→ h(y, u) is a monotone increasing
function, then (1.1) is an instance of a monotone dynamical sys-
tem, see [5–7] and the references therein. Monotone dynamical
systems are characterized by the property that the evolution map
is order preserving with respect to the partial order defined by
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the positive cone. The study of positive and monotone systems is
aided by comparison arguments and readily constructed classes
of Lyapunov functions, such as so-called max- or sum-separable
Lyapunov functions [8]. Of a plethora of potential references, we
highlight [9] as an example which contains stability results for
the zero equilibriumof general discrete-timemonotone dynamical
systems.

When n = 1, A = 0 and b = c = 1, then (1.1) reduces to the
one-dimensional system

x∇
= h(x, u) , x(0) = x0 ,

which has been analysed in a variety of physical and biological
contexts [10,11] — usually for constant u, the logistic map being
a particularly well-studied example. We remark that even in this
simplest case, system (1.1) can show very complicated dynam-
ics [12]. In population models, the function h is commonly called
the production function and frequently (but not always) is of the
form g(x, u)x, where the function g captures the per-capita growth
rate of the population. We will consider two situations: (i) the
forcing only affects the per-capita growth rate, and (ii) the forcing
in (1.1) affects the whole production function.

Another area in which (1.1) arises is systems & control theory
and control engineering, where these models are often called Lur’e
systems (after A.I. Lur’e, a Soviet scientist who made early contri-
butions to the stability theory of continuous-time Lur’e systems).
Today Lur’e systems are a common and important class of nonlin-
ear control systems. Under the assumption that the nonlinearity h
satisfies h(0, u) = 0, it follows that 0 is an equilibriumof (1.1). A so-
called absolute stability criterion for (1.1) is a sufficient condition
for the stability of this equilibrium, usually formulated in terms of
the linear components (A, b, c) and related sector or boundedness
conditions for h: stability is guaranteed for every nonlinearity h sat-
isfying these sector or boundedness properties, thereby ensuring
robustness of stability with respect to uncertainty in h. There is a
large and contemporary body of work on absolute stability theory;
see, for example, [13–21].

Lur’e systems capture density-independent as well as density-
dependent vital or transition rates and have been used to ad-
dress various aspects of population dynamics, see, for example,
[22–29], evidencing their suitability in this context. To the best of
our knowledge, the paper [29] was the first to combine tools from
positive dynamical systems and absolute stability theory and apply
them to (unforced) models of the form (1.1) with two equilibria
(the origin and a positive equilibrium). In applied contexts, such
as population dynamics, these equilibria correspond to extinction
and a non-zero, co-existent equilibrium, respectively. The results
of [29] have been extended to classes of infinite-dimensional mod-
els in [27,28] and to forced continuous-time Lur’e systems in [22].
Part of the appeal of [22,29] is that a so-called ‘‘trichotomy of
stability’’ is presented, describing in terms of the model parame-
ters when, under certain assumptions, solutions either converge
to the zero equilibrium, or a unique non-zero equilibrium, or
diverge. Similar trichotomies have been established for various
classes of monotone discrete-time dynamical systems: for finite-
dimensional systems in [30] and [4, chapter 6] and for infinite-
dimensional systems in [5,28].

The model (1.1) also contains a forcing term u, the role of
which we have not yet mentioned. Borrowing from the systems
and control framework, there are two possible interpretations for
the forcing u. On the one hand, it could represent ‘‘control actions’’
which are chosen, designed or determined by themodeller or end-
user, corresponding to harvesting, culling, replanting or treating
effort in a population model. In these cases, u is known or u may
be generated by a suitable feedback law. On the other hand, u
may represent a (possibly unwanted and unknown) disturbance

over which the modeller or end-user has no control, but must ac-
count for. Predation or poaching or unaccounted and unmodelled
environmental or demographic temporal variation all fall within
this latter category for population models. From the perspective
of management, particularly of a resource to be conserved, it is
essential to understand the effect of both control actions and
disturbances on persistence and stability properties. Persistence
is a fundamental aspect of population modelling which has been
incorporated into mainstreammathematical biology with detailed
treatments from both deterministic [31] and stochastic [32] per-
spectives.

In the context of models of the form (1.1), we pursue three lines
of enquiry: persistence, stability and control; the latter two being
intimately related. Indeed, given the model (1.1), one may wish
to know: how the choice of control (or forcing) effects equilibria
and their attractivity and stability properties. We comment that
the word ‘‘stabilization’’ is used in control theory to describe the
action of designing controls which make an unstable equilibrium
stable (such as the upright position of a pendulum — the so-
called inverted pendulum): the control action does not change the
given equilibrium, but it changes its stability properties; see, for
example, [16,33,34]. In the context of chaos control and its applica-
tions to population dynamics, stabilization often means reshaping
possibly periodic or chaotic dynamics by choice of control to give
rise to some desired equilibrium that then enjoys desired stability
properties; including, for instance, [35–37].

Typically, the origin will be an equilibrium of the system (1.1)
(for any control u) and in a population dynamics context it is of
interest to investigate if solutions (or certain components) cor-
responding to non-zero initial conditions are ‘‘persistent’’, that
is, bounded away or ultimately bounded away from zero. We
derive conditions under which a semi-global uniform persistence
property holds: here semi-globality relates to initial conditions
and controls, whilst uniformity is with respect to time. Persistence
results may alternatively be interpreted as the zero equilibrium
being repelling (in a certain sense). Furthermore, we provide con-
ditions which guarantee, for a given constant control u∗, the exis-
tence of a unique positive equilibrium x∗ which is input-to-state
stable. Input-to-state stability is a well-known control theoretic
concept which is an appropriate notion of stability for forced
systems: roughly speaking, input-to-state stability means that the
map (x0, u) ↦→ x enjoys certain uniform continuity properties:
in particular, if ∥x0 − x∗

∥ + supt≥0∥u(t) − u∗
∥ is small, then

supt≥0∥x(t) − x∗
∥ is small and if u(t) → u∗ as t → ∞, then

x(t) → x∗ as t → ∞ for every non-zero initial condition x0. More
details on input-to-state stability can be found further below and
in the survey papers [38,39].

We also provide sufficient conditionswhich guarantee that con-
vergent forcing (with arbitrary limit, not necessarily equal to u∗)
yields a convergent state (this property is known as converging-
input converging-state property, cf. [40,41]). Finally, we apply our
stability theory in the context of proportional feedback control
which has received considerable attention in chaos control and
its application to theoretical ecology: the results obtained comple-
ment, extend and strengthen those in [42–46].

The paper is organized as follows. Section 2 gathersmathemati-
cal preliminaries. Section 3 describes the forced discrete-time non-
linearmodelswhichwe consider. Sections 4 and5 contain themain
contribution of the paper, a suite of persistence and stability results
for the models under consideration. Finally, Section 6 contains
several examples from population dynamics and chaos control.

2. Preliminaries

For I ⊆ R, J ⊆ Rn, let F(I, J) denote the set of all functions
I → J . For w ∈ F(Z+,Rn), we set

∥w∥∞,t := max{∥w(s)∥ : 0 ≤ s ≤ t}, t ∈ Z+ ,
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and, if w is bounded, then we define

∥w∥∞ := sup{∥w(t)∥ : t ∈ Z+} .

Recall that a matrix A ∈ Rn×n is called Schur if every eigenvalue λ
of A satisfies |λ| < 1. We will make use of the following classes of
comparison functions:

K := {ϕ ∈ F(R+,R+) : ϕ(0) = 0, ϕ is continuous
and strictly increasing},

K∞ := {ϕ ∈ K : ϕ(s) → ∞ as s → ∞}.

Finally, we denote byKL the set of all functionsϕ : R+×Z+ → R+

with the following properties: for each fixed t ∈ Z+, the function
ϕ(· , t) is in K, and, for each fixed s ∈ R+, the function ϕ(s, · ) is
non-increasing and ϕ(s, t) → 0 as t → ∞. The reader is referred
to [47] for more details on comparison functions.

For the proof of the stability theorems in Section 5, we need an
input-to-state stability result from control theory. To explain this
result, consider the following system with additive forcing

x∇
= Ax + b[h(cT x) + w], x(0) = x0 ∈ Rn , (2.1)

where A ∈ Rn×n, b, c ∈ Rn, and h : R → R is a continuous
nonlinearity, such that h(0) = 0 and w ∈ F(Z+,R) is a forcing
function (or disturbance, input or control, as appropriate). Note
that we are not yet imposing any non-negativity assumptions
on (2.1) — they are not required for general input-to-state stability
theory, but will play a key role from Section 3 onwards.

Obviously, (2.1) can be thought of as a feedback systemobtained
by application of the feedback law v = h(y) + w to the linear
controlled and observed system

x∇
= Ax + bv, y = cT x. (2.2)

Usually, v and y are called, respectively, the input (again, forcing
or control) and output (also interpreted as a measurement or
observation) of (2.2). Associated with (2.2) is the so-called transfer
function

G(z) := cT (zI − A)−1b, (2.3)

a rational function in the complex variable z. Formally applying the
Z-transform (denoted by Z) to (2.2), we obtain

(Zy)(z) = zcT (zI − A)−1x0 + G(z)(Zv)(z).

The above identity shows that, in the frequency domain, the effect
of the input on the linear dynamics is described by the product of
the transfer function and the Z-transform of the input.

If A is Schur, then we set

∥G∥H∞ := sup
|z|=1

|G(z)| = sup
|z|≥1

|G(z)| ,

which iswell-defined and finite. The second equality above follows
from the maximum modulus principle applied to the function H :

s ↦→ G(1/s) on the closed unit disc, where H(0) := lim|z|→∞G(z)
= 0.

Denoting the output of (2.2) corresponding to the initial condi-
tion x(0) = 0 by yv , we have that

sup{∥yv∥ℓ2(Z+) : ∥v∥ℓ2(Z+) = 1} = ∥G∥H∞ .

This identity is well-known in control theory and operator theory
and it provides an appealing interpretation of ∥G∥H∞ in time-
domain terms.

The following result is a special case of [19, Theorem 13].

Theorem 2.1. Consider the system (2.1) and denote its solution by
x(· ; x0, w). Assume that A is Schur and at least one of the following

condition holds: (i) the linear system (2.2) is controllable and observ-
able, or, (ii) there exists z ∈ C such that |z| = 1 and |G(z)| < ∥G∥H∞ .
If there exists α ∈ K∞ such that

∥G∥H∞ |h(y)| ≤ |y| − α(|y|) ∀ y ∈ R,

then there exist ϕ ∈ KL andψ ∈ K, depending only on A, b, c and α,
such that

∥x(t; x0, w)∥ ≤ ϕ(∥x0∥, t) + ψ(∥w∥∞,t )

∀ t ∈ Z+, ∀ x0 ∈ Rn, ∀w ∈ F(Z+,R). (2.4)

We recall that the linear system (2.2) is said to be controllable if
every initial state can be transferred to any other state by a suitable
control function. More formally, denoting the solution of (2.2) by
x(· ; x0, v), the system (2.2) is controllable if, for every initial state
x0 ∈ Rn and every ‘‘target’’ state x1 ∈ Rn, there exist τ ∈ Z+ and
an input function v ∈ F(Z+,R) such that x(τ ; x0, v) = x1. Further-
more, (2.2) is observable if it has the property that an observation
corresponding to zero control can be zero for all times only if the
initial state is equal to zero, that is, the following implication holds:(
cT x(t; x0, 0) = 0 ∀ t ∈ Z+

)
⇒ x0 = 0.

By a well-known result from control theory, we have that (2.2)
is controllable if, and only if, the n × n matrix (b, Ab, . . . , An−1b)
is invertible. Similarly, observability of (2.2) is equivalent to the
invertibility of the n × n matrix (c, AT c, . . . , (AT )n−1c). For more
background on controllability and observability the reader is re-
ferred to, for example, [34, chapters 2 and 6].

If system (2.1) satisfies (2.4) (for some ϕ ∈ KL and ψ ∈ K),
then the zero equilibrium of the unforced (w(t) ≡ 0) system x∇

=

Ax + bh(cT x) is said to be input-to-state stable (ISS). Frequently, it
is also said that (2.1) is ISS. The ISS concept is a standard stability
concept in nonlinear control theory. It was defined by Sontag in
the 1989 paper [48] in the context of general forced (or con-
trolled) nonlinear systems (of which systems of the form (2.1) are
a special case), and subsequently, a substantial Lyapunov theoretic
ISS framework has been developed; see, for example, [38,39,49].
Note that (2.4) implies that the zero equilibrium of the unforced
system x∇

= Ax + bh(cT x) is globally asymptotically stable (GAS).
Simple counterexamples [19] show that there exist systems of the
form (2.1) such that the zero equilibrium of the unforced system
is GAS, but the system is not ISS and, moreover, that there exist
initial conditions and bounded inputs which generate unbounded
state trajectories.

3. Classes of forced positive discrete-time nonlinear models

We consider the following two forced difference equations:

x∇
= Ax + bg(ucT x)cT x, x(0) = x0 ∈ Rn

+
, (3.1)

and

x∇
= Ax + bf (ucT x), x(0) = x0 ∈ Rn

+
. (3.2)

Here g : (0,∞) → (0,∞) and f : R+ → R+ are continuous
nonlinearities and we shall always assume that the limit of g(y)y
as y ↓ 0 exists and is finite. The function u : Z+ → R+ is a forcing
term. We will also consider the following variant of system (3.2):

x∇
= Ax + buf (cT x), x(0) = x0 ∈ Rn

+
. (3.3)

It will turn out that the analysis of boundedness, persistence and
stability properties of (3.3) are very similar to that of (3.2). The
above systems (3.1)–(3.3) may be thought of as feedback systems
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obtained by application of the feedback laws

v = g(uy)y, v = f (uy), or v = uf (y),

respectively, to the linear controlled and observed system (2.2).
For a real matrixM , we write

M ≥ 0 if every entry ofM is non-negative and
M ≫ 0 if every entry ofM is positive.

Furthermore, M > 0 means that M ≥ 0 and M ̸= 0. For real
matrices M and N with the same format we write M ≥ N , M ≫ N
and M > N if M − N ≥ 0, M − N ≫ 0 and M − N > 0,
respectively. We recall that for M ≥ 0, M is said to be primitive
if there exists k ∈ Z+ such thatMk

≫ 0. IfM is a primitive matrix,
then it is well-known from Perron–Frobenius theory (see [50,51]),
that the spectral radius r of M is a simple eigenvalue of M with
an eigenvector v ≫ 0. The normalized vector (1/∥v∥)v is called
the Perron vector of M . In particular, for any non-negative vector
w such that Mw = rw, there exists a positive scalar λ such that
w = (λ/∥v∥)v and so w ≫ 0. Obviously, if M is primitive, then
MT is also primitive and the Perron vector of MT is called the left
Perron eigenvector ofM .

We impose the following assumptions on A, b and c .

(A1) A ∈ Rn×n
+ and A is Schur.

(A2) b, c ∈ Rn
+
, b ̸= 0 and c ̸= 0.

(A3) A+ bcT is primitive, with τ the smallest number in Z+ such
that (A + bcT )τ ≫ 0.

(A4) At least one of the following condition holds: (i) the linear
system (2.2) is controllable and observable, or, (ii) there
exists z ∈ C such that |z| = 1 and |G(z)| < G(1), where
G is given by (2.3).

We provide some commentary on these assumptions.

Remark 3.1.

(i) In the scalar case n = 1 (that is, systems (3.1)–(3.3) evolve on
a one-dimensional state space), assumptions (A1)–(A4) are
satisfied provided that A ∈ (0, 1) and b, c > 0.

(ii) In the higher dimensional case (that is, for general n ∈ Z+),
if (A1) and (A2) hold, then there exists κ∗ > 0 such that
A + κ∗bcT is primitive if, and only if, A + κbcT is primitive
for all κ > 0. Moreover, given θ ∈ Z+, there exists κ∗ > 0
such that (A+κ∗bcT )θ ≫ 0 if, and only if, (A+κbcT )θ ≫ 0 for
all κ > 0. In particular, if (A3) is satisfied, then, for all κ > 0,
the matrix A + κbcT is primitive and (A + κbcT )τ ≫ 0.

(iii) If (A1) and (A2) hold, then

G(1) = cT (I − A)−1b =

∑
j∈Z+

cTAjb ≥ 0 .

It can be shown that assumptions (A1)–(A3) together imply
that G(1) > 0. In this case, the number p defined by

p :=
1

G(1)
=

1
cT (I − A)−1b

, (3.4)

is positive and finite. It is well known (and easy to show) that
if (A1) and (A2) hold, then ∥G∥H∞ = G(1) and condition (ii)
of assumption (A4) is equivalent to saying that |G(z)| is not
constant on the unit circle. ♢

Assumptions on the nonlinearities g and f will be specified in
the boundedness, persistence and stability results below. It will be
usually assumed that the forcing function u is in F(Z+, [u−, u+

]),
where 0 < u−

≤ u+ < ∞. From a robust control theoretic
perspective, u− and u+ are often given more prominence than the
resulting u ∈ F(Z+, [u−, u+

]) as they correspond to the ‘‘most
extreme’’ permitted or expected disturbances. In other words, u−

and u+ correspond to the worst case scenarios — although that
depends on one’s perspective and the interpretation of u.

Note that solutions of (3.1)–(3.3) are also solutions of a differ-
ence inclusion of the form

x∇
− Ax ∈ bF (cT x), (3.5)

where F is a suitably defined set-valued function. For example, if x
is a solution of (3.2), then x also solves (3.5) with F given by

F (y) := {f (vy) : v ∈ [u−, u+
]} ∀ y ≥ 0.

Therefore, it is useful to consider stability properties of the differ-
ence inclusion (3.5).

Proposition 3.2. Assume that (A1)–(A4) hold and F is a set-valued
function defined on R+, the values of which are non-empty subsets of
R+. If there exist θ ≥ 0 and α ∈ K∞ such that the set ∪0≤y≤θF (y) is
bounded and

w ≤ py − α(y) ∀ y ≥ θ, ∀w ∈ F (y),

then there exist ϕ ∈ KL and ψ ∈ K such that, for every solution x of
(3.5),

∥x(t)∥ ≤ ϕ(∥x(0)∥, t) + ψ(βF ) ∀ t ∈ Z+,

where

βF := sup
y∈R+

w∈F (y)

[
w − py + α(y)

]
= sup

0≤y≤θ
w∈F (y)

[
w − py + α(y)

]
.

Proof. If the values of F are singletons (inwhich case F can be iden-
tified with a real-valued function), then the claim is an immediate
consequence of [19, Corollary 17]. An inspection of the proof of
[19, Corollary 17] shows that it extends in a straightforward way
to set-valued nonlinearities and the proposition is a special case
of such an extension. Note that the two suprema defining βF are
equal as the function (w, y) ↦→ w − py + α(y) is non-positive for
all w ∈ F (y) when y ≥ θ , but non-negative for all w ∈ F (0). □

4. Boundedness and persistence

In this section we prove boundedness and persistence results
for the systems (3.1)–(3.3), which requires suitable assumptions
on g and f , respectively. To this end, the nonlinearity g appearing
in (3.1) is assumed to satisfy the following conditions.

(A5) g : (0,∞) → (0,∞) is continuous, the limit of g(y)y as
y ↓ 0 exists and is finite,

lim inf
y↓0

g(y) > p and lim sup
y→∞

g(y) < p, (4.1)

where p is given by (3.4).

In the following let u− and u+ be real numbers such that

0 < u−
≤ u+ < ∞ , (4.2)

which, throughout the paper, shall play the role of lower and upper
bounds, respectively, for the forcing term u in (3.1)–(3.3).

The nonlinearity f appearing in (3.2) and (3.3) is required to
satisfy the following assumption.

(A6) f : R+ → R+ is continuous, f (y) > 0 for y > 0, and,

lim inf
y↓0

f (y)
y

>
p
u−

and
p
u+

y − f (y) → ∞ as y → ∞, (4.3)

where p is given by (3.4).
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Table 4.1
Parameter values under which properties (A5) and (A6) hold for functions given
by (4.4) and (4.5), for given p > 0 and u−, u+ satisfying (4.2). A tick indicates that
the property holds for all possible parameter values.

Condition g1 or f1 g2 or f2 g3 or f3

(A5) liminf p < a1/a2 p < 1 ✓

limsup ✓ ✓ ✓

(A6) liminf p < u−a1/a2 p < u− ✓

divergence ✓ ✓ ✓

We remark that for the stability results in Section 5 the above
assumptions (A5) and (A6)will have to be somewhat strengthened.
We note an asymmetry in that u− and u+ in (4.2) do not appear
in (A5), but do in (A6). Despite this difference, u− and u+ do play a
crucial role in determining boundedness, persistence and stability
properties for each of the Lur’e systems (3.1)–(3.3).

The results in this section show that (A5) and (A6), in combina-
tion with (A1)–(A4), are sufficient to establish semi-global bound-
edness and persistence properties of (3.1)–(3.3). Beforehand, we
provide some typical examples of functions which satisfy (A5)
and (A6).

Example 4.1. For the forced difference equations (3.2) and (3.3),
consider the three nonlinear functions fi : R+ → R+ given by

f1(y) =
a1y

a2 + y
, f2(y) = ye−ay, f3(y) = yb , (4.4)

where a1, a2, a > 0 and b ∈ (0, 1). In population dynamics,
the nonlinearity f1 is often called of Beverton–Holt type [52] or
of Holling type II [53]. The function f2 is referred to as a Ricker
nonlinearity [54] and f3 is a power law. The functions gi : (0,∞) →

R+ in (3.1) corresponding to the above fi are given by

g1(y) =
a1

a2 + y
, g2(y) = e−ay, g3(y) = yb−1 . (4.5)

Table 4.1 contains (necessary and sufficient) conditions on the
parameters appearing in gi and fi which ensure that (A5) or (A6)
holds for given p > 0 and u−, u+ satisfying (4.2). Note that
the limit of fi(y) = gi(y)y exists (and is equal to zero) as y ↓

0 for each i ∈ {1, 2, 3}. The results displayed in the table are
readily established by elementary analysis and so the details are
omitted. We comment that the conditions at infinity are satisfied
for all u+, p > 0 as each function fi is either bounded, or grows
sublinearly (for sufficiently large arguments). Consequently, the
functions gi satisfy gi(y) → 0 as y → ∞.

We remark that in one-dimensional (n = 1) population models
the Beverton–Holt nonlinearity is often expressed in the form

f (y) =
ρy

1 +
(ρ−1)

K y
, y ≥ 0 ,

where ρ > 1 and K > 0 denote the inherent growth rate and
carrying capacity, respectively (see, for instance, [55]). Obviously,
f = f1 from (4.4) with a1 := Kρ/(ρ − 1) and a2 := K/(ρ − 1).

Theorem 4.2. Consider the initial-value problem (3.1) and let
x(· ; x0, u) denote the solution. Assume that (A1)–(A5) hold. Further-
more, let Γ ⊆ Rn

+
be compact and such that 0 ̸∈ Γ , and let u− and

u+ be real numbers satisfying (4.2).
(1) There exists γ > 0 such that

∥x(t; x0, u)∥ ≤ γ ∀ t ∈ Z+, ∀ x0 ∈ Γ ,

∀ u ∈ F(Z+, [u−, u+
]). (4.6)

(2) There exists δ > 0 such that

∥x(t; x0, u)∥ ≥ δ ∀ t ∈ Z+, ∀ x0 ∈ Γ ,

∀ u ∈ F(Z+, [u−, u+
]). (4.7)

(3) There exists η > 0 such that

cT x(t + τ ; x0, u) ≥ η ∀ t ∈ Z+, ∀ x0 ∈ Γ ,

∀ u ∈ F(Z+, [u−, u+
]) , (4.8)

where τ ∈ Z+ is as in (A3).

The constants γ , δ and ηwhich appear in (4.6)–(4.8) depend on
Γ and u±. Statements (2) and (3) of Theorem 4.2 can be viewed
as semi-global persistence results: ∥x(· ; x0, u)∥ and cT x(· ; x0, u)
‘‘persist’’ in the sense that, given a compact set Γ ⊆ Rn

+
\ {0}

and u− and u+ satisfying 0 < u−
≤ u+ < ∞, ∥x(t; x0, u)∥ and

cT x(t + τ ; x0, u) are bounded away from 0, uniformly in time and
uniformly for all u ∈ F(Z+, [u−, u+

]) and all x0 ∈ Γ . The relevance
of persistence in the context of population dynamics is obvious:
its absence is equivalent to extinction. The persistence properties
guaranteed by Theorem 4.2 overlap with persistency concepts (for
systems without forcing) introduced in [28,31,56,57] (see also the
stochastic persistence notion discussed in [32]). In particular, it
follows immediately from statements (2) and (3) of Theorem 4.2
that system (3.1) is strongly ∥ · ∥-persistent and strongly cT -
persistent, respectively, in the sense of [31, Definition 3.1].Wenote
that Theorem 4.2 guarantees that

lim inf
t→∞

cT x(t; x0, u) > 0 ,

holds for every non-zero x0 ∈ Rn
+
(and not just for x0 ∈ Rn

+
such

that cT x0 > 0, cf. [31, Definition 3.1]) and all u ∈ F(Z+, [u−, u+
]).

Furthermore, we point out that statement (2) of Theorem 4.2
implies that system (3.1) is persistent with respect to {0} in the
sense of [56].

We proceed to comment on the concept of uniform strong
persistency as given in [31, Definition 3.1]. For example, uniform
strong cT -persistency would require that, for the ‘‘uncontrolled’’
system 4.2 (that is, u−

= u+
= 1), there exists η > 0 such that, for

every x0 ∈ Rn
+
with cT x0 > 0,

lim inf
t→∞

cT x(t; x0, 1) ≥ η. (4.9)

Theorem 4.2 establishes that, for every compact Γ ⊂ Rn
+

not
containing 0, there exists a suitable positive constant η such that
(4.9) holds for all x0 ∈ Γ . For all practical purposes this semi-global
result is sufficient: for any given application context, there exists
a compact set Γ ⊂ Rn

+
such that every practically relevant initial

condition will belong to Γ . Moreover, we remark that Theorem 4.2
provides uniformity with respect to time, an aspect which is not
included in the persistency concepts in [28,31,57], but which is
nevertheless relevant as it relates to properties of the transient
dynamics, an important issue in ecology, see [58]. In the current
paper, uniformity with respect to time is crucial in the proof of
the stability results in Section 5. To conclude the discussion on
persistency, we point out that statements (2) and (3) of Theo-
rem 4.2 do not guarantee that all the components of x(t; x0, u) are
(eventually) bounded away from 0 and therefore do not guarantee
stage persistence (cf. [31, Section 7.4]). We remark however that
the stability results in Section 5, under suitable assumptions on the
forcing function u, do imply stage persistence (see the commentary
after Theorem 5.5).

Proof of Theorem 4.2. (1) Define a set-valued nonlinearity F by

F (0) := {g0/v : v ∈ [u−, u+
]} and

F (y) := {g(vy)y : v ∈ [u−, u+
]} ∀ y > 0,

where g0 := limy↓0(g(y)y). By (A5), g(y) > 0 for all y > 0 and

lim sup
y→∞

g(y) < p.
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Hence there exist θ > 0 and q ∈ (0, p) such that

0 < w ≤ qy ∀ y ≥ θ, ∀w ∈ F (y).

It is clear that, for every x0 ∈ Γ and every u ∈ F(Z+, [u−, u+
]), the

solution x(· ; x0, u) is also a solution of the difference inclusion

x∇
− Ax ∈ bF (cT x),

and the claim follows from Proposition 3.2 with α ∈ K∞ given by
α(s) = (p − q)s.

(2) & (3) By the first condition in (4.1), there exists y♯ > 0 such
that

g(y) ≥ p ∀ y ∈ [0, u+y♯]. (4.10)

Let γ > 0 be as in statement (1), and set y†
:= max{y♯, ∥c∥γ } and

λ := inf{g(y) : u−y♯ ≤ y ≤ u+y†
} > 0. (4.11)

Let x0 ∈ Γ , u ∈ F(Z+, [u−, u+
]) and write

x(t) := x(t; x0, u) and y(t) := cT x(t; x0, u) ∀ t ∈ Z+. (4.12)

For given t ∈ Z+, we have either y(t) ∈ [0, y♯] or y(t) > y♯.
Case 1: y(t) ∈ [0, y♯]. By (4.10), g(u(t)y(t)) ≥ p, and so

x(t + 1) ≥ (A + pbcT )x(t). (4.13)

It follows from stability radius theory that the spectral radius of
A + pbcT is equal to 1 (see, for example, [59, Theorem 3.4] or
[29, Lemma 3.2]) and, since A+pbcT is primitive, Perron–Frobenius
theory guarantees that there exists ζ = (ζ1, . . . , ζn)T ≫ 0 such
that ζ T (A + pbcT ) = ζ T , see, for example, [50,51]. Consequently,
invoking (4.13),

ζ T x(t + 1) ≥ ζ T x(t). (4.14)

Case 2: y(t) > y♯. By statement (1) and definition of y†, y(t) ≤ y†

and so, by (4.11),

g(u(t)y(t))y(t) ≥ λy(t) ≥ λy♯.

As a consequence, x(t + 1) ≥ Ax(t) + λy♯b, and so,

ζ T x(t + 1) ≥ λy♯ζ Tb > 0. (4.15)

Combining (4.14) and (4.15) (the outcomes of the considerations
in Cases 1 and 2), we conclude that

ζ T x(t + 1) ≥ min{ζ T x(t), λy♯ζ Tb} ∀ t ∈ Z+,

whence

ζ T x(t) ≥ min{ζ T x0, λy♯ζ Tb} ≥ ε ∀ t ∈ Z+, (4.16)

where ε > 0 is theminimumofminξ∈Γ (ζ T ξ ) andλy♯ζ Tb. It follows
that there exists δ > 0 such that (4.7) holds.

Furthermore, setting µ := min{λ, p} > 0 and appealing
to (4.10) and (4.11), we obtain

x(t + 1) ≥ (A + µbcT )x(t) ∀ t ∈ Z+,

and hence, with τ from (A4),

cT x(t + τ ) ≥ cT (A + µbcT )τ x(t) ∀ t ∈ Z+.

By (A4), every component of the row cT (A+µbcT )τ is positive and
thus, letting ω denote the minimum of these n components, we
have that ω > 0, and

cT x(t + τ ) ≥ ω

n∑
i=1

xi(t) ∀ t ∈ Z+.

Finally, invoking (4.16),
n∑

i=1

xi(t) ≥
ε

ν
∀ t ∈ Z+,

where ν := max{ζ1, . . ., ζn}, we arrive at

cT x(t + τ ) ≥
εω

ν
∀ t ∈ Z+,

completing the proof. □

We now turn our attention to systems (3.2) and (3.3).

Theorem 4.3. Let u− and u+ be real numbers satisfying (4.2), and
assume that (A1)–(A4) and (A6) hold. Furthermore, let Γ ⊆ Rn

+
be

compact and such that 0 ̸∈ Γ .
(1) Consider the initial-value problem (3.2) and let x(· ; x0, u)

denote the solution. Then there exist γ > 0, δ > 0 and η > 0 such
that (4.6)–(4.8) hold.

(2) Statement (1) remains valid in the context of system (3.3).

Proof. (1) Define a set-valued nonlinearity F by

F (y) := {f (vy) : v ∈ [u−, u+
]} ∀ y ≥ 0.

By (A6), f (y) ≥ 0 for all y ≥ 0 and

py − f (vy) ≥
p
u+
vy − f (vy) → ∞

uniformly in v ∈ [u−, u+
] as y → ∞.

Consequently,[
py − max

u−≤v≤u+
f (vy)

]
→ ∞ as y → ∞,

which in turn implies the existence of a number θ > 0 and α ∈ K∞

such that

0 ≤ w ≤ py − α(y) ∀ y ≥ θ, ∀w ∈ F (y). (4.17)

It is clear that, for every x0 ∈ Γ and every u ∈ F(Z+, [u−, u+
]), the

solution x(· ; x0, u) is also a solution of the difference inclusion

x∇
− Ax ∈ bF (cT x),

and it follows from Proposition 3.2 that there exists γ > 0 such
that (4.6) is satisfied.

We proceed to show that (4.7) and (4.8) hold for positive δ and
η. To this end, we note that, by the first condition in (4.3), there
exists y♯ > 0 such that
f (y)
y

≥
p
u−

∀ y ∈ (0, u+y♯] ,

and hence,
f (vy)
y

≥ v
p
u−

≥ p ∀ y ∈ (0, y♯], ∀ v ∈ [u−, u+
]. (4.18)

Setting

y†
:= max{y♯, ∥c∥γ }, (4.19)

it follows from (A6) that

λ := inf{f (vy)/y : y♯ ≤ y ≤ y†, u−
≤ v ≤ u+

} > 0. (4.20)

Let x0 ∈ Γ ,u ∈ F(Z+, [u−, u+
]) anddefine x(t) and y(t) as in (4.12).

For given t ∈ Z+, we have either y(t) ∈ [0, y♯] or y(t) > y♯.
Case 1: y(t) ∈ [0, y♯]. By (4.18), f (u(t)y(t)) ≥ py(t), and so

x(t + 1) ≥ (A + pbcT )x(t).

We can now argue as in the proof of Theorem 4.2 to obtain

ζ T x(t + 1) ≥ ζ T x(t), (4.21)

where ζ T ≫ 0 is the left Perron eigenvector of A + pbcT corre-
sponding to the spectral radius of A+ pbcT , which is an eigenvalue
and is equal to 1.
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Case 2: y(t) > y♯. By statement (1) and definition of y†, y(t) ≤ y†

and so, by (4.20),

f (u(t)y(t)) ≥ λy(t) ≥ λy♯.

As a consequence,

ζ T x(t + 1) ≥ λy♯ζ Tb > 0. (4.22)

Combining (4.21) and (4.22) (the outcomes of the considerations
in Cases 1 and 2), we conclude that

ζ T x(t + 1) ≥ min{ζ T x(t), λy♯ζ Tb} ∀ t ∈ Z+,

and the proof can now be completed by arguments identical to
those used in the proof of Theorem 4.2.

(2) Defining a set-valued map F by

F (y) := {vf (y) : v ∈ [u−, u+
]} ∀ y ≥ 0,

it is straightforward to show that there exist θ > 0 and α ∈ K
such that (4.17) is satisfied. The existence of a number γ > 0 such
that (4.6) holds now follows in the same way as in the proof of
statement (1).

To show that (4.7) and (4.8) are valid for suitable η > 0, we note
that, by the first condition in (4.3), there exists y♯ > 0 such that
f (y)
y

≥
p
u−

∀ y ∈ (0, y♯] ,

and thus
vf (y)
y

≥ v
p
u−

≥ p ∀ y ∈ (0, y♯], ∀ v ∈ [u−, u+
].

Furthermore, by (A6),

µ := inf{f (y)/y : y♯ ≤ y ≤ y†
} > 0,

where y† is given by (4.19). We see that u(t)f (y(t)) ≥ py(t) if
y(t) ∈ [0, y♯] and u(t)f (y(t)) ≥ u−µy♯ if y(t) > y♯. We can now
use arguments very similar to those used in the proof of statement
(1) to establish the claim. □

5. Stability

Having established boundedness and persistence results in Sec-
tion 4, we turn attention to conditions which guarantee the exis-
tence of a ‘‘stable’’ non-zero equilibrium: the stability notion used
here takes into account the forcing term u and is reminiscent of
the input-to-state stability concept from nonlinear control theory,
discussed in Section 2. As has already been mentioned, to derive
useful stability results, we need to somewhat strengthen the as-
sumptions (A5) and (A6) on g and f , respectively.

In the following, let p denote the constant given by (3.4) and
let u∗

∈ [u−, u+
], where u−, u+ satisfy (4.2). The term u∗ will play

the role of a target or nominal control value, and recall u− and u+

denote the lower and upper limits of the forcing, respectively. If
1 ∈ [u−, u+

], then the case wherein u∗
= 1 corresponds to the

unforced system.
We formulate the following condition for the nonlinearity g

which appears in (3.1).

(A5′) Condition (A5) holds, and

|g(u∗y)y − g(u∗y∗)y∗
| = |g(u∗y)y − py∗

| < p|y − y∗
| ∀ y > 0, y ̸= y∗, (5.1)

where y∗ is the unique positive number such that g(u∗y∗)
= p.

The existence of y∗ > 0 such that g(u∗y∗) = p follows from the
continuity of g and (4.1), whilst uniqueness of y∗ is a consequence
of (5.1).

Fig. 5.1. Illustration of the sector condition (5.1). The graph of y ↦→ g(u∗y)y
must lie within the shaded region, that is, the graph is ‘‘sandwiched’’ between the
lines specified by py and −py + 2py∗ . The sector is ‘‘strict’’ in that the function
y ↦→ g(u∗y)y cannot intersect either of these lines apart from at y = 0 or y = y∗ .

The inequality (5.1) is often called a sector condition, in this
particular case for the function y ↦→ g(u∗y)y, an illustration of
which is given in Fig. 5.1.

The following lemma shows that the existence of a unique non-
zero equilibrium of the Lur’e system x∇

= Ax + bg(u∗cT x)cT x is a
consequence of (A1)–(A4) and (A5′).

Lemma 5.1. Assume that (A1)–(A3) and (A5′) hold and set

x∗
:= (I − A)−1bpy∗

∈ Rn
+
. (5.2)

Then cT x∗
= y∗, x∗

≫ 0 and x∗ is the unique non-zero equilibrium
of (3.1) with u(t) ≡ u∗, where y∗ > 0 is as in (A5′).

Proof. It follows immediately from the definitions of x∗ and p that
cT x∗

= y∗. Consequently, since y∗ > 0, we conclude that x∗
̸= 0,

and hence, x∗ > 0. Furthermore,

(A + pbcT )x∗
= x∗

+ (A − I + pbcT )x∗

= x∗
− bpy∗

+ pbG(1)py∗
= x∗,

showing that x∗ is an eigenvector of A + pbcT associated with the
eigenvalue 1. As was pointed out in the proof of Theorem 4.2, the
spectral radius of A + pbcT is equal to 1 and thus, invoking the
primitivity of A + pbcT , we conclude that x∗ is a positive scalar
multiple of the Perron vector of A + pbcT . In particular, x∗

≫ 0.
To show that x∗ is an equilibrium, note that

x∗
= (I − A)−1bpy∗

= (I − A)−1bg(u∗y∗)y∗

= (I − A)−1bg(u∗cT x∗)cT x∗,

and so, x∗
= Ax∗

+ bg(u∗cT x∗)cT x∗. As for uniqueness, let x† be
another non-zero vector in Rn

+
satisfying

x† = Ax† + bg(u∗cT x†)cT x†. (5.3)

Then cT x† = G(1)g(u∗cT x†)cT x†, and thus, g(u∗cT x†)cT x† = pcT x†.
Now cT x† ̸= 0 (otherwise, in light of (5.3), 1 would be an eigen-
value of A which is not possible by (A1)), and so g(u∗cT x†) = p.
Invoking uniqueness of y∗, we see that cT x† = y∗

= cT x∗, whence

x† = (I − A)−1bg(u∗cT x†)cT x† = (I − A)−1bpy∗
= x∗,

completing the proof. □

The above proof shows that the equilibrium x∗ is a positive
scalarmultiple of the Perron vector of A+pbcT which is completely
determined by the linear part of the Lur’e system. The effect of the
nonlinearity on x∗ is described by the scalar factor y∗ in (5.2).

As before, let u− and u+ be real numbers such that (4.2) is
satisfied, where the interval [u−, u+

] contains the ranges of the
forcing functions under consideration and let u∗

∈ [u−, u+
]. We

impose the following condition on the nonlinearity f appearing
in (3.2).
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(A6′) Condition (A6) holds and

|f (u∗y) − f (u∗y∗)| = |f (u∗y) − py∗
| < p|y − y∗

| ∀ y > 0, y ̸= y∗, (5.4)

where y∗ is the unique positive number such that f (u∗y∗) =

py∗.

It follows from the continuity of f and (4.3) that there exists
y∗ > 0 such that f (u∗y∗) = py∗, and the uniqueness of y∗ is
a consequence (5.4). Inequality (5.4) is another sector condition,
now for y ↦→ f (u∗y), see Fig. 5.1 and its caption. As a consequence
of (A6′), there exists a unique non-zero equilibrium of the Lur’e
system x∇

= Ax + bf (u∗cT x), which we record in the next lemma,
the proof of which mirrors that of Lemma 5.1, and is thus omitted.

Lemma 5.2. Assume that (A1)–(A3) and (A6′) hold and define x∗

by (5.2). Then cT x∗
= y∗, x∗

≫ 0 and x∗ is the unique non-zero
equilibrium of (3.2) with u(t) ≡ u∗, where y∗ is as in (A6′).

Similarly, we record the following conditions on the nonlinear-
ity f appearing in (3.3).

(A6′′) Condition (A6) holds and

|u∗f (y) − u∗f (y∗)| = |u∗f (y) − py∗
| < p|y − y∗

| ∀ y > 0, y ̸= y∗, (5.5)

where y∗ is the unique positive number such that u∗f (y∗) =

py∗.

It follows from the continuity of f and (4.3) that there exists
y∗ > 0 such that u∗f (y∗) = py∗, and the uniqueness of y∗ is a
consequence (5.5).

Parallelling Lemmas 5.1 and 5.2, we obtain the following
lemma, again with proof omitted as it mirrors that of Lemma 5.1.

Lemma 5.3. Assume that (A1)–(A3) and (A6′′) hold and define x∗

by (5.2). Then cT x∗
= y∗, x∗

≫ 0 and x∗ is the unique non-zero
equilibrium of (3.3) with u(t) ≡ u∗, where y∗ is as in (A6′′).

We comment that there is a certain symmetry between (A6′)
and (A6′′), but the parameters involved change. To see this, fix
p > 0, 0 < u−

≤ u+ < ∞, u∗
∈ [u−, u+

] and f : R+ → R+. Then f
satisfies (A6′) for some y∗ > 0 if, and only if, f satisfies (A6′′) with
y∗ replaced by u∗y∗.

The next lemma provides sufficient conditions for (A5), (A6),
(A5′), (A6′) or (A6′′) to hold. Given differentiable f : R+ → R+,
the derivative of f is denoted by f ′ and f ′(0) is interpreted as the
right derivative of f at 0.

Lemma 5.4. Let g : (0,∞) → (0,∞), f : R+ → R+, and p > 0 be
given. Let u−, u+

∈ R satisfy (4.2) and let u∗
∈ [u−, u+

].

(1) Assume that g is continuously differentiable and limy↓0g(y)y
exists. If g ′(y) ≤ 0 for all y ∈ (0,∞), limy↓0g(y) > p and
limy→∞g(y) < p, then (A5) holds.

(2) If, in addition to the assumptions in statement (1), g ′(y) < 0
and (g(y)y)′ ≥ 0 for all y ∈ (0,∞), then (A5′) holds.

(3) Assume that f is continuously differentiable and limy→∞f ′(y)
exists. If f (0) = 0, f ′(0) > p/u− and limy→∞f ′(y) < p/u+,
then (A6) holds.

(4) Assume that f is twice continuously differentiable. If f (0) = 0,
f ′(0) > p/u−, f ′(y) ≥ 0, f ′′(y) ≤ 0 for all y ∈ R+ and
limy→∞f ′(y) < p/u+, then (A6′) and (A6′′) hold.

The proof of Lemma 5.4 is relegated to Appendix. Note that, in
statement (1), the assumption that g is continuously differentiable
with g ′

≤ 0 implies the existence of both the limits,where the limit
as y ↓ 0 may be infinite. Existence of the limit of f ′(y) as y → ∞

in statement (4) is ensured as it is assumed that f ′
≥ 0 and f ′′

≤ 0.
Table 5.1 provides conditions underwhich (A5′), (A6′) and (A6′′)

hold for the three nonlinear functions considered in Example 4.1.

Table 5.1
Parameter values under which properties (A5′), (A6′) and (A6′′) hold for the func-
tions given by (4.4) and (4.5), for given p > 0, u−, u+ satisfying (4.2) and u∗

∈

[u−, u+
]. A tick indicates that the property holds for all possible parameter values.

g1 g2 g3
(A5′) p < a1/a2 e−2

≤ p < 1 ✓

f1 f2 f3
(A6′) or (A6′′) p < a1u−/a2 u+e−2

≤ p < u− ✓

The results displayed in the table can be established by a combi-
nation of elementary analysis and applications of Lemma 5.4. The
details are omitted.

We are now in the position to state and prove stability theorems
relating to the non-zero equilibria of systems (3.1)–(3.3).

Theorem 5.5. Consider the initial-value problem (3.1), let x(· ; x0, u)
denote the solution, let u− and u+ be real numbers satisfying (4.2),
and let u∗

∈ [u−, u+
]. Assume that (A1)–(A4) and (A5′) hold and let

x∗
≫ 0 be given by (5.2).
(1) Let Γ ⊆ Rn

+
be compact and such that 0 ̸∈ Γ . There exist ϕ ∈

KL andψ ∈ K such that, for all x0 ∈ Γ and all u ∈ F(Z+, [u−, u+
]),

∥x(t; x0, u) − x∗
∥ ≤ ϕ(∥x0 − x∗

∥, t) + ψ(β(u)) ∀ t ∈ Z+, (5.6)

with β(u) := sup{y|g(u∗y) − g(u(t)y)| : t ∈ Z+, 0 ≤ y ≤ γ ∥c∥},
where γ is the constant from statement (1) of Theorem 4.2.

(2) Let u∞ > 0. For every x0 ∈ Rn
+
, x0 ̸= 0, and every u ∈

F(Z+, (0,∞)) such that u(t) → u∞ as t → ∞, we have that
x(t; x0, u) → (u∗/u∞)x∗ as t → ∞.

Since x∗
≫ 0, it is clear that statement (2) implies stage

persistence (cf. [31, Section 7.4]), that is, for sufficiently large t ∈

Z+ there is a positive lower bound for each of the n components of
x(t).

Note that if (uk)k∈N is a sequence inF(Z+, [u−, u+
]) such that uk

converges to (the constant function) u∗ in the sup-norm as k → ∞,
then limk→∞β(uk) = 0. Consequently, ψ(β(uk)) → 0 as k → ∞,
and thus, for large t and k, the state x(t; x0, uk) is close to x∗. Finally,
it is clear that (u∗/u∞)x∗ is an equilibrium of the system

x(t + 1) = Ax(t) + bg(u∞cT x(t))cT x(t), (5.7)

and an inspection of the proof below shows that this equilibrium
is ‘‘globally asymptotically stable’’ in the sense that it is stable and
attracts every solution of (5.7) with initial condition in Rn

+
\ {0}.

Proof of Theorem 5.5. (1) Let x0 ∈ Γ and u ∈ F(Z+, [u−, u+
]), set

h(y) := g(u∗y)y and write x(t) := x(t; x0, u). Then

x∇
= Ax + b(h(cT x) + v), where v := (g(ucT x) − g(u∗cT x))cT x.

Since cT x∗
= y∗ and x∗

= Ax∗
+ bh(y∗), it follows that the function

x̃(t) := x(t) − x∗ satisfies ∀ t ∈ Z+

x̃(t + 1) = Ax̃(t) + b
[
h(cT x̃(t) + y∗) − h(y∗)

]
+ bv(t). (5.8)

By Theorem 4.2, there exists η ∈ (0, y∗) such that

cT x̃(t + τ ) ≥ −y∗
+ η ∀ t ∈ Z+, (5.9)

where τ is as in (A3). Defining

h̃ : R → R, y ↦→

{
h(y + y∗) − h(y∗), for y ≥ −y∗

+ η

h(η) − h(y∗), for y < −y∗
+ η,

it follows from (5.8) and (5.9) that

x̃(t + 1) = Ax̃(t) + b
[
h̃(cT x̃(t)) + v(t)

]
, ∀ t ∈ τ + Z+. (5.10)
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By assumption (A5′),

|h̃(y)| < p|y| ∀ y ∈ R, y ̸= 0, and p|y| − h̃(y) → ∞

as |y| → ∞,

and so, there exists α ∈ K∞ such that

|h̃(y)| ≤ p|y| − α(|y|) ∀ y ∈ R. (5.11)

Invoking (A1) and (A2), it is easy to show that G(1) = ∥G∥H∞ ,
implying that p = 1/∥G∥H∞ . Combining this with (5.11) and
appealing to Theorem 2.1, we conclude that system (5.10) is input-
to-state stable, that is, there exist ϕ0 ∈ KL andψ0 ∈ K (depending
only on A, b, c , g , Γ , u− and u+) such that

∥x̃(t + τ )∥ ≤ ϕ0(∥x̃(τ )∥, t) + ψ0(∥v∥∞) ∀ t ∈ Z+. (5.12)

Furthermore, since the function y ↦→ h(y + y∗) − h(y∗) is linearly
bounded on [−y∗,∞), we obtain from (5.8) that

∥x̃(t)∥ ≤ κ1∥x̃(0)∥ + κ2∥v∥∞ t = 1, 2, . . . , τ , (5.13)

where the positive constants κ1 and κ2 depend only on A, b, c and
g . Noting that, for all s1, s2 ∈ R+ and for all t ∈ Z+,

ϕ0(s1 + s2, t) ≤ ϕ0(2s1, t) + ϕ0(2s2, t) ≤ ϕ0(2s1, t) + ϕ0(2s2, 0),

it follows from (5.12) and (5.13) that

∥x̃(t + τ )∥ ≤ ϕ0(2κ1∥x̃(0)∥, t) + ϕ0(2κ2∥v∥∞, 0) + ψ0(∥v∥∞)
∀ t ∈ Z+. (5.14)

Define ϕ : R+ × Z+ → R+ by

ϕ(s, t) :=

{
κ1s + ϕ0(2κ1s, 0), for t = 1, . . . , τ − 1
ϕ0(2κ1s, t − τ ), for t = τ , τ + 1, . . .

and ψ : R+ → R+ by ψ(s) := ψ0(s) + ϕ0(2κ2s, 0) + κ2s. It is clear
that ϕ ∈ KL and ψ ∈ K, and, appealing to (5.13) and (5.14), we
arrive at

∥x̃(t)∥ ≤ ϕ(∥x̃(0)∥, t) + ψ(∥v∥∞) ∀ t ∈ Z+.

Combining this with

∥v∥∞ ≤ sup{|y(g(u∗y) − g(u(t)y))| : t ∈ Z+, 0 ≤ y ≤ γ ∥c∥}
= β(u),

shows that (5.6) holds, completing the proof of statement (1).
(2) We proceed in two steps.
Step 1. In this step, we prove the claim for u∞

= u∗. Let x0 ∈ Rn
+

with x0 ̸= 0 and let u ∈ F(Z+, (0,∞)) be such that limt→∞u(t) =

u∗. Then there exists 0 < v−
≤ v+ < ∞ such that u(t) ∈ [v−, v+

]

for all t ∈ Z+. By statements (1) and (2) of Theorem 4.2 (with v−

and v+ playing the role of u− and u+, respectively), there exists a
compact set K ⊆ Rn

+
such that 0 ̸∈ K and x(t, x0, u) ∈ K for all

t ∈ Z+. By statement (1) of Theorem 5.5, there exist ϕ ∈ KL and
ψ ∈ K such that, for all s, t ∈ Z+,

∥x(t; x(s; x0, u), us) − x∗
∥ ≤ ϕ(∥x(s; x0, u) − x∗

∥, t) + ψ(β(us)),

where us(t) = u(t + s) for all t ∈ Z+. Now x(t + s; x0, u) =

x(t; x(s; x0, u), us) and so, for all s, t ∈ Z+,

∥x(t + s; x0, u) − x∗
∥ ≤ ϕ(∥x(s; x0, u) − x∗

∥, t) + ψ(β(us)).

Given ε > 0, there exists σ ∈ Z+ such thatψ(β(uσ )) ≤ ε/2 (where
we have used that β(us) → 0 as s → ∞). Since ϕ is in KL, we can
choose θ ∈ Z+ such thatϕ(∥x(σ ; x0, u)−x∗

∥, t) ≤ ε/2 for all t ≥ θ .

Consequently,

∥x(t; x0, u) − x∗
∥ ≤ ε ∀ t ∈ (σ + θ ) + Z+,

which proves the claim for the case wherein u∞
= u∗.

Step 2. Let u∞ > 0. We will reduce this case to the special case
which has been dealtwith in Step 1. To this end, let x0 ∈ Rn

+
, x0 ̸= 0

and let u ∈ F(Z+, (0,∞)) be such that u(t) → u∞ > 0 as t → ∞.
Setting x̃(t) := (u∞/u∗)x(t; x0, u) and ũ(t) := (u∗/u∞)u(t), we have
that ũ(t) → u∗ as t → ∞ and

x̃(t + 1) = Ax̃(t) + bg(ũ(t)cT x̃(t))cT x̃(t) ∀ t ∈ Z+.

By Step 1, we have that x̃(t) → x∗ as t → ∞ and so x(t; x0, u) →

(u∗/u∞)x∗ as t → ∞, completing the proof. □

We turn now our attention to the stability of the forced Lur’e
systems (3.2) and (3.3).

Theorem 5.6. Let u− and u+ be real numbers satisfying (4.2), let
u∗

∈ [u−, u+
] and assume that (A1)–(A4) hold.

(1) Consider the initial-value problem (3.2) with solution denoted
by x(· ; x0, u), assume that (A6′) holds and let x∗

≫ 0 be given
by (5.2).

(a) Let Γ ⊆ Rn
+

be compact and such that 0 ̸∈ Γ . There exist
ϕ ∈ KL and ψ ∈ K such that, for all x0 ∈ Γ and all
u ∈ F(Z+, [u−, u+

]), (5.6) holds with β(u) given by

β(u) := sup{|f (u∗y) − f (u(t)y)| : t ∈ Z+, 0 ≤ y ≤ γ ∥c∥},
(5.15)

where γ is as in Theorem 4.3.
(b) For every x0 ∈ Rn

+
, x0 ̸= 0, and all u ∈ F(Z+, [u−, u+

]) such
that u(t) → u∗ as t → ∞, we have that x(t; x0, u) → x∗ as
t → ∞.

(2) Consider the initial-value problem (3.3) with solution denoted
by x(· ; x0, u), assume that (A6′′) holds and let x∗

≫ 0 be given
by (5.2). Then the conclusions of statement (1) remain valid in the
context of system (3.3), provided that β(u) is replaced by β̃(u) :=

θ sup{|u(t)−u∗
| : t ∈ Z+}, where θ := max{|f (y)| : 0 ≤ y ≤ γ ∥c∥}.

The arguments of the proof of Theorem 5.5 can be invoked,
mutatis mutandis, to prove Theorem 5.6. We leave the details to
the reader.

6. Applications and examples

We present two classes of examples in the subsequent two
subsections. The first subsection addresses structured population
models which, by their very nature, involvemultiple states (and so
n> 1). The second considers one-dimensional difference equations
in a context of chaos control.

6.1. Stage-structured populations

Example 6.1. Consider the following model for a population at
time-step t ∈ Z+ partitioned into n ∈ N discrete stage-classes

x1(t + 1) = s1x1(t) + g
( n∑

j=1

u(t)cjxj(t)
) n∑

j=1

cjxj(t)

xi(t + 1) = sixi(t) + hi−1xi−1(t) i ∈ {2, 3, . . . , n}
x(0) =

(
x01 x02 · · · x0n

)T
⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6.1)

Here xi(t) denotes the abundance of the ith stage-class at time-step
t . The si and hi are probabilities (or proportions) denoting survival
(or stasis) within stage-classes and movement into subsequent
stage-classes, respectively. As such si ∈ [0, 1], hj ∈ (0, 1] and
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sj + hj ≤ 1 for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n − 1}.
The case si + hi = 1 corresponds to the absence of mortality in
the ith stage-class of the population. In an age-based model with
stage-classes corresponding to age in time-steps, si = 0 for all
i ∈ {1, 2, . . . , n − 1}, and sn may be non-zero if the final stage-
class denotes ‘‘individuals above a certain age’’. The constants ci are
non-negative and capture the fecundity of the ith stage-class. The
function g represents per-capita recruitment rates. The product
term

g
( n∑

j=1

u(t)cjxj(t)
) n∑

j=1

cjxj(t) ,

in (6.1) models the recruitment into the population at time t + 1.
We assume, as is often the case, that reproduction adds individuals
into the first stage-class, which typically denotes eggs, juveniles
or seeds, in an insect, animal or plant model, respectively. If g is
assumed constant then there is no density-dependence and (6.1)
may be expressed as a matrix population projection model [60]
which, for example, has been used to model albatross [61], an-
chovy [62] and trout [63] populations. Finally, the forcing function
u seeks to model the effect of temporal environmental or demo-
graphic fluctuationswhich, in the currentmodel, specifically affect
recruitment only.

When n = 1, then (6.1) reduces to the class of models consid-
ered in [55], which has also been examined in [19, Section 5.2]. For
general n, (6.1) may be written in the form of (3.1) with

A :=

⎛⎜⎜⎜⎜⎝
s1 0 · · · 0

h1 s2
. . .

...

. . .
. . . 0

0 hn−1 sn

⎞⎟⎟⎟⎟⎠ , b :=

⎛⎜⎜⎝
1
0
...

0

⎞⎟⎟⎠ ,
cT :=

(
c1 · · · · · · cn

)
.

Clearly, σ (A) = {s1, s2, . . . , sn}, so that r(A) ≤ 1. We will make the
realistic assumption that sj < 1 for all j ∈ {1, 2, . . . , n}, meaning
that r(A) < 1 and thus (A1) holds. We assume that cn ̸= 0, so
that (A2) is definitely satisfied.We note that cn = 0means that the
final stage-class does not contribute to the life-cycle of the rest of
the population, and so leads to a reducible model; a case we avoid.
Assumption (A3) holds if at least one of the sj is positive or if the
integers in the set {j : cj > 0} are coprime (see [64, Theorem 2.2.3
and Remark 2.2.4]).

We note that the pair (A, b) is controllable since hj > 0 for
all j ∈ {1, . . . , n − 1}. Observability of the pair (cT , A) is not
guaranteed for all parameter values, and must be checked for
each specific example to show that (A4) (i) holds. Alternatively, a
straightforward calculation shows that

G(z) =
(
c1 c2 . . . cn

)

×

⎛⎜⎜⎜⎜⎝
z − s1 0 · · · 0

−h1 z − s2
. . .

...

. . .
. . . 0

0 −hn−1 z − sn

⎞⎟⎟⎟⎟⎠
−1⎛⎜⎜⎝

1
0
...

0

⎞⎟⎟⎠
=

n∑
j=1

cj
j∏

i=1

hi−1

z − si
, where h0 := 1,

and if |G(z)| is not constant on the unit circle (which is easily
verified graphically), then (A4) (ii) holds.

If u(t) ≡ 1, then, by Theorem 5.5, the asymptotic behaviour
of (6.1) is determined by the function g and the scalar p :=

1/G(1), see also [29, Theorem 2.1]. Biologically, the number p is the
reciprocal of the inherent net reproductive number; see [65, p. 7],

or [23, Section 1] for a helpful discussion. Briefly, if g(y)y < py
for all y > 0, then zero is the only equilibrium of (6.1) and it is
globally asymptotically stable. If, in fact, g(y)y < ρy, for some
ρ ∈ (0, p), then the zero equilibrium is globally exponentially
stable. Every positive y∗ > 0 such that g(y∗) = p gives rise to
a non-zero equilibrium x∗

= (I − A)−1bpy∗. More specifically,
if g satisfies (A5′), then there is a unique positive equilibrium by
Lemma 5.1 and, by statement (1) of Theorem 5.5, for each compact
Γ ⊆ Rn

+
with 0 ̸∈ Γ , there exists ϕ ∈ KL such that

∥x(t; x0, 1) − x∗
∥ ≤ ϕ(∥x0 − x∗

∥, t) ∀ x0 ∈ Γ , ∀ t ∈ Z+.

A consequence is that x∗ is a stable equilibrium and attractive with
domain of attraction equal to Rn

+
\ {0}.

When bounded temporal variation is included in (6.1), meaning
that u(t) ∈ [u−, u+

], where u−, u+ satisfy (4.2), then under the
same assumptions as for stability in the unforced case, namely
(A1)–(A4) and (A5′), statement (1) of Theorem 5.5 implies that the
deviation of x(t) from x∗ is bounded in the uniform manner (5.6).
Moreover, statement (2) of Theorem 5.5 ensures that if u(t) →

u∞ > 0 as t → ∞, then x(t) → (u∗/u∞)x∗ as t → ∞,
demonstrating that the magnitude of the equilibrium x∗, but not
its distribution across the population stages, may be adjusted by
convergent forcing.

For the purposes of a numerical simulation, we use a matrix
model for trout from [63], but assume that recruitment is density-
dependent. Themodel has n = 4 stage-classes (based on combined
age and size, see [63] for details) and is described by (6.1) with

A :=

⎛⎜⎝ 0 0 0 0
0.22 0.16 0 0
0 0.16 0.23 0
0 0 0.23 0.35

⎞⎟⎠ , b =

⎛⎜⎝1
0
0
0

⎞⎟⎠ ,
cT :=

(
0 0 15 25

)
.

(6.2)

As already discussed, assumptions (A1)–(A3) hold by virtue of
the model structure. To verify (A4), we note that the parameter
values in (6.2) ensure that the n × n matrix (c, AT c, . . . , (AT )n−1c)
is invertible, and so the pair (cT , A) is observable.

The matrix A+ bcT has spectral radius 1.07, which corresponds
to unbounded asymptotic growth of the density-independent
model

x(t + 1) = (A + bcT )x(t), x(0) = x0, t ∈ Z+ . (6.3)

Here G(1) = 1.2977 so that p = 1/G(1) = 0.7706 < 1. We use
a Beverton–Holt nonlinearity (see Example 4.1) to model density-
dependence g and set a1 = a2 := κ/(1/p− 1) > 0, where κ > 0 is
a positive constant. The reason for the choice of the parameters a1
and a2 is threefold. First, since a1 = a2, we have that a1/a2 = 1 > p
so that by Table 5.1, assumption (A5′) holds and consequently
Theorem 5.5 is applicable. Second, for small y > 0, g(y) ≈

a1/a2 = 1, and so the model (6.1)–(6.2) approximates the linear
system (6.3), considered in [63], at low population abundances.
Third, the unique y∗ > 0 such that g(y∗) = p is equal to κ , which
thus denotes the population’s cumulative weighted fecundity at
equilibrium, andmay be thought of as a net reproductive carrying-
capacity in this stratified population modelling context. With κ =

200, it follows that the limiting population distribution x∗ is given
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Fig. 6.1. Numerical simulations of the uncontrolled (u(t) ≡ 1) trout model (6.1)–
(6.2) for three different initial conditions.

by

x∗
= (I − A)−1bpy∗

≈
(
154 40 8 3

)T
with cT x∗

= y∗
= κ = 200 .

Fig. 6.1 shows sample state-error trajectories ∥x(t) − x∗
∥ of (6.1)–

(6.2) with u(t) ≡ 1, for a variety of (random) x0. We see that the
trajectories converge to x∗ over time.

Since, by construction

g(uy) =
a1

a2 + uy
=

1

1 +
1−p
pκ uy

∀ u > 0, ∀ y ∈ R+ , (6.4)

non-constant u may be used to model temporal variation of the
constant κ , whichmay correspond to seasonal environmental fluc-
tuations. Each choice of fixed u such that 0 < u ̸= 1 amounts to
replacing κ by κ/u. Fig. 6.2(a) shows sample state-error trajectories
∥x(t) − x∗

∥ for u = kiv, where ki ∈ {0.25, 0.5, 1} and v ∈

F(Z+, [0.7, 1.3]) is (pseudo)random, but bounded. Bounded vari-
ation around x∗ is now observed. Finally, Fig. 6.2(c) contains state-
error trajectories ∥x(t)− (1/u∞)x∗

∥ for three (pseudo)random, but
convergent u ∈ F(Z+, [0.1, 4]), with limit u∞

:= 2, plotted in
Fig. 6.2(b). ♢

Of course, not all stage-structured models correspond to one
of the three Lur’e systems (3.1)–(3.3) that we have considered.
However, the next example demonstrates that in certain cases
simple transformations ensure that our results are applicable.

Example 6.2. Consider the following stage-structure model with
two age-classes (juveniles and adults):

x1(t + 1) = h(x2(t)), x1(0) = x01
x2(t + 1) = (1 − γ )s1x1(t) + s2x2(t), x2(0) = x02

}
t ∈ Z+ , (6.5)

where x1(t) and x2(t) denote the number of juveniles and adults at
time step t , respectively, γ ∈ [0, 1) is a fixed harvesting rate and
s1, s2 ∈ (0, 1] are fixed survival proportions. Further, the function h
in (6.5) is the Ricker function y ↦→ h(y) = αye−βy (see Example 4.1)
with α > 1 and β > 0.

System (6.5) corresponds to the juvenile-only harvesting sce-
nario studied in [66]. Indeed, [66] considers three different har-
vesting scenarios: a juvenile-only harvest, an adult-only harvest,
and a harvest where both stages are targeted in equal proportion.
Here, we only consider the first harvesting scenario, but we allow
temporal variation in the harvesting rate, as opposed to constant
harvesting rates adopted in [66], see also [26,67]. Recall our per-
spective, discussed in the Introduction, that the temporal variation

in the harvesting rate may be exactly known, and even explicitly
chosen (a control action), or may be subject to unknown distur-
bances. In either case, our framework assumes that the temporal
variation is bounded, with known lower and upper bounds u− and
u+, respectively. Consequently, the model we will be considering
is given by

x1(t + 1) = h(x2(t)), x1(0) = x01
x2(t + 1) = v(t)s1x1(t) + s2x2(t), x2(0) = x02

}
t ∈ Z+ , (6.6)

where v(t) ∈ [u−, u+
], for some 0 < u−

≤ u+ < 1. The
system (6.6) is not of the form (3.1), (3.2) or (3.3). However, setting
w = βx2 and f (y) = ye−y, w satisfies the following second-order
non-autonomous scalar difference equation

w(t + 2) = s2w(t + 1) + v(t + 1)s1αf (w(t)) . (6.7)

Defining ξ1 = w, ξ2 = w∇ and u = v∇ , then equation (6.7) can be
rewritten as

ξ1(t + 1) = ξ2(t), ξ1(0) = ξ 01
ξ2(t + 1) = s2ξ2(t) + u(t)s1αf (ξ1(t)), ξ2(0) = ξ 02

}
t ∈ Z+ ,

(6.8)

for some ξ 01 , ξ
0
2 ≥ 0. In matrix form (6.8) may be expressed as

ξ∇
=

(
0 1
0 s2

)
ξ + u

(
0
s1α

)
f
((
1 0

)
ξ
)
,

ξ (0) =

(
ξ 01

ξ 02

)
, (6.9)

which is evidently of the form (3.3) with

A =

(
0 1
0 s2

)
, b =

(
0
s1α

)
, c =

(
1
0

)
,

f : R+ → R+, f (y) = ye−y .

Assumption (A1) is satisfied if, and only if, s2 < 1. Assumption (A2)
is trivially satisfied and (A3) is satisfied as

A + bcT =

(
0 1
s1α s2

)
and

(A + bcT )2 =

(
s1α s2
αs1s2 s22 + αs1

)
≫ 0 .

The transfer functionG is given byG(z) = (s1α)/(z(z−s2)) for z ∈ C
and we see that

|G(z)| =

⏐⏐⏐⏐ s1α
z(z − s2)

⏐⏐⏐⏐ =
s1α

|z − s2|
,

is not constant on the unit circle as s2 > 0, showing that (A4) holds.
Noting that p = 1/G(1) = (1 − s2)/(αs1), it follows from

Table 5.1 that assumption (A6′′) holds, if u−, u+ and p = (1 −

s2)/(αs1) are such that

u+e−2
≤ (1 − s2)/(αs1) < u− . (6.10)

If (6.10) holds, then, for each u∗
∈ [u−, u+

],

ξ ∗
:= (I − A)−1bpy∗

=
1

1 − s2

(
αs1
αs1

)
py∗

= ln
( u∗αs1
1 − s2

)(1
1

)
,

is a unique positive equilibrium of (6.9) with u(t) ≡ u∗ and
statement (2) of Theorem 5.6 applies. Here

y∗
= ln

(u∗

p

)
= ln

( u∗αs1
1 − s2

)
> 0 ,

is the unique positive solution of py∗
= u∗f (y∗). ♢
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Fig. 6.2. Numerical simulations of the trout model (6.1)–(6.2). Panel (a): state error ∥x(t; x0, u) − x∗
∥ against t for one fixed initial condition and three forcing functions

u = kiv. Panel (b): three convergent controls u(t) against t , each with limit u∞
= 2. Panel (c): resulting state errors ∥x(t; x0, u) − (1/u∞)x∗

∥ against t , with respective
controls from panel (b).

6.2. Chaos control

Here we consider the one-dimensional difference equation

x∇
= f (x), x(0) = x0 , (6.11)

where x ∈ F(Z+,R+) and f : R+ → R+, typically from
the perspective that (6.11) has chaotic or complex dynamics. We
consider the utility of so-called proportional feedback (PF) control,
proposed in this context in [46], to create a desirable unique pos-
itive equilibrium which is asymptotically stable. The proportional
feedback method replaces (6.11) by

x∇
= f (v), x(0) = x0

v = ux

}
(6.12)

where u ∈ F(Z+, [u−, u+
]) for some u−, u+ satisfying (4.2). The

choice u(t) ≡ u∗ in (6.12), where 0 < u∗
∈ [u−, u+

], corresponds
to a constant control effort or intensity u∗. We note that (6.12) is
a special case of the Lur’e system (3.2) with n = 1, A = 0 and
b = c = 1, so that assumptions (A1)–(A4) are automatically
satisfied.

From a practical point of view it is desirable that the choice of
u(t) ≡ u∗ in (6.12) gives rise to a difference equationwith (atmost)
only two equilibria: zero (if f (0) = 0) and a non-zero equilibrium,
the latter is desired to be stable and to attract every solution
with positive initial condition. Such a situation is important as the
existence of alternative attractors could result in control producing
an opposite effect to that which is intended [68]. It is known that
the above objective may be achieved by PF control for a range
of u∗ if f satisfies certain conditions. Usual assumptions rely on
monotonicity conditions [42] or on imposing that the Schwarzian
derivative of f has negative sign [44,45]. Here, we present a novel
result for achieving the desired control objective. First we provide
sufficient conditions on f , relevant for the class of models under
consideration,which guarantee the existence of a range of constant
controls u∗ for which (A6′) holds. To maintain the focus of the
present section on properties of the difference equations (6.11)
and (6.12), we relegate the proof of the next lemma to Appendix.

Lemma 6.3. Let 0 < u−
≤ u+ < ∞ and u∗

∈ [u−, u+
]. Assume

that f : R+ → R+ is twice continuously differentiable, and satisfies

(1) f (0) = 0, f (y) > 0 on (0,∞);
(2) f has a unique maximum, achieved at yM > 0 and f ′(y) > 0 on

(0, yM ) and f ′(y) < 0 on (yM ,∞) (f is unimodal).

Assume further that one of the following conditions holds:

(3) there exists a unique yI > yM such that f ′′(y) < 0 on (0, yI ) and
f ′′(y) > 0 on (yI ,∞) (yI is a unique inflection point);

(3′) there exist positive zI and yI with zI < yM < yI and such that
f ′′(y) > 0 on (0, zI ), f ′′(y) < 0 on (zI , yI ), and f ′′(y) > 0 on
(yI ,∞) (f has exactly two inflection points yI and zI ).

If

f ′(0) > 1/u− and u+f ′(yI ) + 1 > 0 , (6.13)

then (A6′) holds with p = 1.

Combining Theorem 5.6 and Lemma 6.3, we immediately ob-
tain the main result of this section pertaining to the PF control
system (6.12).

Corollary 6.4. Let 0 < u−
≤ u+ < ∞ and u∗

∈ [u−, u+
]. Assume

that f : R+ → R+ is twice continuously differentiable and satisfies
conditions (1), (2) and (3) or (3′)of Lemma 6.3. If (6.13) is satisfied,
then there exists a unique x∗ > 0 such that f (u∗x∗) = x∗ and the
following statements hold.

(1) For every compact set Γ ⊂ (0,∞), there exist ϕ ∈ KL and
ψ ∈ K such that, for all x0 ∈ Γ and all u ∈ F(Z+, [u−, u+

]),
the solution of (6.12), denoted by x(· ; x0, u), satisfies (5.6)with
β(u) given by (5.15).

(2) For every x0 > 0 and all u ∈ F(Z+, [u−, u+
]) such that

u(t) → u∗ as t → ∞, the solution of (6.12), denoted by
x(· ; x0, u), satisfies x(t; x0, u) → x∗ as t → ∞.

Statements (1) and (2) of Corollary 6.4 imply in particular
that, under the stated assumptions, there exists a unique positive
equilibrium of (6.12) with u(t) ≡ u∗ which is stable and attracts
every solutionwith a positive initial condition — these conclusions
are similar to those in, for example, [42,44,45]. The conclusions
of the above corollary also complement [43, Theorem 3.5], as it
evidently captures the scenario wherein u(t) → u∗. Furthermore,
statement (1) of Corollary 6.4 provides the estimate (5.6) for the
difference |x(t; x0, u)− x∗

| which applies to every forcing function
u ∈ F(Z+, [u−, u+

]), thereby addressing a situation which is not
considered in [42–45].

We illustrate the corollary with two different examples of pop-
ulation models from the literature.

Example 6.5. Consider the function f1 : R+ → R+ given by

f1(x) = 100x(1 + x)−5, x ∈ R+ , (6.14)

a special case of the Hassell function [69], x ↦→ λx(1 + ax)−b.
The assumptions of [42, Theorem 1] hold: f1 has a positive global
maximum at yM = 1/4, f ′′

1 (y) < 0 for all y ∈ (0, yM ), and
yM f1(y) < yf1(yM ) for all y ∈ (yM ,∞). Hence, [42, Theorem 1]
guarantees that if

u∗
∈ (1/f ′

1(0), yM/f1(yM )) = (1/100, 125/4096) ≈ (0.01, 0.0305) ,

then (6.12) with u(t) ≡ u∗ and f = f1 given by (6.14) admits
a unique positive equilibrium x∗ satisfying f (u∗x∗) = x∗ which
attracts every solution with positive initial condition.
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Fig. 6.3. Graph of the per-capita growth function f2 given by (6.16) which exhibits
an Allee effect — the function increases as the population size increases in an
interval of small population sizes.

Using Corollary 6.4 the above range of control intensities u∗

for which the same conclusion holds can be extended. Indeed, it
is not difficult to see that hypotheses (1)–(3) of Lemma 6.3 hold
with yM = 1/4 and yI = 1/2. Consequently, the hypotheses of
Corollary 6.4 hold for u−, u+ and u∗ such that

u∗
∈ [u−, u+

] ⊂ (1/f ′

1(0),−1/f ′

1(yI )) = (1/100, 729/6400)
≈ (0.01, 0.1139) , (6.15)

where we have used that f ′(yI ) = −6400/729. Moreover, note
that the conclusions of Corollary 6.4 are stronger than those of
[42, Theorem 1], and do not require that u in (6.12) is constant.
Indeed, statement (1) ensures that for each u∗ as in (6.15) the
resulting unique equilibrium x∗ is input-to-state stable, in the
sense that (5.6) holds. Statement (2) ensures that for every x0 > 0,
if u(t) → u∗ as t → ∞, then x(t) = x(t; x0, u) → x∗ as t → ∞. ♢

Example 6.6. The function f2 : R+ → R+ given by

f2(x) = xe3.5(1−4x/3.5)−2/(1+8x), x ∈ R+ (6.16)

is a special case of the function x ↦→ xer(1−x/K )−m/(1+sx) consid-
ered in [70]. With such a choice of f = f2, elementary calculus
shows that the per-capita growth rate function x ↦→ f2(x)/x is
strictly increasing on the interval (0, 1/8) and strictly decreasing
on (1/8,∞), that is, the population model (6.11) exhibits a so-
called Allee effect (see, for example, [71–73] for detailed dis-
cussions of Allee effects). The non-monotonic behaviour of the
per-capita growth rate is illustrated in Fig. 6.3. We claim that the
Allee effect on (6.12) is weak for all u−, u+ satisfying (4.2) with
u− > e−1.5

≈ 0.2231 (which, in particular, includes the uncon-
trolled version (6.11)), meaning that the origin is still repulsive
and there is not a critical population threshold below which the
population goes extinct; see, for example, [73]. To establish these
assertions, we reiterate that (6.12) is a special case of (3.2), with
n = 1, A = 0, b = c = 1 and p = 1 so that (A1)–(A4) hold. Since

lim inf
x↓0

f2(x)
x

= f ′

2(0) = e1.5 , (6.17)

and f2 is bounded, it follows that (A6) holds for all u−, u+ satis-
fying (4.2) with u− > 1/f ′

2(0) = e−1.5. Thus, statement (2) of
Theorem 4.3 applies to (6.12) for all u− > e−1.5 which includes
system (6.11), the uncontrolled (u(t) ≡ 1) version of (6.12).

The presence of a weak Allee effect means that the results
in [42–45] do not apply. We claim that Corollary 6.4 is applicable
to (6.12) with f given by f2 from (6.16), however. To that end, it
may be shown that the sign of f ′

2 coincides with the sign of the
cubic polynomial−256x3+28x+1which has three real roots: two

negative and one positive. Therefore, f2 is unimodal and attains a
maximum at yM ∈ (0.3473, 0.3474). On the other hand, the sign
of f ′′

2 coincides with the sign of the polynomial 8192x5 − 2304x3 −

576x2 + 18x + 3. This polynomial has only two positive real roots
zI ∈ (0.0764, 0.0765) and yI ∈ (0.6221, 0.6222). Therefore, we can
guarantee that hypotheses (1), (2) and (3′) of Lemma 6.3, and thus
the hypotheses of Corollary 6.4, hold for u−, u+ and u∗ such that

u∗
∈ [u−, u+

] ⊂ (e−1.5, 1/2.37) ≈ (0.2231, 0.4219) . (6.18)

To establish (6.18), we have used (6.13), (6.17) and the readily
derived bound: f ′

2(yI ) > −2.37.
We note that 1 does not belong to open interval in (6.18), so that

Corollary 6.4 does not apply for u∗
= 1. In fact, for our parameter

choices, assumption (A6′) does not hold when u∗
= 1, in which

case, x∗
= 3/8 +

√
3/4 is an unstable equilibrium of the feedback

system (6.12) (equivalently, of system (6.11)) with f = f2, see
Fig. 6.4(a). Fig. 6.4(b) illustrates the sector condition (5.4) in (A6′)
holding for u∗

= 0.4, which belongs to the interval in (6.18), and
thus Corollary 6.4 applies. For u∗

= 0.4, the stable equilibrium x∗

is given by the positive solution of the quadratic equation in x,

64(u∗)2x2 + (48 − 16v)u∗x − 3 + 2v = 0 ,

where v = − ln(u∗), which is approximately equal to 1.3847. ♢
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Appendix A. Proof of Lemma 5.4

(1) Statement (1) is obvious and there is nothing to prove.
(2) Assumption (A5) holds by statement (1). It follows from the

hypotheses and the continuity of g that, for every u∗
∈ [u−, u+

],
there exists y∗ > 0 such that g(u∗y∗) = p. Furthermore, y∗ is
unique as g ′ < 0, and we have

g(u∗y) > p ∀ y ∈ (0, y∗) and g(u∗y) < p ∀ y ∈ (y∗,∞). (A.1)

Since y ↦→ g(u∗y)y is non-decreasing and invoking (A.1),we obtain

|g(u∗y)y − g(u∗y∗)y∗
| = g(u∗y∗)y∗

− g(u∗y)y < p(y∗
− y)

= p|y − y∗
| ∀ y ∈ (0, y∗),

and, furthermore,

|g(u∗y)y − g(u∗y∗)y∗
| = g(u∗y)y − g(u∗y∗)y∗ < p(y − y∗)
= p|y − y∗

| ∀ y ∈ (y∗,∞).

We now conclude that (A5′) holds.
(3) We have

p
u−

< f ′(0) = lim
y↓0

f (y) − f (0)
y

= lim
y↓0

f (y)
y

= lim inf
y↓0

f (y)
y
.

The function

h : R+ → R, y ↦→
p
u+

y − f (y)

is differentiable and

h′(y) =
p
u+

− f ′(y), y ∈ R+ .

By hypothesis L := limy→∞f ′(y) < p/u+, and so limy→∞h′(y) > 0,
showing that h(y) → ∞ as y → ∞, establishing (A6).

(4) Fix u∗
∈ [u−, u+

] and let h : R+ → R+ be defined by
h(y) := f (u∗y). Clearly, h(0) = f (0) = 0, h′

≥ 0 and h′′
≤ 0 on

(0,∞). Note further that

h′(0) = u∗f ′(0) > u∗p/u−
≥ p ,
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Fig. 6.4. Sector conditions for the function f2 given by (6.16). The sectors have slope ±p = ±1 and the intersection of f (u∗x) with the line l(x) = x gives rise to a positive
equilibrium x∗ of (6.12). Panel (a): the sector condition (5.4) in (A6′) fails for u = u∗

= 1 (uncontrolled) and the positive equilibrium x∗ is unstable. Panel (b): the sector
condition (5.4) in (A6′) does hold for u∗

= 0.4 ∈ (e−1.5, 1/2.37) and the resulting equilibrium x∗
≈ 1.3847 is stable.

and

lim
y→∞

h′(y) = u∗ lim
y→∞

f ′(y) < u∗p/u+
≤ p .

The sector bound (5.4) now follows from [22, Proposition 4.7] ap-
plied to h, thus establishing (A6′). Finally, by the commentary after
the statement of Lemma 5.3, it is clear that (A6′′) also holds. □

Appendix B. Proof of Lemma 6.3

Fix u∗
∈ [u−, u+

] and note that the bounds in (6.13) imply that
[u−, u+

] ⊂ (1/f ′(0),−1/f ′(yI )).Weneed to check that (A6) and the
sector condition (5.4) in (A6′) hold. By hypothesis, f is continuous
and f (y) > 0 for y > 0. Since f is assumed (right) differentiable
at y = 0, the first condition in (4.3) follows immediately from the
first inequality in (6.13). Since f is continuous and assumed to have
a unique global maximum, attained at yM < ∞, it follows that f is
bounded and hence the second condition in (4.3) also holds. We
conclude that (A6) is satisfied.

We proceed to prove (5.4). Define h : R+ → R+ by h(y) :=

f (u∗y) − y. Note that h(0) = 0 and

h′(0) = u∗f ′(0) − 1 ≥ u−f ′(0) − 1 > 0 ,

where we made use of (6.13). Hence h(y) > 0 for all sufficiently
small y > 0. Since f is bounded, it follows that h(y) < 0 for y > 0
sufficiently large. By the intermediate value theorem it follows that
h(y) = 0 has positive solutions. Since h′(0) > 0, it is clear that
there exists a minimal positive solution y∗ > 0 of h(y) = 0. We
claim that (i) h has no other positive zeros (meaning that y∗ is the
unique positive number satisfying f (u∗y∗) = y∗) and (ii) the sector
condition (5.4) holds. To see this, we consider two cases.

Case 1: Assumption (3) holds. In this case, h is strictly concave
on [0, yI/u∗

]. Thus, if y∗
∈ (0, yI/u∗

], then y∗ is necessarily the
only zero of h in [0, yI/u∗

], and furthermore, since h decreases on
(yI/u∗,∞), it follows that y∗ is the unique positive zero of h. Now
assume that y∗ > yI/u∗. To prove that y∗ is the unique zero of h, it
is sufficient to establish that h is strictly decreasing on (yI/u∗,∞).
Since f ′(yM ) = 0, f ′(y) < 0 for y > yM , yM < yI , and, by
assumption (3), we have that

|f ′(u∗y)| ≤ |f ′(yI )| = −f ′(yI ) ∀ y > yM/u∗ , (B.1)

whence, in light of (6.13), (B.1) and the inequality u∗
≤ u+, it

follows that

h′(y) = u∗f ′(u∗y) − 1 ≤ u∗
|f ′(u∗y)| − 1

≤ −u+f ′(yI ) − 1 < 0 ∀ y > yI/u∗.

Hence, h is strictly decreasing on (yI/u∗,∞), implying that y∗ is the
unique zero of h.

In either situation, since y∗ > 0 is the unique positive solution
of f (u∗y) = y, the first condition in (6.13) implies that

f (u∗y) − f (u∗y∗) > y − y∗
= −|y − y∗

| ∀ y ∈ (0, y∗) , (B.2)

and

f (u∗y) − f (u∗y∗) < y − y∗
= |y − y∗

| ∀ y ∈ (y∗,∞) . (B.3)

In light of (B.2), (B.3) and since f (0) = 0, to establish (5.4), it now
suffices to verify that y∗ is the only positive solution of

f (u∗y) = 2y∗
− y. (B.4)

Seeking a contradiction, suppose that 0 < y†
̸= y∗ also solves (B.4).

Then

f (u∗y∗) − f (u∗y†) = 2y∗
− y∗

− (2y∗
− y†) = y†

− y∗ ,

and, by the mean-value theorem, there exists a number ξ between
y∗ and y† such that

− 1 =
f (u∗y∗) − f (u∗y†)

y∗ − y†
= u∗f ′(u∗ξ ). (B.5)

Invoking assumption (2) shows that ξ > yM/u∗. However, in light
of (6.13), (B.1) and (B.5), we now arrive at the contradiction

− 1 = u∗f ′(u∗ξ ) = −u∗
|f ′(u∗ξ )| ≥ u∗f ′(yI ) ≥ u+f ′(yI ) > −1 ,

completing the argument.
Case 2: Assumption (3′) holds. Note that if y∗ > yI/u∗, then y∗

is the unique zero of h, as h is strictly decreasing on (yI/u∗,∞).
If y∗

≤ yI/u∗, then, seeking a contradiction, assume that y♯ > 0
is another, different, zero of h, which then necessarily satisfies
y∗ < y♯. Since h(0) = 0, applying Rolle’s theorem twice, it follows
that there exist z∗ and z♯ such that 0 < z∗ < y∗ < z♯ < y♯ and
h′(z∗) = h′(z♯) = 0. Consequently, applying Rolle’s theorem again,
there exists w ∈ (z∗, z♯) such that

h′′(w) = (u∗)2f ′′(u∗w) = 0 . (B.6)

Now zI/u∗ < z∗ because h′(0) > 0, and thus, by assumption (3′),
we have that h′ does not vanish on (0, zI/u∗

]. Moreover, h′(z♯) = 0
implies that f ′(u∗z♯) > 0, and so z♯ < yM/u∗ < yI/u∗ by as-
sumption (2). Hence, u∗w ∈ (zI , yI ) which leads to a contradiction
with (B.6), as f ′′ < 0 on (zI , yI ).

The proof that the sector condition (5.4) holds is omitted as it is
identical to that in Case 1. □
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