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a b s t r a c t

We consider a nonlinear discrete-time population model for the dynamics of an age-structured species.
This model has the form of a Lure feedback system (well-known in control theory) and is a particular case
of the system studied by Townley et al. in Townley et al. (2012). The main objective is to show that, in
this case, the range of nonlinearities for which the existence of globally asymptotically stable non-zero
equilibrium can be guaranteed is considerably larger than that in the main result in Townley et al. (2012).
We illustrate our results with several biologically meaningful examples.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lesliematrixmodels have beenwidely employed to understand
the dynamics of populations structured into age classes [1]. The
model can be written as follows

xt+1 = P(xt)xt . (1)

Here xt ∈ Rn
+
is the class distribution vector (where R+ = [0,∞))

at discrete time t ∈ N and

P(x) =


ρ + φ1(x) φ2(x) φ3(x) · · · φn(x)
τ1(x) 0 0 · · · 0
0 τ2(x) 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 τn−1(x) 0

 ,
with 0 < τi ≤ 1 and 0 ≤ φi. The subdiagonal elements, τi, capture
the demographic transitions between age-categories, whilst in the
elements in the first row, φi correspond to the newborns and ρ is
the fraction of individuals in the first age class who remain in this
class after one time unit (for example, because they do not mature
in one time step).

∗ Corresponding author at: Departamento de Matemática Aplicada, E.T.S.I.
Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del
Rosal 12, 28040, Madrid, Spain. Tel.: +34 913988134.

E-mail address: dfranco@ind.uned.es (D. Franco).

In this paper, we consider the following system

xt+1 = Axt + bf (cT xt), (2)

where A is an asymptotically stable non-negative matrix in Rn×n,
b, c ∈ Rn

+
\{0} and f :R+ → R+ is a continuousmapwith f (0) = 0

and f (y) > 0 for y ∈ R+\{0}. Systems of the form (2) are known in
systems & control theory as Lure systems, the stability properties
of which have been studied in the context of the so-called absolute
stability theory (mainly in a continuous-time setting); see, for ex-
ample [2,3]. Introducing the linear controlled and observed system

xt+1 = Axt + but , yt = cT xt , (3)

the Lure system (2) can be thought of as the closed-loop system
obtained by applying nonlinear feedback of the form ut = f (yt) to
the linear system (3).

We note that if A and b satisfy

A =


1 − δ 0 0 · · · 0
a1 0 0 · · · 0
0 a2 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 an−1 0

 , b =


b1
0
0
0
0

 ,
where 0 < δ ≤ 1, and ai, b1 > 0, (4)

then system (2) is a particular case of system (1) in which a con-
stant proportion of the individuals in each age-category, from 1 to
n−1, at time-step t reaches the next age class in the time-step t+1,
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i.e., the functions τi(x) = ai are constant; moreover, ρ = 1− δ and
φi(x) = b1f (cT x)/∥x∥1 for all i, where ∥ · ∥1 is the 1-norm in Rn,
that is, ∥x∥1 =

n
i=1 |xi|, where xi denotes the ith component of x.

The global dynamics of (2) have been recently considered in [4],
where it is shown that (under certain conditions) system (2) satis-
fies a trichotomy of stability, which is characterised by the rela-
tionship between the graph of f and the line with slope

p :=
1

cT (I − A)−1b
.

Weemphasise that the results in [4] are not restricted to the special
case given in (4). Nevertheless, in [4], those results are illustrated
by a model for Chinook Salmon (Oncorhynchus tshawytscha) which
satisfies (4).

In [4], the following sector property for f is crucial for the proof
of the existence of a positive global attractor for system (2).

(C) There exists a unique y∗ > 0 so that f (y∗) = py∗ and

|f (y)− py∗
| < p|y − y∗

|, y ∈ R+ \ {0, y∗
}. (5)

Actually, in [4], the stronger assumption that there exists m ∈

(0, p) such that

|f (y)− py∗
| ≤ m|y − y∗

|, y ∈ R+ \ {0, y∗
} (6)

was imposed. Although not explicitly stated in [4], (6) guaran-
tees global exponential stability, whilst (5) is sufficient for global
asymptotic stability.

Defining fp : R+ → R+ by

fp(y) = f (y)/p, y ∈ R+,

we remark that the sector condition (C) implies that y∗ is a global
attractor for the scalar difference equation

zt+1 = fp(zt), (7)

where by global we mean that for all positive y, the orbit f n(y) of y
converges to y∗ as n → ∞. Condition (C) is satisfied, for example,
by the Beverton–Holt map (f (y) = λy/(K + y), λ, K > 0) and the
Ricker map (f (y) = y exp(−λy), λ > 0), whenever |f ′(y∗)| < p,
i.e. when the fixed point y∗ of the map fp is locally asymptotically
stable: the proof for theBeverton–Holtmap is straight-forward and
the reader can find the Ricker map case discussed in [4]. However,
as Fig. 1 illustrates, for other importantmaps, the condition |f ′(y∗)|
< p is not sufficient for (C) to hold. For example, this happens in
the case of the generalised Beverton–Holt map [5],

f (y) =
λy

1 + (y/K)β
, K > 0, λ > 0, β > 0,

or the Hassel map [6],

f (y) =
λy

(1 + y/K)β
, K > 0, λ > 0, β > 0.

Generalised Beverton–Holt (also called Maynard-Smith) and Has-
sel maps have been extensively employed in ecological modelling.
Moreover, the corresponding dynamics are well known. Interest-
ingly, these maps have the very desirable property, as have many
others density dependences, that the corresponding global dynam-
ics can be characterised by the local dynamics [7], i.e. local stabil-
ity guarantees global stability. This naturally raises the question of
whether or not condition (C) can be relaxed.

In this paper, we show that the sector condition (C) is not neces-
sary to establish the existence of a positive global attractor for sys-
tem (2) when A and b are given by (4). We prove that, in this case,
it is sufficient that the scalar difference equation (7) has a positive
global attractor y∗. This will allow us to use well-known sufficient
conditions for global stability for maps to formulate easily verifi-
able conditions for the existence of a positive global attractor for

Fig. 1. The sector region, in the case p = 1, appears in light brown colour. Observe
that condition (C) is not satisfied: neither by the generalised Beverton–Holt map
with K =

5
√
5/3, λ = 8/5, β = 5 (solid red curve) nor by the Hassel map with

K = 1/24, λ = 125, β = 3/2 (dashed blue curve). For the chosen parameters
y∗

= 1 is the unique positive solution of the equation f (y) = y and |f ′(1)| < 1 for
both maps.

system (2) with A and b as in (4). We illustrate this idea with two
different conditions which involve Schwarzian derivatives and en-
velopments by linear fractional functions.

Our approach is different from that in [4] which is essentially
based on arguments of small-gain type. Indeed, small-gain and ab-
solute stability arguments do not apply to the nonlinearities con-
sidered in this paper. Instead,we exploit that, in our particular case,
system (2) can be reduced to an n-th order scalar difference equa-
tion with dynamics dominated by those of a first-order difference
equation (see [8,9] and references therein).

2. Preliminaries

We start with some definitions. For a continuous map F :Rn
+

→

Rn
+
, consider the difference equation

xt+1 = F(xt), t ≥ 0, (8)

with initial condition x0 ∈ Rn
+
. We say that a non-zero equilibrium

x∗
∈ Rn

+
of Eq. (8) is a global attractor if, for every x0 ∈ Rn

+
\ {0},

lim
k→∞

F k(x0) = x∗,

where, as usual, F k denotes the k-fold composition of F with itself.
Similarly, for a continuous map G:Rn

+
→ R+, consider the n-th

order difference equation

yt+1 = G(yt , yt−1 . . . , yt−n+1), t ≥ 0, (9)

with initial conditions y0, . . . , y1−n ∈ R+. We say that y∗
∈ R+ is

an equilibrium of Eq. (9) if y∗
= G(y∗, . . . , y∗), andwe say that such

a non-zero equilibrium is a global attractor if

lim
k→∞

yk = y∗,

for every solution {yk}k≥1−n of Eq. (9) with initial conditions such
that (y0, . . . , y1−n) ∈ Rn

+
\ {0}.

For both Eqs. (8) and (9), we say that a non-zero equilibrium is
a global stable attractor if it is a global attractor and it is stable.

Whilst we are mainly interested in studying the case in which
A and b are of the form (4), in this section we deal with system
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(2) under more general conditions. We do this because we think
that Lemma 3 is of independent interest and will be useful in fu-
ture work. We consider the following conditions for A, b and c in
system (2):
(A1) A is a non-negative n × n-matrix with spectral radius r(A)

< 1;
(A2) b, c ∈ Rn

+
\ {0};

(A3) A+bcT is primitive, i.e. there exists k ∈ N such that all entries
of (A + bcT )k are positive.

The following result is contained in lemmata 3.1 and 3.2 in [4].

Lemma 1. Assume that (A1)–(A3) hold. Then, p ∈ (0,∞). Moreover,
r(A + pbcT ) = 1.

We note that in the particular case of A and b satisfying (4) condi-
tion (A1) trivially holds.Moreover, in this case (A3) is not necessary
to guarantee that p−1

= cT (I−A)−1b > 0 (and hence 0 < p < ∞).
Indeed, the first column of (I − A)−1 is given by1
δ

a1
δ

a1a2
δ

· · ·

n−1
j=1

aj

δ

T

.

Therefore, denoting the components of c by c1, . . . , cn,

p−1
= cT (I − A)−1b =

b1
δ


c1 +

n
j=2


cj

j−1
k=1

ak


, (10)

which is positive even when A+ bcT is not primitive (for example,
if δ = 1, cn > 0 and ci = 0 for i ≠ n).

Whilst, in the particular case (4), (A3) is not necessary to
guarantee that p−1 > 0, (A3) is nevertheless a crucial assumption
and we therefore provide a necessary and sufficient condition for
(A3) to be satisfied.

Lemma 2. Assume that A and b are as in (4) and c = (c1, . . . , cn)T ∈

Rn
+
. Define C := {i : ci > 0} ⊂ N.
The matrix A + bcT is primitive if, and only if, cn > 0 and one of

the following conditions holds: (i) 0 < δ < 1 or (ii) gcd C = 1.
Proof. It is well-known that a non-negative matrix is primitive if,
and only if, its di-graph is strongly connected and the lengths of
its cycles are relatively prime; see [10]. The claim follows from a
straightforward application of this result. �

The next result gives a sufficient condition for every solution of
system (2) with non-trivial initial condition to be bounded away
from zero.

Lemma 3. Assume that (A1)–(A3) hold and that there exists a posi-
tive y∗ such that

(fp(y)− y)(y − y∗) < 0, y ∈ R+ \ {0, y∗
}. (11)

If a solution of system (2) with x0 ∈ Rn
+

\ {0} is bounded, then it is
also bounded away from zero.
Proof. Let {xt}t≥0 be a bounded solution of system (2) with x0 ∈

Rn
+

\ {0}. We are going to show that inft≥0 ∥xt∥1 > 0.
Clearly, the sequence of real numbers {cT xt}t≥0 is also bounded.

We define

µ := sup
t≥0

{cT xt} ≥ 0,

y∗∗
:= max{y∗, µ} ≥ y∗ > 0 and

η := min
y∈[y∗,y∗∗]

f (y) > 0.

The primitivity assumption (A3) guarantees that A + pbcT is also
primitive because the di-graph of A+qbcT is the same as that of A+

bcT for all positive q. Therefore, Lemma1 and the Perron–Frobenius
theorem guarantee that 1 is an eigenvalue of A + pbcT with an
associated positive left eigenvector vT .

If cT xt ∈ [y∗, y∗∗
], then we have

vT xt+1 ≥ vTAxt + vTbη ≥ vTbη > 0.

If cT xt ∈ [0, y∗), then, by condition (11), f (cT xt) ≥ pcT xt , and, as a
consequence, we obtain

vT xt+1 ≥ vT (A + pbcT )xt = vT xt > 0.

Thus, induction on t shows that

vT xt ≥ min{vT x0, vTbη} > 0, t ≥ 0.

Finally, since vT xt ≤ ∥v∥∞∥xt∥, setting

M :=
min{vT x0, vTbη}

∥v∥∞

> 0,

we conclude that ∥xt∥ ≥ M > 0 for all t ≥ 0, proving the
claim. �

The next lemma (the second part of which is a corollary of a result
in [8]) gives sufficient conditions for the dynamics of an n-th order
difference equation to be dominated by the dynamics of a first
order difference equation.

Lemma 4. Let G:Rn
+

→ R+ be continuous and assume that there ex-
ists a continuous map d:R+ → R+ such that, for each (u1, . . . , un)

T

∈ Rn
+

with G(u1, . . . , un) ≥ max{u1, . . . , un}, there exists z in the
convex hull of {u1, . . . , un} satisfying d(z) ≥ G(u1, . . . , un). Fur-
thermore, assume that y∗ > 0 is a global stable attractor of the first-
order difference equation yt+1 = d(yt). Then the following statements
hold.
(i) Every solution of the nth-order difference equation (9) is bounded.
(ii) Under the additional assumptions that

• for each (u1, . . . , un)
T

∈ Rn
+
with G(u1, . . . , un) ≤ min{u1,

. . . , un}, there exists z in the convex hull of {u1, . . . , un} satis-
fying d(z) ≤ G(u1, . . . , un),

• every non-zero solution (yt)t≥0 of the nth-order difference
equation (9) satisfies
lim inf
t→∞

yt > 0, (12)
y∗ is a global stable attractor of (9).

Proof. (i) Since y∗ > 0 is a global stable attractor of the difference
equation defined by d, we have

(d(y)− y)(y − y∗) < 0, y ∈ R+ \ {0, y∗
}. (13)

Let (yt)t≥0 be a non-zero solution of (9) and define

M := max {M0, y1−n, . . . , y0} ,

where M0 := max {d(x) : x ∈ [0, y∗]}. Assume that max{yt , yt−1,
. . . , yt−n+1} ≤ M . The claim will follow by strong induction, pro-
vided we can show that yt+1 ≤ M . Seeking a contradiction, sup-
pose that

yt+1 = G(yt , yt−1, . . . , yt−n+1) > M. (14)

By hypothesis, there exist numbers γt,0, . . . , γt,n−1 ∈ R+ withn−1
k=0 γt,k = 1 and such that z =

n−1
k=0 γt,kyt−k satisfies

yt+1 = G(yt , yt−1, . . . , yt−n+1) ≤ d(z).

By the definition ofM and M0,

z ≤ y∗
⇒ yt+1 ≤ d(z) ≤ M0 ≤ M,

and, moreover, by (13),

z > y∗
⇒ yt+1 ≤ d(z) ≤ z =

n−1
k=0

γt,kyt−k ≤ M.

Combining this with (14), we arrive at the contradiction M <
yt+1 ≤ M .
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(ii) Set I := (0,∞), g := G|In and h := d|I . Statement (i),
together with the hypothesis (12), guarantees that the n-th order
equation

yt+1 = g(yt , yt−1, . . . , yt−n+1) (15)

is persistent (in the sense of [8]). By hypothesis, y∗ > 0 is the global
stable attractor of the difference equation zt+1 = h(zt) and there-
fore, an application of Proposition 3.4 in [8] shows that y∗ is a global
stable attractor of (15). Finally, let (yt)t≥0 be a non-zero solution of
(9). It remains to show that limt→∞ yt = y∗. By (12), there exists
k ≥ 0 such that yt > 0 for all t ≥ k and consequently, the positive
sequence (ỹt)t≥0 given by ỹt := yt+k+n−1 is a solution of (15). Thus,

lim
t→∞

yt = lim
t→∞

ỹt = y∗,

completing the proof. �

3. Existence of a global stable attractor — main result

Ourmain result shows that, in the case under consideration, the
sector condition (C) can be weakened.

Theorem 1. Let A and b be of the form (4), c ∈ Rn
+

\ {0} and assume
that (A3) is satisfied. Let f :R+ → R+ be a continuous map such that
f (0) = 0, f (y) > 0 for y > 0 and the following condition holds.
(H) The difference equation zt+1 = fp(zt) has a global stable attractor

y∗ > 0.

Then, x∗
= y∗p(I − A)−1b is a positive global stable attractor of (2).

The components x∗

i of x∗ are given by x∗

1 = y∗pb1/δ and x∗

i = y∗pb1i−1
j=1 aj/δ for i = 2, . . . , n.

Proof. Let x0 ∈ Rn
+

\ {0} and let (xt)t≥0 be the corresponding so-
lution of (2). We denote the ith component of xt by xt,i. First, we
note that the system (2) can be reduced to the following n-th order
scalar difference equation for xt,1:

xt+1,1 = (1 − δ)xt,1 + b1f


c1xt,1 + c2a1xt−1,1 + · · ·

+


cn

n−1
k=1

ak


xt−(n−1),1


, t ≥ 0 (16)

with initial conditions,

x0,1 = x0,1, x−1,1 =
x0,2
a1
, . . . , x−(n−1),1 =

x0,n
n−1
k=1

ak

,

belonging to R+ and not all zero.
With the aim of using Lemma 4, we define the continuousmaps

G:Rn
+

→ Rn
+
and d:R+ → R+ by

G(u1, . . . , un) = (1 − δ)u1 + b1f

×


c1u1 + c2a1u2 + · · · +


cn

n−1
k=1

ak


un



d(y) =
b1
δ
f

δ

b1p
y


=
b1p
δ

fp


δ

b1p
y

,

respectively.
By (H), b1py∗/δ is a global stable attractor for the first order

equation yt+1 = d(yt). Furthermore, we have

G(u1, . . . , un) = (1 − δ)u1 + δ
b1
δ
f

δ

b1p
(γ1u1 + · · · + γnun)


= (1 − δ)u1 + δd(γ1u1 + · · · + γnun)

with

γ1 =
b1pc1
δ

and γi =

b1pci
i−1
k=1

ak

δ
, i = 2, . . . , n.

Invoking (10), we see that 0 ≤ γi ≤ 1 and
n

i=1 γi = 1. Further-
more, if G(u1, . . . , un) ≥ max{u1, . . . , un}, then

G(u1, . . . , un) ≤ (1 − δ)G(u1, . . . , un)+ δd(γ1u1 + · · · + γnun),

which implies G(u1, . . . , un) ≤ d(z) with z in the convex hull of
{u1, . . . , un}. Similarly, if G(u1, . . . , un) ≤ min{u1, . . . , un}, then

G(u1, . . . , un) ≥ (1 − δ)G(u1, . . . , un)+ δd(γ1u1 + · · · + γnun),

which implies G(u1, . . . , un) ≥ d(z) with z in the convex hull of
{u1, . . . , un}.

We claim that it is sufficient to show that

lim inf
t→∞

xt,1 > 0. (17)

Indeed, if (17) holds, then statement (ii) of Lemma 4 guarantees
that b1py∗/δ is a global stable attractor for the n-th order difference
equation (16) to whichwe have reduced system (2). It then follows
that xt,1 → b1py∗/δ as t → ∞, and, moreover, using the special
structure of A and b, we conclude that, for i = 2, . . . , n, xt,i →

y∗pb1
i−1

j=1 aj/δ as t → ∞.
We proceed to establish (17). Noting that, by statement (i) of

Lemma 4, (xt,1)t≥0 is bounded, it follows from the structure of A
and b that the sequence (xt)t≥0 is also bounded. Furthermore, con-
dition (H) guarantees that (11) holds and thus there exists κ > 0
such that f (cT xt) ≥ κcT xt for every t ≥ 0. Consequently,

xt+1 = Axt + bf (cT xt) ≥ (A + κbcT )xt , t ≥ 0.

Now, by (A3), there exists an integer k such that the matrix (A +

κbcT )k is positive. Denoting by ei the ith element of the canonical
basis of Rn, we have, for every i = 1, . . . , n,

xt,i = eTi xt ≥ eTi (A + κbcT )kxt−k, t ≥ k.

Denoting the minimum of the positive n components of the row
eTi (A + κbcT )k by εi > 0, it follows that

xt,i ≥ εi∥xt−k∥1, t ≥ k.

Invoking Lemma3 yields that inft≥k xt,i > 0, and (17) follows, com-
pleting the proof. �

As has beenmentioned in Introduction, stability results for sys-
tems of the form (2) with f satisfying a sector condition are known
in systems & control theory as absolute stability results. Not sur-
prisingly,whilst absolute stability criteria guarantee stability for all
nonlinearities in the given sector, they can be conservative in the
sense that there may exist nonlinearities (or indeed, large classes
of nonlinearities) which do not satisfy the relevant sector condi-
tion, but for which system (2) is nevertheless (globally asymptoti-
cally) stable. This is illustrated by Theorem 1which shows that, for
systems of the form (2) with A and b given by (4), the equilibrium
x∗ is a stable global attractor for any nonlinearity f satisfying (H),
an assumption considerably less restrictive than the sector condi-
tion (C).

4. Consequences of the main result

Theorem 1 shows that (2) (with A and b given by (4)) has a
global stable attractor, provided that the one-dimensional differ-
ence equation zt+1 = fp(zt) has a global stable attractor. Results on
the existence of global attractors in one-dimensional dynamics go
back, at least, to the paper [11] by Coppel, where it is proved that
the absence of orbits of period two is necessary and sufficient for
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the existence of a positive global attractor. Coppel’s result is not
easily applicable, but there are other results which are. Some of
these will now be used to formulate conditions which are easier to
verify and which are sufficient for hypothesis (H) to hold.

Many density dependencies considered in ecology are ulti-
mately decreasing, thereby taking into account the intra-species
competition in the presence of limited resources. It has been
proved that if f is a density dependence, then usually local stabil-
ity implies global stability [12]. The first such result was proved
by Singer [13]. It is based on properties of functions with negative
Schwarzian derivative. Combining [13] (see also [14,15]) with The-
orem 1 leads to the following corollary.

Corollary 1. Assume that A and b are as in (4), c ∈ Rn
+

\{0} and (A3)
holds. Let f ∈ C3(R+,R+) be such that f (0) = 0, f (y) > 0 for all
y > 0 and
(S) f has a unique critical point c ∈ (0,∞) with f ′(y) > 0, y ∈

(0, c), f ′(y) < 0, y ∈ (c,∞); f is concave in (0, c); and its
Schwarzian derivative Sf satisfies

Sf (y) :=
f ′′′(y)
f ′(y)

−
3
2


f ′′(y)
f ′(y)

2

< 0, y ∈ R+ \ {0, c}.

If fp has a positive fixed point y∗ with |f ′
p(y

∗)| < 1, then system (2) has
a positive global stable attractor.

Aswewill see soon, Corollary 1 is a useful tool in the stability anal-
ysis of systems of the form (2) with A and b given by (4). Evidently,
condition (S) is difficult to compare with the sector condition (C).
The next result, which follows from Theorem 1 combined with the
enveloping technique developed by Cull [7, Corollary 5], provides
a generalization of (C).

Corollary 2. Assume that A and b are as in (4), c ∈ Rn
+

\{0} and (A3)
holds. Let f :R+ → R+ be a continuous map satisfying the following
condition.
(E) There exists y∗ > 0 such that fp satisfies condition (11) and

(fp(y)− ψη(y))(y − y∗) > 0, y ∈ R+ \ {0, y∗
}, (18)

where ψη is the linear fractional function

ψη(y) =
y∗(y∗

− ηy)
ηy∗ − (2η − 1)y

, with η ∈ [0, 1/2]. (19)

Then, system (2) has a positive global stable attractor.

We say that fp is enveloped by the linear fractional function (19) if
condition (18) holds.With the particular choice ofη =

1
2 , condition

(E) is equivalent to condition (C).

Example 1. We illustrate our results by analysing a population
model for Chinook Salmon (Oncorhynchus tshawytscha) [16]. Con-
sider system (2) with A, b and c as in (4) and n = 5. Following
Example 4.1 in [4], we adopt the parameter values of A and b as

δ = 1, a1 = 0.0131, a2 = 0.8,
a3 = 0.7896, a4 = 0.6728, b1 = 1

and c = rc0 with

cT0 = (0, 0, 0.3262, 5.0157, 39.6647), r ∈ (0,∞). (20)

We have p = p0/r , with p0 := 1/(cT0 (I − A)−1b) ≈ 3.7628, where
3.7628 is sightly smaller than p0.

We consider two cases: the generalised Beverton–Holt function
and the Hassel map.
Case (i). Let f be the generalised Beverton–Holt function given by

f (y) =
8y/5

1 + 3y5/5
. (21)

In the Introduction,we have graphically seen that f does not satisfy
the sector condition (C) for p = 1, and numerically we have ob-
served that f does not satisfy this condition for p < 1.1162. Thus,
the results in [4] do not apply if p < 1.1162. However, the gener-
alised Beverton–Holt function (21) satisfies condition (S) (see [17]).
Moreover, the fixed points of fp are 0 and

y∗
=

5


5p − 8
3p

.

Additionally, f ′
p(y

∗) = (25p − 32)/8. Thus, if p = p0/r ∈ (24/25,
8/5), then |f ′

p(y
∗)| < 1, and Corollary 1 guarantees the existence

of a positive global stable attractor.
Note that p = p0/r ∈ (24/25, 8/5) is guaranteed if 2.3519 <

r < 3.9195. Fig. 2 illustrates that the result is quite sharp. There
we have plotted the asymptotic population size as a function of the
parameter r . We observe that the population goes to extinction for
r < 2.3519, at which point a positive attractor appears in a sad-
dle–node bifurcation and it is present for 2.3519 < r < 3.9195.
As r increases beyond 3.9195, the attractor seems to persist for a
while (see the boxed graph in themiddle of the toppanel). The pop-
ulation size is always positive, but as r increases further, the range
of fluctuations also increases. The panels at the bottom of Fig. 2
show the evolution of the population size in the first 300 genera-
tions to illustrate the three described behaviours.
Case (ii). Let f be the Hassel map given by

f (y) =
125y

(1 + 24y)3/2
. (22)

Again, we have seen in the Introduction that f does not satisfy the
sector bounded condition (C) for p = 1. Indeed, it can be seen nu-
merically that condition (C) fails outside the range 1.1999 < p <
125. On the other hand, its Schwarzian derivative,

Sf (y) =
31104y2 − 10368y − 1296

82944y4 − 6912y3 − 432y2 + 24y + 1
,

is not negative as its graph illustrates; see Fig. 3.
Therefore, it is not possible to use Corollary 1 and the result

in [4] guarantees the existence of an attractor in a bounded interval
of the parameter r only. However, we will see that an application
of Corollary 2 leads to a substantial improvement of the result.

The fixed points of fp are 0 and

y∗
=

25 − p2/3

25p2/3
.

For p < 125, themap fp satisfies condition (11) and is enveloped by
the linear fractional function ψ0(y) = (y∗)2/y. The latter follows
from a change of variables y = zy∗, allowing us to apply the results
for Model VI in [7]. Therefore, Corollary 2 guarantees the existence
of a positive global stable attractor for all r ∈ (p0/125,∞) with
p0/125 ≈ 0.0301.

Example 2. In this example we consider a recent result published
in [18], where it was analysed how harvesting influences the dy-
namics of the following stage-structuremodelwith two age classes
(juveniles and adults):

xt+1,1 = g((1 − h2)xt,2),
xt+1,2 = (1 − h1)s1xt,1 + (1 − h2)s2xt,2,

(23)

where xt,1 and xt,2 denote the numbers of juveniles and adults at
time step t , respectively, h1, h2 ∈ [0, 1) and s1, s2 ∈ (0, 1] are the
corresponding harvest and survivorship rates, and g(y) = αye−βy

is the Ricker map with α > 1, β > 0.
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Fig. 2. Asymptotic population size as a function of the parameter in Example 1 (the top panel). We have calculated 6020 generations to remove the initial transients and
the plot shows the sizes of the last 20 generations. The initial population size is chosen as a pseudo-random vector for each of the 1000 different values of r considered.
Simulations of the global dynamics with increasing r (bottom panels): for r ∈ (0, 2.3518) the population goes towards extinction (left); for r ∈ (2.3519, 3.9195) there is a
positive stable equilibrium; and for r > 3.9195 the equilibrium becomes unstable but solutions remain bounded. In each of the three cases we have chosen the following
five different initial conditions biased totally to each of the five stage classes, x0 = ei for i = 1, . . . , 5.

Fig. 3. Schwarzian derivative of the Hassel map (22).

Changing variables, yt := (β/r)xt,2, where r := lnα > 0,
(23) can be reduced to the following second-order scalar difference
equation

yt+1 = (1 − h2)s2yt + (1 − h1)s1(1 − h2)yt−1er(1−(1−h2)yt−1). (24)

By using a result in [19], it is proved in [18] (see [18, Proposition
2.1]) that (24) has a positive global attractor for

r ∈ (r0, r0 + 1], where r0 := ln


1 − (1 − h2)s2
(1 − h1)(1 − h2)s1


. (25)

We will use Corollary 1 to show that the existence of a positive
global attractor for (24) is guaranteed for a range of parameter val-
ues r larger than that given in (25). To this end,wenote that Eq. (24)

can be rewritten as a systemof the form (2)with δ = 1−(1−h2)s2,
a1 = 1, b1 = 1, c1 = 0, c2 = 1 − h2 in (4), and f (y) := (1 −

h1)s1yer(1−y). This function f satisfies condition (S); see e.g. [14].
Moreover,

p =
1 − (1 − h2)s2

1 − h2
.

Routine calculations show that fp has a unique positive fixed point
y∗

= 1 − r0/r if, and only if, r > r0 and that this fixed point sat-
isfies f ′(y∗) = p(1 + r0 − r). Consequently, |f ′(y∗)| < p if, and
only if, r ∈ (r0, r0 + 2), and thus, Corollary 1 guarantees that sys-
tem (23) has a positive global attractor for r ∈ (r0, r0 + 2), thereby
increasing the range of parameter values r as compared to (25).
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