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a b s t r a c t 

The paper contains new results on the impact of harvesting times and intensities on the 

stability properties of Seno population models. It is proved that sufficiently high harvest 

intensities are stabilizing for any harvesting time in the sense that they create a posi- 

tive equilibrium that attracts all positive solutions. Moreover, in the special case that the 

nonlinearity in the Seno model is a Ricker function, we derive a global stability result in- 

dependent of timing and valid for low to medium harvesting effort s. The proof is based on 

a characterization of those harvesting intensities which guarantee a negative Schwarzian 

derivative for all harvesting times. Finally, we rigorously show that timing can be stabiliz- 

ing as well as destabilizing by itself. In particular, a recent conjecture formulated by Cid 

et al. (2014) [1] is shown to be false. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The time of intervention in harvesting programmes has been proved to play an important role on the population per-

sistence. This role is especially important in seasonally reproducing species [2–5] . In this sense, harvest timing is currently

receiving an increasing attention. However, the existing literature has mostly focused on the population size, see e.g. [3,6] ,

and few studies have analyzed the effects on the population stability. 

This motivated Cid et al. [1] to use a model proposed by Seno [7] to study the effect of harvest timing on both the size

and stability of populations. Seno’s model is given by a single one-dimensional difference equation based on constant effort

harvesting (also known as proportional harvesting) that allows for the consideration of any moment during the reproductive

season for the intervention. When harvesting occurs at the beginning or at the end of the reproductive period, two topolog-

ically conjugated systems are obtained. For these systems, removing individuals can create an asymptotically stable positive

equilibrium which acts as a global attractor under certain conditions [8,9] . On the contrary, if the harvesting intensity is too

high, populations starting with any initial size go eventually extinct [10] . Interestingly, when individuals are removed at an

intermediate moment during the reproductive season, the stability properties of Seno’s model are not so well understood. 

Cid et al. [1] proved that for any intervention time the system has a unique positive equilibrium if the intervention effort

is below a certain threshold. Moreover, the origin acts as a global attractor when that threshold is reached or exceeded.
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Regarding the asymptotic stability of the positive fixed point, they obtain sharp global results for the quadratic map and a

sufficient local condition for the Ricker map [11] . This last condition states that the positive equilibrium of the Ricker–Seno

model is asymptotically stable for any harvest time if harvesting at the beginning of the reproductive season guarantees

stability. These results, together with numerical simulations, lead Cid et al. [1] to conjecture that the sufficient condition

proved for the Ricker–Seno model is true for any other population model described by a unimodal map. 

In this paper, we show that the moment of the intervention does not affect the stability of controlled populations when

the harvesting effort is high. Moreover, we prove that for high removal intensities—below the threshold above which all

populations go eventually extinct—the positive equilibrium acts as a global attractor. This result is valid for a wide family

of population models described by unimodal maps and, in particular, it implies that the aforementioned conjecture in [1] is

true for high harvesting intensities. 

From a practical point of view, the global stability of the positive equilibrium is a desirable property since it allows

to predict the dynamics with independence of the initial population size. However, choosing a high harvesting intensity

close to the threshold above which all populations go eventually extinct has two important drawbacks. First, surpassing

this threshold causes the extinction of the population. Thus, selecting harvesting effort s near such a threshold could be

considered dangerous. Second, very high harvesting efforts may be difficult to attain in real situations due to constrains of

harvesting/thinning management: for example the number of boats available for fishing or the limited effectiveness of a

poison used in pest control. This unveils the importance of extending the previous global stability result to lower harvesting

intensities. We do it here for the Ricker–Seno model. 

The Ricker model has been shown to be a good descriptor of the dynamics of many populations (including bacteria,

fungi, ciliates, crustaceans, fruit flies, and fishes [12] ), which makes the study of the stability properties of the Ricker–Seno

model appealing. Interestingly, in many population models involving the Ricker map local stability implies global stability,

e.g. [13–16] . We show that this is also the case for the Ricker–Seno model if we select a low-medium harvesting effort.

Hence, we refine the result given in Proposition 3.4 of [1] by determining a range of intervention effort s f or which the

positive fixed point is not only asymptotically stable but also attracts all positive orbits. Additionally, we use the Ricker–

Seno model to prove that timing can be stabilizing by itself. In other words, we show that in some cases choosing an

appropriate moment for removing individuals can induce an asymptotically stable positive fixed point in populations for

which the same equilibrium would be unstable in case of triggering the intervention at the beginning or at the end on the

reproductive season. 

Our last result consists in pointing out that timing can be destabilizing for certain maps satisfying the general conditions

assumed on population production maps in [1] . We obtain specific mathematical counterexamples proving that the Conjec-

ture 3.5 in [1] is false. Nevertheless, the implications of this destabilizing effect of timing should be considered carefully

because most of the populations maps considered in the ecological literature satisfy extra conditions, which could prevent

this destabilizing effect to occur. 

The paper is organized as follows. In Section 2 we describe Seno’s model and collect the conditions assumed on the

population models. Section 3 shows that timing does not affect stability for high harvesting efforts. In Section 4 we study the

stability properties of the Ricker–Seno model. Moreover, we show that timing can be stabilizing by itself and we introduce

biological realities to check the robustness of our results. Section 5 includes counterexamples proving that harvest timing

could be destabilizing. Finally, Section 6 summarizes the results obtained and discusses their implications and limitations. 

2. Harvesting model with timing 

Consider the discrete-time single-species population model 

x t+1 = g(x t ) x t , (1) 

where x t ∈ [0, ∞ ) is the population size at the beginning of the reproductive season t and g : [0 , ∞ ) → R is the per-capita

production function. It is well established that harvesting a constant fraction γ ∈ (0, 1) of the population at the end of every

reproductive season corresponds to multiplication of the right hand side of (1) by the survival fraction (1 − γ ) , 

x t+1 = (1 − γ ) g(x t ) x t . (2) 

On the other hand, harvesting the same fraction at the beginning of the season leads to 

x t+1 = g((1 − γ ) x t )(1 − γ ) x t , (3) 

that is, multiplies the population size x t by the survival fraction (1 − γ ) . As usual in the literature, we refer to parameter γ
as harvesting effort or harvesting intensity. Note that harvesting at the beginning of the season corresponds to an application

of the proportional feedback chaos control method proposed in [17] to (1) . 

In [7] , Seno puts forward the following harvesting model, which encompasses the limit situations (2) and (3) by allowing

the population to be harvested at any fixed point in time within the season. It reads 

x t+1 = [ θg(x t ) + (1 − θ ) g((1 − γ ) x t )](1 − γ ) x t , (4)

where θ ∈ [0, 1] corresponds to the fixed harvesting moment. Model (4) assumes that the reproductive success at the end of

the season depends on the amount of energy accumulated during it. Since the per-capita production depends on x t before



D. Franco et al. / Applied Mathematical Modelling 48 (2017) 885–898 887 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ and on (1 − γ ) x t afterwards, it is natural to assume that the population production is proportional to the time period

before/after harvesting to arrive at (4) . See [7,18] for a more detailed explanation and a graphical scheme of the population

dynamics of this model. 

Following the notation of [1] , we rewrite the right-hand side of (4) as 

θF 1 (x t ) + (1 − θ ) F 0 (x t ) := F θ (x t ) , 

where F 1 (x ) := (1 − γ ) g(x ) x and F 0 (x ) := g((1 − γ ) x )(1 − γ ) x . For every particular choice of θ ∈ [0, 1] the map F θ ( x ) is the

convex combination of the maps defining (2) and (3) . Consequently, model (4) includes models (2) and (3) as special cases.

Taking θ = 1 corresponds to harvesting when the season ends, and θ = 0 when it begins. 

In this paper, we are interested in populations satisfying the following conditions on g : 

(i) g ′ ( x ) < 0 for all x > 0; 

(ii) g (0) > 1; 

(iii) lim x →∞ 

g(x ) = δ < 1 ; 

(iv) there exists some d > 0 such that xg ( x ) is strictly increasing on (0, d ) and strictly decreasing on ( d , ∞ ). 

Biologically speaking, condition (i) states that the dynamics is compensatory, i.e., any increase in the population size in

a generation is followed by an increase in mortality in the next generation. Condition (ii) is equivalent to d 
dx 

(xg(x ))(0) > 1 ,

which implies that xg ( x ) is above y = x around x = 0 . Therefore, the population grows for small population sizes. Condition

(iv) means in particular that xg ( x ) is a unimodal map, we note that (iv) implies (iii) with δ = 0 —here (iii) is introduced just

for ease of reference to [1] . With these conditions, the system has two fixed points x = 0 and x = K > 0 , and the asymp-

totic dynamics is overcompensatory [19] : for x large, any increase in the population size is exceeded in magnitude by the

corresponding increase in mortality in the following generation, and thus the population function xg ( x ) decreases. 

Overcompensatory models can exhibit positive unstable equilibria, which leads to fluctuating dynamics [20] . Since we are

interested in the combined effect of harvesting timing and harvesting effort on the stability properties of the positive equi-

librium, we recall a sufficient and necessary condition for the existence of such an equilibrium regardless of the intervention

moment θ . 

Proposition 1 (from Proposition 3.1 in [1] ) . Assume that conditions (i)–(iii) hold. System (4) has a unique positive equilibrium

(denoted by K γ ( θ ) ) if and only if 

γ < γ ∗ := 1 − 1 

g(0) 
. 

3. Timing does not affect stability for high harvesting efforts 

In this section, we show that the asymptotic stability of K γ (0) implies the asymptotic stability of K γ ( θ ) for θ ∈ [0, 1]

if γ is chosen close enough to γ ∗ and g satisfies conditions (i), (ii) and (iv). Moreover, we obtain that K γ ( θ ) is not only

asymptotically stable, but attracts all solutions of (4) starting with a positive initial condition. 

Proposition 2. Assume that conditions (i), (ii) and (iv) hold. Then, there exists γ 0 < γ ∗ such that for γ ∈ [ γ 0 , γ
∗) the fixed

point K γ ( θ ) of (4) is asymptotically stable for all θ ∈ [0, 1] and all positive solutions of (4) converge to K γ ( θ ) . 

Proof. Our aim is to prove that the fixed point K γ ( θ ) of F θ attracts all positive solutions of (4) , provided that γ is sufficiently

close to γ ∗. We do this by showing that x < F θ ( x ) < K γ ( θ ) for all x ∈ (0, K γ ( θ ))) and F θ ( x ) < x for all x > K γ ( θ ); see

[21, Lemma 1] . 

A simple calculation yields that 
dF θ
dx 

(0) = F ′ 
θ
(0) = (1 − γ ) g(0) and so, by Proposition 1 and condition (ii), F ′ 

θ
(0) > 1 for

every θ ∈ [0, 1] and every γ ∈ [0, γ ∗). Together with the uniqueness of the positive fixed point (see Proposition 1 ) it now

follows that 

F θ (x ) > x, x ∈ (0 , K γ (θ )) , 

for every θ ∈ [0, 1] and every γ ∈ [0, γ ∗). 

Next, the inequality x > F θ ( x ) for all x > K γ ( θ ) follows from the uniqueness of the positive fixed point and the fact that,

by condition (iv), xg ( x ) < x for x > K . It is then immediate that F 0 (x ) = (1 − γ )(xg(x )) < (1 − γ ) x < x for x > K . For x large

enough, (1 − γ ) x > K, and thus F 1 (x ) = ((1 − γ ) x ) g((1 − γ ) x ) < (1 − γ ) x < x . This yields F θ ( x ) < x for large x . 

To finish the proof, we will show that there exists γ 0 < γ ∗ such that F θ is strictly increasing on the interval [0, K γ ( θ ))

for γ ∈ [ γ 0 , γ
∗). This combined with K γ ( θ ) being a fixed point of F θ implies, for every θ ∈ [0, 1] and γ ∈ [ γ 0 , γ

∗), that

F θ ( x ) < K γ ( θ ) for x ∈ (0, K γ ( θ )). 

Since F ′ 0 (x ) = F ′ 1 ((1 − γ ) x ) , the graph of F ′ 0 is the graph of F ′ 1 horizontally stretched by a factor 1 − γ ; see Fig. 1 . For

γ < γ ∗, both graphs are above the horizontal axis near x = 0 . Therefore, F ′ 
1 
(x ) < F ′ 

0 
(x ) around x = 0 . On the other hand,

F ′ 
θ
(x ) = θF ′ 

1 
(x ) + (1 − θ ) F ′ 

0 
(x ) , implying that 0 < F ′ 

1 
(x ) ≤ F ′ 

θ
(x ) ≤ F ′ 

0 
(x ) around x = 0 . 

Let C γ ( θ ) denote the first zero of F ′ 
θ

. Note that this zero exists because F 1 and F 0 inherit the unimodal character of

xg ( x ) assumed in condition (iv). Indeed, for F ′ 
0 

and F ′ 
1 

this zero is unique and corresponds to C γ (1) = d and C γ (0) = 

d 
1 −γ ,

respectively. 
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Fig. 1. Derivatives of F 1 (blue curve), F 0 (red curve) and F ′ 
θ

(black curve) when g(x ) = e 2 . 7(1 −x ) , γ = 0 . 4 and θ = 0 . 3 . (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above discussion, we have that 

C γ (1) ≤ C γ (θ ) ≤ C γ (0) . (5) 

We want to find conditions on the parameters guaranteeing that F θ is increasing until K γ ( θ ), i.e., F ′ 
θ
(x ) > 0 for all x <

K γ ( θ ). This is equivalent to impose K γ ( θ ) ≤ C γ ( θ ), and a sufficient condition for this is K γ (0) ≤ C γ (1). This is true because

(5) and Proposition 3.2 in [1] yield K γ ( θ ) ≤ K γ (0) ≤ C γ (1) ≤ C γ ( θ ). Since xg ( x ) is increasing on (0, d ), it follows that the

map j : [ max { 0 , 1 − 1 
g(d) 

} , γ ∗) → [0 , g(d)] given by j(γ ) = K γ (0) is strictly decreasing and satisfies lim γ → γ ∗ j(γ ) = 0 . Hence,

there exists a unique γ0 ∈ [ max { 0 , 1 − 1 
g(d) 

} , γ ∗) such that K γ (0) ≤ C γ (1) for all γ ≥ γ 0 . 

Finally, by construction we have that γ0 = 0 or K γ0 
(0) = C γ0 

(1) = d. Since K γ0 
(0) is the unique fixed point of F 0 , then γ 0 

is the unique solution of 

g((1 − γ0 ) d) = 

1 

1 − γ0 

in the interval [ max { 0 , 1 − 1 
g(d) 

} , γ ∗) . �

It is well known that harvesting can induce stability for the positive equilibrium of systems satisfying conditions (i), (ii)

and (iv), see e.g. [10] . Proposition 2 provides a threshold γ 0 in the removal intensity above which the positive equilibrium

becomes a global attractor. The previous proof shows how to calculate γ 0 , and we will illustrate this for two well known

population models, namely Hassell [22] and Ricker [11] models. The per-capita production function of the former is g(x ) =
λ(1 + a x ) −b , where λ > 0 represents the intrinsic rate of population growth, b > 0 determines the strength of density

dependence, and a > 0 is a scaling parameter. This model satisfies conditions (i), (ii) and (iv) for λ > 1 and b > 1. In the

absence of harvesting, the positive equilibrium K = (λ
1 
b − 1) /a is unstable for b > 2 and λ > (b/ (b − 2)) b . In this model,

d = 1 / (a (b − 1)) and γ 0 is either null or the unique solution of 

λ = 

1 

1 − γ

(
b − γ

b − 1 

)b 

. (6) 

For fixed b , the function k ( γ ) given by the right-hand side of (6) is strictly increasing and satisfies k → (b/ (b − 1)) b for γ
→ 0 and k → + ∞ for γ → 1. Hence, for λ > (b/ (b − 1)) b the value γ 0 > 0 is implicitly given by k (γ0 ) = λ, and γ0 = 0

otherwise. For λ = 7 . 7 and b = 50 , we obtain γ ≈ 0.848 and γ ∗ ≈ 0.870. Thus, for any γ ∈ [0.848, 0.870) the positive
0 
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Fig. 2. Bifurcation diagram of population model (4) for varying harvesting times θ ∈ [0, 1]. The underlying population dynamics is given by the Hassell 

map g(x ) = 7 . 7(1 + 10 −3 · x ) −50 , and the harvesting effort is γ = 0 . 86 . 

Fig. 3. Parameters inside the region between the black curves guarantee that K γ ( θ ) is asymptotically stable for all θ ∈ [0, 1] for (4) in the Ricker case. 

The blue area specifies the region in the ( r, γ )-parameter space for which Proposition 2 guarantees the global attraction of the positive equilibrium. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

equilibrium K γ ( θ ) is stabilized by the effect of harvesting and acts as a global attractor for all θ ∈ [0, 1]. This can be

appreciated in Fig. 2 . 

In the case of Ricker model, the per-capita production function is g(x ) = e r(1 −x ) , where r > 0 is a growth parameter.

In this case, conditions (i), (ii) and (iv) are met for all r > 0. Proposition 3.4 in [1] guarantees for this model that the

positive equilibrium K γ ( θ ) of (4) with θ ∈ [0, 1] is asymptotically stable if 1 − e 2 −r < γ < 1 − e −r . The curves defined by

these inequalities delimit a region in the ( r, γ )-parameter space shown in Fig. 3 . Proposition 2 provides a subregion for

which the positive equilibrium is indeed a global attractor. In this case, d = 

1 
r and γ 0 is either zero or the unique solution

of 

r = 1 − ln (1 − γ ) − γ . (7)

The function h (γ ) = 1 − ln (1 − γ ) − γ is strictly increasing and verifies h → 1 for γ → 0 and h → + ∞ for γ → 1. Hence,

for r > 1 the value γ 0 > 0 is implicitly given by h (γ0 ) = r, and for r ∈ (0, 1], γ0 = 0 . The blue region in Fig. 3 corresponds

to the subregion in the ( r, γ )-parameter space defined by this curve. 
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4. Stability in the Ricker case 

4.1. Global stability for any harvesting time 

Proposition 2 gives a sufficient condition for the global stability of the positive equilibrium for (4) in the Ricker case. But

as the growth parameter r increases, the harvesting intensity has to be chosen higher and very close to γ ∗ = 1 − e −r ; see

Fig. 3 . This has two important drawbacks commented in the introduction: it could be considered dangerous and it may be

difficult to attain in real situations. 

In this section, we present a global stability result for (4) in the Ricker case valid for harvesting efforts below γ = ρ0 ≈
0 . 635 . The proof is based on a global stability result for S-maps. 

Definition 1. The map h : (0, ∞ ) → (0, ∞ ) is a S-map if: 

(S1) h is a C 3 map and h ′ vanishes at most at one point d (which is a relative extremum of h ); 

(S2) there is K ∈ (0, ∞ ) such that h ( x ) > x (respectively, h ( x ) < x ) for any x < K (respectively, x > K ); 

(S3) Sh ( x ) < 0 for any x ∈ (0, ∞ ) (except possibly at d ), where 

Sh (x ) := 

h 

′′′ (x ) 

h 

′ (x ) 
− 3 

2 

(
h 

′′ (x ) 

h 

′ (x ) 

)2 

is the Schwarzian derivative of h . 

For S-maps the following property can be derived from results in [16,23] . We recommend to read the introduction of

[24] for more details and a nice discussion of the role of the negative Schwarzian derivative in discrete dynamical systems. 

Lemma 1 (Allwright–Singer) . If h is a S-map and | h ′ ( K )| ≤ 1, then K is a global attractor of x n +1 = h (x n ) . 

Proposition 1 implies that F θ satisfies (S2) for all θ ∈ [0, 1] if γ < γ ∗. On the other hand, maps F 0 and F 1 are S-maps

[10] . But this is not enough to guarantee that the convex combination F θ is a S-map. Thus, in order to apply Lemma 1 , we

need sufficient conditions guaranteeing that F θ satisfies conditions (S1) and (S3) for all θ ∈ [0, 1]. We begin with (S1). 

Lemma 2. Assume g(x ) = e r(1 −x ) and r > 0 . If γ ∈ (0, 2/3), then F θ satisfies (S1). 

Proof. Differentiating, we have 

F ′ 1 (x ) = (1 − γ )[1 − rx ] e r(1 −x ) , 

so F 1 has only one critical point C γ (1) = 1 /r, which is a strict positive maximum. Similarly, F 0 has only one critical point

C γ (0) = 

1 
(1 −γ ) r 

, which is a strict maximum as well. Since the graph of F ′ 
θ

is between the graphs of F ′ 
1 

and F ′ 
0 
, then F ′ 

θ
is

strictly positive before C γ (1) and strictly negative after C γ (0). In consequence, all the critical points of F θ lie in [ C γ (1),

C γ (0)] and at least one of them is a relative maximum. 

We want to show that fixing γ ∈ (0 , 2 3 ) impedes the existence of more than one critical point in [ C γ (1), C γ (0)]. Note that

if F ′ 
θ

intersects the horizontal axis more than once in [ C γ (1), C γ (0)], then, by Rolleâs Theorem, F ′′ 
θ

has two different zeros in

[ C γ (1), C γ (0)]. But this is impossible because γ ∈ (0 , 2 3 ) guarantees that F ′′ 
θ

is strictly increasing on [ C γ (1) , C γ (0)] ⊂ (0 , 3 r ) .

Indeed, differentiating 

F ′′′ 1 (x ) = (1 − γ ) r 2 (3 − rx ) e r(1 −x ) ;
and 

F ′′′ 0 (x ) = (1 − γ ) 3 r 2 [(3 − (1 − γ ) rx ] e r(1 −(1 −γ ) x ) . 

Thus, recalling that F ′′ 
θ

is the convex combination of F ′′ 
0 

and F ′′ 
1 

, F ′′ 
θ

is strictly increasing on (0 , 3 r ) . Finally, since γ < 

2 
3 , we

have 

C γ (0) = 

1 

r(1 − γ ) 
< 

3 

r 

and [ C γ (1) , C γ (0)] ⊂ (0 , 3 r ) . �

As for condition (S3), we will completely characterize, in terms of γ , when F θ has a negative Schwarzian derivative for

all θ ∈ [0, 1]. 

Let ρ0 ∈ R be the smallest positive root of the 6th degree polynomial 

Q(γ ) = 2 γ 6 + 36 γ 5 + 99 γ 4 − 162 γ 3 − 189 γ 2 + 324 γ − 108 . 

We can prove by bisection that Q ( γ ) has six distinct real roots and that 

0 . 63524635 < ρ0 < 0 . 63524637 . 

Lemma 3. Assume g(x ) = e r(1 −x ) and r > 0 . Then SF θ ( x ) < 0 for all θ ∈ [0, 1] and x ≥ 0 if and only if γ < ρ0 . 
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Proof. For x ∈ (0, ∞ ) and γ ∈ (0, 1), define 

u 0 = 

(
F ′ 0 (x ) , F ′′ 0 (x ) , F ′′′ 0 (x ) 

)
, 

u 1 = 

(
F ′ 1 (x ) , F ′′ 1 (x ) , F ′′′ 1 (x ) 

)
. 

As the Schwarzian derivative of F θ at x is 

SF θ (x ) = 

2 F ′′′ 
θ

(x ) F ′ 
θ
(x ) − 3 F ′′ 2 

θ
(x ) 

2 F ′ 2 
θ

( x ) 
, 

we consider the bilinear form N : R 

3 × R 

3 → R defined by 

N(v , w ) = v 1 w 3 + w 1 v 3 − 3 v 2 w 2 , 

the associated quadratic form of which is N(v , v ) = 2 v 1 v 3 − 3 v 2 2 . 

The necessary and sufficient condition for the Schwarzian derivative SF θ ( x ) to be negative for all θ is that N( u 0 , u 1 ) <√ 

N ( u 0 , u 0 ) N ( u 1 , u 1 ) (see Lemma 4 in the Appendix). 

Next, we write z = xr. For a fixed γ ∈ (0, 1), consider the following quartic polynomial (see the Appendix for the calcu-

lations): 

P (z) := 

N ( u 0 , u 0 ) N ( u 1 , u 1 ) − ( N( u 0 , u 1 ) ) 
2 

[ r 2 e 2 r−2 z+ zγ (γ − 1) 2 γ ] 
2 

= a 4 z 
4 + a 3 z 

3 + a 2 z 
2 + a 1 z + a 0 , 

(8)

where 

a 4 = (γ − 1) 2 (−γ 2 − 2 γ + 2) , 
a 3 = 2(2 − γ )(1 − γ )(γ 2 + 3 γ − 3) , 
a 2 = −γ 4 + 6 γ 3 + 30 γ 2 − 72 γ + 36 , 

a 1 = 6(2 − γ )(γ 2 + 4 γ − 4) , 
a 0 = −9(γ 2 + 4 γ − 4) . 

(9)

The discriminant of P ( z ) is (see, for example, [25, Theorem 6.8] for the formula of the discriminant of a quartic polyno-

mial): 

�(γ ) = 432 

(
γ 2 + 4 γ − 4 

)3 
( γ − 1 ) 

6 Q(γ ) . 

All roots of �

ρ−4 < · · · < ρ0 < · · · < ρ4 

are real and two of these roots correspond to the values of γ for which zero is a root of P ( z ). 

The coefficients of P ( z ) depend continuously on γ , and the roots of the discriminant correspond to the values of γ for

which real roots are created and destroyed. Therefore, by selecting one particular value of γ in each of the intervals (0,

ρ0 ), (ρ0 , ρ1 ) , . . . , (ρ3 , ρ4 ) and calculating the roots of these five concrete quartic polynomials, we obtain that only for γ ∈
(0, ρ0 ) the polynomial P ( z ) has no positive roots. 

We conclude that SF θ is negative for all θ ∈ [0, 1] and x > 0 if only if γ ∈ (0, ρ0 ). �

Theorem 1. Assume g(x ) = e r(1 −x ) , r > 0 and γ < ρ0 . If the positive equilibrium K γ (0) of (4) with θ = 0 is asymptotically stable

and 

γ ∈ [1 − e 2 −r , 1 − e −r ) . (10)

holds, then the fixed point K γ ( θ ) is asymptotically stable for (4) for all θ ∈ [0, 1] and all positive solutions of (4) converge to

K γ ( θ ) . 

Proof. The asymptotic stability was proved in [1, Proposition 3.4] . Since we know by Lemma 2 that F θ satisfies (S1), by

Proposition 1 that (S2) holds, and by Lemma 3 that SF θ < 0, the result follows as a direct application of Lemma 1 . �

Fig. 4 illustrates the improvement of adding the region of parameters ( r, γ ) for which changing timing does not affect

the global attraction of the positive equilibrium given by Theorem 1 to that previously given by Proposition 2 (see Fig. 3 for

comparison). 

To discuss the relevance of Theorem 1 in the context of applicability, let us suppose that we want to implement a propor-

tional harvesting control that globally stabilizes the system for r = 2 . 7 around x ∗ = 1 . Lemma 2.3 in [26] guarantees that this

can be achieved by fixing the harvesting effort at a value 1 − �( f −1 (1)) ≈ 0 . 9156 , where �(x ) = 1 /g(x ) and f (x ) = xg(x ) .

Implementing this control in real populations can be problematic for two main reasons. On the one hand, the removal in-

tensity is close to the persistence limit γ ∗ ≈ 0.9328, thus implying a serious risk of extinction. On the other hand, removing

such a high proportion of individuals may be difficult or impossible to attain in many practical situations. Theorem 1 yields

an alternative without these drawbacks, since it guarantees that for any γ ∈ [1 − e 2 −r , ρ ] ≈ [0 . 5034 , 0 . 6352] the positive
0 
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Fig. 4. The blue area is the region in the ( r, γ )-parameter space for which changing timing does not affect the global attraction of the positive equilibrium 

of model (4) in the Ricker case ( Theorem 1 and Proposition 2 ). (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

equilibrium K γ ( θ ) acts as a global attractor. Suppose we fix γ = 0 . 55 . For this value, K 0.55 (0) ≈ 1.5650 and K 0.55 (1) ≈ 0.7043.

According to Proposition 3.2 in [1] , K 0.55 ( θ ) is a decreasing function of θ that continuously covers the range between K 0.55 (0)

and K 0.55 (1). Thus, it is possible to find a moment for the intervention such that K 0 . 55 (θ ) = 1 ; in this case θ ≈ 0.6421. In

conclusion, Theorem 1 provides an alternative way to attain the desired stabilizing effect with a significantly lower effort by

conveniently delaying the intervention. 

4.2. Stability depending on timing 

Our last result for the Ricker case explores under which conditions timing can be stabilizing by itself. We prove that it is

possible to find θ ∈ (0, 1) such that K γ ( θ ) for (4) is stable when K γ (0) is unstable. 

Proposition 3. Assume g(x ) = e r(1 −x ) and r > 0 . Then , there exist γc < γ∗ := 1 − e 2 −r such that for any γ ∈ ( γ c , γ ∗ ) it is

possible to find a timing interval ( θ0 , θ1 ) with the property that for each θ ∈ ( θ0 , θ1 ) the fixed point K γ ( θ ) is asymptotically

stable for (4) . 

Proof. Differentiating, we obtain F ′′ 
1 

(x ) = (1 − γ ) r(2 − rx ) e r(1 −x ) , and thus F ′ 
1 

is strictly decreasing to the left of 2/ r and

strictly increasing to the right. On the other hand, it is easy to check that for γ = γ∗ the fixed point of F 1 coincides with

the above inflection point (i.e., K γ∗ (1) = 2 /r), and F ′ 
1 
(K γ∗ (1)) = −1 . In that case, F ′ 

1 
(x ) ≥ −1 for all x . 

The equalities 

F 0 (x ) = F 1 ((1 − γ ) x ) / (1 − γ ) , 

F ′ 0 (x ) = F ′ 1 ((1 − γ ) x ) , 

F ′′ 0 (x ) = (1 − γ ) F ′′ 1 ((1 − γ ) x ) , 

yield similar conclusions regarding F 0 : the unique inflection point (equal to 2 / (r(1 − γ )) ) coincides with the fixed point

K γ∗ (0) , and moreover F ′ 
0 
(K γ∗ (0)) = −1 . 

For γ < γ ∗ , the fixed points K γ (0) and K γ (1) are unstable (see Proposition 3.3 in [1] ) and the sets (F ′ 
0 
) −1 (−1) and

(F ′ 1 ) 
−1 (−1) contain two points (in addition to the mentioned monotonicity properties for F ′ 1 , note that F ′ 1 (0 + ) = (1 − γ ) e r 

and F ′ 
1 
(x ) → 0 as x → ∞ ). Let denote a = max { (F ′ 

1 
) −1 (−1) } and b = min { (F ′ 

0 
) −1 (−1) } . It is immediate that a > K γ (1) and b

< K γ (0) because F ′ 
0 
(K γ (0)) and F ′ 

1 
(K γ (1)) are less than −1 . By continuity, for γ↑ γ ∗ we have 

max 

{ 

K γ (1) , 
2 

r 

} 

< a < b < min 

{
K γ (0) , 

2 

r(1 − γ ) 

}
. (11) 

The inflection point of F 1 does not depend on γ , whereas the one of F 0 decreases as γ increases. For γ → 0 both points

coincide and hence, by continuity, there must exist some γ < γ ∗ for which a = b. Let γ c be the maximal value of γ
satisfying this last condition. It is immediate that (11) is met for all γ ∈ ( γ c , γ ∗ ). Since F ′ is strictly increasing to the right
1 
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Fig. 5. Panel (A) : stability of the positive equilibrium of (4) in terms of the harvesting time θ ∈ [0, 1] for different values of the removal intensity γ . 

The positive equilibrium K γ ( θ ) is stable if −1 < F ′ (K γ (θ )) < 1 . The gray area corresponds to the actual range of stabilizing harvest times for γ = 0 . 7 , and 

the red area to the range [ θ0 , θ1 ] derived from Proposition 3 . Panel (B) : the gray region shows numerical results for the combinations of γ and θ for 

which K γ (0) is unstable and K γ ( θ ) is asymptotically stable. The red region corresponds to values guaranteed to be stabilizing (by Proposition 3 ). In both 

panels, the underlying population dynamics is given by the Ricker map g(x ) = e 3 . 5(1 −x ) . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 

Fig. 6. The red region corresponds to harvesting intensities γ that are destabilizing for a given growth parameter r when individuals are removed at the 

beginning or at the end of the reproductive season and for which there exists a stabilizing harvesting time θ according to Proposition 3 . (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of 2/ r and F ′ 0 is strictly decreasing to the left of 2 / (r(1 − γ )) , we conclude that F ′ 1 (x ) > −1 and F ′ 0 (x ) > −1 for all x ∈ ( a, b ).

This leads to F ′ 
θ
(x ) > −1 because F ′ 

θ
is a convex combination of F ′ 

0 
and F ′ 

1 
. 

The fixed point K γ ( θ ) strictly decreases and continuously covers the interval [ K γ (1), K γ (0)] ⊃( a, b ) for varying θ . Hence,

there must exist θ0 , θ1 ∈ (0, 1) such that K γ (θ0 ) = b and K γ (θ1 ) = a . In particular, K γ ( θ ) ∈ ( a, b ) for all θ ∈ ( θ0 , θ1 ), and

thus F ′ 
θ
(K γ (θ )) > −1 . �

For fixed values of the growth parameter r , the proof of Proposition 3 yields a method for determining a range of removal

intensities γ for which there exist harvest moments θ that stabilize the positive equilibrium K γ ( θ ). Moreover, for a fixed γ it

also provides a method for determining a range of stabilizing times θ0 ≤ θ ≤ θ1 . We illustrate this for the growth parameter

r = 3 . 5 , for which the limit of population persistence is γ ∗ = 1 − e −3 . 5 ≈ 0 . 9698 . Numerical simulations reveal that γ c ≈
0.6214, and thus Proposition 3 guarantees the existence of stabilizing harvest times for all γ ∈ [0.6214, 0.9698). Fig. 5 (A)

shows that this range is quite accurate: there are no stabilizing times for harvesting efforts slightly below γ c . Consider the

control intensity γ = 0 . 7 ∈ [ γc , γ ∗) . It can be numerically found that θ0 ≈ 0.6086 and θ1 ≈ 0.8611. The blue area in Fig. 5 (A)

corresponds to this range, and the red area represents the actual range of times that stabilize K γ ( θ ). Compared to the range

of harvesting efforts, the range of stabilizing intervention moments given by Proposition 3 seems to be more conservative.

However, this range is wide enough to allow for the determination of stabilizing harvest times with reasonable certainty.

Fig. 5 (B) shows the actual range of these times and the range defined by Proposition 3 in terms of the removal intensity γ .

Finally, we emphasize that Proposition 3 implies that harvest timing can be very useful from a practical point of view

since it can be used to significantly enlarge the range of harvesting effort s that are able to stabilize the population for a

fixed r (see Fig. 6 ). 
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Fig. 7. Panel (A) : bifurcation diagram of (4) (red dots) and (12) (black dots) with γ = 0 . 6 and σ = 0 . 015 for varying harvesting time θ ∈ [0, 1]. The 

underlying population dynamics is given by the Ricker map g(x ) = e 2 . 85(1 −x/ 60) . Panel (B) : the red curve gives the size of a population governed by (12) with 

γ = 0 . 9292 and θ = 0 , and the blue curve for γ = 0 . 6 and θ = 0 . 6688 . In both cases, the initial population size is x 0 = 30 and the level of noise is σ = 0 . 015 . 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Introducing biological realities 

So far, we have analyzed how changing harvest times can affect the stability of populations described by theoretical

deterministic equations. In this section, we check the robustness of our results on more realistic models. To this end, we

consider the parameter estimates obtained in [27] on the basis of time series data for laboratory populations of the fruit fly

Drosophila melanogaster . The per-capita production function is g(x ) = e r(1 −x/K) , which corresponds to the non-scaled Ricker

model with carrying capacity K and growth parameter r . For the different populations, the estimated growth parameter

ranged from 2.7 to 3.0 (see [27] , Supplementary material). We fix r in the midpoint of this range, i.e., r = 2 . 85 , and the

carrying capacity at K = 60 . 

We extend the above model by introducing two biological realities. The first of them follows from the fact that individuals

always come and are harvested in whole numbers. It is well established that the dynamics of a discrete-state system can

be quite different from its continuous-state version, a phenomenon known as lattice effect [28] . Consequently, we integerize

population sizes to make the model more realistic. The second extension to be considered is stochasticity. This is clearly

more problematic, since stabilizing an equilibrium under the effect of noise is not possible unless the magnitude of the

noise tends to zero as time grows. We follow the work of Braverman et al. [29] to generalize the notion of global stability

to stochastic systems: equilibria of stochastic difference equations (blurred equilibrium) are points for which all trajectories

eventually enter some interval around them. Since stochasticity is in many cases involved in the control, we propose a

integerized stochastic version of (4) based on introducing noise in the removal intensity in the form 

x t+1 = int ([ θg(x t ) + (1 − θ ) g((1 − γ + σνt+1 ) x t )](1 − γ + σνt+1 ) x t ) , (12)

where σ is a parameter measuring the level of noise and (νt ) t∈ N is a sequence of independent random variables uniformly

distributed in [ −1 , 1] , whereas function int( x ) gives the integer closest to x (if x + 0 . 5 ∈ N , then int( x ) gives the even integer

closest to x ). 

According to Theorem 1 , the positive equilibrium of (4) for any intervention time θ is a global attractor for harvesting

effort s γ ∈ [1 − e 2 −r , ρ0 ] ≈ [0 . 5726 , 0 . 6352] . Fig. 7 (A) shows that the same point is a blurred equilibrium of (12) . We con-

clude therefore that the stabilization of populations induced by harvesting at intermediate moments during the reproductive

season is robust under the effect of both noise and lattice effect. Interestingly, we observe that timing helps to damp the

destabilizing effect of noise: the range of fluctuation of the population size can be significantly reduced if the intervention

is conveniently delayed. 

We can go further and analyze how timing can be helpful to stabilize the population size in the presence of noise

around a specific value, for instance x ∗ = 60 . Theorem 3.5 in [26] guarantees that if harvesting is implemented at the be-

ginning of the reproductive season ( θ = 0 ) with an intensity γ ( x ∗) ≈ 0.9292, the size of the population governed by the

non-integerized version of (12) is stabilized around x ∗ = 60 with a fluctuation range that depends on the level of noise. As

per Theorem 1 , numerical simulations reveal that for γ = 0 . 6 and θ = 0 . 6688 the point x ∗ = 60 is a global attractor of the

deterministic system (4) . Fig. 7 (B) shows that the population governed by the integerized stochastic Eq. (12) is also stabi-

lized around this point. This confirms again that the stabilizing properties of timing are not affected by neither stochasticity

nor lattice effect. Moreover, we observe that stabilizing the population with delayed intervention has several advantages.

Firstly, the proportion of individuals to be removed in each generation is significantly lower. This is expected to allow for

the stabilization of populations that would be impossible to control due to practical limitations in case of being harvested

at the beginning of the reproductive period. Secondly, the intensity of the intervention places the population far from the

extinction risk associated with harvesting effort s above the persistence limit γ ∗ ≈ 0.9421. Finally, when individuals are re-

moved at an intermediate moment during the reproductive season, the fluctuation in the population size is lower than if
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they were harvested at the beginning of this period. This last fact can be evaluated in terms of the fluctuation index (FI),

which was introduced in [27] as a dimensionless measure of the average one-step variation of the population size scaled by

the average population size in a certain period. For a time period of T steps, it is given by 

F I = 

1 

T x 

T −1 ∑ 

t=0 

| x t+1 − x t | , 

where x is the mean population size of the T generations. We have averaged the FI over 500 time series of length 10 0 0 with

initial conditions chosen as pseudo-random numbers in (0, dg ( d )], ignoring the first 100 steps. If individuals are harvested

with an intensity γ = 0 . 9292 at the beginning of the season, the FI is 0.111. If the intervention takes place at a time θ =
0 . 6688 during the season with an intensity γ = 0 . 6 , the FI decreases to 0.050. This is consistent with what was observed in

Fig. 7 (A): a delay in the intervention can reduce the fluctuations in size around the equilibrium. 

5. Timing can be destabilizing 

In the previous section, we have seen that timing can be stabilizing by itself. In view of this, it is logical to ask the oppo-

site question: can timing be destabilizing? Based on both numerical simulations and analytical results, Cid et al. conjectured

in [1] that harvesting times θ in the interior of [0, 1] cannot be destabilizing if conditions (i), (ii) and (iv) are satisfied. 

Conjecture 1 (Conjecture 3.5, [1] ) . Assume that conditions (i), (ii) and (iv) hold. If the positive equilibrium K γ (0) of (4) with

θ = 0 is asymptotically stable, then the fixed point K γ ( θ ) is asymptotically stable for (4) for all θ ∈ [0, 1] . 

Suppose that K γ (0) is asymptotically stable. If Conjecture 1 was true, then we could delay the time of intervention θ ∈
[0, 1] without affecting the stability of the positive equilibrium K γ ( θ ). This freedom to choose the time of intervention is

clearly desirable from a management point of view. However, the conjecture is false. We provide a counterexample. To build

it, we use the map h : [0, 1] → [0, 1] defined by 

h (x ) = x 

(
786 

100 

− 2331 

100 

x + 

2875 

100 

x 2 − 133 

10 

x 3 
)
. 

This map was introduced in [16] as an example of unimodal map with negative Schwarzian derivative having two attractors.

Now, we define g : [0, ∞ ) → [0, ∞ ) by 

g(x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

2 

h (x ) 

x 
, x ∈ [0 , 

9 

10 

) , 

591 

625 

e −
57397 
7500 ( x − 9 

10 ) , x ∈ 

(
9 

10 

, ∞ 

)
. 

(13)

We note that at the splice point 9/10 the function g is differentiable. 

It is not hard to see that the map g satisfies conditions (i), (ii) and (iv), see Fig. 8 (A). Moreover, system (1) has an unstable

positive equilibrium, see Fig. 8 (A). 

Next, we fix γ = 0 . 565 . Fig. 8 (B) shows that this harvesting effort applied at the beginning or at the end of the repro-

ductive season stabilizes a fixed point. Thus, the positive equilibrium K γ (0) is asymptotically stable for θ = 0 . However, for

θ = 0 . 7 the convex combination of F 1 and F 0 crosses the diagonal with slope greater than 1 in absolute value (see Fig. 8 (B)).

Thus, the positive equilibrium is unstable for F 0.7 . The explanation for this effect is as follows, for this map the intensity

of the overcompensation abruptly increases for certain interval of population sizes. This makes the graph of xg ( x ) to have

a steep negative slope in that interval and such a slope is inherited by the graph of F 1 , although attenuated by a (1 − γ )

factor. Since F ′ 
θ

is the convex combination of F ′ 1 and F ′ 0 , when the positive equilibrium K γ ( θ ) is in the interval where F ′ 1  −1

we can have that F ′ 
θ

< −1 . 

Actually, a bifurcation diagram taking θ as the bifurcation parameter shows that delaying the harvesting time θ leads

to the emergence of bubbles (see [30, Definition 3] ). This is illustrated in Fig. 9 . We point out that bubbles for (4) were

studied in [1] , but with a different approach. There it was numerically shown for the Clark-Ricker bimodal map that bubbles

related to a variation in the harvesting effort for θ = 0 disappear when harvesting occurs at an intermediate moment of the

season, thereby demonstrating that intermediate harvesting times can have a stabilizing effect. Here, however, the bubble is

related to a variation in the harvesting time θ for a unimodal map and implies that intermediate harvesting times can have

a destabilizing effect. 

Remark 1. The counterexample of Conjecture 1 given by (13) corresponds to a piecewise function obtained by extending

the function 

2 h (x ) 
x to [0 , + ∞ ) . We highlight that this fact has no influence on the result: the tail of the per-capita production

function does not affect the stability of the positive equilibrium. On the other hand, the counterexample to Conjecture 1 is

by non means unique. Indeed, for the analytic function 

g(x ) = e 6 −15 x +15 x 2 − 11 
2 x 

3 

, (14)

we have that 
dF 0 . 6 

dx 
(K 0 . 5 (0 . 6)) = F ′ 

0 . 6 
(K 0 . 5 (0 . 6)) ≈ −1 . 27786 while F ′ 

0 
(K 0 . 5 (0)) = F ′ 

1 
(K 0 . 5 (1)) ≈ −0 . 206984 , and so this function
provides another counterexample to Conjecture 1 . 
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Fig. 8. Panel (A) : the blue curve corresponds to the graph of g ( x ), which was vertically compressed by a factor 1/8 to improve the representation; the 

black curve corresponds to the graph of xg ( x ), showing that this map satisfies (iv) and has an unstable positive fixed point. Panel (B) : harvesting effort 

fixed to γ = 0 . 55 . The blue, red and black curves correspond to the graphs of F 1 ( x ), F 0 ( x ) and F 0.7 ( x ), respectively; observe that K 0.5 (0) is asymptotically 

stable whereas K 0.5 (0.7) is unstable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article). 

Fig. 9. Bifurcation diagram of the population model (4) for varying harvesting time θ ∈ [0, 1]. The harvest effort is fixed to 0.55, and the underlying 

population dynamics is described by (13) . The positive equilibrium is asymptotically stable for θ = 0 and θ = 1 , but for an interval of values of θ ∈ (0, 1) 

this positive equilibrium is unstable because of the presence of a bubble. 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion and conclusions 

In this paper, we have studied the combined effect of harvesting intensity and harvesting time on the stability of a

discrete population model proposed by Seno [7] . Despite the fact that this model is one of the simplest models to account

for variable harvest timings, it is suitable to gain some basic understanding of how the timing of interventions affects the

stability of controlled populations. 

Under general conditions, we have shown in Proposition 2 that timing has no negative effect on the stability of the posi-

tive equilibrium if the harvesting intensity is close enough to γ ∗ (see Fig. 3 ). Moreover, we have shown that the latter stabil-

ity is global. To the best of our knowledge, this is the first global stability result for (4) valid for general overcompensatory

population models, since global stability results in [1] only cover undercompensatory models (such as the Beverton–Holt

model [31] ) and the quadratic model. 

From a practical point of view, global stability is always desirable since it allows to predict the long term behavior inde-

pendently of the initial condition. Nevertheless, high intensities close to γ ∗ may be considered undesirable and unrealistic

from an environmental management point of view. First, because γ ∗ is an extinction threshold for the species, harvesting

intensities above γ ∗ cause the extinction of the population. Second, because high harvesting intensities are expected to be

more labour intensive and have high operating costs. 
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In the Ricker–Seno model, we have investigated whether for low or medium harvesting intensities there is global stability

of the positive equilibrium regardless of the time of the intervention. Theorem 1 provides a sufficient condition based on a

classical global stability result for S-maps [16,23] . 

Additionally, we have rigorously shown for the Ricker–Seno model that timing can be stabilizing, that is, a harvesting

intensity applied at an appropriate time of the season can asymptotically stabilize the positive equilibrium even when it

cannot be stabilized at the beginning or the end of the reproductive season with the same harvesting intensity. 

Due to its simplicity, Seno’s model has some important limitations that must be taken into account. First, a constant

duration of the period in which individuals accumulate energy for reproduction is implicitly assumed. This may be unreal-

istic in practical applications since it is well established that environmental conditions affect the length of the reproductive

season of some species of birds and mammals [32–34] . Second, the model fixes for all generations a harvesting moment

θ during the season that can be arbitrarily chosen. Due to practical limitations, this freedom of choice may be impossible

in certain situations. For instance, this would be the case of salmons, which keep concentrated during reproduction and

disperse afterwards. Third, the model is deterministic and assumes a continuum of system states. Numerical simulations

indicate that timing enhances the stabilizing properties of harvesting in the presence of both noise and lattice effect. 

Finally, we have shown that timing can be destabilizing under natural conditions assumed on population production

maps. This provides counterexamples for a conjecture recently published in [1] . However, these counterexamples are the

result of mathematical constructions. Most of the populations maps considered in the ecological literature satisfy additional

conditions, as for example to have negative Schwarzian derivative, which may prevent any destabilizing effects of timing. 

Our study leaves several open questions for future research. First, to find what extra conditions are necessary for

Conjecture 1 to hold. Second, Theorem 1 together with Proposition 2 guarantee global stability in a strict subset of the

( r, γ )-parameter region of asymptotic stability for the positive equilibrium of (4) for the Ricker case (see Fig. 4 ): we believe

that it should be possible to extend our results to enlarge this region of global stability. Finally, we have shown that timing

can be stabilizing by itself in the Ricker–Seno model. It would be interesting to provide general conditions for this property

to hold in other population models. 
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Appendix 

The bilinear form N 

Let N : R 

3 × R 

3 → R be the bilinear form N(v , w ) = v 1 w 3 + w 1 v 3 − 3 v 2 w 2 . 

Lemma 4. If u 0 , u 1 ∈ R 

3 satisfy N ( u 0 , u 0 ) < 0 and N ( u 1 , u 1 ) < 0, then the following conditions are equivalent: 

1. N(θu 1 + (1 − θ ) u 0 , θu 1 + (1 − θ ) u 0 ) < 0 for all θ ∈ [0, 1] . 

2. N( u 0 , u 1 ) < 

√ 

N( u 0 , u 0 ) N( u 1 , u 1 ) . 

Proof. Let us denote N αβ := N(αu 1 + (1 − α) u 0 , βu 1 + (1 − β) u 0 ) for α, β ∈ [0, 1]. In particular, with this notation, we

have N( u 0 , u 0 ) = N 00 , N( u 1 , u 1 ) = N 11 and N( u 0 , u 1 ) = N 01 . 

Solving 
dN θθ

dθ
= 0 , we find that its solution is θ = θm 

:= 

N 01 −N 00 
2 N 01 −N 00 −N 11 

. Substituting, we obtain N θm θm 
= 

N 00 N 11 −N 2 
01 

N 00 + N 11 −2 N 01 
. 

Next, we note that for θm 

to lie in the interval [0, 1] the value N 01 cannot be between N 00 and N 11 , that is, 

θm 

∈ [ 0 , 1 ] ⇔ N 01 / ∈ ( min { N 00 , N 11 } , max { N 00 , N 11 } ) . 
On the other hand, the minimum, the maximum, the arithmetic mean and the geometric mean of N 00 and N 11 are

ordered as follows: 

min { N 00 , N 11 } ≤ N 00 + N 11 

2 
≤ −

√ 

N 00 N 11 ≤ max { N 00 , N 11 } ≤ 0 ≤
√ 

N 00 N 11 . 

Thus, N θm θm 
≥ 0 and θm 

∈ [0, 1] if and only if N 01 ∈ [ 
√ 

N 00 N 11 , ∞ ) . �

The polynomial P 

Doing z = rx, we have 

u 0 = 

⎛ 

⎝ 

F ′ 0 (x ) 

F ′′ 0 (x ) 

F ′′′ 0 (x ) 

⎞ 

⎠ 

T 

= e r−z+ zγ (γ − 1) 

⎛ 

⎝ 

z − zγ − 1 

r ( γ − 1 ) ( z − zγ − 2 ) 

r 2 ( γ − 1 ) 
2 
( z − zγ − 3 ) 

⎞ 

⎠ 

T 

and 
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u 1 = 

⎛ 

⎝ 

F ′ 1 (x ) 

F ′′ 1 (x ) 

F ′′′ 1 (x ) 

⎞ 

⎠ 

T 

= e r−z (γ − 1) 

⎛ 

⎝ 

z − 1 

r ( 2 − z ) 

r 2 ( z − 3 ) 

⎞ 

⎠ 

T 

. 

Therefore, 
N( u 0 , u 0 ) 

[ e r−z+ zγ (γ −1) ] 
2 = r 2 ( γ − 1 ) 2 

((
2 γ − γ 2 − 1 

)
z 2 + ( 4 − 4 γ ) z − 6 

)
, and 

N( u 1 , u 1 ) 

[ e r−z (γ −1) ] 2 
= −r 2 

(
z 2 − 4 z + 6 

)
, whereas 

N( u 0 , u 1 ) 

e 2 r−2 z+ zγ (γ −1) 2 
= r 2 

((
2 γ − γ 3 − 1 

)
z 2 + 

(
γ 3 − 6 γ + 4 

)
z + 

(
3 γ 2 + 6 γ − 6 

))
. Finally, using these expressions, it is not so hard 

to show that 

P (z) = 

N( u 0 , u 0 ) N( u 1 , u 1 ) − ( N( u 0 , u 1 ) ) 
2 

[ r 2 e 2 r−2 z+ zγ (γ − 1) 2 γ ] 
2 

is the quartic polynomial with coefficients given by (9) . 
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