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1 Introduction

We consider boundedness, persistence, excitability and stability properties of the following system
of forced, positive, nonlinear difference equations with delay

x(t+ 1) = Ax(t) + bf(u(t), c⊤x(t) + d⊤x(t− 1)) + v(t), x(0) = x0, x(−1) = x−1, t ∈ N0 . (1.1)

Here the matrix A and the vectors b, c, d are nonnegative, f is a nonlinearity mapping into [0,∞)
and x0, x−1 are nonnegative initial vectors. The functions u and v denote external signals which,
depending on the context, could play the role of disturbance or control terms. We call u and v
forcing functions or inputs and it is assumed that v is nonnegative.

Positive dynamical systems are dynamical systems with the defining property that they leave
some positive cone invariant. This defining property captures the natural requirement that the
modelled quantities (e.g., concentrations, densities) must take nonnegative values to be physically
meaningful. The study of positive systems described by linear dynamic equations is underpinned by
the seminal work of Perron and Frobenius in the early 1900s on irreducible and primitive matrices.
A range of extensions of these results appear across the literature (see, for example, [33]). Positive
dynamical systems are closely related to the concept of monotone dynamical systems [30, 43].
Positive and monotone dynamical systems are mathematically interesting owing to their various
invariance properties and amenability to comparison arguments, and are known to often admit
linear or separable Lyapunov functions (see [37], or, for monotone systems, [13]). Moreover, they
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are the appropriate modelling framework for numerous applications. The reader can find more
information about these systems and their applications in [5, 6, 28, 32, 33].

Control theory deals with the study of dynamical systems which interact with their wider en-
vironment via the inclusion of input (control, forcing) and output (measurement) variables, and
their interconnection via feedback. A branch of control theory augments positive and monotone
dynamical systems with input and output variables, and gives rise to so-called positive and mono-
tone control systems, see the texts [17, 28] or [2, 42], respectively. The model (1.1) (with the
nonnegativity assumptions stated above) is an example of a positive control system.

The inclusion of forcing terms is essential when seeking to explore the effects of external signals on
resulting dynamics, such as the response of a population to, for instance, anthropogenic, environ-
mental or demographic variation. Two perspectives are afforded: first, the robustness of desirable
properties of the model with respect to unwanted forcing terms, and second, the role of forcing
terms (here likely to be interpreted as management actions) in catalyzing or ensuring desirable
dynamic behaviour, such as population persistence in the context of conservation.

Whilst delays in discrete- and continuous-time dynamical systems play largely the same purpose —
to capture some contribution from previous states in the forward evolution of the state — there are
significant differences. Namely, delay-differential equations are instances of functional differential
equations [29], and to fully describe the time evolution in terms of a state variable requires an
infinite-dimensional state space. The same is not true for difference equations: it is always possible
to rewrite the original delayed difference equation as an undelayed difference equation with an
augmented finite-dimensional state. Consequently, there is the potential to apply persistence and
stability results for first-order difference equations [20, 21] to delayed systems of the form (1.1).
However, rewriting (1.1) in first-order form imposes a certain special structure on the first-order
system data which frequently prevents a straightforward application of the results in [20, 21]. Here,
we develop a bespoke approach to the persistency and stability analysis of (1.1) which takes the
said special structure of the first-order version of (1.1) into account.

Delays are an important feature of models arising in mathematical biology and ecology. For in-
stance, many plants grow from seeds, and it is a known plant survival strategy that not all seeds
germinate in the year following their dispersal. Seeds which remain dormant underground, so-called
seed banks, introduce delays into models. A review of mathematical models including seed banks
appears in [36]. Or, in another setting, much attention has been devoted to the role of delay-until-
reproductive-maturation in age-structured models, dating back to at least [34], and further studied
and generalised across, for example, [4, 18, 50].

System (1.1) contains both linear and nonlinear components, and, in control theoretic terminology,
is an instance of a forced, positive, delayed discrete-time Lur’e system, see, for example [48].
Lur’e systems of difference equations have gained some recent traction in structured population
modelling owing to their ability to represent both density independent and density-dependent vital
or transition rates. Indeed, they have been proposed and considered as models in ecology in, for
example, [7, 14, 15, 20, 21, 22, 44]. This line of enquiry dates back to the two papers [38, 47]
where control theoretic tools were used to study so-called “trichotomies of stability”. Under mild
assumptions, unforced Lur’e systems admit two equilibria, zero and a unique nonzero equilibrium,
with the usual interpretation of population absence/extinction and steady state, respectively. For
models arising in mathematical biology, boundedness and persistence are fundamental properties.
The latter property addresses, roughly speaking, the extent to which the zero state is repelling.
Persistence is a well-established concept with a number of variations appearing across, but not
limited to, [20, 21, 40, 45, 49]. Moreover, persistence relates to the control theoretic concept of
excitability, that is, the use of external inputs to drive the system into a persistency regime.

In this paper, we provide a range of boundedness, persistence, excitability and stability properties
for the Lur’e system (1.1). The present work builds on, refines and further develops our ear-
lier works [20, 21] which consider boundedness, persistence and stability properties of variations of
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model (1.1) above, but without delay. The inclusion of the delay term in (1.1) distinguishes our cur-
rent work from [20, 21], and comprises the main contribution. One typical application is when (1.1)
represents a stage-structured population, where the nonlinear term bf(c⊤x(t)+d⊤x(t−1)) captures
recruitment into the population, the delay term d⊤x(t− 1) modelling delays in recruitment. This
is the situation considered in Example 5.1. Moreover, in Examples 5.2 and 5.3, we consider popu-
lations spatially structured in several patches and study how modifying the dispersal rate between
these patches affects the persistence and the asymptotic size of the population. Interestingly, we
find that there are only two possible response scenarios of the population size to an increase of
dispersal for these models. This contrasts with the four scenarios observed recently in [24, 27, 41]
for other simple continuous- and discrete-time dispersal models.

As we demonstrate, there is some overlap between the boundedness and stability properties of (1.1)
and the undelayed case, yet there are considerable differences when it comes to persistence. Roughly
speaking, the inclusion of delays can make persistence “harder” than in the undelayed case: a po-
tential intuitive explanation being that the linear and nonlinear terms in (1.1), both of which are
nonnegative and so contribute positively towards persistence, now need not be acting synchronously.
Interestingly, we show that the discrete-time analogue of assumptions which are sufficient for per-
sistence in a system of delayed Lur’e differential equations, the focus of [19], are not sufficient for
comparable persistence notions in the context of the discrete-time system (1.1), that is, there are
some discrepancies between the discrete- and continuous-time cases. The persistence properties
we consider are ultimate in that they only apply after some fixed number of time-steps, and uni-
form with respect to certain compact sets of initial conditions. We contend that this concept of
persistency is suitable for all practical purposes.

Our main boundedness and persistence results are Proposition 3.1 and Theorem 3.12, respectively.
Our main stability result is Theorem 4.1, from which a number of corollaries are derived which
apply to convergent forcing terms. As is typical when studying Lur’e systems, our approach is
to identify conditions on the “linear terms” appearing in (1.1) (that is, the data A, b, c, d), the
classes of nonlinearity f considered, and certain interplay between them, which are sufficient for
boundedness, persistence or stability. Our argumentation is underpinned by a blend of positive
system (comparison) and control theoretic techniques.

The present work is organized as follows. Section 2 contains preliminary material. Our main results
appear across Sections 3 and 4, dedicated to boundedness, excitability, persistence properties, and
stability results, respectively. Three examples from population dynamics are presented in Section 5
and a summary appears in Section 6.

Notation. We set R+ := [0,∞), N := {1, 2, . . .} and N0 := N ∪ {0}. For n ∈ N, let Rn denote the
space of column vectors with n real components. We define Rn

+ to be the subset of Rn consisting
of all vectors in Rn with non-negative components. For ξ ∈ Rn, we write ξ ≥ 0 if ξ ∈ Rn

+, ξ > 0 if
ξ ≥ 0 and ξ ̸= 0, and ξ ≫ 0 if all components of ξ are positive. If ξ ≫ 0, then we also say that ξ
is strictly positive. Furthermore, let ξ, ζ ∈ Rn. If ξ − ζ ≥ 0, ξ − ζ > 0 or ξ − ζ ≫ 0, then we write
ξ ≥ ζ, ξ > ζ or ξ ≫ ζ, respectively. Similar conventions apply to real matrices. For vectors ξ ∈ Rn

and ζ ∈ Rm, we set

[[ξ, ζ]] :=

(
ξ
ζ

)
∈ Rn+m.

For a square matrix M (with real or complex entries), the spectrum of M is denoted by spec(M).
A square matrix is called asymptotically stable if its spectral radius is less than one. Finally, for a
subset S ⊂ Rn, let ∂S denote the boundary of S.
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2 Preliminaries

Consider the system of positive, nonlinear, forced, delayed difference equations (1.1). Here A ∈
Rn×n
+ , b, c, d ∈ Rn

+ and x0, x−1 ∈ Rn
+. It will be assumed throughout that

b ̸= 0, d ̸= 0, A is asymptotically stable.

The terms u(t) and v(t) in (1.1) denote exogenous forcing functions (which could be control inputs
or disturbances). Throughout, the functions u and v take values in non-empty compact sets U ⊂ Rm

and V ⊂ Rn
+, respectively, where it is assumed that 0 ∈ V , and the nonlinearity f : U × R+ → R+

is continuous. The initial-value problem (1.1) has a unique solution x : {−1} ∪ N0 → Rn. As the
system and initial data are nonnegative, it is clear that the solution of (1.1) has values in Rn

+.

System (1.1) can be thought of as the interconnection of the linear controlled and observed system

x(t+ 1) = Ax(t) + bw(t) + v(t), y(t) = c⊤x(t) + d⊤x(t− 1) (2.1)

and the nonlinear feedback w(t) = f(u(t), y(t)). In control theory, such feedback systems are called
Lur’e systems. In (2.1), w is a (scalar-valued) input which is available for feedback, whereas y is the
measurement, observation or output. Associated with the quadruple (A, b, c⊤, d⊤) is the rational
function G defined by

G(ζ) :=
(
c⊤ + (1/ζ)d⊤

)(
ζI −A

)−1
b, where ζ ∈ C.

If x(0) = x(−1) = 0 and v = 0, then application of the Z-transform to (2.1) shows that

(Zy)(ζ) = G(ζ)(Zw)(ζ).

The above identity shows that if x(0) = x(−1) = 0 (zero initial conditions) and v = 0, then the
effect of the input w on the output y of system (2.1) is described in the frequency domain by the
product of G and the Z-transform of w. Therefore, G is called the transfer function of (2.1) with
v = 0.

We set
∥G∥H∞ := sup

|ζ|≥1
|G(ζ)| = sup

|ζ|=1
|G(ζ)|,

where H∞ refers to the space of all bounded holomorphic functions defined on the complement of
the closed unit disc. If x(0) = x(−1) = 0 and v = 0 in (2.1), then the associated output y = yw
depends only on w, and

sup{∥yw∥ℓ2 : ∥w∥ℓ2 = 1} = ∥G∥H∞ , where ∥w∥ℓ2 :=

√√√√ ∞∑
t=0

|w(t)|2.

The above identity provides an appealing interpretation of ∥G∥H∞ in time-domain terms. Using
the positivity assumptions on A, b, c and d we have that, for all ζ ∈ C such that |ζ| = 1,

|G(ζ)| ≤
∞∑
j=0

∣∣(c⊤ + (1/ζ)d⊤)ζ−(j+1)Ajb
∣∣ ≤ ∞∑

j=0

(
|c⊤Ajb|+ |d⊤Ajb|

)
=

∞∑
j=0

(c⊤ + d⊤)Ajb = G(1),

where, invoking the asymptotic stability of A, we have used that (ζI −A)−1 = ζ−1(I − ζ−1A)−1 =∑∞
j=0 ζ

−(j+1)Aj for all ζ ∈ C such that |ζ| = 1. Consequently,

∥G∥H∞ = G(1).

We define

p :=
1

G(1)
=

1

∥G∥H∞
, where p := ∞ if G(1) = ∥G∥H∞ = 0.
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For ξ ∈ R2n, we write
ξ = [[ξ0, ξ−1]], ξ0, ξ−1 ∈ Rn,

and define the linear functional F : R2n → R by

F(ξ) = F
(
[[ξ0, ξ−1]]

)
= (c⊤ + d⊤)(I −A)−1ξ0 + d⊤ξ−1 =

(
(c⊤ + d⊤)(I −A)−1, d⊤

)
ξ.

Defining ϕ ∈ R2n
+ by

ϕ :=
(
(c⊤ + d⊤)(I −A)−1, d⊤

)⊤
, (2.2)

it follows that F(ξ) = ϕ⊤ξ, and therefore, we will frequently identify F with the row vector ϕ⊤ =(
(c⊤ + d⊤)(I −A)−1, d⊤

)
. Furthermore, for e ∈ Rn, we shall make use of the matrix

O(e⊤, A) :=


e⊤

e⊤A
...

e⊤An−1

 ∈ Rn×n,

and introduce the following assumption (cf. [19]):

(O) kerO(c⊤, A) ∩ kerO(d⊤, A) ∩ Rn
+ = {0}.

As A, b, c and d are non-negative, (O) is equivalent to kerO((c+ d)⊤, A) ∩ Rn
+ = {0}.

The matrix O(e⊤, A) is the so-called observability matrix of the observed system

x(t+ 1) = Ax(t), y(t) = e⊤x(t). (2.3)

Obviously, the output y of (2.3) is given by y(t) = e⊤Atx(0). It is well known and not difficult
to show that y(t) = 0 for all t ∈ N0 if, and only if, x(0) ∈ kerO(e⊤, A). In particular, if x(0) ̸∈
kerO(e⊤, A), then the corresponding observation is not identically equal to 0. If kerO(e⊤, A) is non-
trivial, then the non-zero vectors in kerO(e⊤, A) are called the unobservable states of (2.3). If there
exists an unobservable state x0 of (2.3), then, for every z ∈ Rn, we have that e⊤Atz = e⊤At(z+x0)
for all t ∈ N0, that is, the states z and z+x

0 are indistinguishable on the basis of their corresponding
output information.

The condition (O) is not very restrictive because the set

Ω := {(e,A) ∈ Rn
+ × Rn×n

+ : kerO(e⊤, A) ∩ Rn
+ = {0}}

is “large” in the sense that Ω is dense in Rn
+ × Rn×n

+ , Ω is relatively open with respect to Rn
+ ×

Rn×n
+ and the complement of Ω in Rn

+ × Rn×n
+ has zero Lebesgue measure. The latter is a trivial

consequence of the inclusion(
Rn
+ × Rn×n

+

)
\Ω ⊂

(
{0} × Rn×n

+

)
∪
(
∂Rn

+ × ∂Rn×n
+

)
⊊ ∂

(
Rn
+ × Rn×n

+

)
.

The following result shows that if condition (O) holds, then G and F have certain positivity
properties.

Proposition 2.1. The following statements hold.

(1) G(1) > 0 if, and only if, b ̸∈ kerO((c+ d)⊤, A).

(2) Assumption (O) holds if, and only if, (c+ d)⊤(I −A)−1 ≫ 0.

(3) If (O) holds, then G(1) > 0.

(4) F(ξ) ≥ 0 for all ξ ∈ R2n
+ .
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(5) If (O) holds, then infξ∈R2n
+ , ∥ξ0∥=1 F(ξ) > 0.

(6) If d≫ 0, then infξ∈R2n
+ , ∥ξ∥=1 F(ξ) > 0.

(7) Assume that b ̸∈ kerO((c+ d)⊤, A). If z is a solution of the linear difference equation

z(t+ 1) = Az(t) + pb
(
c⊤z(t) + d⊤z(t− 1)

)
, (2.4)

then
F
(
z̃(t+ 1)

)
= F

(
z̃(t)

)
, t ∈ N0, where z̃(t) := [[z(t), z(t− 1)]].

Statement (7) shows that if b ̸∈ kerO((c + d)⊤, A) and z is a solution of (2.4), then F is constant
on z̃(N0).

Proof of Proposition 2.1. (1) As A is asymptotically stable, we have that

(I −A)−1 =
∞∑
j=0

Aj , (2.5)

and so,

G(1) = (c+ d)⊤
( ∞∑

j=0

Aj
)
b ≥ 0.

Trivially, if G(1) = 0, then (c+d)⊤Ajb = 0 for all j ∈ N0, and so b ∈ kerO((c+d)⊤, A). Conversely,
if b ∈ kerO((c + d)⊤, A), then (c + d)⊤Ajb = 0 for all j ∈ {0, 1, . . . , n − 1}. An application of the
Cayley-Hamilton theorem then shows that (c+ d)⊤Ajb = 0 for all j ∈ N0, implying that G(1) = 0.
The claim now follows via contraposition.

(2) Yet again, we will prove the statement by contraposition. If (O) does not hold, then there exists
non-zero z ∈ Rn

+ such that (c + d)⊤Ajz = 0 for all j ∈ {0, 1, . . . , n − 1}. Hence, by the Cayley-
Hamilton theorem, (c+d)⊤Ajz = 0 for all j ∈ N0, and so, appealing to (2.5), (c+d)⊤(I−A)−1z = 0,
showing that (c+ d)⊤(I −A)−1 is not strictly positive.

Conversely, assume that there exists non-zero z ∈ Rn
+ such that (c + d)⊤(I − A)−1z = 0, that

is, (c + d)⊤(I − A)−1 is not strictly positive. Using (2.5) once more, we see that (c + d)⊤Ajz = 0
for all j ∈ N0. Consequently, z ∈ kerO((c + d)⊤, A), showing that the intersection kerO(c⊤, A) ∩
kerO(d⊤, A) ∩ Rn

+ contains non-zero elements.

(3) This is an immediate consequence of statement (2) as b > 0.

(4) Statement (4) is obvious as (c+ d)⊤(I −A)−1 ≥ 0 and d⊤ ≥ 0.

(5) This statement follows from statement (2).

(6) Noting that d≫ 0 implies that ϕ⊤ =
(
(c⊤ + d⊤)(I −A)−1, d⊤

)
≫ 0, the claim follows easily.

(7) Assume that b ̸∈ kerO((c+d)⊤, A). By statement (1), G(1) > 0, or, equivalently, p <∞. Let z
be a solution of z(t+1) = Az(t)+pb

(
c⊤z(t)+d⊤z(t−1)

)
. Using that (I−A)−1A = (I−A)−1− I,

we obtain that, for all t ∈ N0,

F
(
z̃(t+ 1)

)
= (c+ d)⊤(I −A)−1

(
Az(t) + pb(c⊤z(t) + d⊤z(t− 1))

)
+ d⊤z(t)

= (c+ d)⊤(I −A)−1z(t) + c⊤z(t) + d⊤z(t− 1)− (c+ d)⊤z(t) + d⊤z(t)

= (c+ d)⊤(I −A)−1z(t) + d⊤z(t− 1)

= F
(
z̃(t)

)
,

completing the proof.
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3 Boundedness, persistency and excitability

In this section, we explore boundedness, persistency and excitability properties of the Lur’e sys-
tem (1.1). Frequently, it is useful and convenient to express the second-order (or, delayed) Lur’e
system (1.1) in first-order form:

x̃(t+ 1) = Ãx̃(t) + b̃f
(
u(t), c̃⊤x̃(t)

)
+ ṽ(t), x̃(0) = x̃0 := [[x0, x−1]], t ∈ N0, (3.1)

where

Ã :=

(
A 0
I 0

)
, b̃ :=

(
b
0

)
, c̃ :=

(
c
d

)
, x̃(t) :=

(
x(t)

x(t− 1)

)
, ṽ(t) :=

(
v(t)
0

)
. (3.2)

We note that Ã is asymptotically stable, Ã, b̃ and c̃ are non-negative and

(ζI − Ã)−1 =

(
(ζI −A)−1 0

(1/ζ)(ζI −A)−1 (1/ζ)I

)
∀ ζ ∈ C, ζ ̸= 0, ζ ̸∈ spec(A).

Hence,

c̃⊤(ζI − Ã)−1b̃ = (c⊤ + (1/ζ)d⊤)(ζI −A)−1b = G(ζ) ∀ ζ ∈ C, ζ ̸= 0, ζ ̸∈ spec(A). (3.3)

Moreover,
c̃⊤(I − Ã)−1 =

(
(c+ d)⊤(I −A)−1, d⊤

)
= ϕ⊤.

Recall that, in (1.1), the functions u and v take values in the compact subsets U ⊂ Rm and
V ⊂ Rn

+, respectively, where it is assumed that 0 ∈ V . We introduce the following assumptions on
the nonlinearity f .

(N1) f(w, z) > 0 for all w ∈ U and z > 0 and

lim sup
z→∞

(
max
w∈U

f(w, z)

z

)
< p .

(N2) (N1) holds, p <∞ and

lim inf
z↓0

(
min
w∈U

f(w, z)

z

)
> p .

Conditions (N1) and (N2) were also employed in the continuous-time setting in [19] when studying
boundeness and persistence. The interested reader can find a biological interpretation of these
assumptions in [20, Remark 4.2]. We note that, by statement (1) of Proposition 2.1, we could
replace condition p <∞ in (N2) by b ̸∈ kerO(c⊤ + d⊤, A).

3.1 Boundedness and persistency

The first result of this subsection will be used as a tool in the analysis of persistence properties of
system (1.1). We set

yx(t) := c⊤x(t) + d⊤x(t− 1) = c̃⊤x̃(t) ∀ t ∈ N0,

where x is the solution of (1.1).

Proposition 3.1. Consider the system (1.1) and let β > 0. The following statements hold.

(1) If (N1) holds, then there exist γ > 0 such that, for all x−1, x0 ∈ Rn
+ with ∥x−1∥, ∥x0∥ ≤ β, all

u : N0 → U , and all v : N0 → V , the solution x of (1.1) satisfies

∥x(t− 1)∥ ≤ γ, ∀ t ∈ N0 . (3.4)
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(2) If (N2) holds, then there exists θ > 0 such that, for all x−1, x0 ∈ Rn
+ with ∥x−1∥, ∥x0∥ ≤ β,

all u : N0 → U , and all v : N0 → V , the solution x of (1.1) satisfies

min
w∈U

f(w, yx(t)) ≥ θyx(t), ∀ t ∈ N0. (3.5)

(3) If (N2) holds, there exists η > 0 such that, for all x−1, x0 ∈ Rn
+ with ∥x−1∥, ∥x0∥ ≤ β, all

u : N0 → U , and all v : N0 → V , the solution x of (1.1) satisfies

F(x̃(t)) ≥ min
(
F(x̃(0)), η

)
, ∀ t ∈ N0.

Proof. (1) Statement (1) follows immediately from [20, Theorem 4.4] applied to the augmented
system (3.1). Note that (1.1) and (3.1) have the same nonlinear term f , and c̃⊤(I − Ã)−1b̃ =
G(1) = 1/p by (3.3).

(2) By statement (1) there exists γ > 0 such that, for all x−1, x0 ∈ Rn
+ with ∥x−1∥, ∥x0∥ ≤ β and

all functions u : N0 → U and v : N0 → V , the solution x of (1.1) satisfies

yx(t) ≤ (∥c∥+ ∥d∥)γ ∀ t ∈ N0. (3.6)

On the one hand, by assumption (N2), there exists 0 < y♯ < (∥c∥+ ∥d∥)γ such that

min
w∈U

f(w, z) ≥ pz ∀ z ∈ [0, y♯]. (3.7)

On the other hand, using the positivity and continuity of f ,

p̂ := min{f(w, z)/z : w ∈ U, y♯ ≤ z ≤ (∥c∥+ ∥d∥)γ} > 0. (3.8)

Hence, inequality (3.5) holds with θ := min{p, p̂}.
(3) As in the proof of statement (2), there exists γ > 0 such that (3.6) is satisfied for all x0 and
x−1 such that ∥x0∥, ∥x−1∥ ≤ β. By assumption (N2) there exists 0 < y♯ < (∥c∥+ ∥d∥)γ such that
(3.7) holds. Let t ∈ N0. We consider two cases.

Case 1: yx(t) < y♯. Since f(u(t), yx(t)) ≥ pyx(t), we have

F
(
x̃(t+ 1)

)
= (c+ d)⊤(I −A)−1x(t+ 1) + d⊤x(t)

= (c+ d)⊤(I −A)−1
[
Ax(t) + bf(u(t), yx(t)) + v(t)

]
+ d⊤x(t) .

Hence, using that (I −A)−1A = (I −A)−1 − I,

F
(
x̃(t+ 1)

)
≥ (c+ d)⊤(I −A)−1

(
Ax(t) + pbyx(t)

)
+ d⊤x(t)

= (c+ d)⊤(I −A)−1x(t)− (c+ d)⊤x(t) + yx(t) + d⊤x(t)

= (c+ d)⊤(I −A)−1x(t) + d⊤x(t− 1).

The above yields that
F
(
x̃(t+ 1)

)
≥ F

(
x̃(t)

)
. (3.9)

Case 2: y♯ ≤ yx(t) ≤ (∥c∥+ ∥d∥)γ. With p̂ as in (3.8), we have that

F
(
x̃(t+ 1)

)
= (c+ d)⊤(I −A)−1

[
Ax(t) + bf(u(t), yx(t)) + v(t)

]
+ d⊤x(t)

≥ G(1)p̂y♯ =
p̂y♯

p
=: η > 0 .

Together with (3.9) established in Case 1, this shows that

F
(
x̃(t+ 1)

)
≥ min(F

(
x̃(t)

)
, η), t ∈ N0 ,

from which the claim follows.
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Whilst Propositions 2.1 and 3.1 (with c = 0) show that there are some strong similarities between
the continuous-time and discrete-time cases, see [19, Propositions 3.2, 3.3 and Lemma 4.2], there
are also substantial differences. To highlight the differences, we consider the following positive
differential-delay system

ẋ(t) = Acx(t) + bf(u(t), d⊤x(t− h)) + v(t), x(t) = ξ(t) ∀ t ∈ [−h, 0], ξ ∈ C([−h, 0],Rn
+), (3.10)

where Ac ∈ Rn×n
+ , b, d ∈ Rn

+, b ̸= 0, d ̸= 0, h > 0, f : Rm×R+ → R+ is continuous, and u and v are
bounded measurable functions defined on R+ with values in Rm and Rn

+, respectively. Obviously,
(3.10) is a natural continuous-time time analogue of (1.1) (with c = 0).

The following result is an immediate consequence of [19, Proposition 3.2 and Theorem 4.3].

Proposition 3.2. Assume that in (3.10), Ac is Metzler (all off-diagonal entries are non-negative)
and Hurwitz (all eigenvalues have negative real parts). The following statements hold.

(1) kerO(d⊤, A) ∩ Rn
+ = {0} if, and only if, d⊤eAt ≫ 0 for all t > 0.

(2) If kerO(d⊤, A) ∩ Rn
+ = {0}, (N2) holds and ξ(0) ̸= 0, then the solution x of (3.10) satisfies

d⊤x(t) > 0 for all t ≥ 2h.

(3) If d ≫ 0, (N2) holds and ξ(t) ̸≡ 0, then the solution x of (3.10) satisfies d⊤x(t) > 0 for all
t ≥ 2h.

The following example shows that Proposition 3.2 does not carry over to the discrete-time setting.

Example 3.3. Consider system (1.1) without external forcing (that is, v = 0 and f(w, z) = f(z) for
all z ∈ R+) and the linear and initial data

A =

0 1 0
0 0 0
0 0 0

 , b =

1/2
0
1/2

 , c = 0, d =

1
1
1

 , x0 =

1
0
0

 , x−1 = 0.

It is clear that (O) holds (because d≫ 0) and d⊤At = (0, 0, 0) for all t ∈ N0 with t ≥ 2. This shows
that statement (1) of Proposition 3.2 does not carry over to the discrete-time setting.

Furthermore, for every continuous f : R+ → R+ such that f(0) = 0, it is straightforward to prove
by induction that the solution x of (1.1) satisfies

x(t) = 0, if t = 2m+ 1, m ∈ N0 and x(t) = bf t/2(1), if t = 2(m+ 1), m ∈ N0.

Consequently, d⊤x = 0 if t = 2m+ 1, m ∈ N0, showing that statements (2) and (3) of Proposition
3.2 do not extend to the discrete-time system (1.1). ♢

A key requirement for the stability properties that we will present in Section 4 is that the observation
yx(t) = c⊤x(t)+d⊤x(t−1) associated with system (1.1) is eventually uniformly positive. However,
as we have just seen in Example 3.3, conditions (O) and (N2) (or conditions d ≫ 0 and (N2)) do
not guarantee that such a requirement is fulfilled in the discrete-time case for all (x0, x−1) ̸= (0, 0).
In order to deal with this issue, we introduce a concept of persistency with respect to a set of initial
conditions for the system (1.1).

Definition 3.4. Given a set of initial conditions Γ ⊂ R2n
+ , we say that (1.1) is c̃-persistent with

respect to Γ if there exist τ ∈ N0 and δ > 0 such that the solution x of (1.1) satisfies

yx(t+ τ) = c̃⊤x̃(t+ τ) = c⊤x(t+ τ) + d⊤x(t+ τ − 1) ≥ δ ∀ t ∈ N0

for all (x0, x−1) ∈ Γ and all functions u : N0 → U and v : N0 → V . ♢
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As the persistency property c̃⊤x̃(t) ≥ δ is required to hold only for all sufficiently large t, it would
perhaps be more accurate to call the concept “ultimate c̃-persistency with respect to Γ”, but we
will refrain from doing so for the sake of simplicity and the avoidance of potentially awkward
formulations.

Our first approach to c̃-persistency properties of (1.1) is to apply the persistency results of [20,
Section 4] for undelayed difference equations to the augmented system (3.1). To this end, we
introduce the following condition on Ã, b̃ and c̃ defined in (3.2).

(P1) There exists τ ∈ N0 such that c̃⊤
(
Ã+ b̃c̃⊤

)τ ≫ 0.

A simple consequence of (P1) is described in the following lemma.

Lemma 3.5. Assume that there exists τ ∈ N0 such that (P1) holds. Then

c̃⊤
(
Ã+ qb̃c̃⊤

)t+τ ≫ 0 for all q > 0 and t ∈ N0.

Proof. Let q > 0. If q ≥ 1, then q − 1 ≥ 0, and thus,

c̃⊤
(
Ã+ qb̃c̃⊤

)τ
= c̃⊤

(
Ã+ b̃c̃⊤ + (q − 1)b̃c̃⊤

)τ ≥ c̃⊤
(
Ã+ b̃c̃⊤

)τ ≫ 0.

If q < 1, then q−1 − 1 > 0, and hence,

c̃⊤
(
Ã+ qb̃c̃⊤

)τ
= qτ c̃⊤

(
Ã+ b̃c̃⊤ + (q−1 − 1)Ã

)τ ≥ qτ c̃⊤
(
Ã+ b̃c̃⊤

)τ ≫ 0.

It follows that the matrix Ã+qb̃c̃⊤ cannot have any zero columns. Consequently, as c̃⊤
(
Ã+qb̃c̃⊤

)τ ≫
0, we have that c̃⊤

(
Ã + qb̃c̃⊤

)τ+1 ≫ 0. The claim now follows from a straightforward induction
argument.

The next result provides necessary and sufficient conditions for (P1) to hold.

Lemma 3.6. The following statements hold.

(1) If (P1) holds, then d≫ 0.

(2) If d≫ 0 and there exists k ∈ N0 such that c⊤(A+ bc⊤)k ≫ 0, then (P1) holds with τ = k+1.

(3) If d≫ 0 and Ab > 0, then (P1) holds with τ = 3.

(4) If c = 0 and (P1) holds, then d≫ 0 and Ab > 0.

Proof. (1) If d is not strictly positive, then

Ã+ b̃c̃⊤ =

(
A+ bc⊤ bd⊤

I 0

)
has a zero column, and hence (Ã + b̃c̃⊤)τ has a zero column for every τ ∈ N. Consequently,
c̃⊤(Ã+ b̃c̃⊤)τ is not strictly positive for every τ ∈ N0, showing that (P1) does not hold. The claim
now follows by contraposition.

(2) A standard induction argument shows that, for every j ∈ N0, there exist vectors qj , rj ∈ Rn
+

such that
c̃⊤

(
Ã+ b̃c̃⊤

)j+1
=

(
c⊤(A+ bc⊤)j+1 + qj , (c

⊤(A+ bc⊤)j + rj)bd
⊤).

It follows that if d ≫ 0 and there exists k ∈ N0 such that c⊤(A + bc⊤)k ≫ 0, then (P1) holds for
τ = k + 1.
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(3) A routine calculation shows that there exist q, r ∈ Rn
+ such that

c̃⊤
(
Ã+ b̃c̃⊤

)3
=

(
(d⊤b)d⊤ + q⊤, (d⊤Ab)d⊤ + r⊤

)
.

Consequently, if d≫ 0 and Ab > 0, then the right-hand side is strictly positive, showing that (P1)
holds for τ = 3.

(4) Assume that c = 0 and (P1) holds, and set

Â := Ã+ b̃c̃⊤ =

(
A bd⊤

I 0

)
.

By statement (1), d ≫ 0. To show that Ab > 0, we argue by contraposition. If Ab > 0 does not
hold, then Ab = 0 as Ab ≥ 0. A simple induction argument shows that then

Â2k+1 =

(
∗ ∗
∗ 0

)
∀ k ∈ N0,

with the induction step comprising

Â2(k+1)+1 = Â2k+1Â2 =

(
∗ ∗
∗ 0

)(
∗ Abd⊤

∗ ∗

)
=

(
∗ ∗
∗ 0

)(
∗ 0
∗ ∗

)
=

(
∗ ∗
∗ 0

)
,

where ∗ stands for certain matrices, the entries and structure of which are irrelevant for the matter
under consideration. Therefore, c̃⊤Â2k+1 = ( ∗ , 0) for all k ∈ N0, and so, property (P1) cannot
hold for odd τ . It follows from Lemma 3.5 that (P1) cannot hold for even τ either, completing the
proof.

We are now in the position to state the first persistency result.

Corollary 3.7. Consider the system (1.1) and assume that (P1) and (N2) hold. Then (1.1) is c̃-
persistent with respect to any compact set Γ ⊂ R2n

+ such that 0 ̸∈ Γ.

Corollary 3.7 follows from a straightforward application of [20, Theorem 4.4] to the augmented
system (3.1).

Observe that in Example 3.3 the conclusion of Corollary 3.7 does not hold. This is explained by
the fact that (P1) is not satisfied (as follows from statement (4) of Lemma 3.6 since c = Ab = 0).

Whilst the conclusion of Corollary 3.7 is strong in the sense that it guarantees c̃-persistency with
respect to every compact set Γ ⊂ R2n

+ not containing 0 (so-called semi-global c⊤-persistency), the
requirement of strict positivity of d (which, by Lemma 3.6, is necessary for (P1) to hold) is too
restrictive for many applications. It is therefore desirable to find conditions weaker than (P1)
which together with (N2) (or some variant of it) are sufficient for c̃-persistency with respect to
sets Γ which are sufficiently large to allow interesting applications. To this end, we introduce the
following positivity hypotheses on the linear system:

(P2) There exist τ ∈ N and ε > 0 such that c̃⊤(Ã+ b̃c̃⊤)τ ≥ εϕ⊤, where ϕ is defined in (2.2).

The inequality in (P2) can be expressed in the form c̃⊤(Ã+ b̃c̃⊤)τξ ≥ εF(ξ) for all ξ ∈ R2n
+ .

Furthermore, we consider the following variant of hypothesis (N2):

(N3) Hypothesis (N1) holds, d⊤b > 0 and

lim inf
z↓0

(
min
w∈U

f(w, z)

z

)
>

1

d⊤b
.
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It follows from an argument similar to that used in the proof of Lemma 3.5 that if (P2) holds, then,
for all q > 0,

c̃⊤(Ã+ qb̃c̃⊤)τ ≥ εqϕ
⊤,

where εq := εmin{1, qτ} > 0. Note that (P2) is implied by (P1), but (P2) is not sufficient for (P1)
to hold (see Example 3.8 below). In fact it is easy to show that (P1) is satisfied if, and only if, (P2)
holds and d≫ 0.

Whilst, (P2) is weaker than (P1), the hypothesis (N3) places a stronger condition on the nonlinearity
f than (N2) because d⊤b ≤ G(1) = 1/p, and thus, if (N3) holds, then so does (N2). In general,
d⊤b and 1/p are not equal, but when they are, hypotheses (N2) and (N3) coincide.

Example 3.8. We discuss two examples illustrating condition (P2).

(1) Consider

A =

(
1/2 1
0 1/2

)
, b =

(
1
1

)
, c = 0, d =

(
1
0

)
.

As

(I −A)−1 =

(
2 4
0 2

)
,

we have that ϕ⊤ =
(
d⊤(I −A)−1, d⊤

)
= (2, 4, 1, 0). Moreover, c̃⊤(Ã+ b̃c̃⊤)2 = (1/2, 1, 1, 0), and we

conclude that (P2) holds with τ = 2 and ε = 1/4. It follows from Lemma 3.6 that (P1) does not
hold because d is not strictly positive.

(2) Let A, b, c and d be given by

A =

0 0 0
1 0 0
0 1 0

 , b =

1
0
0

 , c = 0, d =

0
1
1

 . (3.11)

Then

(I −A)−1 =

1 0 0
1 1 0
1 1 1

 ,

and ϕ⊤ =
(
d⊤(I −A)−1, d⊤

)
= (2, 2, 1, 0, 1, 1). Elementary calculations yield that c̃⊤(Ã+ b̃c̃⊤

)7
=

(1, 1, 1, 0, 2, 2), showing that (P2) holds with τ = 7 and ε = 1/2. Moreover, 7 is the smallest value
of τ such that (P2) is satisfied. As d is not strictly positive, Lemma 3.6 implies that (P1) does not
hold. ♢

The next result provides a sufficient condition for (P2).

Lemma 3.9. If there exist k, l ∈ N0 and δ > 0 such that(
d⊤, d⊤

)(
Ã+ b̃c̃⊤

)l ≥ δϕ⊤ and µ := min{d⊤Akb, d⊤Ak+1b} > 0, (3.12)

then (P2) holds with τ = k + l + 3 and ε = δµ.

Assume that there exists ρ > 0 such that d⊤ ≥ ρc⊤ (for example, when c = 0). Then it is sometimes
easier to verify (3.12) than (P2), see part (1) of Example 3.10 below. Furthermore,

(d⊤, d⊤
)
(Ã+ b̃c̃⊤) ≥ (ρc⊤, d⊤

)
(Ã+ b̃c̃⊤) ≥ min{1, ρ}c̃⊤(Ã+ b̃c̃⊤),

and thus (P2) implies that the first inequality in (3.12) holds. However, (P2) does not imply the
existence of an integer k such that the second inequality in (3.12) is satisfied as part (2) of Example
3.10 below shows.
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Example 3.10. (1) Consider A, b, c and d as given in (3.11) with ϕ⊤ = (2, 2, 1, 0, 1, 1). It is

straightforward to show that
(
d⊤, d⊤

)(
Ã+ b̃c̃⊤

)3
= (1, 1, 1, 0, 2, 2) ≥ (1/2)ϕ⊤ and d⊤Ab = d⊤A2b =

1 > 0, showing that (3.12) holds with l = 3, δ = 1/2 and k = 1. Recall from part (2) of Example
3.8 that 7 is the smallest value of τ such that (P2) is satisfied.

(2) Consider

A =

(
0 a
a 0

)
, b =

(
0
1

)
, c = 0, d =

(
1
0

)
,

where 0 < a < 1. Elementary calculations show that (P2) holds with τ = 4 and ε = (1 − a2)a4.
But, for all k ∈ N0,

d⊤A2kb = 0 and d⊤A2k+1b = a2k+1,

showing that min{d⊤Akb, d⊤Ak+1b} = 0 for all k ∈ N0. It follows that condition (3.12) is not
necessary for (P2) to hold. ♢

Proof of Lemma 3.9. Since

Ã+ b̃c̃⊤ =

(
A+ bc⊤ bd⊤

I 0

)
≥

(
A bd⊤

I 0

)
,

a routine induction argument shows that

(Ã+ b̃c̃⊤)j+3 ≥
(
Aj+1bd⊤ Aj+2bd⊤

Ajbd⊤ Aj+1bd⊤

)
∀ j ∈ N0.

Consequently,

c̃⊤(Ã+ b̃c̃⊤)j+3 ≥ (0, d⊤)(Ã+ b̃c̃⊤)j+3 ≥
(
(d⊤Ajb)d⊤, (d⊤Aj+1b)d⊤

)
∀ j ∈ N0,

and thus
c̃⊤(Ã+ b̃c̃⊤)k+3 ≥ µ(d⊤, d⊤).

Multiplying the above inequality from the right by (Ã+ b̃c̃⊤)l leads to

c̃⊤(Ã+ b̃c̃⊤)k+l+3 ≥ µ(d⊤, d⊤)(Ã+ b̃c̃⊤)l ≥ δµϕ⊤,

showing that (P2) is satisfied with τ = k + l + 3 and ε = δµ.

Whilst Lemma 3.9 constitutes a sufficient condition for (P2) to hold, the next result provides, under
the assumption that (c+ d)⊤b ̸= 0, a necessary condition for (P2).

Lemma 3.11. Assume that (c+ d)⊤b ̸= 0. If (P2) is satisfied, then (A+ bc⊤)b ̸= 0.

Proof. We prove the claim by contraposition. To this end, we assume that (A + bc⊤)b = 0. We
have to show that (P2) is not satisfied. Since (A+bc⊤)b = 0, it follows that Ab = 0 and (c⊤b)b = 0.
As b ̸= 0, the latter identity implies that c⊤b = 0. Next we note that

ϕ⊤
(
b
0

)
=

(
(c+ d)⊤(I −A)−1, d⊤

)(b
0

)
= (c+ d)⊤

∞∑
j=0

Ajb = (c+ d)⊤b > 0. (3.13)

Furthermore, as d ̸= 0,

ϕ⊤
(
0
d

)
=

(
(c+ d)⊤(I −A)−1, d⊤

)(0
d

)
= ∥d∥2 > 0. (3.14)

On the other hand, a straightforward induction argument shows that there exist hk ∈ Rn
+ and

λk ∈ R+ such that

c̃⊤
(
Ã+ b̃c̃⊤

)2k
=

(
h⊤k A+ λkc

⊤, ∗
)

∀ k ∈ N,
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and, furthermore,

c̃⊤
(
Ã+ b̃c̃⊤

)2k+1
= ( ∗ , 0) ∀ k ∈ N0.

Consequently, for all k ∈ N0,

c̃⊤
(
Ã+ b̃c̃⊤

)2k (b
0

)
= 0 and c̃⊤

(
Ã+ b̃c̃⊤

)2k+1
(
0
d

)
= 0.

Comparing this to (3.13) and (3.14) shows that (P2) is not satisfied.

The following theorem, the proof of which can be found in the Appendix, contains a number of
c̃-persistency results invoking the above hypotheses (P2), (N2) and (N3). Recall the notation
yx(t) = c⊤x(t) + d⊤x(t− 1) = c̃⊤x̃(t), where x is the solution of (1.1).

Theorem 3.12. The following statements hold for the system (1.1).

(1) If d⊤b > 0, f(w, z) > 0 for all z > 0 and w ∈ U and min{c⊤x0 + d⊤x−1, d⊤x0} > 0, then the
solution x of (1.1) satisfies yx(t) > 0 for all t ∈ N0.

(2) If min{c⊤b, d⊤b} > 0, f(w, z) > 0 for all z > 0 and w ∈ U and c⊤x0 + d⊤x−1 > 0, then the
solution x of (1.1) satisfies yx(t) > 0 for all t ∈ N0.

(3) If hypothesis (N3) holds, then (1.1) is c̃-persistent with respect to any non-empty compact
subset Γ of

Γ′ :=
{
[[ξ0, ξ−1]] ∈ R2n

+ : min{c⊤ξ0 + d⊤ξ−1, e⊤ξ0}+min{e⊤ξ0, e⊤Aξ0} > 0
}
, (3.15)

where e := A⊤c+ d ∈ Rn
+.

(4) If hypotheses (N2) and (P2) hold, then (1.1) is c̃-persistent with respect to any non-empty
compact subset Γ of

Γ′′ :=
{
ξ = [[ξ0, ξ−1]] ∈ R2n

+ : F(ξ) > 0
}
. (3.16)

Note that the set Γ′ can be expressed in form

Γ′ =
{
[[ξ0, ξ−1]] ∈ R2n

+ : min{e⊤ξ0, (c⊤ + e⊤A)ξ0 + d⊤ξ−1} > 0
}
.

We remark that the subsets Γ′ and Γ′′ of R2n
+ are “large” in the following two senses:

(a) Γ′ and Γ′′ are dense in R2n
+ and relatively open with respect to R2n

+ ;

(b) the complements R2n
+ \Γ′ and R2n

+ \Γ′′ are null sets with respect to Lebesgue measure as

R2n
+ \Γ′ ⊂ ∂R2n

+ and R2n
+ \Γ′′ ⊂ ∂Rn

+ × ∂Rn
+ ⊊ ∂R2n

+ .

We proceed to state and prove the following important corollary of Theorem 3.12. For which
purpose, we set

P := (I, 0) ∈ Rn×2n

and note that P [[ξ0, ξ−1]] = ξ0 for all ξ0, ξ−1 ∈ Rn.

Corollary 3.13. Assume that hypotheses (O) and (N2) are satisfied. If (P2) holds, then (1.1) is
c̃-persistent with respect to any non-empty compact subset Γ ⊂ R2n

+ such that 0 ̸∈ PΓ.

Proof. Let Γ ⊂ R2n
+ be non-empty, compact and such that 0 ̸∈ PΓ. Then, obviously, for all

ξ0, ξ−1 ∈ Rn
+,

[[ξ0, ξ−1]] ∈ Γ ⇒ ξ0 ̸= 0.

Invoking statement (5) of Proposition 2.1, we conclude that F(ξ) > 0 for all ξ ∈ Γ, showing that
Γ ⊂ Γ′′. The claim now follows from statement (4) of Theorem 3.12.
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If the condition 0 ̸∈ PΓ is not satisfied, then c̃-persistency with respect to Γ may fail to hold.
Indeed, take any system of the form (1.1) such that (O), (P2) and (N2) are satisfied, d is not
strictly positive, f(ue, 0) = 0 for some ue ∈ U , u(t) ≡ ue and v(t) ≡ 0: if x0 = 0 and x−1 ̸= 0 is
such that d⊤x−1 = 0, then x(t) ≡ 0 is the the solution of (1.1), and hence (1.1) is not c̃-persistent
with respect to compact sets Γ ⊂ R2n

+ which contain [[x0, x−1]].

As the following example shows, (P2) does not imply (O), and therefore, the explicit requirement
in Corollary 3.13 that (O) holds is not redundant.

Example 3.14. Consider

A =

(
0 0
0 1/2

)
, b =

(
1
1

)
, c = 0, d =

(
0
1

)
.

Then,
ϕ = (d⊤(I −A)−1, d⊤) = (0, 2, 0, 1) and c̃⊤(Ã+ b̃c̃⊤)2 = (0, 1/2, 0, 1),

showing that (P2) holds with τ = 2 and ε = 1/4. Furthermore,

kerO(c⊤, A) = Rn and kerO(d⊤, A) = ker

(
0 1
0 1/2

)
= {(z, 0)⊤ : z ∈ R},

and thus, (O) is not satisfied. We therefore cannot expect that the conclusions of Corollary 3.13
hold, and indeed they do not, as we now show. To this end, we note that in this example p =
1/G(1) = 1/2. Let f : R+ → R+ be continuous and such that (N2) holds with p = 1/2 and
f(0) = 0. Trivially, the singleton Γ := {(1, 0, 1, 0)⊤} ⊂ R4

+ is compact and such that 0 ̸∈ PΓ. It
is straightforward to see that the solution x of (1.1) with v = 0 and x0 = x−1 = (1, 0)⊤ satisfies
x(t) = 0 for all t ∈ N, showing that (1.1) is not c̃-persistent with respect to Γ. ♢

Next, we provide a simple example to illustrate Theorem 3.12.

Example 3.15. Consider the special case of (1.1) wherein the quadruple (A, b, c⊤, d⊤) satisfies the
conditions

Ab = 0, c⊤b = 0 and d⊤b > 0, (3.17)

and thus, p = (d⊤b)−1 < ∞. We assume that f satisfies hypothesis (N3) (which coincides with
(N2)).

(a) Statement (3) of Theorem 3.12 guarantees that (1.1) is c̃-persistent with respect to any non-
empty compact subset of the set Γ′. In the specific example given by

A =

(
0 1
0 0

)
, b = d =

(
1
0

)
and c =

(
0
0

)
,

the set Γ′ can be expressed as

Γ′ =
{
(z1, z2, z3, z4)

⊤ ∈ R4
+ : z1 > 0 and z2 + z3 > 0

}
.

(b) Returning to the class of quadruples (A, b, c⊤, d⊤) given by (3.17), we note that it follows from
Lemma 3.11 that hypothesis (P2) is not satisfied. In general, as statement (4) of Theorem 3.12
is only a sufficient condition, this does not imply that its persistency conclusion fails to hold. We
will now show that, in the special scenario determined by (3.17), the conclusion of statement (4)
of Theorem 3.12 is not valid, that is, there exist a compact subset Γ of Γ′′ and a nonlinearity
f satisfying (N2) such that (1.1) is not c̃-persistent with respect to Γ, where Γ′′ is defined as in
statement (4) of Theorem 3.12. To this end, choose ξ−1 ∈ Rn

+ such that d⊤ξ−1 = 0. It is clear that
ξ := [[b, ξ−1]] ̸∈ Γ′, so part (a) does not apply. However, as

F(ξ) = (c+ d)⊤(I −A)−1b+ d⊤ξ−1 = d⊤b > 0,
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it follows that ξ ∈ Γ′′. We show that, given any nonlinearity f such that (N2) holds and f(0, ue) = 0
for some ue ∈ U , the system (1.1) is not c̃-persistent with respect to {ξ}. Let x be the solution of
(1.1) with u(t) ≡ ue and v(t) ≡ 0 and such that x(0) = b and x(−1) = ξ−1. A routine induction
argument shows that there exists λt ≥ 0 such that

x̃(2t) = λt

(
b
0

)
∀ t ∈ N.

Hence, c̃⊤x̃(2t) = (c⊤, d⊤)x̃(2t) = 0 for all t ∈ N, establishing that the system is not c̃-persistent
with respect to {ξ}. ♢

3.2 Excitability

Frequently, inputs (or, forcing functions) of the form

v = θt0η, where t0 ∈ N0, η ∈ Rn
+ and θt0(t) :=

{
1, t = t0

0, t ̸= t0

can be used to “kick” system (1.1) into a persistency regime. This is addressed in the following
definition.

Definition 3.16. Assume that there exists ρ > 0 such that {z ∈ Rn
+ : ∥z∥ ≤ ρ} ⊂ V . Given

Γ ⊂ R2n
+ and t0 ∈ N0, we say that (1.1) is

(a) c̃-excitable by small inputs with respect to Γ and time t0 if, for every ε ∈ (0, ρ], there exist
τ ∈ N0, δ > 0 and η ∈ Rn

+ satisfying ∥η∥ ≤ ε and such that the solution x of (1.1) with v = θt0η
satisfies

yx(t+ t0 + τ) = c̃⊤x̃(t+ t0 + τ) = c⊤x(t+ t0 + τ) + d⊤x(t+ t0 + τ − 1) ≥ δ ∀ t ∈ N0 (3.18)

for all (x0, x−1) ∈ Γ and all functions u : N0 → U .

(b) strictly c̃-excitable by small inputs with respect to Γ and time t0 if, for every ε ∈ (0, ρ], there
exist τ ∈ N0 and δ > 0 such that the solution x of (1.1) satisfies (3.18) for all (x0, x−1) ∈ Γ, all
functions u : N0 → U and all v = θt0η with ε/2 ≤ ∥η∥ ≤ ε. ♢

Trivially, strict c̃-excitability implies c̃-excitability, but not necessarily conversely. The former
concept is independent of the “direction” of the vector η: for every forcing function v = θt0η
such that ε/2 ≤ ∥η∥ ≤ ε, the inequality (3.18) holds (provided that the initial condition is in Γ).
We recall that the excitability concept introduced in [17] refers to an “excitation of all states”
property (by application of a suitable non-negative input under zero initial conditions). The notion
of c̃-excitability by small inputs, although quite different, is inspired by this concept.

The following corollary provides sufficient conditions for c̃-excitability.

Corollary 3.17. Assume that hypotheses (N2) and (P2) are satisfied, and there exists ρ > 0 such
that {z ∈ Rn

+ : ∥z∥ ≤ ρ} ⊂ V . Let Γ ⊂ R2n
+ be compact and t0 ∈ N0. Then (1.1) is c̃-excitable by

small inputs with respect to Γ and time t0. Under the additional assumption that hypothesis (O)
holds, (1.1) is strictly c̃-excitable by small inputs with respect to Γ and time t0.

Proof. Let Γ ⊂ R2n
+ be compact, t0 ∈ N0 and ε ∈ (0, ρ]. By statement (1) of Proposition 3.1 there

exists γ > 0 such that the solution x of (1.1) satisfies

x(t) ∈ {z ∈ Rn
+ : ∥z∥ ≤ γ} =: C ∀ t ∈ N0
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for all [[x0, x−1]] ∈ Γ and all functions u : N0 → U and v : N0 → V . As d ̸= 0, there exists η ∈ Rn
+

such that ∥η∥ ≤ ε and d⊤η > 0. Noting that

F([[η, 0]]) = (c+ d)⊤(I −A)−1η ≥ d⊤
∞∑
j=0

Ajη ≥ d⊤η > 0,

it follows that the compact set

Γ̂ :=
{
[[ξ0, ξ−1]] : ξ0, ξ−1 ∈ C and ξ0 ≥ η

}
⊂ R2n

+

is contained in Γ′′. Consequently, by statement (4) of Theorem 3.12, system (1.1) is c̃-persistent
with respect to Γ̂. This means that there exist δ > 0 and τ ∈ N0 such that the solution x of (1.1)
satisfies

yx(t+ τ) = c⊤x(t+ τ) + d⊤x(t+ τ − 1) ≥ δ ∀ t ∈ N0 (3.19)

for all [[x0, x−1]] ∈ Γ̂, all functions u : N0 → U and v : N0 → V .

Now let [[x0, x−1]] ∈ Γ, u : N0 → U be arbitrary, v = θt0η and x be the corresponding solution of
system (1.1). Then x(t0+1), x(t0) ∈ C and x(t0+1) ≥ v(t0) = η, implying that [[x(t0+1), x(t0)]] ∈ Γ̂.
Setting, for all t ∈ N0,

x̂(t) := x(t+ t0 + 1), û(t) := u(t+ t0 + 1), v̂(t) := v(t+ t0 + 1) = θt0(t+ t0 + 1)η,

we have that x̂ is the solution of (1.1) corresponding to the forcing functions û and v̂ = 0 and such
that [[x̂(0), x̂(−1)]] = [[x(t0 + 1), x(t0)]] ∈ Γ̂. Consequently, invoking (3.19),

yx(t+ t0 + τ + 1) = yx̂(t+ τ) ≥ δ ∀ t ∈ N0,

showing that (1.1) is c̃-excitable by small inputs with respect to Γ and time t0.

Finally, assume that hypothesis (O) holds. Changing the definition of Γ̂ to

Γ̂ :=
{
[[ξ0, ξ−1]] : ξ0, ξ−1 ∈ C and ∥ξ0∥ ≥ ε/2

}
⊂ R2n

+

we have that Γ̂ is compact and 0 ̸∈ P Γ̂. Corollary 3.13 guarantees that (1.1) is c̃-persistent with
respect to Γ̂. The above argument can now be used to establish that (1.1) is strictly c̃-excitable by
small inputs with respect to Γ and time t0.

4 Stability

In this section, we show that, under suitable assumptions on the nonlinearity f , the boundedness
and persistence results of Section 3 ensure certain stability properties of (1.1). Given that we may
express (1.1) as an augmented (and undelayed) Lur’e system (3.1), it is possible to use ideas and
methods from the semi-global stability theory developed in [20, 21]. To this end, we introduce the
following hypothesis (cf. [20, hypothesis (N3)]).

(N4) Hypothesis (N2) holds and there exists ue ∈ U such that∣∣f(ue, z)− f(ue, ze)
∣∣ < p

∣∣z − ze
∣∣ ∀ z > 0, z ̸= ze , (4.1a)

where ze > 0 is the unique positive solution of f(ue, z) = pz, and

lim sup
z→ze

∣∣f(ue, z)− f(ue, ze)
∣∣∣∣z − ze

∣∣ < p. (4.1b)
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Figure 4.1: Illustration of the sector condition (4.1). The dashed lines have slope ±p.

The existence of positive ze such that f(ue, ze) = pze follows from the continuity of f and hypoth-
esis (N2). The uniqueness of ze is a consequence of the inequality (4.1a). The inequality (4.1a) is
a so-called sector condition and means that the graph of z 7→ f(z, ue)− f(ze, ue) is strictly “sand-
wiched” between the straight lines z 7→ ±p(z − ze). The condition (4.1b) means that z 7→ f(ue, z)
is non-tangential to these lines at z = ze. For reasons which will be explained below, ue is referred
to as an equilibrium inducing vector. An illustration of condition (N4) is given in Figure 4.1.

A number of sufficient conditions on the nonlinearity f for the sector condition (4.1a) in (N4) to
hold can be found in [21, Lemmas 5.4, 6.3]. In the typical case that z 7→ f(w, z) is differentiable
at z = ze, verifying condition (4.1b) essentially involves studying the absolute value of the partial
derivative |∂f/∂z| at z = ze, and may be investigated directly. Calculations of this type appear
across the examples in [19, 20, 21], such as [20, Example 6.1] and [19, Example 5.5].

Under hypothesis (N4), it is routine to establish that

xe := (I −A)−1bpze > 0 (4.2)

satisfies (c⊤+d⊤)xe = ze, and is an equilibrium of (1.1) with u(t) ≡ ue and v(t) ≡ 0. Equivalently,

x̃e := [[xe, xe]] = (I − Ã)−1b̃pze > 0

satisfies c̃⊤x̃e = ze, and is an equilibrium of the augmented Lur’e system (3.1) with u(t) ≡ ue and
ṽ(t) ≡ 0, cf. [20, Lemma 5.1] or [21, Lemmas 5.1-5.3].

The following theorem, the main stability result of this paper, is very much in the spirit of the
input-to-state stability framework developed in the context of nonlinear control theory, see the
survey articles [11, 46] and the recent monograph [35].

Theorem 4.1. Let Γ ⊂ R2n
+ be non-empty and compact and assume that (N4) holds. If (1.1) is

c̃-persistent with respect to Γ, then there exist constants M ≥ 1, N > 0, r > 0 and κ ∈ (0, 1) such
that, for all [[x0, x−1]] ∈ Γ, all u : N0 → U and all v : N0 → V , the solution x of (1.1) satisfies

∥x(t)− xe∥ ≤Mκt∥x̃0 − x̃e∥+N
(
∥v∥ℓ∞(0,t) + ∥βr ◦ u∥ℓ∞(0,t)

)
∀ t ∈ N0, (4.3)

where x̃0 := [[x0, x−1]], ∥v∥ℓ∞(0,t) := max{∥v(s)∥ : s = 0, 1, . . . , t} and

βr(w) := max
0≤z≤r

|f(ue, z)− f(w, z)| ∀w ∈ U.

Theorem 4.1 can be proved by arguments very similar to those used in [20, proof of statement (a)
of Theorem 5.2], applied to the augmented system (3.1) with r = 2γ∥c̃∥, where γ is as in (3.4). The
details are left to the interested reader. We remark that, for simplicity, we have appealed to the
stability approach taken in [20] which yields the exponential input-to-state stability estimate (4.3),
namely the exponential decay in the contribution of the initial state and the linearly bounded
contribution of the forcing functions u and v. If, instead, the approach of [21] had been invoked,
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then condition (4.1b) in (N4) could have been omitted, at the expense of a slower, non-exponential,
decay of the contribution of the initial state in the estimate of ∥x(t)−xe∥ (cf. [21, inequality (5.6)]).

If, in Theorem 4.1, the nonlinearity f is globally Lipschitz in its first variable, that is, there exists
λ > 0 such that

|f(w1, z)− f(w2, z)| ≤ λ∥w1 − w2∥ ∀ z ∈ R+, ∀w1, w2 ∈ U,

then the constant r becomes redundant and (4.3) simplifies to

∥x(t)− xe∥ ≤Mκt∥x̃0 − x̃e∥+N
(
∥v∥ℓ∞(0,t) + λ∥ue − u∥ℓ∞(0,t)

)
∀ t ∈ N0,

An application of Corollary 3.7, Theorem 4.1 and [20, Statement (b) of Theorem 5.2] leads to the
following stability result.

Corollary 4.2. Assume that (P1) and (N4) are satisfied. Then the following statements hold.

(1) For every non-empty compact set Γ ⊂ R2n
+ such that 0 ̸∈ Γ, there exist M ≥ 1, N > 0, r > 0

and κ ∈ (0, 1) such that, for all [[x0, x−1]] ∈ Γ, all u : N0 → U and all v : N0 → V , the solution
x of (1.1) satisfies (4.3).

(2) For all x0, x−1 ∈ Rn
+, [[x

0, x−1]] ̸= 0, all u : N0 → U , and all v : N0 → V , if u(t) → ue and
v(t) → 0 as t → ∞, then the solution x of (1.1) has the convergence property x(t) → xe as
t→ ∞.

The next result is an immediate consequence of Theorems 3.12 and 4.1.

Corollary 4.3. Let Γ ⊂ R2n
+ be non-empty and compact, let the subsets Γ′ and Γ′′ of R2n

+ be given
by (3.15) and (3.16), respectively, and assume that (N4) is satisfied. If either

(a) (N3) holds and Γ ⊂ Γ′, or

(b) (P2) holds and Γ ⊂ Γ′′,

then there exist M ≥ 1, N > 0, r > 0 and κ ∈ (0, 1) such that, for all [[x0, x−1]] ∈ Γ, all u : N0 → U
and all v : N0 → V , the solution x of (1.1) satisfies (4.3).

Finally, under the assumption that (O), (P2) and (N4) hold, we derive stability and convergence
properties which are similar (but not identical) to those in Corollary 4.2.

Corollary 4.4. Assume that (O), (P2) and (N4) are satisfied. Then the following statements hold.

(1) For every non-empty compact set Γ ⊂ R2n
+ such that 0 ̸∈ PΓ, there exist M ≥ 1, N > 0,

r > 0 and κ ∈ (0, 1) such that, for all [[x0, x−1]] ∈ Γ, all u : N0 → U and all v : N0 → V , the
solution x of (1.1) satisfies (4.3).

(2) For all x0, x−1 ∈ Rn
+, x

0 ̸= 0, all u : N0 → U , and all v : N0 → V , if u(t) → ue and v(t) → 0
as t→ ∞, then the solution x of (1.1) has the convergence property x(t) → xe as t→ ∞.

Proof. (1) This statement follows from Corollary 3.13 and Theorem 4.1.

(2) Let x0, x−1 ∈ Rn
+, x

0 ̸= 0, set x̃0 := [[x0, x−1]], and let u : N0 → U and v : N0 → V be such
that u(t) → ue and v(t) → 0 as t → ∞. By statement (1) of Proposition 3.1, there exists γ > 0
such that the solution x of (1.1) satisfies ∥x̃(t)∥ ≤ γ for all t ∈ N0. By Corollary 3.13, (1.1) is
c̃-persistent with respect to the set {x̃0} and consequently, there exists δ ∈ (0, γ/2) and τ ∈ N0

such that ∥x̃(t+ τ)∥ ≥ 2δ for all t ∈ N0, where x̃(t) = [[x(t), x(t− 1)]]. Hence, for every t ∈ N0, we
have that ∥x(t+ τ)∥ ≥ δ or ∥x(t+ 1 + τ)∥ ≥ δ. Setting

Γ := {[[ξ0, ξ−1]] ∈ R2n
+ : ∥ξ0∥ ≥ δ and

∥∥[[ξ0, ξ−1]]
∥∥ ≤ γ} and Θ := {t ∈ N0 : x̃(t) ∈ Γ}, (4.4)
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it is clear that Γ is compact, 0 ̸∈ PΓ, and

{t, t+ 1} ∩Θ ̸= ∅ for all t ∈ N0 such that t ≥ τ . (4.5)

For s ∈ N0, let zs denote the solution of the initial-value problem

z(t+ 1) = Az(t) + bf((Tsu)(t), c
⊤z(t)+d⊤z(t− 1)) + (Tsv)(t),

z(0) = x(s), z(−1) = x(s− 1), t ∈ N0, (4.6)

where Ts denotes the translation operator given by (Tsu)(t) = u(t+ s). We note that

x(t+ s) = zs(t) ∀ t, s ∈ N0.

An application of statement (1), in the context of system (4.6) and the set Γ given in (4.4), shows
that there exist constants M ≥ 1, N > 0, r > 0 and κ ∈ (0, 1) such that

∥x(t+ s)− xe∥ = ∥zs(t)− xe∥
≤Mκt∥x̃(s)− x̃e∥+N

(
∥Tsv∥ℓ∞ + ∥βr ◦ Tsu∥ℓ∞

)
∀ t ∈ N0, ∀ s ∈ Θ, (4.7)

where ∥ · ∥ℓ∞ denotes the supremum norm on the space of bounded functions defined on N0. Given
ε > 0, there exists θ ∈ Θ such that N

(
∥Tθv∥ℓ∞ + ∥βr ◦Tθu∥ℓ∞

)
≤ ε/2 for all t ∈ N0 as follows from

(4.5) and the hypothesis that u(t) → ue and v(t) → 0 as t → ∞. Finally, choosing σ ∈ N0 such
that Mκσ∥x̃(θ) − x̃e∥ ≤ ε/2, it follows from (4.7) with s = θ that ∥x(t) − xe∥ ≤ ε for all t ∈ N0

such that t ≥ σ + θ, completing the proof.

5 Examples

We illustrate our results through three examples: a stage-structured population model with delay,
and two models relating to spatially structured population models.

Example 5.1 (A stage-structured population model with delay). Let x(t) = (x1(t), x2(t), . . . , xn(t))
⊤

denote the population at time-step t ∈ N0 of a single, local, stage-structured population with n
stages, where n ≥ 2. Inspired by the model appearing in [21, Example 6.1], assume that x is
governed by:

x1(t+ 1) = s1x1(t) + g
(
u(t), d⊤x(t− 1)

)
d⊤x(t− 1) + v1(t)

xk(t+ 1) = skxk(t) + hk−1xk−1(t) + vk(t) k ∈ {2, 3, . . . , n}

}
t ∈ N0 . (5.1)

Here sk and hk are probabilities (or proportions) denoting survival (or stasis) within stage-classes
and movement into subsequent stage-classes, respectively, which we, therefore, assume satisfy hi ∈
(0, 1) for i ∈ {1, 2, . . . , n−1}, sj ∈ [0, 1) for j ∈ {1, 2, . . . , n} and si+hi ≤ 1 for all i ∈ {1, 2, . . . , n−
1}. We further assume that sn > 0 and g : R2

+ × R+ → R+ is continuous. Writing

d =
(
d1, . . . , dn

)⊤ ∈ Rn
+, (5.2)

the nonnegative constants dk model the fecundity of the k-th stage-class. For fixed w ∈ R2
+, the

function g(w, · ) represents the density-dependent per-capita survival probability of new individuals.
Consequently, the product term

g
(
u(t), d⊤x(t− 1)

)
d⊤x(t− 1) = g

(
u(t),

n∑
k=1

dkxk(t− 1)
) n∑

k=1

dkxk(t− 1)

in (5.1) captures the recruitment into the population at time-step t+1. Here, the forcing function
u represents the effects of temporal environmental or demographic fluctuations which are assumed
to affect recruitment only (in this example it takes values in R2

+). The exogenous additive forcing
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variable v represents structured migration into the population. We assume, as is typical for such
structured models, that reproduction adds individuals into the first stage-class, perhaps represent-
ing the number of eggs, juveniles or seeds, in an insect, animal or plant model, respectively.

The model (5.1) differs from that in [21, Example 6.1] via the inclusion of the delayed recruit-
ment, which is biologically plausible when gestation/reproduction is longer than a single time-step.
System (5.1) may be written in the form (1.1) with

A :=


s1 0 · · · 0

h1 s2
. . .

...
...

. . .
. . . 0

0 · · · hn−1 sn

 , b :=


1
0
...
0

 , c := 0, f(w, z) := g(w, z)z,

d given by (5.2) and v(t) :=
(
v1(t), v2(t), . . . , vn(t)

)⊤
.

As sk < 1 for all k = 1, . . . , n, the matrix A is asymptotically stable. To simplify the presentation,
we assume that d1 = · · · = dn−1 = 0 and dn > 0, so that only the final stage class is reproductively
active. Elementary calculations give that

G(1) =
dn

∏n−1
k=1 hk∏n

k=1(1− sk)
> 0 ,

so that p = 1/G(1) is finite.

We examine the extent to which the various hypotheses hold. A calculation shows that the n× n-
matrix O(d⊤, A) is lower triangular with the k-th anti-diagonal entry given by

ζk = dn

n−k∏
j=0

hj > 0, where h0 := 1,

and the anti-diagonal is indexed from bottom left to top right. Consequently, O(d⊤, A) has full
rank and, therefore, property (O) holds. Since c = 0 and d is not strictly positive, it follows from
Lemma 3.6 that property (P1) does not hold. We claim that property (P2) is satisfied. Whilst this
may be verified by direct calculations, we provide an alternative argument based on Lemma 3.9. For
which purpose, observe first that d⊤Akb = dn[A

k](n,1) > 0 if k ≥ n− 1, where [Ak](i,j) denotes the

entry of Ak in position (i, j). In particular, µ := min(d⊤An−1b, d⊤Anb) > 0 (see (3.12)). Moreover,
let ∆ij denote the n×n-matrix with single non-zero element equal to 1 in position (i, j). A routine
induction argument shows that

(Ã+ b̃c̃⊤)q ≥
(
Aq Aq−1dn∆1n

∗ ∗

)
∀ q ∈ N,

so that (
d⊤, d⊤

)
(Ã+ b̃c̃⊤)q ≥

(
d⊤Aq, d⊤Aq−1dn∆1n

)
∀ q ∈ N.

The structure of A and d gives d⊤An−1 ≫ 0 and d⊤An−1dn∆1n ≥ δd⊤ for a suitable constant

δ > 0. As ϕ is of the form ϕ =
(
∗ , d⊤

)⊤
, it follows that there exists a constant ε ∈ (0, δ] such that(

d⊤, d⊤
)
(Ã + b̃d̃⊤)n−1 ≥ εϕ⊤. This, together with the positivity of µ, and subsequent application

of Lemma 3.9 shows that (P2) holds.

As usual, whether or not properties (N1), (N2) and (N4) are satisfied depends on the interplay
between the nonlinearity f and the constant p. Note that, since d⊤b = 0, property (N3) does not
hold.

As a numerical example, we consider a population stratified into n = 4 stages, with model data

A =


0 0 0 0

0.62 0.16 0 0
0 0.36 0.23 0
0 0 0.53 0.35

 , d4 = 30;

21



which gives rise to

G(1) = d⊤(I −A)−1b = 8.4413 = 1/p, equivalently, p = 0.1185 .

We consider the Beverton-Holt type nonlinearity

f(w, z) := g(w, z)z, g(w, z) :=
λw1

1 + κw2z
∀ z ≥ 0. (5.3)

Here λ ∈ (0, 1) denotes the per capita survival probability at low population abundance when
w1 = 1; the constant κ > 0 plays the role of moderating survival probabilities at higher population
abundance. For fixed non-empty, compact U ⊆ (0, 1/λ)× (0,∞), arguments as in the proofs of [20,
Proposition 4.3] and [21, Lemma 5.4] show that f satisfies (N1), (N2) and (N4) if

min
w∈U

g(w, 0) = λ min
(w1,w2)∈U

w1 > p . (5.4)

In this case, routine calculations show that, for fixed equilibrium inducing vector ue = (ue1, u
e
2)

⊤ ∈
U ,

ze :=
λue1 − p

pκue2
,

is the unique positive solution of pz = f(ue, z) and, consequently,

xe := (I −A)−1bpze =


1

0.7381
0.3451
0.2814

 λue1 − p

κue2
,

is the corresponding unique non-zero equilibrium population of (5.1) with u(t) ≡ ue and v(t) ≡ 0.
We see that variations of ue1 and ue2 from 1 have the effect of replacing λ and κ by λue1 and κue2,
respectively. In particular, ze, and hence also xe, is a decreasing function of the parameter κ and
of ue2.

We take
ue := (1, 1)⊤, λ = 0.95 and κ = 0.5,

with the graph of f plotted in Figure 5.1a, showing that the sector condition (N4) holds. To
illustrate the persistence result Corollary 3.13, Figure 5.1b plots in grayscale the x4-component of
30 solutions of (5.1) with u := ue, v = 0 and (pseudo)random initial conditions such that

[[x(0), x(−1)]] ∈ Γ := [0.1, 3]4 × [0, 2]4.

Evidently, Γ is a non-empty, compact subset of R8
+ with 0 ̸∈ PΓ. For clarity, the vertical axis in

Figure 5.1b has a logarithmic scale, and we comment that the purpose is to visualise a system-level
property. Indeed, c̃-persistency is observed. Moreover, the hypotheses of Corollary 4.4 are also
satisfied, and convergence over time of x4(t) to x

e
4 is observed.

Next, we take U := [0.7, 1.3]2, and note that (5.4) is satisfied for the given numerical scenario
(λ = 0.95 and p = 0.1185). We consider convergent u of the form

u(t) =


ue 0 ≤ t ≤ 10(
I + θ(0.95)t−10

(
cos(0.3t) 0

0 sin(0.3t)

))
ue t > 10

,

where θ ∈ [0, 0.3] plays the role of an amplitude parameter. We assume that v = 0 and that
x(−1) = x(0) = xe. The interpretation is that a disturbance from (u, v, x) = (ue, 0, xe) occurs
after t = 10. The first component x1(t) of x(t) is plotted against t in Figure 5.1c for varying θ.
Two phenomena are observed. First, the transient deviation |x1(t) − xe1| increases as ∥u(t) − ue∥
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increases, facilitated by increasing θ, as expected from the inequality (4.3). Furthermore, for each
value of θ > 0 considered, convergence |x1(t)− xe1| → 0 as t → ∞ is observed, in accordance with
statement (2) of Corollary 4.4.

Finally, we perform numerical simulations with x(−1) = x(0) = xe, u(t) ≡ ue = (1, 1)⊤ and v given
by

v(t) = θ(0, 1, 0, 0)⊤(1 + sin(0.4t)) ,

where θ again plays the role of an amplitude parameter. Graphs of ∥x(t) − xe∥1 against t for
increasing θ are plotted in Figure 5.1d. We see that ∥x(t) − xe∥1 increases as θ (and hence v(t))
increases, again in accordance with the estimate (4.3). Note that the function z 7→ f(ue, z) given by
(5.3) is non-decreasing, and thus, if u(t) ≡ ue, the difference equation (5.1) is a monotone control
system in the sense of [2] (with respect to the nonnegative orthant R4

+ and input variable v). The
monotonicity properties observed in Figure 5.1d is in accordance with the predictions provided by
the theory monotone control systems [2]. However, we emphasize that the theory developed in
Sections 3 and 4 is not contingent on a monotone control systems structure. ♢
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Figure 5.1: Numerical simulations illustrating Example 5.1. (a) Graph of the nonlinearity z 7→
f(ue, z) in (5.3). The straight lines have slope ±p and intersect the graph of f at z = ze. (b) Plots
of x4(t) against t for varying [[x(0), x(−1)]] ∈ Γ, with logarithmic scale on the vertical axis. The
dotted line is xe4. (c) Plots of x1(t) against t for varying θ. (d) Plots of ∥x(t) − xe∥1 against t for
varying θ.

Example 5.2 (A spatially and stage-structured population model). Some species have breeding
areas where individuals move for reproduction [26]. The current example considers a population
with two age classes (juvenilles and adults) spatially structured across three patches: one is the
breeding site and the other two (labelled 1 and 2) are feeding sites. We model the following basic
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processes: adults produce juveniles, denoted J , in the breeding site; juveniles become adults and
move to site 1 or 2, denoted A1 and A2, respectively; moreover, adults in patch 1 or 2 remain in
that site or move to the other. Formalizing the verbal model description in [26], we arrive at the
following system of nonlinear difference equations:

J(t+ 1) = f
(
A1(t) +A2(t)

)
,

A1(t+ 1) = (1− s)ηJ(t) + (1− r1)λA1(t) + r2µA2(t),

A2(t+ 1) = sηJ(t) + r1λA1(t) + (1− r2)µA2(t),

 (5.5)

where r1, r2, s, η, λ, µ ∈ [0, 1] are constants and f : R+ → R+ is a nonlinearity, the biological
interpretation of which is given in Table 5.1.

Symbol Interpretation (each per time-step)

f recruitment function of new juveniles

ri proportion of adults who move from site i to 3− i

s proportion of juveniles who move to patch 2

η survival probability of juvenile transition to feeding sites

λ survival probability of adults in site 1

µ survival probability of adults in site 2

Table 5.1: Interpretation of symbols in (5.5).

System (5.5) extends the Allen-Clark model, a scalar difference equation of the form

z(t+ 1) = αz(t) + βf(z(t− 1)) ,

(named after Allen [1] and Clark [10], see also the bibliographical notes in [8] for other early
contributors). Indeed, after elimination of J(t) from (5.5), we recover the above equation with
z(t) = A1(t) or z(t) = A1(t) +A2(t) by taking s = µ = r1 = r2 = 0 or µ = λ, respectively.

The dispersal is symmetric between the feeding sites if r1 = r2 =: r, which we shall assume. To
further simplify the presentation, we assume that η = 1. Eliminating J(t) from (5.5) yields a
delayed Lur’e system of the form (1.1) with n = 2, and

x(t) :=

(
A1(t)
A2(t)

)
, A :=

(
(1− r)λ rµ
rλ (1− r)µ

)
, b :=

(
1− s
s

)
, c := 0 , d :=

(
1
1

)
.

We assume that
0 < λ < 1 and 0 < µ < 1,

so that the column sums of the matrix A are smaller than 1 and, therefore, the matrix A is
asymptotically stable, see [31, Theorem 8.1.22]. An application of statement (3) of Lemma 3.6
yields that property (P1) holds for all r ∈ [0, 1] and all 0 < λ, µ < 1. Consequently, the conclusions
of Corollaries 3.7 and 4.2 hold, provided that the nonlinearity f satisfies (N2) and (N4), respectively.

We note the case r = 0 corresponds to the absence of redistribution of adults between the feeding
patches. Ecological corridors or stepping stones are used in ecosystems management to promote
connectivity between patches [25, 39], that is, increasing the value of r. In the following, we use
the results of Sections 3 and 4 to investigate how persistency of the total adult population and the
asymptotic total adult population are affected by changes in the parameter r.

We start with persistency. Routine calculations yield

G(1) =
C1r + C2

C3r + C4
=: F (r),
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with

C1 := λ+ µ, C2 := sµ− µ+ 1− λs, C3 := λ+ µ− 2λµ and C4 := λµ− µ− λ+ 1 .

We compute that

F ′(r) =
C1C4 − C2C3

(C3r + C4)2
,

and
C1C4 − C2C3 = (λ− µ)(λµ− λ+ λs+ µs− 2λµs) . (5.6)

The sign of C1C4 − C2C3 determines how F changes with increasing r, and can take both signs
depending on the interplay between λ, µ and s. We note that C1C4 − C2C3 is symmetric in λ
and µ under the transformation s 7→ 1 − s. This is intuitively obvious as swapping λ and µ, and
replacing s by 1 − s amounts to swapping the labels of feeding sites 1 and 2. Furthermore, as
p = p(r) = 1/G(1) = 1/F (r), an increase (decrease) in F leads to a decrease (increase) in p.
Assuming that

lim sup
z→∞

f(z)

z
= 0,

the hypothesis (N2) becomes less (more) restrictive if F (r) is increasing (decreasing).

An inspection of (5.6) reveals several special cases, which we proceed to highlight. First, if λ = µ,
then C1C4 − C2C3 = 0 and hence, F is independent of r. In this case, the dynamics for A1 + A2

are independent of the feeding site structure (essentially because both sites are the same). Second,
if s ≈ 0, meaning juveniles strongly prefer site 1, then

C1C4 − C2C3 ≈ λ(λ− µ)(µ− 1)

which is positive when µ > λ and negative when µ < λ. Third, and conversely to the previous
case, if s ≈ 1, meaning juveniles strongly prefer site 2, then

C1C4 − C2C3 ≈ µ(λ− µ)(1− λ)

which is positive when λ > µ and negative when λ < µ. These last two observations indicate that,
in case juveniles prefer feeding site i, where i = 1, 2, it is the survivability of adults in site 3− i in
relation to that in site i which determines the effect of an increase of dispersal on the persistence
of the adult population A1 + A2: if juveniles strongly prefer site i and the survival probability of
adults in site 3 − i is greater than in site i, then promoting dispersal between the feeding sites
facilitates the persistence of the adult population. This could be considered an indirect rescue
effect: emigrants from surrounding population sites may reduce the probability of local extinction
[9]; here, the rescue effect is indirect in the sense that it is the greater survival probability of adults
in site 3 − i which keeps the number of juveniles in the breeding site and, as a consequence, the
number of adults arriving at site i above certain levels.

Finally, if s = 1/2, meaning that juveniles do not have preference for a feeding area, then

C1C4 − C2C3 =
−(λ− µ)2

2
≤ 0.

Hence, in this case, increasing the connectivity between the feeding sites has a potentially negative
effect on the persistence of the adult population.

Figures 5.2a and 5.2b contain surface plots of C1C4 − C2C3, viewed as a function of λ and µ, for
s = 0.9 and s = 0.55, respectively. The plots were routinely computed using the surf command in
Matlab. The contour C1C4 − C2C3 = 0 is shown in black. Interestingly, whilst there are regions
where C1C4 − C2C3 is positive, the value of C1C4 − C2C3 is “small” here, and these regions are
much smaller comparatively to where C1C4 − C2C3 is negative, particularly when s = 0.55, which
is close to 1/2, where F ′(r) is always non-positive. Roughly speaking, C1C4 − C2C3 = 0 is “more
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Figure 5.2: Numerical simulations illustrating Example 5.2. (a) and (b) Surface plots of C1C4 −
C2C3 in (5.6) against varying λ and µ for s = 0.9 and s = 0.55. (c) Graphs of F (r) against r for
different (µ, λ) pairs, with fixed s = 0.9. (d) Surface plot of asymptotic adult population size ze

against varying r and s, here λ = 0.9, µ = 0.7, and f(z) = 1.1z
1+0.01z .

likely” to be negative it appears. Figure 5.2c plots graphs of F (r) against r for two (λ, µ) pairs,
where F ′(r) takes different signs, both for s = 0.9.

Next, we study the response of the (nonzero) asymptotic total population of adults to an increase
of the dispersal rate r. There has been a growing interest on understanding the effect of dispersal
on the asymptotic population size because of its practical implications; see, for example [3, 12, 16,
23, 24, 27, 51]. In particular, in [27] it is shown that for a two-patch population model with local
Beverton-Holt dynamics and symmetric dispersal there exist four possible response scenarios of the
total population size to an increases of the dispersal rate: monotonically beneficial, monotonically
detrimental, unimodally beneficial, and beneficial turning detrimental. In the first two, the response
of the total population is monotonic, whereas in the last two, the response is unimodal, that is,
total population increases until it reaches a global maximum and then it decreases. Moreover,
exactly the same four response scenarios are possible for a continuous-time model with logistic
growth [24, 27] and when dispersal is asymmetric [41].

Assume that f satisfies hypothesis (N4) for all r in some non-empty interval J ⊆ [0, 1]. In particular,
for r ∈ J , it follows that xe = xe(r) given by (4.2) is the unique nonzero equilibrium of (1.1), that
is, the nonzero asymptotic adult population. Recall that in this example the forcing function u is
not present (as f(w, z) = f(z)) and v(t) ≡ 0. The asymptotic total population of adults is given
by

xe1 + xe2 = (1, 1)xe = d⊤(I −A)−1bpze = G(1)pze = ze , (5.7)
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where ze = ze(r) is the unique positive solution of

F (r)f(z) = z, equivalently, F (r)
f(z)

z
= 1 z > 0 . (5.8)

Assume that
z 7→ f(z)/z is non-increasing . (5.9)

The above condition includes unimodal and non-decreasing functions, such as Ricker and Beverton-
Holt nonlinearities, respectively. Thus, we conclude from (5.8) that if r 7→ F (r) is increasing (de-
creasing), then ze(r) is increasing (decreasing) and, hence, so is the asymptotic population size
by (5.7). Since the sign of F ′(r) is independent of r, we obtain that the only possible response
scenarios for model (5.5) are monotonically beneficial, in which increasing dispersal monotoni-
cally increases the asymptotic adult population size, and monotonically detrimental, in which
increasing dispersal monotonically decreases the asymptotic adult population size. Interestingly,
to summarise, there are only two response scenarios for model (5.5) with symmetric dispersal and
nonlinear term satisfying (5.9), rather than the four scenarios for the model considered in [27].

The Beverton-Holt nonlinearity (cf. (5.3))

f(z) =
az

1 + bz
z ≥ 0 ,

for positive constants a, b > 0, satisfies condition (5.9). Moreover, property (N4) holds if, and only
if, F (r)a > 1, in which case

ze =
F (r)a− 1

b
.

A surface plot of (F (r)a− 1)/b against varying r and s is shown in Figure 5.2d for

µ = 0.7, λ = 0.9, a = 1.1, b = 0.01 .

Observe how dispersal can be monotonically detrimental for s close to 1, and monotonically ben-
eficial for s close to 0; but there are no unimodal responses of the total adult population to an
increase of dispersal as in [27]. ♢

Our third and final example is closely related to Example 5.2, but here assumption (P1) is not
satisfied.

Example 5.3 (A spatially structured population model with dormants). Consider a population
structured in three groups or classes: juveniles, adults and dormants, denoted J , A, and D, respec-
tively. We consider the following basic processes: adults produce juveniles; juveniles become adults
or dormants; adults remain as adults or become dormants; and dormants remain as dormants or
become adults. This model is mathematically described by

J(t+ 1) = f
(
A(t)

)
,

A(t+ 1) = (1− s)ηJ(t) + (1− r1)λA(t) + r2µD(t),

D(t+ 1) = sηJ(t) + r1λA(t) + (1− r2)µD(t),

 (5.10)

where r1, r2, s, η, λ, µ ∈ [0, 1] measure mortality and dispersal/redistribution. When r1 = r2, the
redistribution between the adult and dormant groups is symmetric.

Eliminating J(t) from (5.10) yields a delayed Lur’e system of the form (1.1) with n = 2, and

x(t) :=

(
A(t)
D(t)

)
, A :=

(
(1− r1)λ r2µ
r1λ (1− r2)µ

)
, b :=

(
(1− s)η
sη

)
, c = 0, d :=

(
1
0

)
.

The models (5.5) and (5.10) are structurally very similar and differ only by the form of the nonlinear
recruitment term. However, by Lemma 3.6, hypothesis (P1) does not hold here because d is not
strictly positive. We assume that

r1, r2, λ, µ ∈ (0, 1), s ∈ [0, 1) and η ∈ (0, 1].
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As in Example 5.2, it follows that A is asymptotically stable. A straightforward calculation gives
that

ϕ⊤ =
(
(c+ d)⊤(I −A)−1, d⊤

)
=

(
∗ , ∗ , 1, 0

)
,

where ∗ denotes a nonnegative entry. Thus, there exists ε > 0 such that

c̃⊤(Ã+ b̃c̃⊤)2 =
(
λ(1− r1), µr2, η(1− s), 0

)
≥ εϕ⊤,

showing that hypothesis (P2) is satisfied. Furthermore, it is straightforward to check that condition
(O) also holds. Consequently, the conclusions of Corollaries 3.13 and 4.4 hold, provided that the
nonlinearity f satisfies (N2) and (N4), respectively. Finally, if we take r := r1 = r2 and η = 1
to address the effect of an increase of dispersal on the persistency and the asymptotic size of the
adult population as in the previous example, we obtain similar results to the ones presented there.
Indeed, it is not hard to check that the response of G(1) to an increase of r is monotone (decreasing
or increasing depending on the values of λ, µ and s). Consequently, if (5.9) holds, the response
of the asymptotic adult population size is monotone (decreasing or increasing depending on the
values of λ, µ and s), but never unimodal in contrast with the behaviour of the model studied in
the paper [27]. ♢

6 Summary

Boundedness, persistence, excitability, and stability and convergence properties of a class of forced,
delayed, positive discrete-time Lur’e systems have been considered. The inclusion of a delay distin-
guishes the present work from our earlier papers [7, 20, 21]. We have demonstrated that whilst there
is some overlap between boundedness and stability properties, there are significant differences in
terms of persistency properties, where we have consequently focussed our attention. To summarise,
delays can be detrimental to ensuring c̃-persistency for the models under consideration. Whilst
condition (P1) is known from [20] to be sufficient for c̃⊤-persistence of the first-order version of
(1.1), namely,

x̃(t+ 1) = Ãx(t) + b̃f(u(t), c̃⊤x̃(t)) + ṽ(t),

with the augmented quantities Ã, b̃, c̃, x̃ and ṽ given by (3.2), we have seen that (P1) is quite
restrictive due to the special structure of Ã, b̃ and c̃. Therefore, new approaches to persistency
have been developed, namely in terms of the hypotheses (P2) or (N3). We have presented a number
of necessary and sufficient conditions for (P2), and our main result on persistence is Theorem 3.12.

In closing we comment that our examples have not focussed in depth on the Allen-Clark model
(although it is related to the models appearing in Examples 5.2 and 5.3, as commented there),
which is a common and important example of delayed nonlinear difference equations which arises
frequently in mathematical biology or ecology. Whilst the results of the present work are applicable
to the Allen-Clark model, the special structure of its first-order formulation is best exploited by a
bespoke persistency and stability theory covering a large class of higher-order scalar forced difference
equations which we intend to present in future work.
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A Appendix: proof of Theorem 3.12

In this Appendix, we prove Theorem 3.12.
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Proof of Theorem 3.12. Let u and v be arbitrary functions from N0 to U and V , respectively. Every
solution of (1.1) satisfies

yx(t+ 2) ≥ d⊤x(t+ 1) ≥ d⊤bf(u(t), yx(t)), ∀ t ∈ N0. (A.1)

(1) Let x0, x−1 ∈ Rn
+ be such that min{c⊤x0+ d⊤x−1, d⊤x0} > 0, and let x be the solution of (1.1)

satisfying x(0) = x0 and x(−1) = x−1. The claim follows from an induction argument applied to
inequality (A.1).

(2) Let x0, x−1 ∈ Rn
+ be such that c⊤x0 + d⊤x−1 > 0, and let x be the solution of (1.1) satis-

fying x(0) = x0 and x(−1) = x−1. As x(1) ≥ bf(u(0), c⊤x0 + d⊤x−1), we have that c⊤x(1) ≥
c⊤bf(u(0), c⊤x0+d⊤x−1) > 0, implying that yx(1) > 0. Invoking (A.1), we conclude that yx(t) > 0
for all t ∈ N0.

(3) Let Γ ⊂ Γ′ be non-empty and compact and let [[x0, x−1]] ∈ Γ. By hypothesis (N3) and the
continuity of f , there exists z0 > 0 such that

(d⊤b)min
w∈U

f(w, z) ≥ z ∀ z ∈ [0, z0]. (A.2)

Let x be the solution of (1.1) such that x(0) = x0 and x(−1) = x−1. By statement (2) of Proposition
3.1 there exists a constant θ > 0 (depending on Γ, U and V , but not on x0, x−1, u or v) such that

f(u(t), yx(t)) ≥ θyx(t) ∀ t ∈ N0.

Hence, if yx(t) ≥ z0, then, by (A.1),

yx(t+ 2) ≥ d⊤bf(u(t), yx(t)) ≥ d⊤bθyx(t) ≥ (d⊤b)θz0 > 0.

On the other hand, if yx(t) ≤ z0, then it follows from (A.1) and (A.2) that

yx(t+ 2) ≥ d⊤bf(u(t), yx(t)) ≥ yx(t).

Combining the above two inequalities, we obtain

yx(t+ 2) ≥ min{yx(t), η} ∀ t ∈ N0, where η := (d⊤b)θz0 > 0. (A.3)

Consequently,
yx(t) ≥ min{c⊤x0 + d⊤x−1, e⊤x0, η} ∀ t ∈ N0. (A.4)

Furthermore, a simple induction argument based on (A.3) gives

yx(t) ≥ min{e⊤x0, c⊤x(2) + d⊤x(1), η} ∀ t ∈ N.

Since
c⊤x(2) + d⊤x(1) ≥ c⊤Ax(1) + d⊤Ax0 ≥ c⊤A2x0 + d⊤Ax0 = e⊤Ax0,

we conclude that
yx(t) ≥ min{e⊤x0, e⊤Ax0, η} ∀ t ∈ N. (A.5)

Defining ψ1, ψ2 : R2n → R by

ψ1

(
[[ξ0, ξ−1]]

)
:= min{c⊤ξ0 + d⊤ξ−1, e⊤ξ0}, ψ2

(
[[ξ0, ξ−1]]) := min{e⊤ξ0, e⊤Aξ0}; ∀ ξ0, ξ−1 ∈ Rn,

we have that
ψ1

(
[[ξ0, ξ−1]]

)
+ ψ2

(
[[ξ0, ξ−1]]

)
> 0 ∀ [[ξ0, ξ−1]] ∈ Γ′. (A.6)

It follows from (A.4) and (A.5) that

2yx(t) ≥ min
{
ψ1

(
[[x0, x−1]]

)
, η
}
+min

{
ψ2

(
[[x0, x−1]]

)
, η
}

∀ t ∈ N. (A.7)
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As Γ ⊂ Γ′, Γ is compact and ψ1 and ψ2 are continuous, it follows from (A.6) that there exists ε > 0
such that

ψ1

(
[[ξ0, ξ−1]]

)
+ ψ2

(
[[ξ0, ξ−1]]

)
≥ ε ∀ [[ξ0, ξ−1]] ∈ Γ.

Together with (A.7) this leads to

2yx(t) ≥ min{ε, η} > 0 ∀ t ∈ N.

(4) Let Γ ⊂ Γ′′ be non-empty and compact, [[x0, x−1]] ∈ Γ, and let x be the solution of (1.1)
satisfying x(0) = x0 and x(−1) = x−1. By statement (2) of Proposition 3.1 there exists θ > 0
(depending on Γ, U and V , but not on x0, x−1, u or v) such that

f(u(t), c̃⊤x̃(t)) = f(u(t), yx(t)) ≥ θyx(t) = θc̃⊤x̃(t) ∀ t ∈ N0,

where we recall that x̃(t) = [[x(t), x(t − 1)]]. Using the above inequality in combination with (3.1)
yields

x̃(t+ τ) ≥
(
Ã+ θb̃c̃⊤

)
x̃(t+ τ − 1) ≥ · · · ≥

(
Ã+ θb̃c̃⊤

)τ
x̃(t) ∀ t ∈ N0.

It follows from (P2) that

yx(t+ τ) = c̃⊤x̃(t+ τ) ≥ c̃⊤(Ã+ θb̃c̃⊤)τ x̃(t) ≥ εθϕ
⊤x̃(t) = εθF(x̃(t)) ∀ t ∈ N0,

where εθ := εmin{1, θτ} > 0. Appealing to statement (3) of Proposition 3.1, we conclude that
there exists η > 0 such that

yx(t+ τ) ≥ εθ min{F(x̃(0)), η} ∀ t ∈ N0.

Finally, µ := minξ∈Γ F(ξ) > 0, and thus,

yx(t+ τ) ≥ εθ min{µ, η} > 0 ∀ t ∈ N0,

completing the proof.
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