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Abstract
Boundedness, persistence and stability properties are considered for a class of nonlin-
ear, possibly infinite-dimensional, forced difference equations which arise in a number
of ecological and biological contexts. The inclusion of forcing incorporates the effects
of control actions (such as harvesting or breeding programmes), disturbances induced
by seasonal or environmental variation, or migration. We provide sufficient conditions
under which the states of these models are bounded and persistent uniformly with
respect to the forcing terms. Under mild assumptions, the models under consideration
naturally admit two equilibria when unforced: the origin and a unique non-zero equi-
librium. We present sufficient conditions for the non-zero equilibrium to be stable in
a sense which is strongly inspired by the input-to-state stability concept well-known
in mathematical control theory. In particular, our stability concept incorporates the
impact of potentially persistent forcing. Since the underlying state-space may be
infinite dimensional, our framework enables treatment of so-called integral projec-
tion models (IPMs). The theory is applied to a number of examples from population
dynamics.
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1 Introduction

We consider boundedness, persistence and stability properties of the following class
of forced difference equations

x∇ = Ax + b f (u, c∗x) + v, x(0) = x0 , (1.1)

where x∇ denotes the image of x under the left shift operator, that is, x∇(t) = x(t +
1) for all nonnegative integers t . The difference equation (1.1) comprises a linear
component Ax , where A is a bounded linear operator on the state-space X , assumed
to be aBanach space, and a nonlinear component b f (u, c∗x). Here b ∈ X and c∗ ∈ X∗,
the dual space of X , and f is a (typically nonlinear) real-valued function that may
depend on a variable u which, alongwith v, denotes forcing. Depending on the context,
u and v are interpreted as a control, input or disturbance. Full details are given in Sect. 3.

Our motivation for studying (1.1), and particularly the properties of boundedness,
persistence and stability, is the potential for applications to population biology and
theoretical ecology where models of the form (1.1) often arise. There is clear bio-
logical relevance for these three properties depending on the context. Boundedness is
a necessary property of a sensible biological model and, moreover, is a key concept
when seeking to understand the potential effects of an invasive species or mutant in
a novel environment, see, for example, Eager et al. (2014). The notion of persistence
relates to the survival of a population (or survival of certain stage-classes) and is rel-
evant, for example, in the context of providing lower bounds for predicted yield in
agriculture and horticulture. We comment that several persistence concepts and their
properties have been studied in the literature (Franco et al. 2017; Schreiber 2012; Smith
and Thieme 2011, 2013; Wen et al. 2016). Informally, boundedness and persistence
are opposite properties, concerned with populations becoming neither too big, or too
small, respectively. Stability is, of course, a fundamental consideration in all fields
where dynamic modelling occurs and pertains to both the qualitative and quantitative
long-term behaviour of solutions.

Since we seek to model a variety of structured populations, see for instance Caswell
(2001), Cushing (1998), the dimension of the state-space X is not constrained. In fact,
the case dim X = ∞ is included in our development, and therefore, (1.1) can be
used to model certain partial-difference and integro-difference equations. The latter,
in form of so-called integral projection models, are often employed to model popu-
lations with a continuous structure or stage-parameter, in which case the state space
X of (1.1) is naturally a space of functions. Furthermore, in a populations dynamics
context, the state variable x must be nonnegative-valued to be biologicallymeaningful,
corresponding to abundance, concentration or density, for example. Consequently, we
impose suitable positivity assumptions on the model data A, b, c∗ and f implying that
(1.1) is a positive dynamical system, that is, the dynamics leave a positive cone in X
invariant. In this sense, the current paper is embedded in the research field of positive
dynamical systems on which there exists a rich literature, see Berman et al. (1989),
Haddad et al. (2010), Krasnosel’skij et al. (1989), Krause (2015), and Luenberger
(1979), to mention a few references.
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The dynamics of the unforced version of (1.1) (that is, f (u, y) = f (y) and v = 0)
have recently been studied by several researchers in a variety of biologically motivated
contexts (Eager 2016; Eager et al. 2014; Franco et al. 2014; Rebarber et al. 2012; Smith
and Thieme 2013; Townley et al. 2012). Under certain assumptions, (1.1) admits a
so-called “trichotomy of stability” where precisely one of three situations occurs: zero
is globally asymptotically stable; there is a unique non-zero equilibriumwhich attracts
all non-zero solutions; or, all non-zero solutions diverge asymptotically.

In the literature, the study of boundedness, persistence and stability properties
of (1.1) does not usually include forcing [denoted by the terms u and v in (1.1)], with
Franco et al. (2017) being an exception. As is well-known, classical (Lyapunov) sta-
bility notions are not applicable when exogenous, and potentially persistent, forcing
is present, and forcing can have adverse, extreme and unintuitive effects on nonlinear
dynamics, see, for example, Teel and Hespanha (2004). Forcing is very natural and
important in a biological or ecological context, however, as it allows for the modelling
of human interventions, such as management strategies, hunting, poaching, predation
or farming, as well as uncontrolled seasonal or demographic variation, or migration.
Mathematical systems and control theory provides a toolbox for the study of con-
trol and forcing in dynamical systems (Hinrichsen and Pritchard 2005; Sontag 2013).
Moreover, models of the form (1.1) arise in mathematical control theory in which
context they are often called Lur’e systems after the Soviet scientist A. I. Lur’e who
made early contributions to their stability properties in the 1940s. The study of the sta-
bility properties of Lur’e systems constitutes absolute stability theory which, loosely
speaking, seeks to conclude stability of the (unforced) system (1.1) through the inter-
play of frequency-domain properties of the function c∗(s I − A)−1b and boundedness
or sector properties of the nonlinearity f , yielding readily checkable sufficient con-
ditions for global asymptotic and exponential stability of the unforced system (1.1),
see Haddad and Chellaboina (2008), Hinrichsen and Pritchard (2005), Khalil (2014),
Liberzon (2006), Vidyasagar (1993) and Yakubovich et al. (2004). Furthermore, abso-
lute stability is at the heart of Rebarber et al. (2012), Townley et al. (2012), where
it is used to derive the above-mentioned stability trichotomy. Recent work Bill et al.
(2016), Gilmore et al. (2019), Sarkans and Logemann (2015) and Sarkans and Loge-
mann (2016a) has combined absolute stability ideas with input-to-state stability (ISS)
theory to obtain stability criteria which apply to forced Lur’e systems. The ISS concept
seeks to generalise the familiar estimate: there exist M ≥ 1 and γ ∈ (0, 1) such that

‖x(t)‖≤M
(
γ t‖x(0)‖+ max

0≤τ≤t−1
‖d(τ )‖), ∀ t ∈Z+, (1.2)

valid for the forced linear system x∇ = Ax +d with exponentially stable A, to forced
nonlinear control systems. Note that (1.2) holds uniformly in x(0) and d and that,
on the right-hand side of (1.2), the impact of the initial state x(0) decays over time,
and the contributions of x(0) and the forcing d are separated. ISS was introduced by
Sontag (1989) in 1989 and has, in the last 30 years, been developed into a mature
stability theory of forced nonlinear control systems; see, for instance Dashkovskiy
et al. (2011), Karafyllis and Jiang (2011) and Sontag (2006).
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1032 D. Franco et al.

Starting with an ISS result from Gilmore et al. (2019), here we derive sufficient
conditions for the state x of (1.1) to exhibit certain boundedness, persistence and
stability properties. Our main results are Theorems 4.4 and 5.2, which address bound-
edness and persistence, and stability, respectively. The persistence notion employed is
related to that in Smith and Thieme (2011, 2013), see Sect. 4, and the stability concept
we consider is closely related to the above-mentioned ISS property, see Sect. 5. We
present conditions under which the unforced system (1.1) admits, in addition to the
zero equilibrium, a unique non-zero equilibrium which is both persistent and ISS (in
suitable senses). A consequence of the stability property is the guarantee of asymptotic
convergence of the state x when subject to convergent forcing (see statement (b) of
Theorem 5.2 and Corollary 5.6). We remark that the theory developed in this paper is
a far reaching generalization of our earlier paper (Franco et al. 2017), and has partial
overlap with the works (Rebarber et al. 2012; Smith and Thieme 2013; Townley et al.
2012). We discuss the generalization of Franco et al. (2017), and compare our results
to those in Rebarber et al. (2012), Smith and Thieme (2013), Townley et al. (2012),
across Remarks 4.6 and 5.5.

The paper is organised as follows. In Sect. 2 we collect a number of mathematical
preliminaries, and in Sect. 3 we provide more details on the the class of models (1.1).
Sections 4 and 5 contain the main results pertaining to boundedness and persistence,
and stability, respectively. Section 6 contains detailed discussions of both finite and
infinite-dimensional examples. In particular, we provide a detailed discussion of two
infinite-dimensional systems both of which involve integral projection models (Childs
et al. 2003; Easterling et al. 2000; Ellner and Rees 2006; Merow et al. 2014; Rebarber
et al. 2012). Some summarising remarks are made in Sect. 7. Proofs can be found in
Appendix A, and a number of other technicalities have been relegated to Appendices B
and C.

2 Preliminaries

As usual let N, Z, R and C denote the positive integers (natural numbers), integers,
real numbers and complex numbers, respectively. Furthermore,

Z+ := {
m ∈ Z : m ≥ 0

} = N ∪ {0} and R+ := {
r ∈ R : r ≥ 0

}
.

LetY and Z benormedvector spaces. The space of all bounded linear operatorsY → Z
is denoted by L(Y , Z). As usual, we set L(Y ) := L(Y ,Y ) and Y ∗ := L(Y ,F), where
F = R if Y is real and F = C if Y is complex. For T ∈ L(Y , Z), the adjoint operator
T ∗ ∈ L(Z∗,Y ∗) is defined by (T ∗z∗)(y) := (z∗T )(y) for all y ∈ Y and z∗ ∈ Z∗.

The open ball centred at y ∈ Y of radius ρ > 0 is defined by

B(y, ρ) := {
x ∈ Y : ‖x − y‖ < ρ

}
.
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Boundedness, persistence and stability for classes… 1033

In this paper, the letters X and C will always denote a real Banach space and a cone
in X , respectively. Recall that C ⊂ X is a cone if C is closed, convex, ρC ⊂ C for all
ρ ≥ 0 and C ∩ (−C) = {0}, where

ρC := {ρx : x ∈ C} and − C := {−x : x ∈ C} .

Note that the singleton {0} is a cone and that 0 ∈ C . If C �= {0}, then the cone C is
said to be non-trivial. Furthermore, note that {ρx + σ y : x, y ∈ C, ρ, σ ≥ 0} ⊂ C ,
as follows from convexity and the property that ρC ⊂ C for all ρ ≥ 0. We say that C
is reproducing if X = C − C , where C − C := {x − y : x, y ∈ C}. If the closure of
C − C is equal to X , then C is said to be total.

We define a partial order on X by setting, for x, y ∈ X ,

x ≥ y if x − y ∈ C .

We write x > y if x ≥ y and x �= y. Furthermore, if intC �= ∅ and x − y ∈ intC ,
then x > y (because otherwise 0 ∈ intC , in which case there exists ρ > 0 such that
B(0, ρ) ⊂ C and thus B(0, ρ) ⊂ C ∩ (−C) which is impossible).

Defining C∗ ⊂ X∗ by

C∗ := {
x∗ ∈ X∗ : x∗(x) ≥ 0 for all x ∈ C

}
,

then it is straightforward to verify that C∗ satisfies all the properties of a cone except
the condition C∗ ∩ (−C∗) = {0}. It is well known (Deimling 1985, p. 221) and not
difficult to show that C∗ is a cone if, and only if, C is total, in which case C∗ is called
dual cone of C .

For the rest of the paper it will always be assumed that the cone C is total, and so,
C∗ is a cone in X∗.

Note that if x, y ∈ C , x∗ ∈ C∗ and x ≥ y, then x∗(x) ≥ x∗(y). The partial order
on X∗ induced by C∗ will also be denoted by “≥”, that is, for x∗, y∗ ∈ X∗, we write
x∗ ≥ y∗ if x∗ − y∗ ∈ C∗. It is clear that, for x∗, y∗ ∈ X∗, we have x∗ ≥ y∗ if, and
only if, x∗(x) ≥ y∗(x) for all x ∈ C .

In the following we will be interested in scenarios wherein intC∗ �= ∅. The first
statement of the next lemma provides a characterization of elements in intC∗.

Lemma 2.1 Let x∗ ∈ X∗.

(a) The functional x∗ is in intC∗ if, and only if,

inf
ξ∈C, ‖ξ‖=1

x∗(ξ) > 0 . (2.1)

(b) If x∗ ∈ intC∗, y∗ ∈ C∗ and y∗ ≥ x∗, then y∗ ∈ intC∗.

The following example describes some cones which we shall use in Sect. 6. Further
examples can be found in, for instance, Berman et al. (1989), Berman and Plemmons
(1994) and Krasnosel’skij et al. (1989).
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Example 2.2 (a) Let X = R
n . Then C = R

n+ is a reproducing cone. The dual cone
C∗ can be identified with C and intC∗ = intC = (0,∞)n .

(b) Let � ⊂ R
q be measurable, and X = Lr (�,R), where 1 ≤ r ≤ ∞. Then

C = Lr (�,R+) is a reproducing cone, and, for r < ∞, the dual cone C∗ is
given by C∗ = Ls(�,R+), where 1/r + 1/s = 1. Note that intC∗ �= ∅ if, and
only if, r = 1. If r = 1, then C∗ = L∞(�,R+) and h ∈ intC∗ if, and only if,
ess inf h > 0.

(c) Let X1 and X2 be real Banach spaces, and let C1 ⊂ X1 and C2 ⊂ X2 be cones.
ThenC1×C2 is a cone in X1× X2. This cone is total (reproducing) if, and only if,
both, C1 and C2 are total (reproducing). Moreover, (C1 × C2)

∗ can be identified
withC∗

1 ×C∗
2 . The interior of (C1×C2)

∗ is non-empty if, and only if, the interiors
of each of C∗

1 and C∗
2 are non-empty. ♦

An operator T ∈ L(X) is said to be positive if TC ⊂ C , where TC := {T x : x ∈ C},
and in this case we write T ≥ 0. Since

(T ∗x∗)(x) = x∗(T x) ∀ x ∈ X , ∀ x∗ ∈ X∗ ,

it follows that if T is positive, then T ∗ is positive.
We say that an operator T ∈ L(X) is exponentially stable if there exists M ≥ 1

and μ ∈ (0, 1) such that ‖T t‖ ≤ Mμt for all t ∈ Z+, or equivalently, if the spectrum
of T is contained in the open unit disc of the complex plane.

Let Y be a normed vector space. For S ⊂ Y , let F(Z+, S) denote the set of all
functions Z+ → S. For u ∈ F(Z+,Y ) and t ∈ Z+, we set

‖u‖�∞(0,t) := max
{‖u(τ )‖ : τ ∈ Z+, τ ≤ t

}
.

If u ∈ F(Z+,Y ) is bounded, then we define ‖u‖�∞ := sup{‖u(t)‖ : t ∈ Z+}.
For the proof of the stability theorems in Sect. 5, we require an input-to-state

stability result from control theory. To explain this result, consider the system

x∇ = Ax + bh(c∗x) + v, x(0) = x0 ∈ X , (2.2)

where x∇ is the left-shifted version of x , that is, x∇(t) = x(t + 1), A ∈ L(X), b ∈ X
and c∗ ∈ X∗, h : R → R is a continuous nonlinearity and v ∈ F(Z+, X) is a forcing
function (input, control). In control theory, systems of the form (2.2) are sometimes
referred to as Lur’e systems. Obviously, (2.2) can be thought of as a feedback system
obtained by application of the feedback law ω = h(y) to the linear controlled and
observed system

x∇ = Ax + bω + v, y = c∗x, x(0) = x0 . (2.3)

The functionsω and v in (2.3) are interpreted as inputs (controls, disturbances, forcing
functions) and y is called the output (measurement, observation) of (2.3). If v = 0,
then (2.3) reduces to

x∇ = Ax + bω, y = c∗x, x(0) = x0 . (2.4)
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Associated with (2.4) is the so-called transfer function

G(z) := c∗
c (z I − Ac)

−1b , (2.5)

where z is a complex variable. Here Ac and c∗
c denote the canonical complex extensions

of A and c∗, respectively, to Xc, the complexification of X ; see, for example Deimling
(1985).

We collect some properties of the discrete-time linear control system (2.4) and its
transfer function (2.5). What follows is standard in control theory, but hard to find in
one location in the infinite-dimensional setting. Suitable references include Staffans
(2005), Chapter 12 and Coughlan (2007), Chapter 3 and Section 6.1. Applying the
Z -transform (denoted by Z) to (2.4), we obtain

(Z y)(z) = zc∗
c (z I − Ac)

−1x0 + G(z)(Zω)(z) .

The above identity shows that, in the frequency domain, the effect of the input on the
linear dynamics is described by the product of the transfer function and the Z -transform
of the input.

If A is exponentially stable, then we set

‖G‖H∞ := sup
|z|=1

|G(z)| = sup
|z|≥1

|G(z)| ,

where H∞ refers to the space of all bounded holomorphic functions defined on the
complement of the closed unit disc. Denoting the output of (2.4) corresponding to the
initial condition x(0) = 0 by y(ω), we have that

sup
{‖y(ω)‖�2 : ‖ω‖�2 = 1

} = ‖G‖H∞ , where ‖ω‖�2 :=
( ∞∑

t=0

|ω(t)|2
)1/2

,

which provides an appealing interpretation of ‖G‖H∞ in time-domain terms.
For later purposes, we note that, for every complex number ζ ,

c∗
c (z I − (Ac + ζbc∗

c ))
−1b = G(z)

1 − ζG(z)
. (2.6)

If A is exponentially stable, then the function on the right-hand side of (2.6) is mero-
morphic on the complement of the closed unit disc.

The following result is a special case of Gilmore et al. (2019), Corollary 3.3 and
shall underpin our stability results in Sect. 5.

Theorem 2.3 Consider the system (2.2), denote its solution by x(· ; x0, v), and assume
that h is continuous and A is exponentially stable. If

sup
y∈R, y �=0

|h(y)/y| < 1/‖G‖H∞ ,
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1036 D. Franco et al.

where 1/‖G‖H∞ := ∞ if G(z) ≡ 0, then there exist M ≥ 1, μ ∈ (0, 1) and N > 0
such that

‖x(t; x0, v)‖ ≤ Mμt‖x0‖ + N‖v‖�∞(0,t) ∀ t ∈ Z+, ∀ x0 ∈ R
n, ∀ v ∈ F(Z+, X) .

(2.7)

Recall that in a control theoretic setting v and x in (2.2) are called the input and state,
respectively. If system (2.2) satisfies (2.7) (for some M ≥ 1, μ ∈ (0, 1) and N > 0),
then the zero equilibrium of the unforced (v(t) ≡ 0) system x∇ = Ax + bh(c∗x) is
said to be exponentially input-to-state stable (ISS). Frequently, for brevity, it is also
said that (2.2) is exponentially ISS. Obviously, exponential ISS implies ISS, and the
ISS concept is a standard stability concept in nonlinear control theory. It was defined by
Sontag in the 1989 paper (Sontag 1989) in the context of general forced (or controlled)
finite-dimensional nonlinear systems, and subsequently, a substantial Lyapunov the-
oretic ISS framework has been developed in the finite-dimensional setting, see, for
example, Dashkovskiy et al. (2011), Jiang and Wang (2001), and Sontag (2006). ISS
is a crucial concept as stability properties for nonlinear forced systems do not, in gen-
eral, follow from stability properties of the unforced system; see, for example Teel
and Hespanha (2004). Note that the converse to the above is true in the sense that (2.7)
does imply that the zero equilibrium of the unforced system x∇ = Ax + bh(c∗x) is
globally exponentially stable (GES).

3 Density-dependent populationmodels with forcing

We consider the forced difference equation (1.1). Here A ∈ L(X) is positive, b and
c∗ are non-zero elements in C and C∗, respectively, and f : U × R+ → R+ is a
continuous nonlinearity, where U ⊂ R is compact. The functions u ∈ F(Z+,U )

and v ∈ F(Z+,C) are forcing terms, and we shall always assume that the initial
condition belongs to the positive cone, x0 ∈ C . Recall that (1.1) can be thought of as
the feedback interconnection of ω = f (u, y) and the linear system (2.3).

Typical scenarios for f include:

• f (w, y) = g(wy)y, where g : (0,∞) → R+ is continuous and such that
limy→0 g(y)y exists and is finite;

• f (w, y) = g(wy), where g : R+ → R+ is continuous;
• f (w, y) = wg(y), where g : R+ → R+ is continuous.

In each of the above cases, U is a compact subset of R+. We point out that there are
interesting and relevant examples of nonlinearities which do not fall into any of the
above three scenarios, one such example is given by f (w, y) = y/(w + yα), where
α > 0 and α �= 1.1

We impose the following positivity and stability assumptions on the linear system
determined by A, b and c∗.

1 Note that if α = 1, then f (w, y) = g(y/w), where g(y) = y/(1 + y).
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(L1) A ∈ L(X) is positive and exponentially stable.
(L2) b ∈ C , c∗ ∈ C∗, b �= 0 and c∗ �= 0.

Further assumptions on f will be specified in Sects. 4 and 5.
The positivity conditions in (L1) and (L2), together with the assumption that the

values of f are non-negative, imply that, for all x0 ∈ C , u ∈ F(Z+,U ) and v ∈
F(Z+,C), the solution x of (1.1) remains in the cone C .

Our next result introduces a key quantity, denoted p, associated with (1.1), and
records some elementary consequences of (L1) and (L2).

Proposition 3.1 Assume that (L1) and (L2) are satisfied, and let G be given by (2.5).
The following statements hold.

(a) ‖G‖H∞ = G(1) ≥ 0 and

p := 1

G(1)
∈ (0,∞], where p := ∞ if G(1) = 0. (3.1)

(b) The operator A + λbc∗ is exponentially stable for all λ ∈ [0, p).
(c) If p < ∞, then 1 is an eigenvalue of Ac + pbc∗

c , in particular, A + pbc∗ is not
exponentially stable.

The number p in Proposition 3.1, which will play a crucial role throughout, is equal
to the stability radius of the linear system specified by A, with perturbation structure b
and c∗, as captured by statements (b) and (c) of Proposition 3.1. That is, p = min |k|,
where the minimum is taken over all k such that A+ kbc∗ is not exponentially stable.

The analysis of boundedness, stability and persistence properties of (1.1) relies on
the interplay between p, capturing stability of the linear component, and the nonlinear
term f , combined with suitable positivity properties. The interplay between p and
f is described mathematically by our nonlinear assumptions (N1), (N2) and (N3) in
Sects. 4 and 5.

A biological interpretation of p depends on the specific context. For instance, recall
that, in our usual setting (1.1) models a single, stage-structured population, subject to
forcing. The right hand side of (1.1) captures the life-cycle over one time-step, includ-
ing growth/transitions between stage-classes, and recruitment into the population. The
form of (1.1) contains both linear and non-linear terms, corresponding to processes
which are assumed to be density independent and density dependent, respectively. Fol-
lowing the interpretation given in Eager (2016), Rebarber et al. (2012), Townley et al.
(2012), for a population distribution x , the term Ax describes survival and growth,
and b f (w, c∗x)models density-dependent recruitment (combining fecundity of repro-
ductive individuals and survival of offspring). Here offspring are distributed into the
population according to b; and there are (at least) two interpretations of f (w, c∗x):
(i) c∗x is the number of reproductivemembers of the population, and f is the density-

dependent recruitment, or;
(ii) the number of offspring is c∗x and multiplied by f (w, c∗x)/c∗x , the den-

sity dependent per-capita survival or establishment probability, yielding total
recruitment. Clearly, for this interpretation to be biologically meaningful y �→
f (w, y)/y must take values in [0, 1].
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The setting (ii) is adopted in Eager (2016), and more biological context is given there.
Indeed, we quote (Eager 2016, p. 43): “p is simply the establishment probability that
would cause stasis in a density-independent setting [meaning f (y) = py for all y].”
Further, it is noted in Eager (2016), p. 44 that p is also equal to the reciprocal of the
inherent net reproductive number of A + bc∗ (in the sense of Cushing (1998), p. 7),
see Eager (2016), p. 44 for more details.

4 Boundedness and persistence

In this section we address the first two properties of boundedness and persistence.
Assume that (L1) and (L2) hold, and let U ⊂ R be compact. Throughout, U will be
the range of permitted values for the scalar forcing term u. In the special cases we have
in mind, U ⊂ R+ with 0 /∈ U (see examples further below), but this is not required
in the general theory we will develop.

For the rest of the paper, for given x0 ∈ C , u ∈ F(Z+,U ) and v ∈ F(Z+,C) we
let x = x(· ; x0, u, v) denote the solution of (1.1), which is obviously unique. As a
matter of convenience, we set

Cρ := C ∩ B(0, ρ), where ρ > 0 .

Let Y be a real normed space and T ∈ L(X ,Y ). We say that (1.1) is ultimately semi-
globally T -persistent if, for every bounded closed set  ⊂ C with 0 /∈  and every
ρ > 0, there exist τ ∈ Z+ and η > 0 such that, for all x0 ∈ , u ∈ F(Z+,U ) and all
v ∈ F(Z+,Cρ),

‖T x(t + τ ; x0, u, v)‖ ≥ η ∀ t ∈ Z+ .

Note that this persistence property is “semi-global” in contrast to the global persistency
concepts for unforced systems considered in Smith and Thieme (2011, 2013). On the
other hand, the above concept has stronger uniformity properties than those in Smith
and Thieme (2011, 2013): the same τ “works” for all x0 ∈ , u ∈ F(Z+,U ) and all
v ∈ F(Z+,Cρ). The relevance of persistence in the context of population dynamics
is obvious: its absence is equivalent to extinction. For all practical purposes the semi-
global nature of the above persistency concept is sufficient: for any given application
context, there exists a bounded closed set  ⊂ C such that every practically relevant
initial condition will belong to . In the special case wherein Y = X and T = I , we
use the term “persistent” rather than “I -persistent”. If, in the above definition, τ = 0,
then we simply say that (1.1) is semi-globally T -persistent.

We remark that if, for every u ∈ U , the function y �→ f (u, y) is non-decreasing,
then, for z∗ ∈ C∗, the system (1.1) is ultimately semi-globally z∗-persistent if, and
only if, for every bounded closed set  ⊂ C , 0 /∈ , there exist τ ∈ Z+ and η > 0
such that z∗(x(t+τ ; x0, u, 0)) ≥ η for all x0 ∈ , u ∈ F(Z+,U ) and all t ∈ Z+, that
is, the forcing v is irrelevant for persistency in this scenario. Moreover, if additionally
the norm on X is monotone, then (1.1) is ultimately semi-globally persistent if, and
only if, for every bounded closed set  ⊂ C , 0 /∈ , there exist τ ∈ Z+ and η > 0
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such that ‖x(t + τ ; x0, u, 0)‖ ≥ η for all x0 ∈ , u ∈ F(Z+,U ) and all t ∈ Z+. In
summary, under certain additional assumptions on f and the positive cone C , we can
decouple persistence of (1.1) from the additive forcing v.

The following result gives a necessary condition for persistence.

Proposition 4.1 Assume that (L1) and (L2) hold and f (w, 0) = 0 for all w ∈ U.
If (1.1) is ultimately semi-globally persistent, then c∗(I − A)−1x > 0 for all x ∈ C,
x �= 0. In particular, G(1) = c∗(I − A)−1b > 0, or, equivalently, p < ∞, where p
is given by (3.1).

Next we introduce suitable assumptions on f which will enable us to prove bound-
edness and persistence results for the system (1.1).

(N1) U ⊂ R is compact, f : U × R+ → R+ is continuous, f (w, y) > 0 for all
w ∈ U and y > 0 and

lim sup
y→∞

maxw∈U f (w, y)

y
< p , (4.1)

where p is given by (3.1).
(N2) (N1) holds and

lim inf
y→0

minw∈U f (w, y)

y
> p . (4.2)

Remark 4.2 We provide some interpretations of the assumptions (N1) and (N2) in the
biological context for (1.1) described at the end of Sect. 3. In the setting (ii), (N1)means
that, at large population abundance, the per-capita survival probability f (w, y)/y is
less than p, the level which results in population stasis. We require that the inequality
holds in the “worst case” across all possible control actions w, hence the maximum
over w in (4.1). In essence, (N1) prevents populations from becoming unboundedly
large, as there is a sufficiently diminishing return in recruitment at very high population
abundance.

Whereas (N1) pertains solely to large populations, (N2) pertains to small popula-
tions as well. Specifically the latter requires that, at low population abundance, the
per-capita survival probability f (w, y)/y is greater than p, again with the inequality
holding in the “worst case” across all possible control actions, hence the minimum
over w in (4.2). Consequently, at low population abundances, we expect to see pop-
ulation growth. In particular, we do not have an Allee effect see, for example, Taylor
and Hastings (2005).

Note that neither (N1) nor (N2) place monotonicity constraints on f . ♦

The following result provides classes of examples for which conditions (N1) or (N2)
are satisfied.

Proposition 4.3 Let U ⊂ R+ be compact, 0 /∈ U and set u− := minU and u+ :=
maxU, in which case 0 < u− ≤ u+ < ∞.

(a) Let g : (0,∞) → (0,∞) be continuous and such that f0 := limy→0 g(y)y exists
and is finite, and define f : U × R+ → R+ by
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f (w, y) =
{
g(wy)y, for w ∈ U and y > 0
f0/w, for w ∈ U and y = 0.

If lim supy→∞ g(y) < p, then f satisfies condition (N1). If additionally,
lim inf y→0 g(y) > p, then f satisfies (N2).

(b) Let g : R+ → R+ be continuous and such that g(y) > 0 for all y > 0, and
define f : U × R+ → R+ by f (w, y) := g(wy) or by f (w, y) := wg(y) for all
w ∈ U and y ∈ R+. If lim supy→∞(g(y)/y) < p/u+, then f satisfies (N1). If
additionally, lim inf y→0 g(y)/y > p/u−, then f satisfies (N2).

The next result shows that (N1) and (N2), in combination with (L1) and (L2) and
a suitable “strict” positivity assumption (see (P1) below), are sufficient to establish
semi-global boundedness and persistence properties of (1.1). We remark that assump-
tion (N2) will have to be somewhat strengthened for the stability results in Sect. 5.

Theorem 4.4 Consider the initial-value problem (1.1) and let p be given by (3.1).
Assume that (L1) and (L2) hold, and let ρ > 0. The following statements hold.

(a) If (N1) is satisfied and  ⊂ C is bounded, then there exists γ > 0 such that, for
all x0 ∈ , u ∈ F(Z+,U ) and v ∈ F(Z+,Cρ),

‖x(t; x0, u, v)‖ ≤ γ ∀ t ∈ Z+ .

(b) Assume that (N2) and the following additional condition hold.

(P1) There exists τ ∈ Z+ such that c∗(A + bc∗)τ ∈ intC∗.
If  ⊂ C is bounded, closed and such that 0 /∈ , then there exist δ > 0 and η > 0
such that, for all x0 ∈ , u ∈ F(Z+,U ) and v ∈ F(Z+,Cρ),

‖x(t; x0, u, v)‖ ≥ δ and c∗x(t + τ ; x0, u, v) ≥ η ∀ t ∈ Z+ .

In particular, (1.1) is semi-globally persistent and ultimately semi-globally c∗-
persistent.

Statement (a) of Lemma 4.5 below shows that (P1) is implied by each of the
following “positivity” conditions.

(P2) There exists τ ∈ Z such that c∗ ∑τ
t=0(A + bc∗)t ∈ intC∗ and c∗b > 0.

(P3) There exists τ ∈ N such that [(A + bc∗)∗]τ is strictly positive, that is, [(A +
bc∗)∗]τ x∗ ∈ intC∗ for all non-zero x∗ ∈ C∗.

The simple example given by X = R
3, C = R

3+ and

A =
⎛

⎝
α1 0 0
0 α2 α3
0 0 0

⎞

⎠ , b =
⎛

⎝
0
0
β

⎞

⎠ , c∗ = (
γ1 γ2 0

)
, where αi , β, γi > 0,

shows that (P1) does not imply (P2) or (P3).2

2 In this example, we have identified a row vector with the linear functional induced by the row vector. We
will continue to do so in the rest of the paper in the context of finite-dimensional examples.
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Lemma 4.5 Assume that (L1) and (L2) are satisfied. The following statements hold.

(a) If (P2) or (P3) holds, then (P1) is satisfied.
(b) Assume that X = R

n and C = R
n+. If A + bc∗ is irreducible and c∗b > 0,

then (P1), (P2) and (P3) hold.
(c) If (P3) holds, then, for every λ > 0, the operator [(A+λbc∗)∗]τ is strictly positive,

that is, [(A + λbc∗)∗]τ x∗ ∈ intC∗ for every non-zero x∗ ∈ C∗.

We provide some comments relating the above result to the persistency theory
developed in Franco et al. (2017), and on the assumption (P1).

Remark 4.6 (a) The theory developed in Franco et al. (2017) is restricted to the sit-
uation wherein X = R

n and C = R
n+, whilst here we consider any total cone

satisfying intC∗ �= ∅, and the state space X may be infinite dimensional. Theo-
rem 4.4 extends (Franco et al. 2017, Theorem 4.2) in several directions: as already
mentioned, the underlying linear system is allowed to be infinite-dimensional; fur-
ther, the positivity condition (P1) is less restrictive than the primitivity of A+bc∗,
which is imposed in Franco et al. (2017), Townley et al. (2012), and, finally; the
structure of the forced system (1.1) is more general than that considered in Franco
et al. (2017).

(b) Another difference between the present work and Franco et al. (2017) is the argu-
mentation: a key point in both works is the formulation of assumptions ensuring
the existence of z∗ ∈ intC∗ such that

z∗(A + pbc∗) = z∗ , (4.3)

that is, guaranteeing the existence of a (strictly) positive left eigenvector of A +
pbc∗ corresponding to the eigenvalue 1. In the casewherein X = R

n andC = R
n+,

if (P3) holds (or, equivalently, if A + pbc∗ is primitive), then Perron–Frobenius
theory (Berman and Plemmons 1994; Meyer 2000) guarantees the existence of
such a (strictly) positive left eigenvector and this is exploited by the authors of the
papers (Franco et al. 2017; Townley et al. 2012) in which (P3), rather than (P1),
plays a key role. Similarly, in the infinite-dimensional case, (P3) and a variant
of the Krein–Rutman theorem (Deimling 1985, Theorem 19.3) can be used to
establish the existence of a z∗ ∈ intC∗ satisfying (4.3) provided that A is compact.
However, assumption (P1) is sufficient to explicitly construct, fromfirst principles,
a functional z∗ ∈ intC∗ which satisfies (4.3) without assuming compactness of
A, see Lemma A.1 for details. The upshot is that, under weaker hypotheses than
in Franco et al. (2017), Townley et al. (2012) we obtain stronger conclusions (in
the sense that they cover the infinite-dimensional case).

(c) The persistence properties guaranteed by Theorem 4.4 overlap with persistency
concepts (for systems without forcing) introduced in Freedman and So (1989),
Smith and Thieme (2011, 2013), Wen et al. (2016). In particular, it follows imme-
diately from statement (b) of Theorem4.4 that the unforced system (1.1) is strongly
‖ · ‖-persistent and strongly c∗-persistent, respectively, in the sense of Smith and
Thieme (2011), Definition 3.1.
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(d) Note that (P1) implies that intC∗ �= ∅. The latter is certainly satisfied in the finite-
dimensional case, but may fail to hold for many infinite-dimensional spaces, see
Example 2.2.However, the dual cone of L1(�,R+), where� ⊂ R

n ismeasurable,
is nonempty. As discussed in Sect. 6.2, L1(�,R+) is a natural state space for
numerous biologically meaningful infinite-dimensional models. Finally, we point
out that the key positivity assumption imposed in Rebarber et al. (2012), Theorem
3.3 is the condition c∗ ∈ intC∗, i.e., (P1) with τ = 0. ♦

5 Stability

Having established boundedness and persistence results in Sect. 4 (under suitable
assumptions), we are now interested in conditions which will guarantee the existence
of a “stable” non-zero equilibrium: the stability notion used here takes into account
the forcing terms u and v and is reminiscent of the input-to-state stability (ISS) con-
cept from nonlinear control theory, introduced in Sontag (1989); see more recently
Dashkovskiy et al. (2011), Karafyllis and Jiang (2011) and Sontag (2006). Indeed,
the ISS result Theorem 2.3 is a crucial ingredient in what follows. As has been men-
tioned already, to derive useful stability results, we need to somewhat strengthen the
assumption (N2) on f .

In the following, let p be the constant given by (3.1) and let ue ∈ U , whereU ⊂ R

is compact. The number ue will play the role of a target or nominal value for the
control variable u.

The nonlinearity f appearing in (1.1) is assumed to satisfy the following conditions.

(N3) Condition (N2) holds,

| f (ue, y)− f (ue, ye)| = | f (ue, y)− pye| < p|y−ye| ∀y > 0, y �= ye , (5.1)

where ye is the unique positive number such that f (ue, ye) = pye, and

lim sup
y→ye

| f (ue, y) − f (ue, ye)|
|y − ye| = lim sup

y→ye

| f (ue, y) − pye|
|y − ye| < p . (5.2)

The existence of ye > 0 such that f (ue, ye) = pye follows from the continuity of
f , (4.1) and (4.2), whilst uniqueness of ye is a consequence of (5.1).
Note that (5.1) is a sector condition and means that the graph F of y �→ f (ue, y)

is “sandwiched” between the lines L+ = {(y, py) : y ≥ 0} and L− = {(y,−py +
2pye) : y ≥ 0}, see Fig. 1 for an illustration. Obviously, the only points the graph
F has in common with L+ or L− are (0, 0) and (ye, pye). Condition (5.2) implies
that the intersections of F with L+ and L− at the point (ye, pye) is non-tangential,
whilst (4.2) ensures that F is non-tangential to L+ at (0, 0). Finally, it follows from
the continuity of f and (4.1), (4.2), (5.1) and (5.2) that, for every η > 0, there exists
q ∈ (0, p) such that

| f (ue, y) − f (ue, ye)| = | f (ue, y) − pye| ≤ q|y − ye| ∀ y ≥ η, y �= ye . (5.3)

123



Boundedness, persistence and stability for classes… 1043

Fig. 1 Illustration of the sector
condition (5.1)

y

f(ue, y)

0 ye

L+L−

The following lemma shows the existence of a unique non-zero equilibrium of the
Lur’e system x∇ = Ax + b f (ue, c∗x).

Lemma 5.1 Assume that (L1), (L2) and (N3) hold, and set

xe := (I − A)−1bpye , (5.4)

where p is given by (3.1), and ye is as in (N3). Then xe > 0, c∗xe = ye, and xe is the
unique non-zero equilibrium of (1.1) with u(t) ≡ ue and v(t) ≡ 0.

Furthermore, if (P3) holds, then x∗(xe) > 0 for all non-zero x∗ ∈ C∗.

We are now in the position to state a stability theorem relating to the non-zero
equilibrium of system (1.1).

Theorem 5.2 Let U ⊂ R be compact and ue ∈ U. Assume that (1.1) is ultimately
semi-globally c∗-persistent and (L1), (L2) and (N3) hold. Furthermore, let xe > 0 be
given by (5.4). The following statements hold.

(a) Let  ⊂ C be bounded, closed and such that 0 /∈ , and let ρ > 0. Then there
exist M ≥ 1, μ ∈ (0, 1) and N > 0 such that, for all x0 ∈ , u ∈ F(Z+,U ) and
v ∈ F(Z+,Cρ),

‖x(t; x0, u, v) − xe‖ ≤ Mμt‖x0 − xe‖ + N (β(u, t) + ‖v‖�∞(0,t)) ∀ t ∈ Z+,

(5.5)
with

β(u, t) := max{| f (ue, y) − f (u(s), y)| : s = 0, 1, . . . , t, 0 ≤ y ≤ γ ‖c∗‖},

where γ is the constant from statement (a) of Theorem 4.4.
(b) For every x0 ∈ C, x0 �= 0, every u ∈ F(Z+,U ) and every v ∈ F(Z+,C) such

that u(t) → ue and v(t) → 0 as t → ∞, we have that x(t; x0, u, v) → xe as
t → ∞.

Note that if (uk)k∈N is a sequence inF(Z+,U ) such that uk converges to (the constant
function) ue in the sup-norm as k → ∞, then limk→∞

[
supt∈Z+ β(uk, t)

] = 0.
The following corollary is an immediate consequence of Theorem 4.4, statement (a)

of Lemma 4.5, and Theorem 5.2.
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Corollary 5.3 Assume that (L1), (L2), (N3) hold, andat least oneof the conditions (P1)–
(P3) is satisfied. Then statements (a) and (b) of Theorem 5.2 hold.

The following illustrative example discusses stability properties of a simple model for
which (P1) holds, but (P3) does not.

Example 5.4 Consider the system (1.1) with

A =
⎛

⎝
1/2 1/2 a
1/2 0 0
0 0 0

⎞

⎠ , b =
⎛

⎝
0
0
1

⎞

⎠ , c∗ = (
0 1 1

)
, where a ≥ 0,

andwith the nonlinearity f : U×R+ → R+, (w, y) �→ 6y/(5+wy), whereU ⊂ R+
is compact and such that 0 /∈ U and 1 ∈ U .

The eigenvalues of A are independent of a and are given by 0 and (1 ± √
5)/4.

Consequently, A is exponentially stable for all a ≥ 0. In particular, (L1) and (L2) hold
for all a ≥ 0. Condition (P3) is satisfied if a > 0. For a = 0, (P3) is not satisfied,
but (P1) holds. Moreover, we have that G(1) = 1 + 2a, showing that, with ue = 1
and ye = 1 + 12a, condition (N3) holds for every a ≥ 0. Hence, the conclusions of
Corollary 5.3 apply with

xe = 1 + 12a

1 + 2a

⎛

⎝
4a
2a
1

⎞

⎠ .

We now discuss the case wherein a = 0. This case is somewhat degenerate because,
for a = 0, the components x1 and x2 are decoupled from x3 (note the A + bc∗ is
reducible) and the dynamics of the (x1, x2)-subsystem are linear and exponentially
stable (for v = 0). It is therefore clear (without using Corollary 5.3) that the first two
components of xe are equal to 0 and the third component xe3 of x

e must be the unique
positive fixed point of f , namely xe3 = 1. It is interesting that Corollary 5.3 applies to
this degenerate situation which is not covered by the results in Franco et al. (2017);
Townley et al. (2012). ♦

In the following, we compare Theorem 5.2 and Corollary 5.3 with other stability
results available in the literature.

Remark 5.5 The papers Rebarber et al. (2012) and Smith and Thieme (2013) consider
the uncontrolled version of system (1.1), both in an infinite-dimensional setting. We
note that Theorem 5.2 and Corollary 5.3 are considerably more general than the theory
developed inRebarber et al. (2012), even in the unforced case and, in particular, contain
(Rebarber et al. 2012, Theorem 3.3) as a special case. A comparison of Theorem 5.2
and Corollary 5.3 with results in Smith and Thieme (2013) (see Smith and Thieme
(2013), part (b) of Theorem 5.8, part (c) of Theorem 7.1) is more difficult: whilst there
is some overlap, the assumptions imposed and the methods used are quite different
and certainly neither set of results contains the other, see also Example 6.2 in this
context. ♦
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In the special case that f is given by f (w, y) = g(wy)y, statement (b) of Theo-
rem 5.2 can be strengthened.

Corollary 5.6 Let g : (0,∞) → (0,∞) be continuous and such that the limit
limy→0 g(y)y exists,

lim inf
y→0

g(y) > p and lim sup
y→∞

g(y) < p . (5.6)

Let ue > 0 and assume that

|g(uey)y − g(ueye)ye| = |g(uey)y − pye| < p|y − ye| ∀ y > 0, y �= ye , (5.7)

where ye is the unique positive number such that g(ueye) = p, and

lim sup
y→ye

|g(uey)y − g(ueye)ye|
|y − ye| = lim sup

y→ye

|g(uey)y − pye|
|y − ye| < p . (5.8)

Furthermore, assume that the Lur’e system

x∇ = Ax + bg(uc∗x)c∗x + v, x(0) = x0 ∈ C , (5.9)

is ultimately semi-globally c∗-persistent, (L1) and (L2) hold, and let xe > 0 be given
by (5.4). Then, for every x0 ∈ C, x0 �= 0, every u∞ > 0, every u ∈ F(Z+, (0,∞))

and every v ∈ F(Z+,C) such that u(t) → u∞ and v(t) → 0 as t → ∞, the solution
x(t; x0, u, v) of (5.9) converges to the limit (ue/u∞)xe as t → ∞.

6 Examples

In this section, we apply the theory developed in the previous sections to a range of
examples from population dynamics. Recall that our main results are Theorem 4.4 and
Corollary 5.3 which ensure boundedness and persistence, and stability, respectively.
We illustrate situations wherein our main assumptions: linear (L1) and (L2), nonlin-
ear (N1)–(N3) and, positive (P1)–(P3) are satisfied.We present two finite-dimensional
examples and then proceed to exploit the full power of our results by applying the
abstract theory to a class of nonlinear integral projection models.

6.1 Finite-dimensional examples

We first analyse a system which provides a simple model for the dynamics of a pop-
ulation with a refuge.
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Example 6.1 Consider the following model

x1(t + 1) = (1−ε)g(u(t)x1(t))+ε′(1−μ)x2(t)+v1(t), x1(0)= x01 ,

x2(t+1)=(1−ε′)(1−μ)x2(t)+εg(u(t)x1(t))+v2(t), x2(0)= x02 ,

}

∀ t ∈Z+ ,

(6.1)

where x1(t) and x2(t) denote the density of an active population and its refuge at time-
step t ∈ Z+, respectively.Here the parameters ε, ε′ ∈ (0, 1) are the respective dispersal
rates into and out of the refuge populations; the parameter μ ∈ [0, 1] measures the
attrition in the refuge; the nonlinearity g describes density-dependent reproduction of
the active population; the forcing u(t) ∈ U := [u−, u+] ⊆ (0,∞) models the effect
of demographic fluctuations affecting recruitment, and; the terms v1(t), v2(t) ∈ R+
correspond to immigration. The model (6.1) was proposed in Newman et al. (2002),
without demographic fluctuations and immigration, as the simplest possible model of
an active population coupled to a refuge.

A simplified version of model (6.1) assuming symmetric dispersal, without immi-
gration, neglecting attrition in the refuge and neglecting demographic fluctuations,
that is, with ε = ε′, μ = 0, u = 1, and v1 = v2 = 0, has been studied in Chow
et al. (2018), Newman et al. (2002). In Newman et al. (2002), the simplified model
was studied numerically for two nonlinearities known to be able to produce complex
dynamics, namely g(y) = λye−y and g(y) = λy(1− y) for fixed λ > 0. The authors
of Chow et al. (2018) studied the simplifiedmodel analytically with the choice of func-
tion g(y) = λy/(1 + ky), which is a Beverton–Holt type nonlinearity, where k > 0
is a parameter. Observe that for each function g given, g′(0) = λ (the derivative at
zero being a right derivative), and so λ is the linearised population growth-rate at zero.
The authors of Chow et al. (2018) prove persistence and global stability results using
specific properties of the Beverton–Holt function, namely that it is strictly increasing
and concave. Such an approach would not apply to the unimodal functions originally
considered in Newman et al. (2002). The authors of Newman et al. (2002) noted the
relevance of studying the more general model, indeed, we quote (Newman et al. 2002,
p. 123): “These [the simpler] choices aremade purely on the grounds of simplicity, and
the investigation of non-zero attrition and asymmetric dispersal are certainly worthy
of future study.”

We note that (6.1) is a special case of the system (1.1) with X = R
2, C = R

2+,

A :=
(
0 ε′(1 − μ)

0 (1 − ε′)(1 − μ)

)
, b :=

(
1 − ε

ε

)
, c∗ := (

1 0
)

,

v :=
(

v1
v2

)
, f (w, y) := g(wy) ,

so that assumptions (L1) and (L2) are satisfied. The matrix A+ bc∗ is strictly positive
(meaning every entry is positive) and consequently (P3) holds, whence (P1) does as
well by Lemma 4.5. It is straightforward to compute that
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G(1) = μ(1 − ε) + ε′(1 − μ)

μ + ε′(1 − μ)
=: 1

p
. (6.2)

In the following we consider Beverton–Holt and Ricker nonlinearities in (6.1) sepa-
rately.

Case I: Beverton–Holt Set g(y) = λy/(1+ky) for fixed k > 0. Using Proposition 4.3,
we see that f always satisfies condition (N1), and condition (N2) holds if λu− >

1/G(1) = p. Additionally, fixing ue = 1, condition (N3) holds ifλu− > 1/G(1) = p.
Indeed, Franco et al. (2017), Table 5.1 shows that (5.1) is satisfied and a straightforward
calculation yields

0 <
∂ f

∂ y
(1, ye) = f (1, ye)

ye(1 + kye)
= p

1 + kye
< p, where ye = λ − p

kp
,

implying that (5.2) holds.
Thus, we can use Theorem 4.4 andCorollary 5.3 to obtain boundedness, persistence

and stability results for (6.1). In order to compare our results with those in Chow et al.
(2018), assume that μ = 0. It follows from (6.2) that the condition G(1) = 1 and
λ > 1 is sufficient for the existence of a unique positive equilibrium xe of (6.1) with
u = 1 and v1 = v2 = 0, and xe is stable and attracts every solution with a nonnegative
and nonzero initial condition. Indeed, for each compact subset  ⊆ R

2+ which does
not contain zero, the rate of convergence of x(t) to xe is exponential for all x0 ∈ ,
with constants depending on  and the model data, but not on x0. These conclusions
extend (Chow et al. (2018), Theorem 3.1 b), where only symmetric dispersal (ε′ = ε)
was considered in the Beverton–Holt case in the absence of forcing. Corollary 5.3
indicates that dispersal, captured by ε and ε′ (symmetric or not) has no effect on the
global stability of the population when there is no attrition in the refuge, (that is, when
μ = 0). This property was noted in Chow et al. (2018) for the particular case of
symmetric dispersal.

If there is attrition in the refuge, (that is μ �= 0) then the condition

λ > p = μ + ε′(1 − μ)

μ(1 − ε) + ε′(1 − μ)
.

guarantees that (N3) holds, and hence Corollary 5.3 is applicable. In particular, for
a fixed value μ ∈ (0, 1), dispersal has a direct effect on the range of growth-rate
parameters λ guaranteeing the convergence of all non-zero initial conditions to a
positive equilibrium.Observe that p = p(ε, ε′) is an increasing function in ε (dispersal
into refuge), and a decreasing function in ε′ (dispersal from refuge). Consequently,
when there is mortality in the refuge it is advantageous, from a perspective of ensuring
population persistence, if there is less dispersal into the refuge, and more dispersal out
of the refuge.

Case II: Ricker We now consider (6.1) with the Ricker-type function g(y) = λye−y ,
and seek to compare our results with the numerical findings in Newman et al. (2002).
There are no analytical results for this choice of nonlinear term in Newman et al.
(2002). Let ue ∈ [u−, u+] and consider the inequalities
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λu+e−2 < p < λu− . (6.3)

In Newman et al. (2002) it is assumed that

μ = 0, ε = ε′, u− = u+ = ue = 1, v1 = v2 = 0 . (6.4)

First note that, with model parameters as in (6.4), it follows from (6.2) that p = 1, and
so by Theorem 2.3, we have that x(t) converges to zero (exponentially) when λ < 1.

Next, if the second inequality in (6.3) is satisfied, which simplifies to 1 < λ under
the model assumptions (6.4), then condition (N2) holds and Theorem 4.4 ensures
boundedness and persistence of (6.1). The persistence result validates the observation
in Newman et al. (2002), p. 126 that: “[for large λ] the system is inherently stable for
all values of the initial densities, in that the population number is always finite and
positive.”

To consider stability of (6.1), now assume that (6.3) holds. Then the unique positive
solution ye of f (ue, y) = g(uey) = py is given by

ye = ln(λue/p)

ue
> 0,

and it is not difficult to see that (5.1) is satisfied (cf. Franco et al. (2017), Table 5.1).
Furthermore, a routine calculation gives

∂ f

∂ y
(ue, ye) = p(1 − ueye) = p

(
1 − ln(λue/p)

)
,

and it follows from (6.3) that |(∂ f /∂ y)(ue, ye)| < p. Consequently, (5.2) holds and
so we have established that, under the assumption (6.3), condition (N3) is satisfied.
Thus, we can invoke Corollary 5.3 to conclude stability of (6.1) provided that (6.3)
holds. These stability conclusions supports the numerical simulations presented in
Newman et al. (2002), Figure 5, where it is observed that the population dynamics
tend to a constant positive population size for small values of λ > 1 (recall that we
have already seen that λ > 1 is necessary for persistence).

We conclude the example with an illustrative numerical simulation. For the choice
of parameters

λ = 6, ε = 0.2, ε′ = 0.3, μ = 0, u− = 0.9, ue = 1, u+ = 1.1 , (6.5)

the condition (6.3) holds and so Corollary 5.3 is applicable.
By Lemma 5.1, the unique positive equilibrium of (6.1) (for u = ue and v = 0) is

given by

xe := (I − A)−1bpye = ln(λue/p)

ue

(
1

ε
(
μ(1 − ε) + ε′(1 − μ)

)−1

)
. (6.6)
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Fig. 2 Graphs of state ‖x(t)‖1 (a) and state error ‖x(t) − xe‖1 (b) against t for the active and refuge
population model (6.1) from Example 6.1. The parameter values and initial conditions are as in (6.5)
and (6.7), respectively, and g(y) = λye−y . The solid and dashed lines correspond to the first and second
initial condition in (6.7), respectively

Figure 2 contains plots of ‖x(t)‖1 and ‖x(t)− xe‖1 against t for randomly determined
u(t) ∈ [u−, u+] and v1(t), v2(t) ∈ [0, 0.2], and for the two initial conditions

x0 =
(
1
0

)
and x0 =

(
0
2

)
. (6.7)

In particular, Fig. 2 shows that the impact of the initial vector x0 on the evolution of
x(t) is disappearing for large t , as was to be expected by Corollary 5.3. To illustrate
the convergence result, statement (b) of Theorem 5.2, Fig. 3 contains plots of ‖x(t)‖1
and ‖x(t) − xe‖1 against t for u and v given by

u(t) = ue + (−0.8)t = 1 + (−0.8)t ,

v(t) = (0.7)t
(
0.2
0.2

)
,

⎫
⎪⎬

⎪⎭
∀ t ∈ Z+ , (6.8)

and for the two initial conditions in (6.7). Clearly, u(t) → 1 and v(t) → 0 as t → ∞,
and the figures show that x(t) → xe as t → ∞. Note that the exact functional form
of u and v in (6.8) is unimportant — it is their limiting properties which are crucial. ♦

Example 6.2 We consider a population structured in three groups, namely, juveniles,
members of the population who are in a dormant state, which we shall refer to as
“dormants”, and adults. These stage-classes are denoted by x1, x2 and x3, respectively.
We assume that after one time-step the population of juveniles splits between dormants
and adults at a fixed rate α. Dormants remain inactive for one time-step and then they
become adults with a fixed rate β or die. Juveniles are produced by adults following
a density-dependent reproduction given by a nonlinear function g.

A schematic representation of the dynamics of the population appears in Fig. 4.
The following system models such a population,
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Fig. 3 Graphs of state ‖x(t)‖1 (a) and state error ‖x(t) − xe‖1 (b) against t for the active and refuge
population model (6.1) from Example 6.1. The parameter values are as in (6.5) and g(y) = λye−y . Here
u and v are as in (6.8), and the solid and dashed lines correspond to the first and second initial condition
in (6.7), respectively

Fig. 4 Schematic illustration of
the population model (6.9)

Juveniles
x1(t + 1)

Dormants
x2(t + 1)

Adults
x3(t + 1)

αx1(t)

(1− α)x1(t)

βx2(t)

g(u(t)x3(t))

x1(t + 1) = g(u(t)x3(t)) x1(0) = x01 ,

x2(t + 1) = αx1(t) x2(0) = x02 ,

x3(t + 1) = (1 − α)x1(t) + βx2(t) x3(0) = x03 ,

⎫
⎪⎬

⎪⎭
∀ t ∈ Z+ , (6.9)

where α, β ∈ (0, 1) and, as before, the forcing u(t) ∈ U := [u−, u+] ⊂ (0,∞)

models the effect of demographic fluctuations affecting recruitment. The inclusion of
dormancy in a population model is natural for several reasons. First, a large number of
plants from a wide range of habitats are known to have persistent seed banks, that is,
seeds can remain dormant for more than a generation (Thompson and Grime 1979).
Second, dormancy is known to affect the stability of the population (MacDonald and
Watkinson 1981). Finally, a large fraction of the total population may be present as
dormant individuals and therefore ignoring it could give a poor estimate of the size of
the population (Begon et al. 2009).
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System (6.9) can be rewritten in the form (1.1) with

A =
⎛

⎝
0 0 0
α 0 0

1 − α β 0

⎞

⎠ , b =
⎛

⎝
1
0
0

⎞

⎠ , c∗ = (
0 0 1

)
and f (w, y) = g(wy).

Clearly, conditions (L1) and (L2) hold. Moreover, condition (P1) holds with τ = 3.
Verifying the nonlinear assumptions (N1)–(N3) of course requires some properties of
g, but should they be satisfied then one can use Theorem 4.4 and Corollary 5.3 to study
boundedness, persistence and stability properties of model (6.9). Note that c∗b = 0
and for any

z =
⎛

⎝
0
0
z30

⎞

⎠ ,

with z30 ≥ 0 we have c∗Az = 0. Therefore, the assumptions on A, b and c∗ required
in Smith and Thieme (2013), Theorems 4.4, 5.8 (b) do not hold, and hence, even in
the absence of forcing, these results are not applicable to (6.9). ♦

6.2 Infinite-dimensional examples

We conclude the paper with two infinite-dimensional examples to which we apply
the theory developed in Sects. 4 and 5. The first example considers the class of IPM
models and the second provides a numerical illustration of the abstract theory in the
context of an IPM coupled to a two-dimensional difference equation.

Example 6.3 An exemplar for the infinite-dimensional theory developed in this paper
is a class of integro-difference equations, the so-called integral projection models.
IPMs were introduced as a tool for ecological modelling in Easterling et al. (2000),
see also Childs et al. (2003), Ellner and Rees (2006), and the reader is referred to
Merow et al. (2014) for a recent review. They are relevant when the population stages
are naturally described by a continuous variable, such as size or weight, as opposed
to discrete stage-classes, such as insect instars. The purpose of the present example is
to interpret the assumptions (L1), (L2), (P1) and (N1) –(N3) in the context of IPMs.

A forced linear IPM typically takes the form

n(t + 1, ξ) =
∫

�

k(ξ, ζ )n(t, ζ ) dζ + m(t, ξ) ∀ t ∈ Z+,

n(0, ξ) = n0(ξ),

⎫
⎬

⎭
almost all ξ ∈ �,

(6.10)
where � is a measurable subset of Rq and n(t, ·) denotes the population distribution
at time-step t , with initial distribution n0. Further, m denotes an additive forcing term
which models, say, the effects of migration, breeding or planting schemes. The kernel
k captures survival, growth, and recruitment of the population. We refer the reader
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to Merow et al. (2014) for more information on how kernels are constructed and
parametrised in practice. In particular, following Rebarber et al. (2012), the kernel
k is often assumed to be of the form k = ρ + σ , where ρ and σ denote a survival
and recruitment term, respectively. Specifically, ρ(ξ, ζ ) denotes the probability that
an individual at stage ζ survives or grows to an individual at stage ξ in one time-step,
and so is evidently nonnegative-valued. In applications ρ is typically continuous and
� is compact. We shall assume that ρ ∈ L∞(�×�,R+). In the presence of mortality
in the population, the assumption

ess supζ∈�

∫

�

ρ(ξ, ζ ) dξ < 1 , (6.11)

is usually satisfied.
To write (6.10) as an infinite-dimensional difference equation, the natural choices

for the state space X and the cone C are X := L1(�,R) and C := L1(�,R+).
Defining the integral operator A : X → X by

(Az)(·) :=
∫

�

ρ(· , ζ )z(ζ )dζ ∀ z ∈ X , (6.12)

it follows from (6.11) that A ∈ L(X) and ‖A‖ < 1 (Lax 2002, Theorem 1, Chapter
16), and so A is exponentially stable. It is clear that A leaves C invariant, that is, A is
positive. We have now established that A satisfies (L1). Assuming that the recruitment
term σ can be expressed as

σ(ξ, ζ ) = b(ξ)νc(ζ ), almost all (ξ, ζ ) ∈ � × �,

where b ∈ C denotes the distribution of new individuals, ν > 0 is an offspring
survival probability over one time-step, and c(ζ ) denotes the per-capita fecundity of
an individual at stage ζ , the distribution of offspring in one-step from distribution
z ∈ X is given by

∫

�

σ(· , ζ )z(ζ ) dζ = b(·)ν
∫

�

c(ζ )z(ζ ) dζ = b(·)νc∗z . (6.13)

Note that

c∗z :=
∫

�

c(ζ )z(ζ ) dζ (6.14)

is the total number of offspring produced in a single time-step by the distribution z ∈ X .
Imposing the natural assumption that c ∈ L∞(�,R+), it follows that c∗ ∈ C∗. Setting
x(t) := n(t, · ), in light of (6.12)–(6.14), it follows that (6.10) may be expressed as

x∇ = (A + bνc∗)x + v, x(0) = n0 , (6.15)
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where v(t) = m(t, · ) and we assume that m(t, · ) ∈ C for every t ∈ Z+. Since b ∈ C
and c∗ ∈ C∗, we have that (L2) is satisfied (provided that b �= 0 and c∗ �= 0).

A nonlinear term arises in (6.15) if the survival probability ν depends on the total
number of offspring produced in a single time-step, see (6.14). In this case, the linear
operator induced by the kernel σ is replaced by the nonlinear operator

z �→ bg

(∫

�

c(θ)z(θ) dθ

) ∫

�

c(ζ )z(ζ ) dζ = bg(c∗z)c∗z ,

where b, c and c∗ are as before and g denotes the probability of survival of new
individuals over one time-step. The function g models density-dependence in recruit-
ment, reflecting competition effects at higher abundance, for instance. Consequently,
we obtain

x∇ = Ax + bg(c∗x)c∗x + v = Ax + b f (c∗x) + v, x(0) = n0 , (6.16)

where f (y) = g(y)y and v is as before. Evidently, both (6.15) and (6.16) are special
cases of (1.1).

The nonlinear assumptions (N1)–(N3) depend on the interplay between f in (6.16)
and the constant p = 1/G(1). We proceed to discuss the key additional assump-
tion (P1) required for the persistence and stability results in Sects. 4 and 5 . By part (b)
of Example 2.2, (P1) holds with τ = 0 if, and only if ess infθ∈� c(θ) > 0. To discuss
the case wherein the integer τ is positive, let k denote the kernel of A + bc∗, that is,

k(ξ, ζ ) = ρ(ξ, ζ ) + b(ξ)c(ζ ) ,

and, for n ∈ N, define kn recursively via k1 := k and

kn+1(ξ, ζ ) =
∫

�

k(ξ, s)kn(s, ζ ) ds ∀ n ∈ N.

It is clear that (P1) holds for a non-zero integer τ if, and only if,

ess infζ∈�

∫

�

c(s)kτ (s, ζ ) ds > 0 . (6.17)

If c and k are continuous, then (6.17) holds if supp c ∩ supp kτ (·, ζ ) �= ∅ for all ζ ∈ �

or, equivalently, for every ζ ∈ �, there exists s ∈ � such that c(s)kτ (s, ζ ) > 0.
To the best of our knowledge, the paper Rebarber et al. (2012) was the first to

consider unforced IPMs and model them in the abstract infinite-dimensional state-
space form (1.1) (with f (u, y) = f (y) and v = 0), and has in part inspired the present
work. The notions of boundedness and persistence do not play a prominent role in
Rebarber et al. (2012) and, as mentioned, Rebarber et al. (2012) does not consider
forced systems. Unfortunately, the IPM result (Rebarber et al. 2012, Corollary 4.1) is
not correct, see Appendix B. ♦
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Example 6.4 We consider a model for the Clonal Perennial Herb (Veratrum album)
from Hesse et al. (2008). The model contains an IPM coupled to two-dimensional
difference equations, namely

n(t + 1, ξ) = D(t)psc fsd(ξ) +
∫ m2

m1

k(ξ, ζ )n(t, ζ ) dζ

D(t+1) = pest
(
g0h

∗n(t, ·)+g1S1(t)
)

S1(t+1) = (1−g0)s0h
∗n(t, ·)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∀t ∈Z+, ∀ξ ∈[m1,m2] .

(6.18)
The variable n(t, ξ) is the number of plants with (natural logarithm of) shoot diameter
equal to ξ (in mm) at discrete time-step t ∈ Z+. Following Hesse et al. (2008), we
assume that the variable ξ takes minimum and maximum values given by m1 = 0
and m2 = 3.5 (and so em1 = 1mm and em2 = 33mm), respectively, and that the
time-steps correspond to years. We set � := [m1,m2] and, consequently, n(t, ·) ∈
X0 := L1(�,R) for each t ∈ Z+. The variables D and S1 in (6.18) denote the
abundance of the seedling/cotyledon stage-class of Veratrum, and the number of 1-
year old seeds, respectively.3 The terms g0 and g1 are probabilities of new and 1-year
old seed germination, respectively, whilst s0 is the probability of new seed survival.
The term psc is the probability of an individual cotyledon growing to the juvenile
stage-class in one time-step, and those that do are distributed according to fsd ∈ C0,
where C0 ⊂ X0 is the cone C0 = L1(�,R+). Moreover, pest denotes the probability
of a seed establishing as a cotyledon.

The kernel k of the integral operator in (6.18) is given by

k(ξ, ζ ) = ρ(ξ, ζ ) + ps(ζ )pf(ζ ) fv(ζ ) fvd(ξ, ζ ) ∀ ξ, ζ ∈ �, (6.19)

where ρ is the probability of an individual of size ζ surviving to one of size ξ in a
single time-step. It is assumed that ρ has the form

ρ(ξ, ζ ) = ps(ζ )(1 − pf(ζ ))g(ξ, ζ ) ∀ ξ, ζ ∈ �, (6.20)

where ps(ζ ) and pf(ζ ) are the survival probability and flowering probability of an
individual of size ζ , respectively, and g(ξ, ζ ) is the probability of an individual of
size ζ growing to size ξ , each over one time-step. The term 1 − pf appears on the
right-hand side of (6.20) as flowering is fatal to Veratrum, that is, it is monocarpic.

The second summand on the right-hand side of (6.19) captures asexual reproduction
of Veratrum: fv(ζ ) denotes the number of asexual offspring produced by an individual
of size ζ , where fvd(ξ, ζ ) is the probability that an individual of size ζ asexually
produces an offspring of size ξ in one time-step.

The functional h∗ in (6.18) is given by

h∗z =
∫

�

h(ζ )z(ζ ) dζ ∀ z ∈ X0, where h(ζ ) := pf(ζ ) fs(ζ )ps(ζ ).

3 Note that Hesse et al. (2008) uses C where we use D here. This is done as to avoid a clash with our
standing notation of C denoting a cone in the state space.
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Here fs(ζ ) denotes the expected number of seeds produced by an individual of size
ζ . Note that h∗z denotes the total number of seeds produced by the distribution z in a
single time-step.

The functional forms for ps, pf , g, fv, and fvd are as in Hesse et al. (2008), Table
1. We use the parameter values

as = −4.53, bs = 5.51, cs = 1.04, ag = 0.28, bg = 0.92,

βg = 0.44, β0 = −7.08, βs = 1.5, av = −3.2, bv = 1.24,

avd = 1.16, bvd = 0.48, σ 2
vd = 0.18, g0 = 0.19, g1 = 0.98,

s0 = 0.91, s1 = 0.98, pest = 0.31.

which are equal to, or within one standard error of, the statistical estimates in Hesse
et al. (2008), Table 1, Pasture environment. Further, fs(s) = e1.5+1.4s (cf. Hesse et al.
(2008), p. 202, column 2) and fsd is assumed normally distributed with mean 1.05
and variance 0.72 (cf. Hesse et al. (2008), p. 203, column 1).4 In particular, with these
choices, the function h is in L∞(�,R+), and so h∗ ∈ C∗

0 .
The results of the current paper apply to themodel (6.18). Since (6.18) is both linear

and unforced, however, we proceed to demonstrate how the present results apply to
a variation of the above model which includes these extra features. First, we assume
that the cotyledon stage-class D(t) is subject to exogenous forcing ν(t) ≥ 0, which
could be the result of a planting scheme, or dispersal. Second, seeking to capture
density-dependent crowding effects which occur at higher abundances, we assume
that the constant probability psc which appears in (6.18) is in fact a non-increasing
function of D, and that this probability is subject to some seasonal or anthropogenic
variation u(t) > 0 with nominal value ue = 1. Modifying (6.18) in this way, leads to
the following system.

n(t + 1, ξ) = D(t)psc(u(t)D(t)) fsd(ξ) +
∫ m2

m1

k(ξ, ζ )n(t, ζ ) dζ

D(t + 1) = pest
(
g0h

∗n(t, ·) + g1S1(t)
) + ν(t)

S1(t + 1) = (1 − g0)s0h
∗n(t, ·)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∀ t ∈ Z+, ∀ ξ ∈ [m1,m2] .

(6.21)
Towrite (6.21) in the form (1.1), it is natural to introduce the state space X := X0×R

2

which is a Banach space when equipped with the norm

∥∥∥∥

(
z0
z1

)∥∥∥∥
X

:= ‖z0‖X0 + ‖z1‖1 ∀ (z0, z1) ∈ X .

The dual space of X can be identified with X∗ = X∗
0 × R

2. In the given setting, the
natural cone C ⊂ X to consider is C := C0 × R

2+. This cone is reproducing and its
dual cone C∗ can be identified with C∗

0 × R
2+ and it is clear that the interior of C∗ is

non-empty, see Example 2.2.

4 The model in Hesse et al. (2008) contains an additional stage-class, namely the number of 2-year old
seeds S2. But since the parameter g2 = 0 [see Hesse et al. (2008), Table 1], S2 does not enter into the other
three equations, and so does not play a role in the dynamics and therefore this stage class has been omitted
here.
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Defining the integral operator A0 : X0 → X0 by

(A0z)(ξ) =
∫

�

k(ξ, ζ )z(ζ )dζ ∀ z ∈ X0 ,

the assumptions on k ensure that k is continuous and non-negative, and therefore
A0 is a bounded positive operator (Lax 2002, Theorem 1, Chapter 16). We proceed
to introduce the linear system (A, b, c∗) which underlies the abstract formulation
of (6.18). To this end, we define a positive bounded linear operator A : X → X by

Az :=
⎛

⎝
A0 0 0

pestg0h∗ 0 pestg1
(1 − g0)s0h∗ 0 0

⎞

⎠ z, ∀ z ∈ X , (6.22)

and set

b :=
⎛

⎝
fsd
0
0

⎞

⎠ , c∗z := (
0 1 0

)
z, ∀ z ∈ C . (6.23)

It is clear that b ∈ C and c∗ ∈ C∗, and so (L2) is satisfied. The forced nonlinear
system (6.18) may be written as

x∇ = Ax + bpsc(uc
∗x)c∗x + v, x(0) = x0 ∈ C , (6.24)

where

x(t) :=
⎛

⎝
n(t, ·)
D(t)
S(t)

⎞

⎠ , v(t) :=
⎛

⎝
0

ν(t)
0

⎞

⎠ , ∀ t ∈ Z+ .

Clearly, (6.24) is a special case of (1.1) with f : U ×R+ → R+ given by f (u, y) :=
psc(uy)y.

From the block structure of A, we have that the spectral radii r(A) of A and r(A0)

of A0 coincide.With the given parameter values, we compute numerically that r(A) =
r(A0) ≈ 0.9413, and so A is exponentially stable and (L1) holds. Ecologically, this
means that asexual reproduction alone is not sufficient to maintain the population of
Veratum asymptotically. For asymptotic population stasis or growth, a contribution
from seed production and germination is required.

To show that assumption (P1) is satisfied, we compute that

c∗(A + bc∗)3

= pest row

⎛

⎝
h∗(g0A2

0 + g20 pesth
∗( fsd)I + g1(1 − g0)s0A0

)

h∗((g0A0 + g1(1 − g0)s0 I ) fsd
)

pestg0g1h∗( fsd)

⎞

⎠ ,

We note that (P1) cannot hold for τ < 3, as there exist zτ ∈ C with zτ �= 0, such that
c∗(A + bc∗)τ zτ = 0 for τ ∈ {0, 1, 2}. By the choice of pf , ps and fs, we have that
ess inf h > 0, and thus, h∗ ∈ intC∗

0 . Hence,
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Fig. 5 Graph of ‖x(t) − xe‖X
against t for the Veratrum model
of Example 6.4. The simulations
use three random initial
conditions x0 of increasing
norm and forcing is absent
(u = 1, v = 0)
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c∗(A + bc∗)3≥ pest
(
g20 pesth

∗( fsd)h∗ g1(1−g0)s0h∗( fsd) pestg0g1h∗( fsd)
)∈ intC∗,

and so, by Lemma 2.1, c∗(A + bc∗)3 ∈ intC∗.
For the purpose of numerical simulations, we approximate (6.24) by using a finite-

element method, the details of which are given in Appendix C. We numerically
compute that G(1) ≈ 87.8, and so p ≈ 0.0114. We assume that

psc(y) = qsc
1 + 3y

∀ y ≥ 0 , (6.25)

where qsc = 0.52. Since qsc > p, the function f : U × R+ → R+ given by
f (w, y) = psc(wy)y satisfies (5.1), see Franco et al. (2017), Example 4.1, Table 5.1,
whereU ⊂ (0,∞) is an arbitrary compact set such that 1 ∈ U . Moreover, the unique
positive solution ye of f (1, y) = py is given by ye = (qsc− p)/(3p) ≈ 3.52. Finally,

∂ f

∂ y
(1, ye) = p

1 + 3ye
∈ (0, p) ,

whence (5.2) holds, andwe conclude that the condition (N3) is satisfied. Consequently,
the hypotheses of Corollary 5.3 are satisfied. The simulations shown below illustrate
the conclusions of Corollary 5.3 in the context of the system under consideration.

Figure 5 illustrates the semi-global exponential stability of xe—the state error
‖x(t)−xe‖X is plotted against t for three randomly chosen non-zero initial conditions,
in the absence of forcing forcing (u = 1, v = 0). Figure 6a, b give an illustration of
the ISS property of xe—it shows plots of the state errors against t for two different
initial states (0 and xe), u = 1 and three different additive forcing terms vk with

νk(t) = 4k + θ(t), ∀ t ∈ Z+, k ∈ {1, 2, 3} , (6.26)

where θ is “small” random noise. Observe in Fig. 6a that the contribution to ‖x(t) −
xe‖X from the initial error x(0) − xe = xe decays over time.
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Fig. 6 Graph of state errors against t for the Veratrummodel of Example 6.4. The simulations in both panels
use additive forcing νk from (6.26), with solid, dashed, and dashed-dotted lines corresponding to k = 1, 2, 3,
respectively. Multiplicative forcing is absent (u = 1) in these simulations and the initial conditions in panels
(a) and (b) are 0 and xe, respectively
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Fig. 7 Graph of state errors against t for the Veratrum model of Example 6.4. The simulations use three
initial conditions, zero additive forcing (v = 0) and three periodic forcing uk given by (6.27), with solid,
dashed, and dashed-dotted lines corresponding to k = 1, 2, 3, respectively. The solid line uses x(0) = xe

and the other two lines are randomly chosen non-zero initial conditions

Figure 7a–c show plots of the state errors against t for three different initial con-
ditions, zero additive forcing (v = 0), and three periodic multiplicative forcing terms
uk given by

uk(t) = k

2
(1 + 0.8 sin t), ∀ t ∈ Z+, k ∈ {1, 2, 3} . (6.27)

Whilst Figs. 5, 6, 7 illustrate different facets of our main stability result Theorem 5.2
and its Corollary 5.3, Fig. 8a–c provide an illustration of Corollary 5.6 by showing the
convergence of x(t) to xe/u∞ for u∞ = 0.8, when subject to three pairs of forcing
functions (uk, vk) given by

u1(t) = u∞, u2 = u∞(1 + (−0.8)t cos t), u3 = u∞(1 + (0.9)t ),

vk(t) = kθ(t)(0.9)t ,

}

(6.28)

where k ∈ {1, 2, 3} and θ(t) is randomly drawn from [0, 1]. Evidently, for very
k ∈ {1, 2, 3}, uk(t) and vk(t) converge to u∞ and 0, respectively, as t → ∞. ♦
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Fig. 8 Graph of state errors against t for the Veratrummodel of Example 6.4. The simulations all use initial
condition xe, and three different pairs of forcing functions (uk (t), vk (t)) from (6.28), with solid, dashed,
and dashed-dotted lines corresponding to k = 1, 2, 3, respectively

7 Summary

We have presented boundedness, persistence and stability results for the class of non-
linear, forced difference equations (1.1) which arise frequently in population biology
and theoretical ecology. Our treatment permits the situation wherein the state-space
is infinite-dimensional, enabling the analysis of structured populations modelled with
a finite number of stages as well as populations modelled with a continuum of stages
(the latter are frequently described in terms of integro-difference equations, such as
IPMs). The system (1.1) has both a linear and a nonlinear component, corresponding
to a mixture of density-independent and density-dependent dynamical scenarios. A
key feature of these models is that they are instances of positive systems, and so the
state is constrained to lie in a positive cone. Under natural conditions these models
admit two equilibria in the absence of forcing: zero and a non-zero steady state.

The current work continues a line of enquiry of the present authors, including Eager
et al. (2014) and Franco et al. (2017), to develop a theoretical framework for the analy-
sis of the effects of forcing in ecologicalmodelling, analysis, and control. As discussed,
the present work substantially extends Franco et al. (2017). We comment that the term
forcing is used here to describe all exogenous signals, including disturbances and
those affected by the user or modeller. Therefore, in a biological setting, the inclusion
of forcing facilitates modelling a number of exogenous influences, including envi-
ronmental or demographic variation, or management or intervention strategies, which
are relevant in a number of application scenarios, from agriculture and conservation,
to harvesting and pest management. We reiterate our motivation that forcing is typ-
ically not considered in the construction or analysis of nonlinear ecological models,
yet forcing is arguably a persistent, poorly understood, and pernicious feature of these
systems. Moreover, it is well-known that forcing can have hugely deleterious effects
on the stability of nonlinear models, effects which are not well-predicted by stability
analysis of the unforced model. Forcing or input functions play a key role in systems
and control theory and, therefore, it is natural that our approach is inspired by the
concept of input-to-state stability from nonlinear control theory.

Our main result for boundedness and persistence is Theorem 4.4, and our main
stability results are Theorem 5.2, Corollaries 5.3 and 5.6. Informally, we establish our
results by examining the interplay between the underlying linear system (2.4), partic-
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ularly its transfer function “gain”G(1) = 1/p (see Proposition 3.1), and the nonlinear
term f . This interplay is captured in the nonlinear and sector-type assumptions (N1)–
(N3), see Remark 4.2 as well. The persistence and stability results very much rely
on the positivity property (P1) imposed on the linear system (A, b, c∗) which ensures
that the origin of (1.1) is repelling in a suitable sense. We comment that much atten-
tion in the ecology literature has been devoted to the importance of transient dynamics
including, for example, Hastings (2004) and Stott et al. (2011). Our persistence results
are uniform with respect to time, in contrast with other persistence concepts usually
used in the literature [for example, Smith and Thieme (2011)], and therefore yield
lower bounds for both transient and asymptotic dynamics.

In closing, we emphasise that our assumptions are not dependent on explicit knowl-
edge of the model parameters, but rather impose (ecologically reasonable) structural
requirements to be satisfied. For instance, there is considerable robustness in (N1)–
(N3) with respect to the exact functional form of nonlinear term f , which is often
difficult to parametrise. Section 6 contains detailed discussions of four non-trivial, bio-
logically relevant examples of multi-stage, single species populations, in both finite-
and infinite-dimensional settings. A natural future line of enquiry is study of multiple
interacting populations, or communities, subject to external forcing.
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Appendix

A Proofs

In this appendix, we provide proofs of results stated in Sects. 2–5.

A.1 Proofs for Sections 2 and 3

Proof of Lemma 2.1 (a) Assume that x∗ ∈ intC∗. Seeking a contradiction, suppose
that (2.1) does not hold. Then there exist elements ξn ∈ C with ‖ξn‖ = 1, where
n ∈ N, and such that

εn := x∗(ξn) → 0 as n → ∞ .

Assume that there exists k ∈ N such that εk = 0 and choose y∗ ∈ X∗ such that
y∗(ξk) = 1 (existence of such a functional is guaranteed by the Hahn–Banach
theorem). Then, for every δ > 0, the functional z∗δ := x∗ − δy∗ has the property
z∗δ (ξk) = −δ < 0, and so z∗δ /∈ C∗, contradicting the hypothesis that x∗ ∈ intC∗.
Consequently, εn > 0 for all n ∈ N. Invoking again the Hahn–Banach theorem,
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there exist y∗
n ∈ X∗ such that ‖y∗

n‖ = 1 and y∗
n (ξn) = 1 for all n ∈ N. The

functionals z∗n := x∗ − 2εn y∗
n satisfy z∗n(ξn) = −εn < 0 and thus, z∗n /∈ C∗. But

z∗n → x∗ as n → ∞, contradicting the hypothesis that x∗ ∈ intC∗.
Conversely assume that (2.1) holds, in which case

ε := inf
ξ∈C, ‖ξ‖=1

x∗(ξ) > 0 .

Let y∗ ∈ X∗ be such that ‖x∗ − y∗‖ < ε/2. Then, for all ξ ∈ C with ‖ξ‖ = 1,

y∗(ξ) = x∗(ξ) + (y∗ − x∗)(ξ) ≥ ε − ‖y∗ − x∗‖ >
ε

2
.

Hence, y∗(ξ) ≥ (ε/2)‖ξ‖ for all ξ ∈ C , showing that y∗ ∈ C∗. Consequently,
B(x∗, ε/2) ⊂ C∗, establishing that x∗ ∈ intC∗.

(b) Statement (b) is an immediate consequence of statement (a). ��
Proof of Proposition 3.1 (a) It follows from (L1) and (L2) that

G(1) = c∗
c (I − Ac)

−1b = c∗(I − A)−1b =
∞∑

k=0

c∗Akb ≥ 0 .

Furthermore, a straightforward calculation yields that, for every z ∈ C with |z| ≥
1,

|G(z)| = 1

|z| |c
∗
c (I − (1/z)Ac)

−1b| ≤
∞∑

k=0

1

|z|k+1 c
∗Akb .

Combining this with the identity

|G(1)| = G(1) = c∗(I − A)−1b =
∞∑

k=0

c∗Akb ,

shows that ‖G‖H∞ = G(1).
(b) This follows from standard stability radius theory.
(c) A straightforward calculation shows that

(
A + pbc∗)(I − A)−1b = (I − A)−1b .

Invoking (L1) and (L2), we see that

(I − A)−1b =
∞∑

j=0

A jb ≥ b �= 0 ,

whence 1 is an eigenvalue of Ac + pbc∗
c . ��
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A.2 Proofs for Section 4

Proof of Proposition 4.1 We prove the claim by contraposition. To this end assume that
there exists x0 ∈ C , x0 �= 0, such that c∗(I − A)−1x0 = 0, that is,

c∗At x0 = 0 ∀ t ∈ Z+ .

We will show that (1.1) is not ultimately semi-globally persistent. Let u ∈ F(Z+,U ),
let v(t) ≡ 0 and set x(t) := x(t; x0, u, 0). Then f (u(0), c∗x0) = f (u(0), 0) = 0 and
so, x(1) = Ax0 and c∗x(1) = c∗Ax0 = 0. A trivial induction argument shows that
x(t) = At x0 and c∗x(t) = 0 for all t ∈ Z+. Since, by exponential stability, At x0 → 0
as t → ∞, we see that (1.1) is not ultimately semi-globally persistent. ��

Proof of Proposition 4.3 The proof of statement (a) is trivial. To prove statement (b),
assume that g is continuous, g(y) > 0 for y > 0 and lim supy→∞(g(y)/y) < p/u+.
We focus on the case wherein f (w, y) = g(wy). The other case ( f given f (w, y) =
wg(y)) is straightforward and left to the reader. It is clear that f is continuous and
f (w, y) > 0 for all w ∈ U and y > 0. Moreover, for every y > 0, there exists
ξy ∈ [u−y, u+y] ⊂ (0,∞) such that

max
w∈U

g(wy)

wy
= g(ξy)

ξy
.

Now, for y > 0,

1

y
max
w∈U f (w, y) ≤ 1

y
max
w∈U

u+g(wy)

w
= u+ max

w∈U
g(wy)

wy
= u+ g(ξy)

ξy
,

and so, since ξy → ∞ as y → ∞,

lim sup
y→∞

1

y
max
w∈U f (w, y) ≤ u+ lim sup

y→∞
g(ξy)

ξy
< p ,

showing that (N1) holds. Similarly, for every y > 0, there exists ζy ∈ [u−y, u+y] ⊂
(0,∞) such that

min
w∈U

g(wy)

wy
= g(ζy)

ζy
.

Thus, for y > 0,

1

y
min
w∈U f (w, y) ≥ 1

y
min
w∈U

u−g(wy)

w
= u− min

w∈U
g(wy)

wy
= u− g(ζy)

ζy
,
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and consequently, since ζy → 0 as y → 0,

lim inf
y→0

1

y
min
w∈U f (w, y) ≥ u− lim inf

y→0

g(ζy)

ζy
> p ,

establishing that (N2) is satisfied. ��
To facilitate the proof of Theorem 4.4, we state and prove two auxiliary results.

Lemma A.1 Assume that (L1), (L2) and (P1) are satisfied. The following statements
hold.

(a) c∗(A + λbc∗)τ ∈ intC∗ for every λ > 0.
(b) G(1) > 0, or, equivalently, p < ∞.
(c) For every λ ∈ [0, p),

z∗λ := c∗(I − (A + λbc∗))−1 ∈ intC∗ and z∗λ(A + pbc∗) = z∗λ . (A.1)

Furthermore, for λ,μ ∈ [0, p),

z∗λ = p − μ

p − λ
z∗μ. (A.2)

Proof (a) The proof is similar to statement (a) of Lemma 4.5, and so is omitted.
(b) We prove the claim by contraposition. To this end assume thatG(1) = 0.We show

that (P1) does not hold. Letting λ ∈ (0, p), then, by Proposition 3.1, A + λbc∗ is
exponentially stable and, therefore, appealing to (2.6), we conclude that

∞∑

t=0

c∗(A + λbc∗)t b = c∗(I − (A + λbc∗))−1b = G(1)

1 − λG(1)
= 0.

Since c∗(A + λbc∗)t b ≥ 0 for t ∈ Z+, it follows that c∗(A + λbc∗)t b = 0 for
t ∈ Z+. By (L2), b �= 0, and therefore, for all t ∈ Z+, c∗(A + λbc∗)t /∈ intC∗.
Invoking statement (a), we see that (P1) does not hold.

(c) Let λ ∈ [0, p). By Proposition 3.1, A + λbc∗ is exponentially stable, and so z∗λ is
well defined. We show first that z∗λ(A + pbc∗) = z∗λ. To this end, note that

z∗λ(A + pbc∗) = z∗λ(A + λbc∗ − I + (p − λ)bc∗ + I )

= −c∗ + (p − λ)z∗λbc∗ + z∗λ .

Using (2.6), we obtain

(p − λ)z∗λbc∗ =(p − λ)c∗(I − (A+λbc∗))−1bc∗ =(p − λ)
G(1)

1 − λG(1)
c∗ =c∗ ,

and thus, z∗λ(A + pbc∗) = z∗λ.
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Next we derive (A.2). Letting λ,μ ∈ [0, p), we note that, by the second resolvent
identity,

z∗λ − z∗μ = (λ − μ)c∗(I − (A + λbc∗))−1bc∗(I − (A + μbc∗))−1 ,

and so, using (2.6),

z∗λ − z∗μ = (λ − μ)G(1)

1 − λG(1)
z∗μ .

Consequently,

z∗λ = 1 − μG(1)

1 − λG(1)
z∗μ = p − μ

p − λ
z∗μ ,

establishing (A.2). We proceed to show that z∗λ ∈ intC∗ for λ ∈ (0, p). Since
A + λbc∗ is exponentially stable, we have

z∗λ =
∞∑

t=0

c∗(A + λbc∗)t ≥ c∗(A + λbc∗)τ ,

and it follows from statement (a) and Lemma 2.1 that z∗λ ∈ intC∗. Finally, an
application of (A.2) for λ = 0 and μ ∈ (0, p) shows that z∗0 ∈ intC∗. ��
To prove Theorem 4.4, it is useful to appeal to the concept of difference inclusions.

Indeed, note that solutions of (1.1) are also solutions of a difference inclusion of the
form

x∇ − Ax − v ∈ bF(c∗x) , (A.3)

where the set-valued function F is given by

F(y) := {
f (w, y) : w ∈ U

} ∀ y ≥ 0 .

The following proposition records stability properties of the difference inclusion (A.3).

Proposition A.2 Assume that (L1) and (L2) hold and F is a set-valued function defined
on R+, the values of which are non-empty subsets of R+. Let p > 0 be as in (3.1). If
there exist θ ≥ 0 and q ∈ (0, p) such that ∪0≤y≤θ F(y) is bounded and

ϕ ≤ qy ∀ϕ ∈ F(y), ∀ y ≥ θ, (A.4)

then there exist M ≥ 1, μ ∈ (0, 1) and N > 0 such that, for every solution x : Z+ →
C of (A.3),

‖x(t)‖ ≤ Mμt‖x(0)‖ + N (βF + ‖v‖�∞(0,t)) ∀ t ∈ Z+, ∀ v ∈ F(Z+,C) , (A.5)
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where

βF := sup
0≤y≤θ, ϕ∈F(y)

(
ϕ − qy

) ≥ 0 .

Proof We proceed in two steps.

Step 1 θ = 0.
Assume that (A.4) holds with θ = 0 (in which case F(0) = {0}). If the values of F
are singletons (in which case F can be identified with a real-valued function), then
the claim is an immediate consequence of Theorem 2.3. It is not difficult to see that
Theorem 2.3 extends to set-valued nonlinearities and so, in the case wherein θ = 0,
the estimate (A.5) follows with βF = 0.

Step 2 θ > 0.
Note that by the boundedness of the set ∪0≤y≤θ F(y), the constant βF is finite. Define
a set-valued map F̃ by

F̃(y) :=
{ [0, qy], 0 ≤ y ≤ θ,

F(y), y > θ.

and set e(y) := max
(
0,max{ϕ − qy : ϕ ∈ F(y)}) for y ∈ [0, θ ]. It is clear that

ϕ ≤ qy ∀ϕ ∈ F̃(y), ∀ y ≥ 0,

and, moreover, sup0≤y≤θ e(y) = βF . If x : Z+ → C is a solution of (A.3), then

x∇ − Ax − v − bd ∈ bF̃(c∗x) ,

where d(t) = 0 if c∗x(t) > θ and d(t) ∈ [0, e(c∗x(t))] if c∗x(t) ≤ θ . Consequently,
by Step 1, there exist constants M ≥ 1, μ ∈ (0, 1) and L > 0 such that, for every
solution x : Z+ → C of (A.3),

‖x(t)‖ ≤ Mμt‖x(0)‖ + L‖v + bd‖�∞(0,t)

≤ Mμt‖x(0)‖ + L‖v‖�∞(0,t) + LβF‖b‖ ∀ t ∈ Z+,

wherewe have used that |d(t)| = d(t) ≤ sup0≤y≤θ e(y) = βF . The claim now follows
with N := L max(1, ‖b‖). ��

We are now in the position to prove Theorem 4.4.

Proof of Theorem 4.4. (a) Define a set-valued nonlinearity F by

F(y) := {
f (w, y) : w ∈ U

} ∀ y ∈ R+.

By (N1), there exist θ > 0 and q ∈ (0, p) such that

0 < ϕ ≤ qy ∀ y ≥ θ, ∀ ϕ ∈ F(y).
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It is clear that, for all x0 ∈ , u ∈ F(Z+,U ) and all v ∈ F(Z+,Cρ), the solution
x(· ; x0, u, v) is also a solution of the difference inclusion

x∇ − Ax − v ∈ bF(c∗x) ,

and it follows from Proposition A.2 that there exists γ > 0 such that
‖x(t; x0, u, v)‖ ≤ γ for all x0 ∈ , u ∈ F(Z+,U ), all v ∈ F(Z+,Cρ) and
all t ∈ Z+.

(b) Let  ⊂ C be bounded, closed and such that 0 /∈ , and let ρ > 0. We proceed in
two steps.

Step 1: Existence of δ.
By (N2), there exists y� > 0 such that

f (w, y) ≥ py ∀ w ∈ U , ∀ y ∈ [0, y�] . (A.6)

Let γ > 0 be as in statement (a), and set y† := max
{
y�, ‖c∗‖γ }

and

λ := inf
{
f (w, y)/y : w ∈ U , y� ≤ y ≤ y†

}
> 0 . (A.7)

Let x0 ∈ , u ∈ F(Z+,U ), v ∈ F(Z+,Cρ) and write

x(t) := x(t; x0, u, v) and y(t) := c∗x(t; x0, u, v) ∀ t ∈ Z+ .

For given t ∈ Z+, we have either y(t) ∈ [0, y�] or y(t) > y�.
Case 1: y(t) ∈ [0, y�]. By (A.6), f (u(t), y(t)) ≥ py(t), and so

x(t + 1) ≥ (A + pbc∗)x(t) .

By assumption (P1) and statement (c) of Lemma A.1 there exists z∗ ∈ intC∗ such
that z∗(A + pbc∗) = z∗, and consequently,

z∗(x(t + 1)) ≥ z∗(x(t)) . (A.8)

Case 2: y(t) > y�. By the definition of y†, y(t) ≤ y† and so, invoking (A.7),

f (u(t), y(t)) ≥ λy(t) ≥ λy� .

As a consequence, x(t + 1) ≥ Ax(t) + λy�b, and so,

z∗(x(t + 1)) ≥ λy�z∗(b) > 0 . (A.9)

Combining (A.8) and (A.9) (the outcomes of the considerations in Cases 1 and 2),
we conclude that

z∗(x(t + 1)) ≥ min{z∗(x(t)), λy�z∗(b)} ∀ t ∈ Z+ ,
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whence

z∗(x(t)) ≥ min
{
z∗(x0), λy�z∗(b)

} ≥ ε ∀ t ∈ Z+ ,

where ε > 0 is the minimum of infξ∈ z∗(ξ) and λy�z∗(b) (note that the infi-
mum is positive because  is bounded, closed and 0 /∈ ). It follows that there
exists δ > 0 such that ‖x(t; x0, u, v)‖ ≥ δ for all x0 ∈ , u ∈ F(Z+,U ), all
v ∈ F(Z+,Cρ) and all t ∈ Z+.

Step 2 : Existence of η.
Setting μ := min{λ, p} > 0 and appealing to (A.6) and (A.7), we obtain

x(t + 1) ≥ (A + μbc∗)x(t) ∀ t ∈ Z+,

and hence, with τ from (P1),

c∗x(t + τ) ≥ c∗(A + μbc∗)τ x(t) ∀ t ∈ Z+.

By (P1) and statement (a) of LemmaA.1, c∗(A+μbc∗)τ ∈ intC∗. Now, ‖x(t)‖ ≥
δ > 0 for all t ∈ Z+, and thus, invoking Lemma 2.1, there exists η > 0 such that
c∗x(t + τ) ≥ η for all x0 ∈ , u ∈ F(Z+,U ), v ∈ F(Z+,Cρ) and all t ∈ Z+,
completing the proof. ��

Proof of Lemma 4.5 (a) Assume that (P2) holds and let λ ∈ (0, 1). A routine induction
argument shows that, for every t ∈ Z+,

c∗(A + λbc∗)t ≥ c∗(A + bc∗)t if λ ≥ 1,

and

c∗(A + λbc∗)t ≥ λt c∗(A + bc∗)t if 0 < λ < 1.

Combined, the above inequalities yield that

c∗(A + λbc∗)t ≥ min(λt , 1)c∗(A + bc∗)t ∀ t ∈ Z+ . (A.10)

Invoking (A.10), we conclude that

c∗
τ∑

t=0

(A + λbc∗)t ≥ λτ c∗
τ∑

t=0

(A + bc∗)t .

Hence, setting Aλ := A + λbc∗, it follows from Lemma 2.1 that

c∗
τ∑

t=0

At
λ ∈ intC∗ . (A.11)

123



1068 D. Franco et al.

Now c∗(A + bc∗)τ = c∗(Aλ + (1 − λ)bc∗)τ and a straightforward induction
argument shows that

c∗(A + bc∗)τ ≥ c∗
τ∑

t=0

[(1 − λ)(c∗b)]τ−t At
λ ≥ α(τ)c∗

τ∑

t=0

At
λ , (A.12)

where

α(τ) :=
{ [(1 − λ)(c∗b)]τ , if (1 − λ)c∗b < 1
1, if (1 − λ)c∗b ≥ 1.

By hypothesis, α(τ) > 0, and so, invoking (A.11), (A.12) and Lemma 2.1, we
obtain that c∗(A + bc∗)τ ∈ intC∗, establishing that (P2) implies (P1).
If (P3) holds, then c∗(A + bc∗)τ = [(A + bc∗)∗]τ c∗ ∈ intC∗, showing that (P1)
is satisfied.

(b) It is sufficient to show that (P3) holds. Since c∗b > 0, it is clear that the matrix
bc∗ has positive trace and so the trace of A+ bc∗ is also positive. It is well known
that irreducible non-negative matrices with positive trace are primitive (see, for
example, Meyer (2000), Example 8.3.3), and consequently, (P3) is satisfied.

(c) Let λ > 0. A routine argument similar to that in the proof of statement (a) shows
that

[(A+ λbc∗)∗]t x∗ ≥ min(λt , 1)[(A+ bc∗)∗]t x∗ ∀ t ∈ Z+, ∀ x∗ ∈ C∗ . (A.13)

Assume that τ ∈ Z+ is such that [(A + bc∗)∗]τ is strictly positive. Then, in
light of (A.13), an application of statement (b) of Lemma 2.1 shows that [(A +
λbc∗)∗]τ x∗ ∈ intC∗ for all non-zero x∗ ∈ C∗. ��

A.3 Proofs for Section 5

Proof of Lemma 5.1 Since xe = pye
∑∞

k=0 A
kb, assumptions (L1) and (L2) imply

that xe ≥ 0. It follows immediately from the definitions of xe and p that c∗xe = ye.
Consequently, since ye > 0, we conclude that xe �= 0, and so xe > 0. To show that
xe is an equilibrium, note that

xe = (I − A)−1bpye = (I − A)−1b f (ue, ye) = (I − A)−1b f (ue, c∗xe),

and so, xe = Axe + b f (ue, c∗xe). As for uniqueness, let x† be an another non-zero
vector in C satisfying

x† = Ax† + b f (ue, c∗x†). (A.14)

Then c∗x† = G(1) f (ue, c∗x†), and thus, f (ue, c∗x†) = pc∗x†. Now c∗x† �= 0
(otherwise, due to (A.14), 1would be an eigenvalue of Awhich is not possible by (L1)),
and so, since ye is the unique positive solution of the equation f (ue, y) = py, we see
that c∗x† = ye = c∗xe, whence
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x† = (I − A)−1b f (ue, c∗x†) = (I − A)−1bpye = xe.

Let us now additionally assume that (P3) holds. Noting that

(A + pbc∗)xe = xe + (A − I + pbc∗)xe = xe − pbye + pbye = xe,

we see that (A + pbc∗)τ xe = xe. Consequently, for every x∗ ∈ C∗, x∗ �= 0,

x∗(xe) = x∗((A + pbc∗)τ xe) = ([(A + pbc∗)∗]τ x∗)(xe) > 0.

The inequality holds because xe > 0 and [(A + pbc∗)∗]τ x∗ ∈ intC∗ (as follows
from (P3) and Lemma 4.5). ��
Proof of Theorem 5.2. (a) By statement (a) of Theorem 4.4, there exists γ > 0 such

that, for all x0 ∈ , u ∈ F(Z+,U ) and v ∈ F(Z+,Cρ),

‖x(t; x0, u, v)‖ ≤ γ ∀ t ∈ Z+.

Now let x0 ∈ , u ∈ F(Z+,U ) and v ∈ F(Z+,Cρ) be fixed, but arbitrary, set
h(y) := f (ue, y), and write x(t) := x(t; x0, u, v). Then

x∇ = Ax + b(h(c∗x) + d) + v, where d := f (u, c∗x) − f (ue, c∗x).

Since c∗xe = ye and xe = Axe + bh(ye), it follows that the function x̃(t) :=
x(t) − xe satisfies

x̃(t+1) = Ax̃(t)+b
[
h(c∗ x̃(t)+ ye)−h(ye)

]+bd(t)+v(t), ∀t ∈ Z+. (A.15)

By the hypothesis of ultimate semi-global c∗-persistence, there exist τ ∈ Z+ and
η ∈ (0, ye) such that

c∗ x̃(t + τ) ≥ −ye + η ∀ t ∈ Z+. (A.16)

Defining

h̃ : R → R, y �→
{
h(y + ye) − h(ye), for y ≥ −ye + η

h(η) − h(ye), for y < −ye + η,

it follows from (A.15) and (A.16) that

x̃(t + 1) = Ax̃(t) + b
[
h̃(c∗ x̃(t)) + d(t)

] + v(t), ∀ t ∈ τ + Z+. (A.17)

By assumption (N3), there existsq ∈ (0, p) such that (5.3) holds and consequently,

|h̃(y)| ≤ q|y| ∀ y ∈ R. (A.18)
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Invoking (L1) and (L2), it follows from Proposition 3.1 that G(1) = ‖G‖H∞ ,
implying that p = 1/‖G‖H∞ . Combining this with (A.18) and appealing to The-
orem 2.3, we conclude that system (A.17) is exponentially ISS (with respect to the
forcing bd + v). Hence, there exist M0 ≥ 1, μ ∈ (0, 1) and N0 > 0 (depending
only on A, b, c∗, ρ, U , f and ) such that

‖x̃(t + τ)‖ ≤ M0μ
t‖x̃(τ )‖ + N0(‖d‖�∞(0,t) + ‖v‖�∞(0,t)) ∀ t ∈ Z+. (A.19)

Furthermore, since the function y �→ h(y + ye) − h(ye) is linearly bounded on
[−ye,∞), we obtain from (A.15) that

‖x̃(t)‖ ≤ M1‖x̃(0)‖ + N1
(‖d‖�∞(0,t) + ‖v‖�∞(0,t)

)
t = 1, 2, . . . , τ, (A.20)

where the positive constants M1 and N1 depend only on A, b, c∗ and f . Set-
ting M := max(M0, M1μ

−τ ) and N := max(N0, N1) and appealing to (A.19)
and (A.20), we arrive at

‖x̃(t)‖ ≤ Mμt‖x̃(0)‖ + N (‖d‖�∞(0,t) + ‖v‖�∞(0,t)) ∀ t ∈ Z+ .

Combining this with

‖d‖�∞(0,t) ≤ max
{| f (ue, y) − f (u(s), y)| : s = 0, 1, . . . , t, 0 ≤ y ≤ γ ‖c∗‖}

= β(u, t) ,

shows that (5.5) holds, completing the proof of statement (1).
(b) Let x0 ∈ C with x0 �= 0, let u ∈ F(Z+,U ) and v ∈ F(Z+,C) be such that

limt→∞ u(t) = ue and limt→∞ v(t) = 0. Obviously, there exists ρ > 0 such that
v ∈ F(Z+,Cρ), and, by Theorem 4.4, there exists a bounded closed set K ⊂ C
such that 0 /∈ K and x(t; x0, u, v) ∈ K for t ∈ Z+. By statement (a) (with K now
playing the role of ), there exist M ≥ 1, μ ∈ (0, 1) and N > 0 such that, for all
s, t ∈ Z+,

‖x(t; x(s; x0, u, v), us, vs) − xe‖ ≤ Mμt‖x(s; x0, u, v) − xe‖
+ N (β(us, t) + ‖vs‖�∞) ,

where us(t) = u(t + s) and vs(t) = v(t + s) for all t ∈ Z+.
Now x(t + s; x0, u, v) = x(t; x(s; x0, u, v), us, vs) and so, for all s, t ∈ Z+,

‖x(t + s; x0, u, v) − xe‖ ≤ Mμt‖x(s; x0, u, v) − xe‖ + N (β(us, t) + ‖vs‖�∞) .

Given ε > 0, there exists σ ∈ Z+ such that N (β(uσ , t) + ‖vσ ‖�∞) ≤ ε/2 for all
t ∈ Z+ (where we have used that supt∈Z+ β(us, t) + ‖vs‖�∞ → 0 as s → ∞).
Moreover, choose θ ∈ Z+ such that Mμt‖x(σ ; x0, u, v) − xe‖ ≤ ε/2 for all
t ≥ θ . Consequently,
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‖x(t; x0, u, v) − xe‖ ≤ ε ∀ t ∈ (σ + θ) + Z+ ,

completing the proof. ��
Proof of Corollary 5.6 Let x0 ∈ C , x0 �= 0 and u∞ > 0. Consider fixed, but arbitrary
elements u ∈ F(Z+, (0,∞)) and v ∈ F(Z+,C) such that u(t) → u∞ and v(t) → 0
as t → ∞. The strategy is to apply statement (b) of Theorem 5.2. To this end, let U
be any compact set in R+ with 0 /∈ U , ue ∈ U and (ue/u∞)u(t) ∈ U for all t ∈ Z+.
Setting f0 := limy→0 g(y)y and

f (w, y) =
{
g(wy)y, for w ∈ U and y > 0
f0/w, for w ∈ U and y = 0,

it follows from (5.6) and Proposition 4.3 that f satisfies (N2). The conditions (5.7)
and (5.8) imply that (5.1) and (5.2) hold for f . Consequently, f satisfies (N3). It
follows that the hypotheses of Theorem 5.2 hold. Defining, for all t ∈ Z+,

x̃(t) := u∞

ue
x(t; x0, u, v), ũ(t) := ue

u∞ u(t), ṽ(t) := u∞

ue
v(t),

we have that x̃∇ = Ax̃+b f (ũ, c∗ x̃)+ ṽ. Finally, ũ(t) → ue and ṽ(t) → 0 as t → ∞,
and hence, an application of statement (b) of Theorem 5.2 shows that x̃(t) → xe as
t → ∞ and so, x(t; x0, u, v) → (ue/u∞)xe as t → ∞. ��

B An example relating to Rebarber et al. (2012), Corollary 4.1

Here we show, by providing a counter example, that the IPM result (Rebarber et al.
2012, Corollary 4.1) is not correct. To see this, assume that, in the notation of Rebarber
et al. (2012),� = [0, 1] and the functions b, c : [0, 1] → R+ and p : [0, 1]×[0, 1] →
R+ are continuous and satisfy

c(ξ) = 0 ∀ ξ ∈ [1/2, 1] and ‖c‖L∞ > 0,

and

p(x, ξ) = 0 ∀ (x, ξ) ∈ [0, 1/2] × [1/2, 1] and max
0≤ξ≤1

∫ 1

0
p(x, ξ)dx < 1.

Then, with n(ξ, 0) = 0 for ξ ∈ [0, 1/2] and ‖n(· , 0)‖L1 > 0, we have that

cT n(· , 0) =
∫ 1

0
c(ξ)n(ξ, 0)dξ = 0,

and

∫ 1

0
p(x, ξ)n(ξ, 0)dξ =

∫ 1

1/2
p(x, ξ)n(ξ, 0)dξ = 0 ∀ x ∈ [0, 1/2].
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Now

n(x, 1) =
∫ 1

0
p(x, ξ)n(ξ, 0)dξ + b(x) f (cT n(·, 0))

=
∫ 1

0
p(x, ξ)n(ξ, 0)dξ = 0 ∀ x ∈ [0, 1/2],

wherewe have assumed that f (0) = 0. By repeated application of the above argument,
it follows that

y(t) = cT n(· , t) = 0 ∀ t ∈ Z+. (B.1)

If we choose b so that additionally cT b = ∫ 1
0 c(ξ)b(ξ)dξ > 0, it is clear that cT (I −

A)−1b > 0, and so for any non-decreasing concave function f with f (0) = 0,
limy→0 f (y)/y > p∗

e and limy→∞ f (y)/y < p∗
e , the assumptions of Rebarber et al.

(2012), Corollary 4.1 are satisfied, where 1/p∗
e = cT (I − A)−1b. But if Rebarber et al.

(2012), Corollary 4.1 was correct, then limt→∞ y(t) > 0, in contradiction to (B.1).
Finally, denoting the integral operator

L1(0, 1) → L1(0, 1), ζ �→
∫ 1

0
p(· , ξ)ζ(ξ)dξ

by A, an inspection of the above argument shows that ker cT has an A-invariant
subspace S ⊂ L1(0, 1) containing positive elements.

C Example 6.4: further details

We provide some details on the numerical approximation scheme. For notational con-
venience in this section we set N := {1, 2, . . . , N } for each N ∈ N.

To derive a numerical approximation of the forced nonlinear IPM (6.24), we dis-
cretise the state variable n via finite elements. To this end, we consider n(t + 1, ξ),
multiply by ψ ∈ L1(�) := L1(�,R) and integrate over � to obtain

∫

�

ψ(ξ)n(t + 1, ξ) dξ =
∫

�

ψ(ξ)
[(
A0n(t, · ))(ξ) + psc(u(t)D(t))D(t) fsd(ξ)

]
dξ

=
∫

�

ψ(ξ)

(∫

ζ∈�

k(ξ, ζ )n(t, ζ ) dζ

)
dξ

+
(∫

�

ψ(ξ) fsd(ξ) dξ

)
psc(u(t)D(t))D(t) . (C.1)

We seek an approximate solution to (C.1) of the form

nN (t, ξ) =
N∑

j=1

a j (t)φ j (ξ), ∀ t ∈ Z+, ∀ ξ ∈ �, (C.2)

123



Boundedness, persistence and stability for classes… 1073

where N ∈ N, φ j are given functions in L1(�) and a j are to-be-determined scalar
coefficients. Substituting (C.2) into (C.1), and testing against ψ = φi for each i ∈ N
gives

N∑

j=0

(∫

�

φi (ξ)φ j (ξ) dξ

)
a j (t + 1) =

N∑

j=0

(∫

�

φi (ξ)

∫

ζ∈�

k(ξ, ζ )φ j (ξ) dζdξ

)
a j (t)

+
(∫

�

φi (ξ) fsd(ξ) dξ

)
psc(u(t)D(t))D(t) .

(C.3)

Setting

z(t) := (
a1(t) . . . aN (t)

)T ∈ R
N ∀ t ∈ Z+ ,

we see that (C.3) may be expressed in matrix form as

Ez∇ = Fz + G f (u, D) . (C.4)

Here (E, F,G) ∈ R
N×N × R

N×N × R
N are given entrywise by

Ei j :=
∫

�

φi (ξ)φ j (ξ)dξ, Fi j :=
∫

�

φi (ξ)

(∫

�

k(ξ, ζ )φ j (ζ )dζ

)
dξ, ∀ i, j ∈ N ,

(C.5)
and

Gi :=
∫

�

φi (ξ) fsd(ξ)dξ, ∀ i ∈ N . (C.6)

Since we are seeking to approximate the L1(�) functions n(t, ·) in L1(�) (that is, we
are not approximating anyderivatives),we choose as finite-dimensional approximation
spaces the linear span of N piecewise constant functions. Specifically, for fixed N ∈ N,
we define ξ j := m1 + j(m2 −m1)/N for j ∈ {0, 1, . . . , N },� := (m2 −m1)/N and

φi : � → R+, φi (ξ) :=
⎧
⎨

⎩

1√
�

ξi−1 ≤ ξ ≤ ξi

0 else,
∀ i ∈ N .

An advantage of such a choice is that, as readily seen, E = I , because Ei j = 0 if
i �= j and

Eii =
∫ m2

m1

φ2
i (ξ) dξ = 1

�

∫ ξi

ξi−1

dξ = 1, ∀ i ∈ N .

Moreover, by inspection of (C.5) and (C.6), it follows that with the above choice of
piecewise constant φ j , F and G in (C.6) have nonnegative entries.
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Noting that

h∗nN (t, ·) =
N∑

j=0

(∫

�

pf(ξ) fs(ξ)ps(ξ)φ j (ξ) dξ

)
a j (t)

= HT z(t), ∀ t ∈ Z+ ,

where the entries of H ∈ R
N are given by

Hj :=
∫

�

pf(ξ) fs(ξ)ps(ξ)φ j (ξ) dξ, ∀ j ∈ N ,

we arrive at the finite-dimensional approximation to (6.24) given by

x∇
N =

⎛

⎝
z∇
D∇
S∇
1

⎞

⎠ =
⎛

⎝
F 0 0

pestg0HT 0 pestg1
(1 − g0)s0HT 0 0

⎞

⎠

⎛

⎝
z
D
S1

⎞

⎠ +
⎛

⎝
G
0
0

⎞

⎠ psc
(
uD)D + v .

(C.7)

Note that F , G and H have nonnegative entries. The numerical simulations for Exam-
ple 6.4 have been generated via (C.7) with N = 30.
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