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Abstract

We prove (integral) input-to-state stability results for a class of forced Lur’e differential inclusions and 
use them to investigate incremental (integral) input-to-state stability properties of Lur’e differential equa-
tions. The latter provide a basis for the derivation of convergence results for trajectories of Lur’e equations 
generated by Stepanov almost periodic inputs.
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Fig. 1.1. Forced Lur’e system.

1. Introduction

We consider stability and convergence properties of the feedback interconnection shown in 
Fig. 1.1, which comprises a linear system � in the forward path and a static nonlinearity N in 
the feedback path. Such systems are often termed Lur’e systems.

The term v is an exogenous signal which we call a forcing term and, depending on the con-
text, may be control or disturbance signal. In the case wherein the nonlinearity N is a set-valued 
map (the scenario considered in Section 2), we will refer to the system as a Lur’e (differential) 
inclusion, whilst we will use the term Lur’e (differential) equation when N is a single-valued 
map (the situation focussed on in Sections 3 and 4). The stability and convergence properties of 
Lur’e systems is a much researched area. The study of the stability of such systems is called ab-
solute stability theory, which seeks to conclude stability of the feedback system given in Fig. 1.1, 
via the interplay of frequency-domain properties of the linear component and sector properties 
of the nonlinearity. Lyapunov approaches have been used to deduce global asymptotic stability 
of unforced (that is, v = 0) Lur’e systems (see, for example, [21,23,26,39]), and input-output 
methods, pioneered by Sandberg and Zames in the 1960s, have been used to infer L2 and L∞
stability (see, for example, [12,39]). More recently, forced Lur’e systems have been analysed in 
the context of input-to-state stability (ISS) theory, with attention focussed on the extent to which 
results from classical absolute stability theory can be generalised to ensure certain ISS prop-
erties [4,6,14,16,17,19,22,23,33]. Originating in the paper [34], ISS and its variants, including 
integral input-to-state stability (iISS), are properties of general controlled nonlinear systems and, 
roughly, ensure a natural boundedness property of the state, in terms of initial conditions and 
inputs, see also the survey papers [10,35].

Incremental (integral) ISS is concerned with bounding the difference of two state trajectories 
in terms of the difference of initial conditions and the difference of inputs. For background in-
formation regarding incremental ISS for general nonlinear systems, we refer the reader to [2]. 
Recently, in the context of discrete-time Lur’e systems, it has been shown in [15] that a certain 
“nonlinear” incremental small-gain condition guarantees semi-global incremental ISS and this 
was exploited to show that the response to almost periodic inputs is asymptotically almost peri-
odic. The concept of semi-global incremental ISS used in [15] means that, for arbitrary bounded 
sets of initial conditions and input functions there exist comparison functions such that an incre-
mental ISS estimate holds. A similar concept will be used here in an integral ISS setting. For 
all practical purposes, semi-global stability notions seem to be at least as interesting as global 
stability concepts. We mention that, under a classical incremental L2-type small-gain condition, 
a stronger incremental ISS property holds, namely (global) exponential incremental ISS, even in 
the infinite-dimensional case, see [14,16,19].

In this paper, we consider finite-dimensional forced continuous-time Lur’e differential equa-
tions and the stability property of semi-global incremental iISS which is considerably weaker 
than the notion of semi-global incremental ISS studied in [15]. The main result of Section 3, 
Theorem 3.3, asserts that the condition
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g(�K) sup
t≥0

‖N(t, y1) − N(t, y2) − K(y1 − y2)‖ < ‖y1 − y2‖ for all y1 �= y2, (1.1)

is sufficient for semi-global incremental iISS (with linear incremental iISS-gain), where, in (1.1), 
K is a stabilizing output feedback matrix for �, �K denotes the corresponding linear feedback 
system and g(�K) denotes the L2-gain of �K (that is, the H∞-norm of the transfer function of 
�K ). We emphasize that this hypothesis is considerably less restrictive than those given in [14–
16,19]; in particular, the quotient of the LHS of (1.1) and ‖y − y2‖, y1 �= y2, is not required to be 
bounded away from 1, and therefore, (1.1) could be described as a “weak small-gain” condition.

Furthermore, we show that under the additional assumption that there exists y† such that

(‖y‖ − g(�K) sup
t≥0

‖N(t, y + y†) − N(t, y†) − Ky‖) → ∞ as ‖y‖ → ∞,

the Lur’e differential equation depicted in Fig. 1.1 is semi-globally incrementally ISS. The proofs 
of the results on semi-global incremental iISS and ISS in Section 3 are based on the iISS and ISS 
theory for forced Lur’e inclusions developed in Section 2. Using a differential inclusions setting 
is a convenient framework for addressing certain uniformity issues which arise in Section 3 in 
the context of establishing incremental iISS and ISS estimates which apply to whole families of 
Lur’e differential equations. Results from [37] play a crucial role in the development our ISS 
theory for Lur’e inclusions.

The key result on semi-global incremental iISS, Theorem 3.3, is used in Section 4 to ob-
tain certain convergence properties of Lur’e differential equations when the forcing is almost 
periodic in the sense of Stepanov [1,9] (which is a weaker notion of almost periodicity than 
that of Bohr [1,7,9]). In particular, Theorem 4.3 provides a criterion which guarantees that, for 
every Stepanov almost periodic input w, there exists a unique Bohr almost periodic state trajec-
tory zap such that any state trajectory x generated by an input v with v − w ∈ L1(R+) satisfies 
limt→∞(x(t) − zap(t)) = 0. As such, our work provides a contribution to the analysis of almost 
periodic differential equations from the perspective of mathematical systems and control theory.

The layout of the paper is as follows. In Section 2, we prove basic iISS and ISS results for 
a class of forced Lur’e differential inclusions. Underpinned by the stability properties of forced 
Lur’e differential inclusions established in Section 2, a theory of semi-global incremental iISS 
and ISS is developed in Section 3. As an application of this theory, we analyze the asymptotic 
behaviour of Lur’e differential equations under Stepanov almost periodic forcing in Section 4. 
An example is presented in Section 5. To avoid disruptions to the flow of the presentation, the 
proofs of several technical lemmas are presented in the Appendix which forms Section 6.

Notation. We denote the set of positive integers by N and the fields of real and complex 
numbers by R and C, respectively, and define C0 := {s ∈ C : Re s > 0} and R+ := [0, ∞). A 
square matrix M ∈ Cn×n is said to be Hurwitz if the eigenvalues of M have negative real parts, 
that is, all eigenvalues are in −C0. The conjugate transpose of M is denoted by M∗.

For K ∈ Fm×p , where F = R, C, and r > 0, we define

BF (K, r) := {L ∈ Fm×p : ‖K − L‖ < r} ,

the open ball centred at K of radius r . The closure of BF (K, r) (that is, the closed ball centred
at K of radius r) is denoted by clBF (K, r). For a non-empty compact set S ⊂ Rm we define

|S|m := max{‖z‖ : z ∈ S} .
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The Hardy space H∞
p×m is the set of all holomorphic functions H :C0 →Cp×m with

‖H‖H∞ := sup
s∈C0

‖H(s)‖ < ∞ .

We further define P := {α ∈ C(R+, R+) : α(0) = 0 and α(s) > 0 ∀ s > 0},

K := {α ∈ P : α strictly increasing} and K∞ := {α ∈K : lim
s→∞α(s) = ∞}.

Obviously, K∞ ⊂ K ⊂ P . A function α : R+ → (0, ∞) is said be of class L if α is continuous 
and non-increasing and α(s) → 0 as s → ∞. The symbol KL stands for the set of functions 
ψ : R+ × R+ → R+ such that for each fixed t ∈ R+, ψ(·, t) ∈ K and for each fixed s > 0, 
ψ(s, ·) ∈ L.

For X a Banach space, p ∈ [1, ∞], and J ⊂ R an interval, Lp(J, X) stands for the usual 
Lebesgue space and the norm of x ∈ L

p

loc(J, X) is denoted by ‖x‖LP (J ). For R = R+ or R, 
we simply write ‖x‖LP (R) := ‖x‖LP . The local version of Lp(R, X) is denoted by Lp

loc(R, X). 
Further, for τ ∈ R, we define the shift operator Sτ : L1

loc(R, X) → L1
loc(R, X) by (Sτ v)(t) :=

v(t + τ) for all t ∈ R and v ∈ L1
loc(R, X). Finally, let W 1,1

loc (R, Rn) be the local version of the 
Sobolev space W 1,1(R, Rn). Strictly speaking, elements in W 1,1

loc (R, Rn) are equivalence classes 
of functions which coincide almost everywhere in R, but it is well-known that W 1,1

loc (R, Rn)

can be identified with the space of absolutely continuous functions on R (see, for example, [28, 
Corollary 7.20]), and thus, x ∈ W

1,1
loc (R, Rn) if, and only if, there exists y ∈ L1

loc(R, Rn) such 
that x(t) = x(0) + ∫ t

0 y(s)ds for all t ∈ R.

2. ISS results for Lur’e differential inclusions

The main results of this paper can be found in Sections 3 and 4 in which Lur’e differen-
tial equations are considered. However, in order to guarantee certain uniformity properties (the 
derivation of incremental ISS estimates which apply to a whole family of Lur’e differential equa-
tions), it is convenient to first develop an ISS theory for Lur’e differential inclusions.

Let m, n and p be positive integers and set L :=Rn×n ×Rn×m ×Rp×n. Consider the forced 
Lur’e differential inclusion

ẋ(t) − Ax(t) − v(t) ∈ BF(Cx(t)), t ≥ 0, (2.1)

where (A, B, C) ∈ L, v ∈ L1
loc(R+, Rn), and F is an upper semi-continuous set-valued map 

defined on Rp and its values are non-empty, compact and convex subsets of Rm. We say that 
(2.1) is unforced if v = 0. Occasionally, we will refer to (2.1) as Lur’e inclusion (A, B, C, F).

Let v ∈ L1
loc(R+, Rn) be given and let 0 < τ ≤ ∞. A function x ∈ W

1,1
loc ([0, τ), Rn) is said to 

be a solution of (2.1) on [0, τ) if (2.1) holds for almost every t ∈ [0, τ). A solution of (2.1) on 
[0, ∞) = R+ is called a global solution.

We denote the transfer function of (A, B, C) by G, i.e., G(s) = C(sI − A)−1B . For L ∈
Cm×p , we define AL := A + BLC, denote the transfer function of (AL, B, C) by GL and note 
that GL = G(I − LG)−1. The set of all stabilizing output feedback matrices for (A, B, C) is 
denoted by SC(A, B, C), that is,
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SF (A,B,C) := {
L ∈ Fm×p : AL = A + BLC is Hurwitz

}
, where F = R, C.

Furthermore, for K ∈ Cm×p and r > 0, we obtain from [33, Lemma 2.1] that B(K, r) ⊆
SC(A, B, C) if, and only if, ‖GK‖H∞ ≤ 1/r and (A, B, C) is stabilizable and detectable. In par-
ticular, if GK(s) �≡ 0 and (A, B, C) is stabilizable and detectable, then the largest r > 0 such that 
BC(K, r) ⊂ SC(A, B, C) is given by r := 1/‖GK‖H∞ . In this context, we note that GK(s) �≡ 0
if, and only if, G(s) �≡ 0. Furthermore, if (A, B, C) is controllable and C �= 0, then G(s) �≡ 0. By 
duality, observability of (A, B, C) together with B �= 0 will also ensure that G(s) �≡ 0.

We define the behaviour of (2.1) by

Binc := {(v, x) ∈ L1
loc(R+,Rn) × W

1,1
loc (R+,Rn) : (v, x) satisfies (2.1) a.e. on R+} .

An element (v, x) ∈ Binc is also called a trajectory of (2.1). We note that Binc is left-shift invari-
ant, that is,

(v, x) ∈ Binc =⇒ (Sτ v,Sτ x) ∈ Binc ∀ τ ∈R+. (2.2)

The following proposition addresses the existence and extendability of solutions of (2.1).

Proposition 2.1. Let v ∈ L1
loc(R+, Rn).

(1) For every x0 ∈ Rn, there exist 0 < τ ≤ ∞ and a solution x of (2.1) on [0, τ) such that 
x(0) = x0. If τ < ∞ and x is bounded, then the solution x can be extended beyond τ , that 
is, there exist τ < τ̃ ≤ ∞ and a solution x̃ of (2.1) on [0, τ̃ ) such that x̃(t) = x(t) for all 
t ∈ [0, τ).

(2) If F is affinely linearly bounded, that is, there exist a, b ≥ 0 such that

|F(y)|m ≤ a + b‖y‖ ∀ y ∈ Rp,

then, every solution of (2.1) can be extended to a global solution.

Statement (1) is an immediate consequence of [11, Corollary 5.2] and statement (2) can be
obtained by a routine argument involving part (a), Filippov’s selection theorem (see, for exam-
ple, [40, p. 72]) and Gronwall’s lemma.

The next result will be a useful tool in the following. A proof can be found in the Appendix.

Lemma 2.2. Assume that F(0) = {0} and

|F(y) − Ky|m < r‖y‖ ∀ y ∈ Rp, y �= 0 , (2.3)

where r is a positive constant. Then there exists continuously differentiable γ ∈P such that

|F(y) − Ky|m ≤ r‖y‖ − γ (‖y‖) ∀ y ∈Rp . (2.4)

Under the additional assumption that

r‖y‖ − |F(y) − Ky|m → ∞ as ‖y‖ → ∞ , (2.5)
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the inequality (2.4) holds with some continuously differentiable γ ∈ K∞.

The following theorem provides an ISS result for the Lur’e inclusion (2.1).

Theorem 2.3. Let K ∈ Rm×p and r > 0 be such that BC(K, r) ⊂ SC(A, B, C). If F(0) = {0}
and (2.3) and (2.5) are satisfied, then there exist ζ ∈KL and θ ∈K such that

‖x(t)‖ ≤ ζ(‖x(0)‖, t)+ θ(‖v‖L∞(0,t)) ∀ t ≥ 0, ∀ (v, x) ∈ Binc with v ∈ L∞
loc(R+,Rn) . (2.6)

Proof. Lemma 2.2 guarantees the existence of γ ∈K∞ such that

|F(y) − Ky|m ≤ r‖y‖ − γ (‖y‖) ∀ y ∈Rp .

An inspection of the proof of [33, Theorem 3.2] (which establishes (2.6) for forced Lur’e dif-
ferential equations) shows that it carries over to our Lur’e inclusions setting. In particular, there 
exist α, β ∈ K∞ and a continuously differentiable radially unbounded function U : Rn → R+
with U(0) = 0 and U(z) > 0 for all z �= 0 and such that

〈(∇U)(z),w〉 ≤ −α(‖z‖) + β(‖u‖) ∀ w ∈ Az + BF(Cz) + u, ∀ z ∈ Rn. (2.7)

The existence of ζ ∈KL and θ ∈K such that (2.6) holds now follows as in the case of differential 
equations (see, for example, the proof of [29, Theorem 5.41]). �

The next theorem guarantees the existence of certain stability properties and Lyapunov func-
tions for the unforced Lur’e inclusion (2.1).

Theorem 2.4. Let K ∈ Rm×p and r > 0 be such that BC(K, r) ⊂ SC(A, B, C). If (A, B, C) is 
controllable or observable, v = 0, F(0) = {0} and (2.3) is satisfied, then the following statements 
hold.

(1) There exists a positive definite matrix P = P ∗ ∈ Rn×n such that

(
AK

)∗
P + PAK + C∗C + r2PBB∗P = 0 , (2.8)

and the associated quadratic form V (z) := 〈Pz, z〉 satisfies

〈(∇V )(z),w〉 ≤ 0 ∀ w ∈ Az + BF(Cz), ∀ z ∈ Rn . (2.9)

Furthermore, for each compact set 
 ⊂ Rn such that minz∈
 ‖Cz‖ > 0, there exists ν > 0
such that

〈(∇V )(z),w〉 ≤ −ν ∀ w ∈ Az + BF(Cz), ∀ z ∈ 
 . (2.10)

(2) There exists κ > 0 such that ‖x(t)‖ ≤ κ‖x(0)‖ for all t ≥ 0 and all x ∈ W
1,1
loc (R+, Rn) such 

that (0, x) ∈ Binc, that is, 0 is uniformly stable in the large.
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(3) For every ε > 0 and every ρ > 0, there exists τ ≥ 0 such that, for each x ∈ W
1,1
loc (R+, Rn)

with (0, x) ∈ Binc, the following implication holds

‖x(0)‖ ≤ ρ ⇒ ‖x(t)‖ ≤ ε ∀ t ≥ τ ,

that is, 0 is uniformly globally attractive.
(4) There exists a radially unbounded smooth function U :Rn → R+ such that U(z) > 0 for all 

z �= 0 and

〈(∇U)(z),w〉 ≤ −U(z) ∀ w ∈ Az + BF(Cz), ∀ z ∈ Rn . (2.11)

Note that in statement (4), as F(0) = {0}, we may conclude that U(0) = 0, and the hypotheses 
on U guarantee that there exist α1, α2 ∈ K∞ such that α1(‖z‖) ≤ U(z) ≤ α2(‖z‖) for all z ∈ Rn. 
It follows from (2.11) that

〈(∇U)(z),w〉 ≤ −α1(‖z‖) ∀ w ∈ Az + BF(Cz), ∀ z ∈ Rn .

Proof of Theorem 2.4. (1) It is well-known that there exists P = P ∗ ∈ Rn×n satisfying (2.8), 
see [21, Theorem 5.3.25 and Remark 5.3.27]. Furthermore, P satisfies

P =
∞∫

0

e(AK)∗t(C∗C + r2PBB∗P
)
eAKtdt ≥

∞∫
0

e(AK)∗tC∗CeAKtdt . (2.12)

Assume that (C, A) is observable. It then follows from (2.12) that P is positive definite. If 
(C, A) is not observable, but (A, B) is controllable, then it is natural to consider the dual sys-
tem (A∗, C∗, B∗). The transfer function of this system is H(s) = G∗(s̄) = B∗(sI − A∗)−1C∗, 
(A∗, C∗, B∗) is stabilizable and detectable, (B∗, A∗) is observable, ‖H‖H∞ = ‖G‖H∞ and 
K∗ ∈ S(H). By an argument identical to that used above, we conclude that there exists a positive 
definite matrix Q = Q∗ ∈Rn×n such that

AKQ + Q
(
AK

)∗ + BB∗ + r2QC∗CQ = 0.

The matrix P := r−2Q−1 is positive definite and solves (2.8).
Now let P = P ∗ ∈ Rn×n be a positive definite solution of (2.8). A routine calculation in-

voking (2.3), (2.8) and the identity Az + BF(Cz) = AKz + B(F(Cz) − KCz) shows that the 
quadratic form

V (z) := 〈Pz, z〉 ∀ z ∈Rn ,

satisfies

〈(∇V )(z),Az + Bw〉 ≤ −(
r2‖Cz‖2 − ‖w − KCz‖2) ∀ w ∈ F(Cz), ∀ z ∈Rn. (2.13)

The inequality (2.9) now follows from (2.3).
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To establish (2.10), let 
 ⊂ Rn be compact and such that minz∈
 ‖Cz‖ > 0. Seeking a contra-
diction, suppose the claim is not true, in which case (2.13) implies the existence of a sequence (
(zj , wj)

)
j

with zj ∈ 
 and wj ∈ F(Czj ) such that

lim
j→∞

(
r2‖Czj‖2 − ‖wj − KCzj‖2) = 0. (2.14)

As the sequence 
(
(zj , wj)

)
j

is bounded, it has a convergent subsequence, the limit of which 
we denote by (z∞, w∞). Using the compactness of 
 and F(y) for all y ∈ Rp and the upper 
semicontinuity of F , we conclude that z∞ ∈ 
 and w∞ ∈ F(Cz∞). Consequently, Cz∞ �= 0, 
and, by (2.3), r‖Cz∞‖ > ‖w∞ − KCz∞‖, yielding a contradiction to (2.14).

(2) For x ∈ W
1,1
loc (R+, Rn) such that (0, x) ∈ Binc it follows from (2.9) that (d(V ◦x)/dt)(t) ≤

0 for almost every t ≥ 0, and so

V (x(t)) ≤ V (x(0)) ∀ t ≥ 0.

The claim now follows as the map z �→ √
V (z) is a norm on Rn.

(3) Let ε, ρ > 0 be given. By statement (2), there exists κ > 0 such that,

‖x(t)‖ ≤ κ‖x(0)‖ ∀ t ≥ 0, ∀ x ∈ W
1,1
loc (R+,Rn) with (0, x) ∈ Binc,

and so,

‖Cx(t)‖ ≤ κρ‖C‖ =: b ∀ t ≥ 0, ∀ x ∈ W
1,1
loc (R+,Rn) with (0, x) ∈ Binc and ‖x(0)‖ ≤ ρ.

By Lemma 2.2, there exists continuously differentiable γ1 ∈P such that

|F(y) − Ky|m ≤ r‖y‖ − γ1(‖y‖) ∀ y ∈Rp .

An application of [25, Lemma 18] guarantees the existence of comparison functions γ2 ∈ K∞
and σ ∈ L such that

γ1(s) ≥ γ2(s)σ (s) ∀ s ≥ 0.

The function γ3 := σ(b)γ2 is in K∞ and

γ1(s) ≥ γ3(s) ∀ s ∈ [0, b].

Therefore,

|F(y) − Ky|m ≤ r‖y‖ − γ3(‖y‖) ∀ y ∈Rp with ‖y‖ ≤ b. (2.15)

Setting

γ (s) :=
{

γ3(s), s ∈ [0, b],
rs − (rb − γ (b)), s > b,
3
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it is evident that γ ∈ K∞ and

rb − γ (b) = r‖y‖ − γ (‖y‖) ∀ y ∈ Rp with ‖y‖ ≥ b. (2.16)

The set-valued map F� defined by

F�(y) :=

⎧⎪⎨
⎪⎩

F(y), ‖y‖ ≤ b,

F
( by

‖y‖
)

+ (‖y‖ − b)K
y

‖y‖ , ‖y‖ > b,
(2.17)

is upper semi-continuous and, for each y ∈ Rp , the subset F�(y) ⊂ Rm is non-empty, compact 
and convex. Furthermore,

|F�(y) − Ky|m =
∣∣∣∣F( by

‖y‖
)

− K
by

‖y‖
∣∣∣∣
m

≤ rb−γ (b) = r‖y‖ − γ (‖y‖)

∀ y ∈ Rp with ‖y‖ > b, (2.18)

by (2.16) and (2.17).
The conjunction of (2.15)–(2.18) gives

|F�(y) − Ky|m ≤ r‖y‖ − γ (‖y‖) ∀ y ∈Rp.

Denoting the behaviour of the Lur’e inclusion

ẋ(t) − Ax(t) − v(t) ∈ BF�(Cx(t)), t ≥ 0 (2.19)

by B�
inc, an application of Theorem 2.3 to (2.19) shows that there exists ζ ∈ KL such that

‖x(t)‖ ≤ ζ(‖x(0)‖, t) ∀ t ≥ 0, ∀ x ∈ W
1,1
loc (R+,Rn) with (0, x) ∈ B�

inc . (2.20)

Noting that, by construction, each function x ∈ W
1,1
loc (R+, Rn) such that (0, x) ∈ Binc and 

‖x(0)‖ ≤ ρ satisfies (0, x) ∈ B�
inc, it follows from (2.20) that ‖x(t)‖ ≤ ε for all t ≥ τ with τ ≥ 0

being any number satisfying ζ(ρ, τ) ≤ ε.
(4) By Lemma 2.2 there exists a continuously differentiable function γ ∈P such that

|F(y) − Ky|m ≤ r‖y‖ − γ (‖y‖) ∀ y ∈Rp .

Setting

F̃ (y) := clBR
(
Ky, r‖y‖ − γ (‖y‖)) = Ky + clBR

(
0, r‖y‖ − γ (‖y‖)) ∀ y ∈Rp ,

it is clear that F̃ is upper semi-continuous, F̃ (0) = {0} and, for all y ∈ Rp , the set F̃ (y) is 
non-empty, convex and compact, |F̃ (y) − Ky|m < r‖y‖ and F(y) ⊂ F̃ (y). Consequently, the 
conclusions of statements (1)–(3) and Proposition 2.1 apply to the differential inclusion

ẋ(t) − Ax(t) − v(t) ∈ BF̃ (Cx(t)), t ≥ 0 , (2.21)
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and so, by [37, Proposition 1], (2.21) is KL-stable [37, Definition 6].
Obviously, it is sufficient to prove that there exists a radially unbounded smooth function 

U :Rn →R+ such that U(z) > 0 for all z �= 0 and

〈(∇U)(z),w〉 ≤ −U(z) ∀ w ∈ Az + BF̃ (Cz), ∀ z ∈ Rn ,

that is, (2.11) with F replaced by F̃ . According to [37, Theorem 1], the existence of such a 
function U is equivalent to the differential inclusion (2.21) being robustly KL-stable in the sense 
of [37, Definition 8]. Since (2.21) is KL-stable, we can use [37, Theorem 8] to establish robust 
KL-stability by showing that F̃ is locally Lipschitz in the sense of [37], that is, we have to 
verify that, for every bounded subset Y ⊂ Rp , there exists a number L > 0 such that F̃ (y1) ⊂
F̃ (y2) + L‖y1 − y2‖� for all y1, y2 ∈ Y , where � is the open unit ball in Rm. Recalling that 
the set C of all compact nonempty subsets of Rm endowed with the Hausdorff metric dH is a 
metric space, and using elementary properties of dH (see, for example, [8, Subsection 7.3.1]), it 
is a routine exercise to show that the local Lipschitz concept in the sense of [37] is equivalent to 
F̃ being locally Lipschitz as a map Rp → (C, dH). As F̃ (y) = Ky + clBR(0, r‖y‖ − γ (‖y‖))
for all y ∈ Rp , and the functions

Rp → C, y �→ {Ky}, R+ → C, ρ �→ clBR(0, ρ) and Rp → R, y �→ r‖y‖ − γ (‖y‖),

are locally Lipschitz (where we have used that γ , as a continuously differentiable function, is 
locally Lipschitz), we conclude that F̃ is locally Lipschitz. �

The next result establishes an iISS property for the Lur’e inclusion (2.1).

Theorem 2.5. Let K ∈ Rm×p and r > 0 be such that BC(K, r) ⊂ SC(A, B, C). Assume that 
(A, B, C) is controllable or observable, F(0) = {0} and (2.3) holds. Then there exist ψ ∈ KL
and ϕ ∈K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + ϕ
( t∫

0

‖v(s)‖ds
)

∀ t ≥ 0, ∀ (v, x) ∈ Binc . (2.22)

The estimate (2.22) says that 0 is iISS with linear iISS-gain (which has been absorbed into ϕ). 
Theorem 2.5, says, roughly speaking, that linear stability (namely, BC(K, r) ⊂ SC(A, B, C)) 
implies iISS (with linear iISS-gain) for all (set-valued) nonlinearities F satisfying (2.3). In this 
sense, Theorem 2.5 is reminiscent of the complex Aizerman conjecture [20,21] which addresses 
global asymptotic stability of unforced Lur’e differential equations. Following the argumentation 
in the proof of [33, Corollary 3.7], it can be shown that if B and C are non-negative and A +BKC

is a Metzler matrix, then Theorem 2.5 remains true when the complex condition BC(K, r) ⊂
SC(A, B, C) is replaced by its real counterpart BR(K, r) ⊂ SR(A, B, C).

Proof of Theorem 2.5. As in the proof of [3, Theorem 1], it can be shown that the existence of 
comparison functions ψ ∈KL and ϕ ∈K such that (2.22) holds is guaranteed provided it can be 
shown that there exist a radially unbounded continuously differentiable function W : Rn → R+, 
μ ∈P and β > 0 such that W(0) = 0, W(z) > 0 for all z �= 0 and
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〈(∇W)(z),w〉 ≤ −μ(‖z‖) + β‖u‖ ∀ w ∈ Az + BF(Cz) + u, ∀ (z, u) ∈Rn ×Rn . (2.23)

To this end, let U : Rn → R+ be a radially unbounded smooth function such that U(z) > 0 for 
all z �= 0 and (2.11) holds. Let α ∈ K∞ be such that

〈(∇U)(z),w〉 ≤ −α(‖z‖) ∀ w ∈ Az + BF(Cz), ∀ z ∈ Rn . (2.24)

Suitably modifying an argument given in the proof of [24, Lemma 3.4], we set

γ (s) := max{‖(∇U)(z)‖ : z ∈ Rn, U(z) ≤ s} ∀ s ≥ 0 ,

and note that γ is continuous, γ (s) > 0 for s > 0 and

‖(∇U)(z)‖ ≤ γ (U(z)) ∀ z ∈Rn . (2.25)

Furthermore, defining δ ∈P by

δ(0) := 0, δ(s) := min{s,1/γ (s)} ∀ s > 0 ,

it follows from (2.25) that

δ(U(z))‖(∇U)(z)‖ ≤ 1 ∀ z ∈ Rn . (2.26)

The function U1 :Rn → R+ given by

U1(z) :=
U(z)∫
0

δ(s)ds ∀ z ∈Rn ,

is continuously differentiable, U1(0) = 0 and U1(z) > 0 for all z �= 0. Let (z, u) ∈ Rn ×Rn and 
let w ∈ Az + BF(Cz) + u. Then, obviously, w − u ∈ Az + BF(Cz), and,

〈(∇U1)(z),w〉 = δ(U(z))〈(∇U)(z),w〉 = δ(U(z))
(〈(∇U)(z),w − u〉 + 〈(∇U)(z), u〉).

Hence, invoking (2.24) and (2.26),

〈(∇U1)(z),w〉 ≤ −δ(U(z))α(‖z‖) + ‖u‖.

Setting

μ1(s) := α(s)min
{
δ(U(z)) : ‖z‖ = s, z ∈ Rn

} ∀ s ≥ 0,

we have that μ1 ∈P and

〈(∇U1)(z),w〉 ≤ −μ1(‖z‖) + ‖u‖ ∀ w ∈ Az + BF(Cz) + u, ∀ (z, u) ∈ Rn ×Rn. (2.27)
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Whilst (2.23) holds with W = U1, μ = μ1 and β = 1, this does not quite establish the claim 
because there is no guarantee that U1 is radially unbounded.

By adopting an argument from the proof of [17, Proposition 3.10], we will construct a suitable 
function U2 : Rn → R+ such that W = U1 + U2 has the desired properties. Let P = P ∗ be a 
positive definite solution of (2.8) and let V (z) := 〈Pz, z〉 be the associated by quadratic form. 
Define U2 := h ◦ V , where

h(s) :=
s∫

0

min{t, (1 + t)−1}dt ∀ s ≥ 0.

Evidently, U2 is continuously differentiable, U2(0) = 0, U2(z) > 0 for all z �= 0 and U2 is radially 
unbounded. Let (z, u) ∈ Rn × Rn and w ∈ Az + BF(Cz) + u. Then, trivially, w − u ∈ Az +
BF(Cz), and, invoking (2.9), we obtain.

〈(∇U2)(z),w〉 = h′(V (z))
(〈(∇V )(z),w − u〉 + 〈(∇V )(z), u〉) ≤ h′(V (z))〈(∇V )(z), u〉.

As

b := sup
z∈Rn

h′(V (z))‖z‖ < ∞ ,

and (∇V )(z) = 2Pz, we conclude that

〈(∇U2)(z),w〉 ≤ 2b‖P ‖‖u‖ ∀ w ∈ Az + BF(Cz) + u, ∀ (z, u) ∈Rn ×Rn.

Obviously, the function W := U1 + U2 is radially unbounded, W(0) = 0, W(z) > 0 for all z �= 0
and, appealing to (2.27), we obtain

〈(∇W)(z),w〉 ≤ −μ1(‖z‖) + (2b‖P ‖ + 1)‖u‖ ∀ w ∈ Az + BF(Cz) + u, ∀ (z, u) ∈Rn ×Rn,

showing that (2.23) holds with μ = μ1 and β = 2b‖P ‖ + 1. �
The corollary below provides a “small-gain” interpretation of Theorem 2.5.

Corollary 2.6. Let K ∈Rm×p be such that K ∈ SC(A, B, C) and set

ν(y) := |F(y) − Ky|m
‖y‖ ∀ y ∈ Rp, y �= 0.

Assume that (A, B, C) is controllable or observable, F(0) = {0} and that supy �=0 ν(y) < ∞. If

ν(y)‖GK‖H∞ < 1 ∀ y ∈ Rp, y �= 0 ,

then there exist ψ ∈KL and ϕ ∈K such that (2.22) holds.
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Proof. We distinguish two case: G(s) ≡ 0 and G(s) �≡ 0. If G(s) ≡ 0, then, evidently, 
BC(K, r) ⊂ SC(A, B, C), where supy �=0 ν(y) < r < ∞, and the claim follows from Theo-
rem 2.5.

Let us now assume that G(s) �≡ 0. Then GK(s) �≡ 0 and rK := 1/‖GK‖H∞ ∈ (0, ∞). Not-
ing that (A, B, C) is stabilizable and detectable (because K ∈ SC(A, B, C)), we conclude that 
BC(K, rK) ⊂ SC(A, B, C). Since, by hypothesis, ν(y)‖GK‖H∞ < 1 for all y �= 0, it follows 
that |F(y) − Ky|m < rK‖y‖ for all y ∈ Rp , y �= 0. An application of Theorem 2.5 yields the 
claim. �

Next we derive a corollary of Theorem 2.5 which shows that, under conditions very similar 
to those of the well-known circle criterion [23,26,39], the forced Lur’e inclusion (2.22) is iISS. 
To this end, we recall that a square rational matrix H(s) is said to be positive real if the matrix 
H(s) + (H(s))∗ is positive semi-definite for every s ∈ C0 which is not a pole of H. We note that 
if H is positive real, then H is holomorphic in C0, see, for example, [18].

Corollary 2.7. Let K1, K2 ∈Rm×p and assume that (A, B, C) is controllable and detectable or, 
alternatively, stabilizable and observable. If (I −K2G)(I −K1G)−1 is positive real, F(0) = {0}
and

〈w − K1y,w − K2y〉 < 0 ∀ w ∈ F(y), ∀ y ∈Rp, y �= 0 ,

then there exist ψ ∈KL and ϕ ∈K such that (2.22) holds.

Proof. Define matrices L, M ∈ Rm×p by

L := 1

2
(K1 − K2), M := 1

2
(K1 + K2)

and note that

〈w − K1y,w − K2y〉 = 〈w − (L + M)y,w + (L − M)y〉
= −‖Ly‖2 + ‖w − My‖2 ∀ w ∈ F(y), ∀ y ∈ Rp . (2.28)

As 〈w − K1y, w − K2y〉 < 0 for all w ∈ F(y) and all non-zero y ∈ Rp , we see that kerL = {0}. 
Consequently, L is left invertible, with L� := (L∗L)−1L∗ ∈ Rp×m being a left inverse of L. 
Furthermore, it follows from (2.28) that

|F(y) − My|2m = ‖Ly‖2 + sup
w∈F(y)

〈w − K1y,w − K2y〉 ∀ y ∈Rp ,

and hence, using the compactness of the set F(y), we obtain that

|F(y) − My|m < ‖Ly‖ ∀ y ∈ Rp, y �= 0 .

Defining the set-valued map F̃ by F̃ (z) := F(L�z) for all z ∈ Rm, we conclude that

|F̃ (z) − ML�z|m < ‖LL�z‖ ∀ z ∈ (kerL�)⊥ = imL, y �= 0 .
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Let z ∈ Rm and write z = z1 + z2 with z1 ∈ imL and z2 ∈ (imL)⊥ = kerL�. If z1 = 0, then 
|F̃ (z) − ML�z|m = 0, and if z1 �= 0, then we arrive at

|F̃ (z) − ML�z|m < ‖LL�z1‖ = ‖LL�z‖ ≤ ‖z‖ ,

where we have used that ‖LL�‖ ≤ 1, which follows from the fact that LL� is the orthogonal 
projection onto imL along (imL)⊥. Consequently,

|F̃ (z) − ML�z|m < ‖z‖ ∀ z ∈ Rm, z �= 0 . (2.29)

By hypothesis H := (I − K2G)(I − K1G)−1 is positive real, and therefore, by a well-known 
result (see, for example, [18, Corollary 3.6]), ‖(H − I )(H + I )−1‖H∞ ≤ 1. As

(H − I )(H + I )−1 = LG(I − MG)−1 = LG(I − ML�LG)−1 = (LG)ML�

,

we see that

‖(LG)ML�‖H∞ ≤ 1 . (2.30)

Now LG is the transfer function of the state-space system (A, B, LC) and the hypothesis on 
(A, B, C) combined with the left invertibility of L shows that (A, B, LC) controllable and de-
tectable, or stabilizable and observable. Therefore, (2.30) implies that

BC(ML�,1) ⊂ SC(A,B,LC) . (2.31)

Equations (2.29) and (2.31) show that Theorem 2.5 (with K = ML� and r = 1) applies to the 
Lur’e inclusion

ẋ(t) − Ax(t) − v(t) ∈ BF̃ (LCx(t)), t ≥ 0 . (2.32)

The claim now follows since (v, x) ∈ Binc if, and only if, (v, x) is a trajectory of (2.32). �
In the proposition below, we strengthen the assumption on F to avoid the controllability/ob-

servability hypothesis for the linear system (A, B, C) imposed in Theorem 2.5. The stability 
property obtained is stronger than that guaranteed by Theorem 2.5 as the integral ISS esti-
mate (2.22) continues to hold and, additionally, the Lur’e inclusion (2.1) is ISS.

Proposition 2.8. Let K ∈ Rm×p and r > 0 be such that BC(K, r) ⊂ SC(A, B, C). If F(0) =
{0} and (2.3) and (2.5) are satisfied, then there exist ζ, ψ ∈ KL and θ, ϕ ∈ K such that (2.6)
and (2.22) hold.

Proof. The existence of ζ ∈KL and θ ∈K such that (2.6) holds follows immediately from The-
orem 2.3. By the proof of Theorem 2.3, there exist α, β ∈ K∞ and a continuously differentiable 
radially unbounded function U : Rn → R+ with U(0) = 0 and U(z) > 0 for all z �= 0 and such 
that (2.7) is satisfied. Obviously, (2.7) implies that

〈(∇U)(z),w〉 ≤ −α(‖z‖) ∀ w ∈ Az + BF(Cz), ∀ z ∈Rn
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which is identical to (2.24). We can now proceed as in the proof of Theorem 2.5 to establish the 
existence of ψ ∈KL and ϕ ∈K such that (2.22) holds. �

Proposition 2.8 has corollaries which are similar to Corollaries 2.6 and 2.7. For the sake of 
brevity, we only state the result which corresponds to Corollary 2.6.

Corollary 2.9. Let K ∈ Rm×p be such that K ∈ SC(A, B, C) and let ν be as in Corollary 2.6. 
Assume that F(0) = {0} and supy �=0 ν(y) < ∞. If there exists γ ∈K∞ such that ν(y)‖GK‖H∞ <

1 −γ (‖y‖)/‖y‖ for all y �= 0, then there exist ζ, ψ ∈KL and θ, ϕ ∈ K such that (2.6) and (2.22)
hold.

3. Incremental integral ISS results for Lur’e differential equations

In the sequel, we will consider the forced Lur’e differential equation

ẋ(t) = Ax(t) + Bf (t,Cx(t)) + v(t) t ≥ 0 , (3.1)

where (A, B, C) ∈ L and the time-varying nonlinearity f : R+ ×Rp → Rm is assumed to have 
the following properties: for every compact set 
 ⊂Rp , there exists λ ∈ L1

loc(R+, R+) such that 
‖f (t, y1) − f (t, y2)‖ ≤ λ(t)‖y1 − y2‖ for all y1, y2 ∈ 
 and all t ≥ 0, and, for each y ∈ Rp , the 
function t �→ f (t, y) is in L1

loc(R+, Rm). We will sometimes refer to (3.1) as the Lur’e equation 
(A, B, C, f ).

Let v ∈ L1
loc(R+, Rn) be given and let 0 < τ ≤ ∞. A function x ∈ W

1,1
loc ([0, τ), Rn) is said to 

be a solution of (3.1) on [0, τ) if (3.1) holds for almost every t ∈ [0, τ). A solution of (3.1) on 
[0, ∞) = R+ is called a global solution. If f is uniformly affinely linearly bounded in the sense 
that there exist a, b ≥ 0 such that

‖f (t, y)‖ ≤ a + b‖y‖ ∀ (t, y) ∈R+ ×Rp ,

then, for each v ∈ L1
loc(R+, Rn) and each x0 ∈ Rn, there exists a unique global solution x of (3.1)

satisfying x(0) = x0, see, for example, [29, Proposition 4.12]. We define the behaviour of (3.1)
by

B := {
(v, x) ∈ L1

loc(R+,Rn) × W
1,1
loc (R+,Rn) : (v, x) satisfies (3.1) a.e. on R+

}
.

In the case wherein f does not depend on time, we will (in Section 4) also make use of the 
bilateral behaviour BB of (3.1) defined by

BB := {
(v, x) ∈ L1

loc(R,Rn) × W
1,1
loc (R,Rn) : (v, x) satisfies (3.1) a.e. on R

}
.

As, in the bilateral context, f is assumed to be time-independent, BB is shift-invariant, that is,

(v, x) ∈ BB =⇒ (Sτ v,Sτ x) ∈ BB ∀ τ ∈R . (3.2)

As in Section 2, we set G(s) = C(sI − A)−1B and GL(s) := G(I − LG)−1 for L ∈ Cm×p . We 
will assume throughout that G(s) �≡ 0, and so GL(s) �≡ 0 for every L ∈Cm×p .
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Let K ∈ SR(A, B, C) and set

rK := 1/‖GK‖H∞ < ∞ .

We introduce three assumptions which will be used throughout (but not all of them simultane-
ously in any of the following results).

(A1) supt≥0 ‖f (t, y + ξ) − f (t, ξ) − Ky‖ < rK‖y‖ for all y, ξ ∈Rp, y �= 0.
(A2) There exists ξ0 ∈ Rp such that

(
rK‖y‖ − sup

t≥0
‖f (t, y + ξ0) − f (t, ξ0) − Ky‖) → ∞ as ‖y‖ → ∞.

(A3) (A, B, C) is controllable or observable.

Before we concern ourselves with the main results of this section, it is useful to state two technical 
lemmas, the proofs of which can be found in the Appendix.

Lemma 3.1. If (A1) and (A2) hold, then, for all ξ ∈ Rp ,

(
rK‖y‖ − sup

t≥0
‖f (t, y + ξ) − f (t, ξ) − Ky‖) → ∞ as ‖y‖ → ∞.

Lemma 3.2. Assume that (A1) holds and let 
 ⊂ Rp be a compact set. Define β
 : R+ → R+
by

β
(s) := sup
t≥0, ξ∈
,‖y‖≤s

‖f (t, y + ξ) − f (t, ξ) − Ky‖. (3.3)

(1) The function β
 is globally Lipschitz with Lipschitz constant rK , the function α defined by 
α(s) := rKs − β
(s) for all s ≥ 0 is in P and

sup
t≥0

‖f (t, y + ξ) − f (t, ξ) − Ky‖ ≤ rK‖y‖ − α(‖y‖) ∀ y ∈ Rp, ∀ ξ ∈ 
. (3.4)

If additionally (A2) is satisfied, then there exists α0 ∈ K∞ such that α0(s) ≤ α(s) for all 
s ≥ 0 and (3.4) holds with α replaced by α0.

(2) If there exists ξ0 ∈ Rp such that

lim inf‖y‖→∞
(
rK‖y‖ − sup

t≥0
‖f (t, y + ξ0) − f (t, ξ0) − Ky‖) > 0,

then there exists α0 ∈ K such that α0(s) ≤ rKs − β{ξ0}(s) for all s ≥ 0 and

sup‖f (t, y + ξ0) − f (t, ξ0) − Ky‖ ≤ rK‖y‖ − α0(‖y‖) ∀ y ∈Rp.

t≥0
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A pair (x†, v†) ∈ Rn × L1
loc(R+, Rn) is said to be an equilibrium pair of (3.1) if Ax† +

Bf (t, Cx†) + v†(t) = 0 for almost every t ≥ 0. Trivially, if (x†, v†) is an equilibrium pair 
of (3.1), then the constant function t �→ x† is a solution of (3.1) with forcing v = v†. For given 
x† ∈ Rn, we define ex† ∈ L1

loc(R+, Rn) by ex†(t) := −(Ax† + Bf (t, Cx†)) for all t ≥ 0. Obvi-
ously, for each x† ∈Rn, the pair (x†, ex†) is an equilibrium pair of (3.1).

The next theorem provides a sufficient condition for a certain semi-global incremental iISS 
property to hold.

Theorem 3.3. Assume that (A1) and (A3) hold.

(1) For each ρ > 0 there exist ψ ∈ KL and ϕ ∈ K such that, for every (w, z) ∈ B with ‖z‖L∞ ≤
ρ, every t0 ≥ 0, and every (v, x) ∈ B,

‖x(t) − z(t)‖ ≤ ψ(‖x(t0) − z(t0)‖, t − t0) + ϕ
( t∫

t0

‖v(s) − w(s)‖ds
)

∀ t ≥ t0. (3.5)

(2) For each x† ∈ Rn and every b > 0 there exist ψ ∈ KL and ϕ ∈ K such that, for every 
(w, z) ∈ B with ‖z(0) − x†‖ + ‖w − ex†‖L1 ≤ b and every t0 ≥ 0, (3.5) holds.

Statement (2) of Theorem 3.3 says that (3.1) is semi-globally incrementally iISS with ev-
ery semi-global incremental iISS-gain being linear (absorbed into ϕ on the RHS of the esti-
mate (3.5)). The linearity of the semi-global incremental iISS-gains will play an important role 
in Section 4, see the proof of Theorem 4.3.

Proof of Theorem 3.3. (1) Let ρ > 0 and set

Yρ := {Cη : ‖η‖ ≤ ρ}. (3.6)

Invoking statement (1) of Lemma 3.2 (with 
 = Yρ ) shows that there exists α ∈ P such that

sup
t≥0

‖f (t, y + ξ) − f (t, ξ) − Ky‖ ≤ rK‖y‖ − α(‖y‖) ∀ y ∈Rp, ∀ ξ ∈ Yρ. (3.7)

Consequently, for any (w, z) ∈ B with ‖z‖L∞ ≤ ρ, the function fz :R+ ×Rp → Rm defined by

fz(t, y) := f (t, y + Cz(t)) − f (t,Cz(t)) ∀ (t, y) ∈ R+ ×Rp , (3.8)

satisfies

sup
t∈R+

‖fz(t, y) − Ky‖ ≤ rK‖y‖ − α(‖y‖) ∀ y ∈ Rp . (3.9)

Let (w, z) ∈ B with ‖z‖L∞ ≤ ρ and let (v, x) ∈ B be arbitrary. Then

ẋ(t) − ż(t) = A(x(t) − z(t)) + Bfz

(
t,C(x(t) − z(t))

) + v(t) − w(t) , for a.e. t ≥ 0,
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that is, (v − w, x − z) is a trajectory of the Lur’e equation (A, B, C, fz) and hence of the Lur’e 
inclusion (A, B, C, F) with F(y) := clBR

(
Ky, rK‖y‖ − α(‖y‖)) for y ∈ Rp . An application 

of Theorem 2.5 (or, alternatively, of Corollary 2.6) shows that there exist ψ ∈ KL and ϕ ∈ K
(depending only on (A, B, C), K and ρ) such that

‖x(t)− z(t)‖ ≤ ψ(‖x(0)− z(0)‖, t)+ϕ
( t∫

0

‖v(s)−w(s)‖ds
)

∀ (v, x) ∈ B, ∀ t ≥ 0 . (3.10)

Finally, let t0 ≥ 0. Obviously, ‖St0z‖L∞ ≤ ρ, and combining (3.10) with the left-shift invariance 
of the behaviour Binc of the Lur’e inclusion (A, B, C, F), cf. (2.2), we conclude that

‖x(t + t0) − z(t + t0)‖ ≤ ψ(‖x(t0) − z(t0)‖, t)+ϕ
( t∫

0

‖v(s + t0) − w(s + t0)‖ds
)

∀ (v, x) ∈ B, ∀ t ≥ 0 .

Consequently,

‖x(t) − z(t)‖ ≤ ψ(‖x(t0) − z(t0)‖, t − t0) + ϕ
( t∫

t0

‖v(s) − w(s)‖ds
)

∀ (v, x) ∈ B, ∀ t ≥ t0 ,

completing the proof of statement (1).
(2) Let x† ∈ Rn and b > 0. As (ex†, x†) ∈ B, it follows from statement (1) that there exist 

β ∈KL and α ∈ K such that, for every t0 ≥ 0,

‖x(t) − x†‖ ≤ β(‖x(t0) − x†‖, t − t0) + α
( t∫

t0

‖v(s) − ex†(s)‖ds
)

∀ (v, x) ∈ B , ∀ t ≥ t0 .

Hence, for all (w, z) ∈ B with ‖z(0) − x†‖ + ‖w − ex†‖L1 ≤ b,

‖z(t) − x†‖ ≤ β(‖z(0) − x†‖,0) + α(‖w − ex†‖L1) ≤ β(b,0) + α(b) ∀ t ≥ 0 ,

showing that, for all (w, z) ∈ B with ‖z(0) − x†‖ + ‖w − ex†‖L1 ≤ b, we have that ‖z‖L∞ ≤ ρ, 
where ρ := β(b, 0) +α(b) +‖x†‖. Finally, statement (1) guarantees the existence of ψ ∈ KL and 
ϕ ∈K such that, for every (w, z) ∈ B with ‖z(0) −x†‖ +‖w−ex†‖L1 ≤ b and every t0 ≥ 0, (3.5)
holds. �

The next result is an immediate consequence of statement (1) of Theorem 3.3.

Corollary 3.4. Assume that (A1) and (A3) hold and let (w, z) ∈ B with z bounded. Then, for 
every (v, x) ∈ B such that v − w ∈ L1(R+, Rn), the difference x(t) − z(t) converges to 0 as 
t → ∞.
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The following corollary provides a circle-criterion interpretation of Theorem 3.3. The proof 
is similar to that of Corollary 2.7 (with Theorem 3.3 now playing the role of Theorem 2.5) and 
we therefore leave it to the reader.

Corollary 3.5. Let K1, K2 ∈ Rm×p . Assume that (A, B, C) is controllable and detectable or, 
alternatively, stabilizable and observable. If (I − K2G)(I − K1G)−1 is positive real and

sup
t≥0

〈f (t, y + ξ) − f (t, ξ) − K1y,f (t, y + ξ) − f (t, ξ) − K2y〉 < 0 ∀ y, ξ ∈Rp, y �= 0 ,

then statements (1) and (2) of Theorem 3.3 hold.

We return briefly to Theorem 3.3. To this end, let (w, z) ∈ B and assume that there does not 
exist x† ∈ Rn such that w − ex† ∈ L1(R+, Rn) (so that statement (2) of Theorem 3.3 cannot be 
applied). In this case, boundedness of z is essential for (3.5) to hold, and it is natural to ask under 
what conditions is z bounded. The following two results provide such conditions.

Lemma 3.6. Assume that (A1) holds and that there exists y† ∈ imC such that

lim inf‖y‖→∞
(
rK‖y‖ − sup

t≥0
‖f (t, y + y†) − f (t, y†) − Ky‖) > 0. (3.11)

Let x† ∈ Rn be such that y† = Cx†. Then there exist b > 0 and α, β ∈ K such that, for every 
(w, z) ∈ B with ‖w − ex†‖L∞ ≤ b, the state function z satisfies

‖z(t) − x†‖ ≤ α(‖z(0) − x†‖) + β(‖w − ex†‖L∞) ∀ t ≥ 0 .

Proof. Setting

f̃ (t, y) := f (t, y + y†) − f (t, y†) ∀ (t, y) ∈ R+ ×Rp ,

and invoking (3.11) and statement (2) of Lemma 3.2 (with ξ0 = y†), we conclude that there exists 
γ ∈ K such that

sup
t≥0

‖f̃ (t, y) − Ky‖ ≤ rK‖y‖ − γ (‖y‖) ∀ y ∈ Rp .

Therefore, appealing to [17, Theorem 3.1 and Remark 3.12], the Lur’e equation (A, B, C, f̃ )

is strongly iISS. In particular, (A, B, C, f̃ ) is small-signal ISS, and consequently, there exist 
b > 0 and α, β ∈ K such that if (u, x) is a trajectory of the Lur’e equation (A, B, C, f̃ ) with 
‖u‖L∞ ≤ b, then

‖x(t)‖ ≤ α(‖x(0)‖) + β(‖u‖L∞) ∀ t ≥ 0 . (3.12)

Now let w ∈ L1
loc(R+, Rn) be such that ‖w − ex†‖L∞ ≤ b and let z ∈ W

1,1
loc (R+, Rn) be such 

that (w, z) ∈ B. Then (w − ex†, z − x†) is a trajectory of the Lur’e equation (A, B, C, f̃ ) and the 
claim now follows from (3.12). �
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The next theorem shows that if (A1) and (A2) are assumed, then (3.1) is semi-globally incre-
mentally stable, in both the ISS and iISS sense.

Theorem 3.7. Assume that (A1) and (A2) hold and that there exists y∗ ∈ Rp such that the func-
tion t �→ f (t, y∗) is essentially bounded. Then, for every b > 0, there exist ψ, ζ ∈ KL and 
ϕ, θ ∈ K such that, for every (w, z) ∈ B with ‖w‖L∞ + ‖z(0)‖ ≤ b and every t0 ≥ 0, the es-
timate (3.5) holds, and, furthermore,

‖x(t) − z(t)‖ ≤ ζ(‖x(t0) − z(t0)‖, t − t0) + θ
(‖v − w‖L∞(t0,t)

)
∀ (v, x) ∈ B with v ∈ L∞

loc(R+,Rn), ∀ t ≥ t0 .
(3.13)

In particular, if v ∈ L∞(R+, Rn) and (v, x) ∈ B, then x is bounded.

Proof. As t �→ f (t, y∗) is essentially bounded, it follows from (A1) that t �→ f (t, y) is es-
sentially bounded for every y ∈ Rp . Set f̃ (t, y) := f (t, y) − f (t, 0) for all (t, y) ∈ R+ × Rp . 
Appealing to statement (1) of Lemma 3.2 (with 
 = {0}), we see that there exists α0 ∈ K∞ such 
that

sup
t≥0

‖f̃ (t, y) − Ky‖ ≤ rK‖y‖ − α0(‖y‖) ∀ y ∈ Rp.

Setting F(y) := clBR
(
Ky, rK‖y‖ − α0(‖y‖)) for y ∈ Rp , every trajectory of the Lur’e equa-

tion (A, B, C, f̃ ) is also a trajectory of the Lur’e inclusion (A, B, C, F). Thus, Proposi-
tion 2.8 guarantees that the Lur’e equation (A, B, C, f̃ ) is ISS. Noting that if (w, z) ∈ B, then 
(w + Bf ( · , 0), z) is a trajectory of (A, B, C, f̃ ), it follows that for given b > 0, there exists 
ρ > 0, such that ‖z‖L∞ ≤ ρ for all (w, z) ∈ B satisfying ‖w‖L∞ + ‖z(0)‖ ≤ b (where we have 
used that f ( · , 0) is essentially bounded).

Define Yρ and fz by (3.6) and (3.8), respectively. Using once again statement (1) of 
Lemma 3.2 (this time with 
 = Yρ ), we obtain that there exists α ∈K∞ such that (3.7) is satisfied. 
Letting (w, z) ∈ B with ‖w‖L∞ +‖z(0)‖ ≤ σ , we have that ‖z‖L∞ ≤ ρ and thus (3.9) holds (with 
α ∈ K∞). For every (v, x) ∈ B, (v − w, x − z) is a trajectory of the Lur’e equation (A, B, C, fz)

and hence of the Lur’e inclusion (A, B, C, F) with F(y) := clBR
(
Ky, rK‖y‖ −α(‖y‖)). Since 

α ∈ K∞, the assumptions of Proposition 2.8 are satisfied, and, for t0 = 0, the claim now fol-
lows from Proposition 2.8. Using the left-shift invariance of the behaviour of the Lur’e inclusion 
(A, B, C, F), the claim can be easily obtained for arbitrary t0 ≥ 0.

Finally, let v ∈ L∞(R+, Rn) and (v, x) ∈ B. Defining w by w(t) = −Bf (t, 0) for t ≥ 0, it is 
obvious that (w, 0) ∈ B and thus (3.13) guarantees that x is bounded. �
4. Response to Stepanov almost periodic inputs

We start this section by recalling some relevant definitions and properties from the theory of 
almost periodic functions. Let R = R or R+ and let X be a Banach space. A set S ⊆ R is said to 
be relatively dense (in R) if there exists l > 0 such that

[a, a + l] ∩ S �= ∅ ∀a ∈ R .

For ε > 0, we say that τ ∈ R is an ε-period of v ∈ C(R, X) if
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‖v(t) − v(t + τ)‖ ≤ ε ∀ t ∈ R .

We denote by P(v, ε) ⊆ R the set of ε-periods of v and we say that v ∈ C(R, X) is almost 
periodic (in the sense of Bohr) if P(v, ε) is relatively dense in R for every ε > 0. Let AP(R, X)

denote the set of all almost periodic functions v ∈ C(R, X). We note that AP(R, X) is a closed 
subspace of BUC(R, X), the space of bounded uniformly continuous functions R → X endowed 
with the sup-norm.

The straightforward proof of the following lemma is left to the reader.

Lemma 4.1. If v ∈ AP(R+, X), then, for every τ ∈R+,

sup
t∈R+, t≥τ

‖v(t)‖ = ‖v‖L∞ = lim sup
t→∞

‖v(t)‖ .

Furthermore, if v ∈ AP(R, X), then, for every τ ∈R,

sup
t∈R, t≥τ

‖v(t)‖ = ‖v‖L∞ and sup
t∈R, t≤τ

‖v(t)‖ = ‖v‖L∞ .

The above lemma shows that almost periodic functions are completely determined by their 
“infinite tails”: if v, w ∈ AP(R+, X) and there exists τ ∈ R+ such that v(t) = w(t) for all t ≥ τ , 
then v = w; similarly, if v, w ∈ AP(R, X) and there exists τ ∈ R such that v(t) = w(t) for all 
t ≥ τ , or for all t ≤ τ , then v = w.

We say that a function v ∈ C(R+, X) is asymptotically almost periodic if it is of the form 
v = vap + w with vap ∈ AP(R+, X) and w ∈ C0(R+, X), where C0(R+, X) is the space of 
functions u ∈ C(R+, X) such that limt→∞ u(t) = 0. The space of all asymptotically almost pe-
riodic functions v ∈ C(R+, X) is denoted by AAP(R+, X), that is,

AAP(R+,X) = AP(R+,X) + C0(R+,X) .

Noting that, by Lemma 4.1,

‖v + w‖L∞ ≥ ‖v‖L∞ ∀ v ∈ AP(R+,X), ∀ w ∈ C0(R+,X) ,

it is easy to see that AAP(R+, X) is a closed subspace of BUC(R+, X).
As an immediate consequence of Lemma 4.1, we obtain the following result.

Lemma 4.2. The following statements hold.

(1) AP(R+, X) ∩ C0(R+, X) = {0}.
(2) If v ∈ AAP(R+, X), then the decomposition v = vap + w, where vap ∈ AP(R+, X) and 

w ∈ C0(R+, X), is unique.

It is well-known that v ∈ C(R, X) is almost periodic if, and only if, the set of translates {Sτ v :
τ ∈ R} is relatively compact in BUC(R, X), see, for example, [9, Theorem 6.6]. Since, for any 
v ∈ C0(R+, X), the set of left-translates {Sτ v : τ ∈ R+} is relatively compact in BUC(R+, X), 
it is clear that the above characterisation of almost periodicity on R is not valid for functions in 
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C(R+, X). Interestingly, the elements of AAP(R+, X) are precisely the functions for which the 
set {Sτ v : τ ∈ R+} is relatively compact in BUC(R+, X) (if dimX < ∞, this has been shown 
in [27], for the general case see [31]). For more information on, and further characterisations of, 
almost periodicity, we refer the reader to the literature, for instance, [7,9].

There exists a close relationship between the spaces AP(R+, X) and AP(R, X) which we 
now briefly explain. Following an idea in [5, Remark on p. 318], for every v ∈ AP(R+, X), we 
define a function ve :R → X by

ve(t) := lim
k→∞v(t + τk) ∀ t ∈R , (4.1)

where τk ∈ P(v, 1/k) for each k ∈ N and τk → ∞ as k → ∞. For given t ∈ R, we have

‖v(t + τk) − v(t + τl)‖ ≤ ‖v(t + τk) − v(t + τk + τl)‖ + ‖v(t + τk + τl) − v(t + τl)‖ ≤ 1

l
+ 1

k
,

for all k, l ∈ N sufficiently large, and so (v(t + τk))k is a Cauchy sequence. Hence ve(t) is 
well-defined for each t ∈ R. By construction, ve(t) = v(t) for all t ≥ 0, that is, ve extends v
to R. Furthermore, it is not difficult to show that P(ve, ε) = {±τ : τ ∈ P(v, ε)}. In particular, 
ve ∈ AP(R, X). Moreover, there is no other function in AP(R, X) which extends v to R, and 
Lemma 4.1 guarantees that

‖ve‖L∞ = sup
t∈R

‖ve(t)‖ = sup
t∈R+

‖v(t)‖ = ‖v‖L∞ .

We conclude that the map AP(R+, X) → AP(R, X), v �→ ve is an isometric isomorphism.
For a function v ∈ AP(R, X), we define the generalized Fourier coefficients of v by

v̂(λ) := lim
T →∞

1

2T

T∫
−T

e−iλt v(t)dt ∀ λ ∈ R.

It is well-known that the above limit exists for all λ ∈R and the frequency spectrum

σf(v) := {λ ∈R : v̂(λ) �= 0}

of v is countable, see for example, [9, Section VI.3]. The module mod(v) of v ∈ AP(R, X) is 
the set of all numbers of the form 

∑
λ∈σf(v) m(λ)λ, where m : σf(v) → Z has finite support, that 

is, m(λ) �= 0 for at most finitely many λ ∈ σf(v). Note that mod(v) carries the structure of a 
Z-module and is the smallest additive subgroup of R containing σf(v).

We now recall another concept of almost periodicity which is weaker than that we have just 
defined. To this end, let v ∈ L1

loc(R, Rn) and ε > 0. We say that τ ∈ R is an ε-period of v (in the 
sense of Stepanov) if

sup
a∈R

a+1∫
‖v(s + τ) − v(s)‖ds ≤ ε.
a
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The set of ε-periods of v (in the sense of Stepanov) is denoted by P1(v, ε). We say that v is 
almost periodic in the sense of Stepanov if, for every ε > 0, the set P1(v, ε) is relatively dense 
in R. The set of all functions in L1

loc(R, Rn) which are almost periodic in the sense of Stepanov 
is denoted by S1(R, Rn). We remark that AP(R, Rn) ⊂ S1(R, Rn), where the inclusion is strict 
(as, for example, S1(R, Rn) contains certain discontinuous functions). A routine argument shows 
that S1(R, Rn) is a closed subspace of the Banach space of uniformly locally integrable functions

UL1
loc(R,Rn) :=

{
f ∈ L1

loc(R,Rn) : sup
a∈R

a+1∫
a

‖v(s)‖ds < ∞
}
,

endowed with the Stepanov norm

‖v‖S := sup
a∈R

a+1∫
a

‖v(s)‖ds.

Sometimes it will be convenient to associate with a function v ∈ L1
loc(R, Rn) another function 

ṽ : R → L1([0, 1], Rn), the so-called Bochner transform of v, which is defined by

(
ṽ(t)

)
(s) := v(t + s) ∀ t ∈ R, ∀ s ∈ [0,1].

Then ṽ ∈ C(R, L1([0, 1], Rn)) and, furthermore, v ∈ S1(R, Rn) if, and only if, ṽ

∈ AP(R, L1([0, 1], Rn)).
Let v ∈ S1(R+, Rn) and let τk ∈ P1(v, 1/k) for all k ∈N and τk → ∞ as k → ∞. Then it can 

be proved that, for each τ > 0, 
(
v(· + τk)

)
k

is a Cauchy sequence in L1([−τ, τ ], Rn) and hence 
defines a function ve ∈ L1

loc(R, Rn). We note that if v ∈ AP(R+, Rn) ⊂ S1(R+, Rn), then this 
extension coincides with the extension defined via (4.1). It can be shown that ve|R+ = v, that is, 
ve extends v to R, ve ∈ S1(R, Rn), P1(ve, ε) = {±τ : τ ∈ P1(v, ε)} for every ε > 0, and the map 
S1(R+, Rn) → S1(R, Rn), v �→ ve is an isometric isomorphism.∗

We are now in the position to use the results of Section 3 to prove the following theorem 
which describes the behaviour of (3.1) (with time-independent f ) under forcing in S1(R+, Rn). 
It is assumed throughout that G(s) �≡ 0 and K ∈ SR(A, B, C).

Theorem 4.3. Assume that f in (3.1) does not depend on t and (A1) and (A3) hold. Let w ∈
S1(R+, Rn) and assume that there exists a trajectory (w, z) ∈ B with bounded z. Then there 
exists a unique zap ∈ AP(R+, Rn) such that (w, zap) ∈ B, for every ε > 0, there exists δ > 0
such that P1(w, δ) ⊂ P(zap, ε), and the following statements hold.

(1) For every (v, x) ∈ B with v − w ∈ L1(R+, Rn), we have that

lim
t→∞

(
x(t) − zap(t)

) = 0 ,

∗ These properties of ve are not difficult to prove and should be well known, but we were not able to find them in the 
published literature. Details can be found in the first author’s PhD thesis [13, Appendix C.2].
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in particular, x ∈ AAP(R+, Rn).
(2) If w is periodic with period τ , then zap is τ -periodic.
(3) (we, z

ap
e ) ∈ BB and there is no other bounded function x : R → Rn such that (we, x) ∈ BB.

(4) mod(z
ap
e ) ⊂ mod(w̃e).

As for statement (4), we recall that w̃e is the function in AP(R, L1([0, 1], Rn)) defined by (
w̃e(t)

)
(s) = we(t + s) for all t ∈R and all s ∈ [0, 1].

Proof of Theorem 4.3. Let w ∈ S1(R+, Rn) and assume that there exists (w, z) ∈ B with 
bounded z. Choose ρ ≥ ‖z‖L∞ and set Bρ := {(v, x) ∈ B : ‖x‖L∞ ≤ ρ}. By statement (1) of 
Theorem 3.3, there exist ψ ∈ KL and ϕ ∈ K such that

‖x1(t) − x2(t)‖ ≤ ψ
(‖x1(t0) − x2(t0)‖,t − t0

) + ϕ
( t∫

t0

‖v1(s) − v2(s)‖ds
)

∀ (x1, v1) ∈ B, ∀ (x2, v2) ∈ Bρ, ∀ t ≥ t0 . (4.2)

We proceed in several steps.
Step 1: Construction of zap. Choose a non-decreasing sequence (τk)k such that

τk ∈ P1(w,1/k2) and τk > k ∀ k ∈N. (4.3)

We are going to show that (Sτk
z)k is a Cauchy sequence in BUC(R+, Rn). To this end, we note 

that

a+k∫
a

‖w(t + τk) − w(t)‖dt =
k∑

j=1

a+j∫
a+j−1

‖w(t + τk) − w(t)‖dt ≤ 1

k
∀ a ≥ 0, ∀ k ∈N . (4.4)

Note that (Sτw, Sτ z) ∈ B for all τ ≥ 0 by (2.2). Obviously, ‖Sτ z‖L∞ ≤ ρ for every τ ≥ 0, and it 
follows from (4.2) that, for all σ, τ ≥ 0,

‖(Sσ z)(s) − (Sσ+τ z)(s)‖ ≤ψ
(‖z(σ + s0) − z(σ + τ + s0)‖, s − s0

)

+ ϕ
( s∫

s0

‖(Sσ w)(η) − (Sσ+τw)(η)‖dη
)

∀ s ≥ s0 ≥ 0 . (4.5)

Trivially, for k, � ∈N with k ≥ �,

(Sτ�
z)(t) − (Sτk

z)(t) = (St z)(τ�) − (St+τk−τ�
z)(τ�) ∀ t ≥ 0 ,

and so, setting

I (t; k, �) :=
τ�∫

‖(Stw)(η) − (St+τk−τ�
w)(η)‖dη ∀ t ≥ 0 ,
τ�−�
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and invoking (4.5) with s = τ�, s0 = τ� − �, σ = t and τ = τk − τ�, we arrive at

‖(Sτ�
z)(t) − (Sτk

z)(t)‖ ≤ψ
(‖z(t + τ� − �) − z(t + τk − �)‖, �) + ϕ(I (t; k, �))

∀ t ≥ 0, ∀ k, � ∈ N s.t. k ≥ �. (4.6)

Now

I (t; k, �) ≤
τ�∫

τ�−�

‖(Stw)(η) − (St+τk
w)(η)‖dη +

τ�∫
τ�−�

‖(St+τk
w)(η) − (St+τk−τ�

w)(η)‖dη,

and so, for all t ≥ 0 and all k, � ∈N such that k ≥ �,

I (t; k, �) ≤
t+τ�−�+k∫
t+τ�−�

‖w(η) − (Sτk
w)(η)‖dη +

t+τk∫
t+τk−�

‖(Sτ�
w)(η) − w(η)‖dη.

Consequently, by (4.4),

I (t; k, �) ≤ 1

k
+ 1

�
∀ t ≥ 0 , ∀ k, � ∈N s.t. k ≥ �,

and it follows from (4.6) that

‖(Sτ�
z)(t) − (Sτk

z)(t)‖ ≤ ψ(2ρ, �) + ϕ(1/k + 1/�) ∀ t ≥ 0, ∀ k, � ∈N s.t. k ≥ �.

This shows that (Sτk
z)k is a Cauchy sequence in BUC(R+, Rn), the limit of which we denote 

by zap.
Step 2: Almost periodicity of zap. To show that zap ∈ AP(R+, Rn), let ε > 0 and choose 

T ∈ N and a > 0 such that

ψ(2ρ,T ) ≤ ε

2
and ϕ(a) ≤ ε

2
.

Furthermore, let τ ∈ P1(w, a/T ). Obviously,

(Sτ�
z)(t + τ) − (Sτ�

z)(t) = (St+τ z)(τ�) − (St z)(τ�), ∀ � ∈N, ∀ t ≥ 0 ,

and so, invoking (4.5) with s = τ�, s0 = τ� − T , and σ = t yields, for all t ≥ 0,

‖(Sτ�
z)(t + τ) − (Sτ�

z)(t)‖ ≤ψ
(‖z(t + τ� − T ) − z(t + τ + τ� − T )‖, T )

+ ϕ
( τ�∫
τ�−T

‖(Stw)(η) − (St+τw)(η)‖dη
)

∀ � ∈ N s.t. τ� ≥ T .

Now,
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τ�∫
τ�−T

‖(Stw)(η) − (St+τw)(η)‖dη =
t+τ�∫

t+τ�−T

‖w(η) − (Sτw)(η)‖dη

=
T∑

j=1

t+τ�−T +j∫
t+τ�−T +j−1

‖w(η) − w(η + τ)‖dη

≤ a ∀ t ≥ 0, ∀ � ∈ N s.t. τ� ≥ T ,

where the last inequality follows from the choice of τ . Thus,

‖(Sτ�
z)(t + τ) − (Sτ�

z)(t)‖ ≤ ψ(2ρ,T ) + ϕ(a) ≤ ε ∀ t ≥ 0, ∀ � ∈N s.t. τ� ≥ T .

Letting � → ∞ shows that

‖zap(t + τ) − zap(t)‖ ≤ ε ∀ t ≥ 0 ,

and so τ ∈ P(zap, ε). Since τ ∈ P1(w, a/T ) was arbitrary, we conclude that

P1(w,a/T ) ⊂ P(zap, ε) ,

showing that P(zap, ε) is relatively dense in R+. Consequently, zap ∈ AP(R+, Rn). We note that 
by construction and choice of ρ we have that ‖zap‖∞ ≤ ρ.

Step 3: Trajectory property of (w, zap). To show that (w, zap) ∈ B, let T ∈ N be arbitrary 
and note that, by (4.3),

T∫
0

‖(Sτ�
w)(s) − w(s)‖ds ≤ T

�2 ∀ � ∈N.

Hence, Sτ�
w → w in L1([0, T ], Rn) as � → ∞. Furthermore, invoking (A1) and the fact that (

Sτ�
z
)
�

converges uniformly to zap on R+, we see that the sequence 
(
f (CSτ�

z)
)
�

converges 
uniformly to f (Czap) on R+, and consequently, f (CSτ�

z) → f (Czap) in L1([0, T ], Rn) as 
� → ∞. Therefore, since for all � ∈N and all t ∈ [0, T ],

(Sτ�
z)(t) = (Sτ�

z)(0) + A

t∫
0

(Sτ�
z)(s)ds + B

t∫
0

f (C(Sτ�
z)(s))ds +

t∫
0

(Sτ�
w)(s)ds,

it follows that in the limit, as � → ∞,

zap(t) = zap(0) + A

t∫
0

zap(s)ds + B

t∫
0

f (Czap(s))ds +
t∫

0

w(s)ds ∀ t ∈ [0, T ].

As this holds for every T ∈ N , we have that zap ∈ W
1,1

(R+, Rn) and
loc
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żap(t) = Azap(t) + Bf (Czap(t)) + w(t) for a.e. t ≥ 0,

showing that (w, zap) ∈ B.
Step 4: Uniqueness of zap within AP(R+, Rn). Assume that z∗ ∈ AP(R+, Rn) with 

(w, z∗) ∈ B. To establish uniqueness, we have to show that z∗ = zap. But this follows easily: 
an application of statement (1) of Theorem 3.3 shows that (z∗(t) − zap(t)) → 0 as t → ∞, and 
therefore, as z∗ − zap is almost periodic, we conclude that z∗ = zap.

Step 5: Proof of statement (1). Let (v, x) ∈ B with v − w ∈ L1(R+, Rn). As ‖zap‖L∞ ≤ ρ, 
it follows from (4.2) that

‖zap(t) − x(t)‖ ≤ ψ
(‖zap(t0) − x(t0)‖, t − t0

) + ϕ
( t∫

t0

‖w(s) − v(s)‖ds
)

∀ t ≥ t0 ≥ 0 .

Let ε > 0 and choose t0, t1 ≥ 0 such that

ϕ
( ∞∫

t0

‖w(s) − v(s)‖ds
)

≤ ε

2
and ψ

(‖zap(t0) − x(t0)‖, t1
) ≤ ε

2
,

where the existence of a suitable t0 follows from the assumption that v−w ∈ L1(R+, Rn). Then, 
‖zap(t) − x(t)‖ ≤ ε for all t ≥ t0 + t1, showing that ‖zap(t) − x(t)‖ → 0 as t → ∞.

Step 6: Proof of statement (2). Assume that w is τ -periodic. Then, τ ∈ P1(w, δ) for every 
δ > 0. Since, by Step 2, for every ε > 0, there exists δ > 0 such that P1(w, δ) ⊂ P(zap, ε), it 
follows that τ ∈ P(zap, ε) for every ε > 0, showing that zap is τ -periodic.

Step 7: Proof of statement (3). We know from what has already been proved that, for each 
k ∈N , there exists δk ∈ (0, 1/k) such that

P1(w, δk) ⊂ P(zap,1/k) ∀ k ∈ N . (4.7)

For the following, it is convenient to set

g(ξ) := Aξ + Bf (Cξ) ∀ ξ ∈Rn .

By assumption (A1) there exists κ > 0 such that P(zap, 1/k) ⊂ P(g ◦ zap, κ/k) for all k ∈ N , 
and so,

P1(w, δk) ⊂ P(g ◦ zap, κ/k) ⊂ P1(g ◦ zap, κ/k) ∀ k ∈ N . (4.8)

Let a < 0 be fixed, but arbitrary, let τk ∈ P1(w, δk) ∩ [−a, ∞), and note that

z
ap
e (t + τk)− z

ap
e (a + τk) = zap(t + τk)− zap(a + τk) =

t+τk∫
a+τk

(
g(zap(s))+w(s)

)
ds ∀ t ∈ [a,0] .

Therefore,
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z
ap
e (t + τk) − z

ap
e (a + τk) =

t∫
a

(
g(zap(s + τk)) + w(s + τk)

)
ds

=
t∫

a

(
g(z

ap
e (s + τk)) + we(s + τk)

)
ds ∀ t ∈ [a,0] . (4.9)

Now, for all k ∈N ,

P1(w, δk) ⊂ P1(we, δk), P (zap,1/k) ⊂ P(z
ap
e ,1/k), P1(g ◦ zap, κ/k) ⊂ P1(g ◦ z

ap
e , κ/k) ,

and thus, by (4.7) and (4.8),

τk ∈ P1(we, δk) ∩ P(z
ap
e ,1/k) ∩ P1(g ◦ z

ap
e , κ/k) ∀ k ∈ N .

Therefore, letting k → ∞ in (4.9) yields

z
ap
e (t) − z

ap
e (a) =

t∫
a

(
g(z

ap
e (s)) + we(s)

)
ds ∀ t ∈ [a,0] .

Since a < 0 was arbitrary, we conclude that

ż
ap
e (t) = g(z

ap
e (t)) + we(t) = Az

ap
e (t) + Bf (Cz

ap
e (t)) + we(t) for a.e. t ≤ 0,

establishing that (we, z
ap
e ) ∈ BB.

To prove that zap
e is the unique bounded function defined on R such that (we, z

ap
e ) ∈ BB, let 

x : R → Rn be bounded and assume that (we, x) ∈ BB. We will show that x = z
ap
e . Obviously, 

by (3.2), for any τ ∈ R, the restrictions of the pairs (Sτwe, Sτ z
ap
e ) and (Sτwe, Sτ x) to R+ are in 

B. Consequently, invoking statement (1) of Theorem 3.3, there exists ψ ∈KL such that

‖(Sτ x)(s) − (Sτ z
ap
e )(s)‖ ≤ ψ

(
(Sτ x)(0) − (Sτ z

ap
e )(0), s

) ∀ s ≥ 0, ∀ τ ∈R.

Now let t ∈R and ε > 0. Choosing τ ≤ t such that ψ
(‖zap

e ‖L∞ +‖x‖L∞, t −τ
) ≤ ε and applying 

the above inequality with s = t − τ leads to

‖x(t) − z
ap
e (t)‖ = ‖(Sτ x)(t − τ) − (Sτ z

ap
e )(t − τ)‖ ≤ ψ

(
x(τ) − z

ap
e (τ ), t − τ

)
,

whence,

‖x(t) − z
ap
e (t)‖ ≤ ψ

(‖zap
e ‖L∞ + ‖x‖L∞, t − τ

) ≤ ε .

As ε > 0 was arbitrary, it follows that x(t) = z
ap
e (t). Finally, since t ∈R was arbitrary, we obtain 

that x = z
ap
e , completing the proof.

Step 8: Proof of statement (4). For every τ ∈ R, the trajectory (Sτwe, Sτ z
ap
e ) is in BB, 

and hence (Sτwe, Sτ z
ap
e )|R+ ∈ B. As ‖zap

e ‖L∞ = ‖zap‖L∞ ≤ ρ, it is an immediate consequence 
of (4.2) that, for all t ≥ t0 ≥ 0,
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‖(Sτ z
ap
e )(t) − (Sσ z

ap
e )(t)‖ ≤ ψ

(‖(Sτ z
ap
e )(t0) − (Sσ z

ap
e )(t0)‖, t − t0

)

+ ϕ
( t∫

t0

‖(Sτwe)(s) − (Sσ we)(s)‖ds
)

∀ τ, σ ∈ R. (4.10)

Let (τk)k be a sequence in R such that (Sτk
w̃e)k converges in AP(R, L1([0, 1], Rn)). By [1, 

Statement X on p. 34], it is sufficient to prove that the sequence (Sτk
z

ap
e )k converges in 

AP(R, Rn), or, equivalently, that (Sτk
z

ap
e )k is a Cauchy sequence in AP(R, Rn). To this end, let 

ε > 0, set ρ := ‖zap
e ‖L∞ and choose T ∈N and δ > 0 such that ψ(2ρ, T ) ≤ ε/2 and ϕ(δ) ≤ ε/2, 

in which case

ψ(2ρ, s) ≤ ε

2
∀ s ≥ T and ϕ(s) ≤ ε

2
∀ s ∈ [0, δ].

Since (Sτk
w̃e)k converges in AP(R, L1([0, 1], Rn)), it follows that (Sτk

we)k converges in 
S1(R, Rn), and hence is a Cauchy sequence in S1(R, Rn). Consequently, there exists N ∈ N
such that

‖Sτk
we − Sτ�

we‖S ≤ δ

2T
∀ k, � ≥ N,

and thus,

a+2T∫
a

‖(Sτk
we)(s) − (Sτ�

we)(s)‖ds =
2T −1∑
j=0

a+j+1∫
a+j

‖(Sτk
we)(s) − (Sτ�

we)(s)‖ds

≤ 2T ‖Sτk
we − Sτ�

we‖S

≤ δ ∀ a ∈R, ∀ k, � ≥ N. (4.11)

For t ≥ 0, let pt denote the unique integer such that t ∈ [ptT , (pt +1)T ). By (4.10), for all t ≥ T

we have that

‖(Sτk
z

ap
e )(t) − (Sτ�

z
ap
e )(t)‖ ≤ψ(2ρ, t − (pt − 1)T )

+ ϕ
( t∫
(pt−1)T

‖(Sτk
we)(s) − (Sτ�

we)(s)‖ds
)

. (4.12)

Appealing to (4.11), we obtain

t∫
(pt−1)T

‖(Sτk
we)(s) − (Sτ�

we)(s)‖ds ≤
(pt−1)T +2T∫
(pt−1)T

‖(Sτk
we)(s) − (Sτ�

we)(s)‖ds

≤ δ ∀ t ≥ T , ∀ k, � ≥ N.

Since, for any t ≥ T , we have (pt − 1)T ≥ 0 and t − (pt − 1)T ≥ T , it follows from (4.12) that
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‖(Sτk
z

ap
e )(t) − (Sτ�

z
ap
e )(t)‖ ≤ ε

2
+ ϕ(δ) ≤ ε ∀ t ≥ T , ∀ k, � ≥ N.

Consequently, by almost periodicity of the function Sτk
z

ap
e − Sτ�

z
ap
e , we may use Lemma 4.1 to 

conclude

‖Sτk
z

ap
e − Sτ�

z
ap
e ‖L∞ = sup

t≥T

‖(Sτk
z

ap
e )(t) − (Sτ�

z
ap
e )(t)‖ ≤ ε ∀ k, � ≥ N,

showing that (Sτk
z

ap
e )k is a Cauchy sequence in AP(R, Rn) and completing the proof. �

In the light of the above proof and Corollary 3.5, it is clear that the following circle-criterion 
version of Theorem 4.3 holds.

Corollary 4.4. Let K1, K2 ∈ Rm×p . Assume that f in (3.1) does not depend on t and (A, B, C)

is controllable and detectable or, alternatively, stabilizable and observable. Let w ∈ S1(R+, Rn)

and assume that there exists a trajectory (w, z) ∈ B with bounded z. If (I − K2G)(I − K1G)−1

is positive real and

〈f (y + ξ) − f (ξ) − K1y,f (y + ξ) − f (ξ) − K2y〉 < 0 ∀ y, ξ ∈ Rp, y �= 0 ,

then the conclusions of Theorem 4.3 hold.

Before presenting the final result of this section, we pause to compare Theorem 4.3 to related 
results in the literature. The most relevant results in this context are [13, Theorem 3.2.9], [15, 
Theorem 4.3], [16, Theorem 4.5], [32, Theorem 2] and [41, Theorem 1]. The papers [32,41] are 
restricted to scalar nonlinearities, that is, m = p = 1) and in [15,32,41] the forcing functions are 
assumed to be almost periodic in the sense of Bohr. A Lyapunov approach is used in [13,15,41], 
whilst the analyses in [16,32] are based on input-output methods. The paper [16] considers a 
large class of infinite-dimensional continuous-time systems with the underlying linear system 
being well-posed in the sense of [36,38], whilst [15] considers finite-dimensional discrete-time 
systems. An inspection of the assumptions on the nonlinearity f imposed in the relevant results 
in [13,15,16,32,41] shows that, in each case, they are equivalent to the existence, for each ξ , of a 
function γξ ∈K∞ such that

‖f (y + ξ) − f (ξ) − Ky‖ ≤ rK‖y‖ − γξ (‖y‖) ∀ y ∈Rp, (4.13)

where in [16,32,41] it is assumed that there exists ε > 0 such that γξ (s) = εs for every ξ ∈ Rp . 
We emphasize that condition (4.13), with γξ ∈ K∞ for every ξ , is considerably stronger than 
(A1) (in fact, it is equivalent to (A1) and (A2) holding simultaneously). Furthermore, we note 
that if there exists ε > 0 such that (4.13) is satisfied with γξ (s) = εs for every ξ ∈ Rp , then the 
Lur’e system enjoys a much stronger stability property, namely global exponential incremental 
ISS [16,19], in which case the convergence in statement (1) of Theorem 4.3 is exponentially fast, 
see [16].

If, in the assumptions of Theorem 4.3, (A3) is replaced by (A2) and w is not only in 
S1(R+, Rn), but also essentially bounded, then the conclusions can be strengthened, as the fol-
lowing the result shows.
721



M.E. Gilmore, C. Guiver and H. Logemann Journal of Differential Equations 300 (2021) 692–733
Theorem 4.5. Assume that f in (3.1) does not depend on t , (A1) and (A2) hold, and let w ∈
S1(R+, Rn) ∩ L∞(R+, Rn). Then there exists a unique zap ∈ AP(R+, Rn) such that (w, zap) ∈
B, and, for every ε > 0, there exists δ > 0 such that P1(w, δ) ⊂ P(zap, ε). Furthermore, the 
following assertions are true.

(1) Statements (1)–(4) of Theorem 4.3 hold.
(2) For every (v, x) ∈ B with v ∈ L∞(R+, Rn) and such that ess sups≥t ‖v(s) − w(s)‖ → 0 as 

t → ∞

lim
t→∞

(
x(t) − zap(t)

) = 0 .

(3) There exists θ ∈K such that, for every pair (v, xap) ∈ B with v ∈ S1(R+, Rn) ∩L∞(R+, Rn)

and xap ∈ AP(R+, Rn),

‖xap − zap‖L∞ ≤ θ(‖v − w‖L∞) . (4.14)

Commenting on statement (3), we note that the earlier part of Theorem 4.5 (preceding state-
ment (1)) guarantees that, for every v ∈ S1(R+, Rn) ∩ L∞(R+, Rn), there exists a unique 
xap ∈ AP(R+, Rn) such that (v, xap) ∈ B.

Proof of Theorem 4.5. Theorem 3.7 guarantees that, for every (w, z) ∈ B, the state z is 
bounded. Invoking now Theorem 3.7 instead of Theorem 3.3, statement (1) can be proved by 
arguments identical to those used in the proof of Theorem 4.3. Statement (2) can be established 
by an argument similar to that used in Step 5 of the proof of Theorem 4.3 by appealing to (3.13)
instead of (3.5). To prove statement (3), let ε > 0 and note, that by Theorem 3.7, there ex-
ist θ ∈ K and such that, for every pair (v, xap) ∈ B with v ∈ S1(R+, Rn) ∩ L∞(R+, Rn) and 
xap ∈ AP(R+, Rn),

lim sup
t→∞

‖xap(t) − zap(t)‖ ≤ ε + θ(‖v − w‖L∞) .

By Lemma 4.1 it follows that, for every pair (v, xap) ∈ B with v ∈ S1(R+, Rn) ∩ L∞(R+, Rn)

and xap ∈ AP(R+, Rn),

‖xap − zap‖L∞ ≤ ε + θ(‖v − w‖L∞) ,

establishing (4.14) as ε > 0 was arbitrary. �
5. An example

As an illustrative example, we consider the system of forced nonlinear differential equations 
modelling a linked sequence of chemical reactions, namely

ż1 = −a1z1 + g(z3) + v1, z1(0) = z0
1 ,

ż2 = z1 − a2z2 + v2, z2(0) = z0
2 ,

ż = z − a z + v , z (0) = z0 .

⎫⎪⎪⎬
⎪⎪⎭ (5.1)
3 2 3 3 3 3 3
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Here zi denotes the concentration of the i-th reagent, ai are positive constants, vi are forcing 
terms, and g : R+ → R+ is a nonlinear function modelling activation or inhibition of reagent z1
by z3. These equations were considered in [33, Example 3.5], and are inspired by the metabolic 
control mechanisms from [30, Section 7.2]. We refer the reader to these reference for more details 
on the interpretation of the model.

To express (5.1) as a forced Lur’e differential equation (3.1), we first define the linear data

A :=
⎛
⎝−a1 0 0

1 −a2 0
0 1 −a3

⎞
⎠ , B :=

⎛
⎝1

0
0

⎞
⎠ , C := (

0 0 1
)

. (5.2)

Evidently, the matrix A is Metzler and Hurwitz. Furthermore, (A, B, C) is controllable and ob-
servable, so that (A3) holds, and

‖G‖H∞ = G(0) = 1

a1a2a3
> 0.

The paper [33] considers the situation wherein g models inhibition of z3 on z1. Here we assume 
that z3 activates z1, and assume that g is locally Lipschitz with g(0) > 0 and is strictly increasing. 
Consequently, (0, 0) is not an equilibrium pair of (5.1), but we assume that there exists a unique 
positive solution y+ > 0 of the equation

G(0)g(y) = y, (5.3)

in which case y+ = Cz+, where z+ := −A−1Bg(y+) is the unique vector in R3 such that (z+, 0)

is an equilibrium pair of (5.1).
To express the system (5.1) as a forced Lur’e differential equation of the form (3.1), we write 

z := (z1, z2, z3)
∗, z0 := (z0

1, z
0
2, z

0
3)

∗, v := (v1, v2, v3)
∗ and set

x := z − z+, x0 := z0 − z+, f (y) :=
{

g(y + y+) − g(y+), y ≥ −y+

g(0) − g(y+), y < −y+.
(5.4)

Since A is Metzler and B , C and g are non-negative, it follows that z+ is non-negative, and, for 
all z0 ∈R3+ and v ∈ L1

loc(R+, R3+), the forward solution z(· ; z0, v) of (5.1) is also non-negative. 
Consequently, the corresponding solution x(· ; x0, v) of (3.1) satisfies

x(t;x0, v) = z(t; z0, v) − z+ ≥ −z+ ∀ t ≥ 0 ,

and, therefore, Cx(t; x0, v) ≥ −Cz+ = −y+ for all t ≥ 0. The definition of f (y) for y < −y+
is to fit the model (5.1) into the framework of Section 3 and, although artefactual, the extension 
is not seen in physically motivated situations.

In the following, we will provide illustrations of Theorems 3.3 and 4.3. As A is Hurwitz, we 
may take K = 0 and set

r := r0 = 1 = 1 = a1a2a3.
‖G‖H∞ G(0)
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Specifically, we consider the situation wherein g is a so-called smoothed rectifier function, given 
by

g(y) = 1

k
ln

(
1 + ekry

) − b ∀ y ≥ 0 , (5.5)

where b, k > 0 and b < (ln 2)/k. Since ln
(
1 + ekry

) = kry + ln
(
1 + e−kry

)
, we have that

ry − g(y) → b as y → ∞. (5.6)

If g(z3) in (5.1) is replaced by rz3 − b, then, as 0 is an eigenvalue of A + rBC, there exist non-
negative forcing functions v of arbitrarily small positive L∞-norm which generate unbounded 
solutions. However, (5.1) has better stability properties: indeed, it will be shown below that, for 
all non-negative initial conditions and all forcing functions v of sufficiently small L∞-norm, the 
solutions of (5.1) are bounded.

Under the stated assumptions, it is routine to verify that

y+ := −G(0)

k
ln(ekb − 1) = G(0)

k
ln

( 1

ekb − 1

)
> 0 , (5.7)

satisfies (5.3). As K = 0, the nonlinearity f , as defined in (5.4), satisfies assumption (A1) if, and 
only, if

|f (y + ξ) − f (ξ)| < r|y| ∀ y �= 0, ∀ ξ ∈ R . (5.8)

To establish (5.8) note that

f ′(y) = r

1 + e−kr(y+y+)
< r ∀ y > −y+ and f ′(y) = 0 ∀ y < −y+,

and so |f ′(y)| < r for all y �= −y+. An application of the mean-value theorem then shows that 
|f (y + ξ) −f (ξ)| < r|y| for all y �= 0 and all ξ , establishing (5.8) and hence (A1). Furthermore, 
using (5.6) and the fact that f is non-decreasing, it is a routine exercise to show that, for all 
ξ ∈R,

r|y| − |f (y + ξ) − f (ξ)| = ry − (
f (y + ξ) − f (ξ)

) → b + c as y → ∞,

where c = g(ξ + y+) − g(y+) − rξ if ξ ≥ −y+ and c = g(y+) − g(0) − rξ if ξ < −y+. Con-
sequently, (A2) does not hold, and so, there does not exist ξ ∈ R and γξ ∈ K∞ such that (4.13)
holds (the latter is a key assumption in [33]).

Lemma 3.6 guarantees that the solutions of (5.1) generated by sufficiently small forcing func-
tions are bounded provided that condition (3.11) holds with y† = 0. To show this, we use the fact 
that g is increasing and (5.6) to obtain,

r|y| − |f (y)| = ry − g(y + y+) + g(y+) = r(y + y+) − g(y + y+) → b > 0 as y → ∞.

The function f is constant for y < −y+, and thus, r|y| −|f (y)| → ∞ as y → −∞. As f (0) = 0, 
we may now conclude that (3.11) is satisfied with y† = 0 and K = 0 (recall that r = r0).
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For a numerical simulation, we take

a1 = 2, a2 = 3, a3 = 4, k = 0.01 and b = 10 . (5.9)

With these choices, we compute

y+ ≈ 9.384 and z+ = −A−1Bg(y+) ≈
⎛
⎝113.0

37.5
9.38

⎞
⎠ .

To define the forcing functions we are going to consider, it is convenient to set

Be := 0.4

⎛
⎝0

0
1

⎞
⎠ , ω1 := 1

2
, ω2 :=

√
3

10
and η0(t) := t

2
(
1 + 1

4 t
) 9

2

∀ t ≥ 0 ,

and, furthermore, for t ≥ 0,

ηap(t) := 1 + sin(2πω1t) + 2
(
1 + sin

(
2πω2t

))
, ηaap := ηap + η0 ,

ηs(t) := 2 + sin
(
mod(t,3π/2)

) + sin
(√

2 mod(t,3π/(2
√

2))
)
, ηas := ηs + 4η0 .

Here, for t ≥ 0 and τ > 0,

mod(t, τ ) := t − kτ ∈ [0, τ ), where k is the largest integer in Z+ such that t ≥ kτ .

The functions ηap, ηaap, ηs, ηas are, respectively, almost periodic (in the sense of Bohr), asymptot-
ically almost periodic, Stepanov almost periodic, and asymptotically Stepanov almost periodic. 
We will consider the forcing functions

w := Beη
ap, v := Beη

aap w̃ := Beη
s and ṽ := Beη

as,

and use the following three initial conditions

z0 = ζ k := k

⎛
⎝10

5
1

⎞
⎠ k = 1,2,3 .

Note that the functions w − v and w̃ − ṽ = 4(w − v) are in L1(R+, R3).
Figs. 5.1 and 5.2 show numerical simulations of (3.1) with model data (5.2), (5.4), (5.5)

and (5.9). All simulations were performed in Mathworks MATLAB 2020A using the command
ode45 to numerically solve the differential equations. Fig. 5.1(a) plots the three components of 
the solution z(t; ζ 1, w) of (5.1) against t (black solid lines). In particular, we see that this solution 
is bounded and, therefore, Theorem 3.3, Corollary 3.4 and Theorem 4.3 can be applied. Further, 
Fig. 5.1a seems to show that z(t; ζ 1, w) − zap(t) → 0 as t → ∞, where zap is an almost periodic 
function, as predicted by Theorem 4.3. Fig. 5.1(b) displays plots of ‖z(t; ζ 1, w) − z(t; ζ k, v)‖
against t for k = 1, 2, 3. In each case, we see that the norms of the differences increase as 
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Fig. 5.1. (a) Components of z(t, ζ 1, w) (black solid lines) and z(t, ζ 3, v) (grey dashed lines). (b) Norms of differences 
of solutions of (5.1) plotted against time t . The inset shows the graph of η0.

‖ζ 1 − ζ k‖ increases, but, in each case, they decrease to zero over time, as predicted by The-
orem 3.3 and Corollary 3.4. The inset in Fig. 5.1(b) shows the graph of η0. Moreover, by 
statement (1) of Theorem 4.3, 

(
z(t; ζ 3, v) − zap(t)

) → 0 as t → ∞ which is observed by eye 
in Fig. 5.1(a) (grey dashed lines).

Fig. 5.2(a) shows the graph of the Stepanov almost periodic function ηs. Fig. 5.2(b) plots the 
norms ‖z(t; ζ 3, w̃)‖ and ‖z(t; 0, ṽ)‖, both against t , in solid and dotted lines, respectively. We 
see that ‖z(t; ζ 3, w̃)‖ appears bounded, and so Corollary 3.4 and Theorem 4.3 are applicable. 
Fig. 5.2(c) plots the third components of z(t; ζ 3, w̃) and z(t; 0, ṽ) against t in solid and dashed 
lines, respectively. We see by eye convergence of the components to one another, and they appear 
to be asymptotically almost periodic, thereby illustrating Theorem 4.3. We have considered only 
one (the third) component as the asymptotic oscillations are small compared to the absolute size 
of each component, and the fluctuations are obscured when all three components are plotted in the 
same co-ordinate system. The inset in Fig. 5.2(c) plots the norm of the difference z(t; ζ 3, w̃) −
z(t; 0, ṽ) against t , which is seen to converge to zero as t increases as predicted by Corollary 3.4.

6. Appendix

In this Appendix, we provide proofs of Lemmas 2.2, 3.1 and 3.2.

Proof of Lemma 2.2. Define a function g : Rp → R+ by setting g(y) := r‖y‖ −|F(y) −Ky|m
for all y ∈ Rp . By (2.3), g(y) > 0 for all y �= 0. As F is an upper-semicontinuous set-valued 
map, the function g is lower semicontinuous. Next, let us define h :Rp →R+ by

h(y) := inf
z∈Rp

(
g(z) + ‖z − y‖) ∀ y ∈ Rp .

Obviously, h(y) ≤ g(y) for all y ∈Rp , and, invoking the lower semi-continuity and positivity of 
g, we see that h(y) > 0 for all y �= 0. Furthermore, as g(z) +‖z−y‖ ≤ g(z) +‖z−x‖ +‖x −y‖
for all x, y, z ∈Rp , we obtain

h(y) − h(x) ≤ ‖x − y‖ ∀ x, y ∈Rp .
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Fig. 5.2. (a) Graph of ηs. (b) Norms of z(· ; ζ 3, w̃) (solid line) and z(· ; 0, ̃v) (dotted-line). (c) Third components of 
z(· ; ζ 3, w̃) (solid line) and z(· ; 0, ̃v) (dashed line). The inset shows the graph of ‖z(· ; ζ 3, w̃) − z(· ; 0, ̃v)‖.

Interchanging the roles of x and y, we may conclude that

|h(y) − h(x)| ≤ ‖x − y‖ ∀ x, y ∈Rp ,

showing that h is globally Lipschitz. Consequently, the function β :R+ → R+ given by

β(s) := inf‖y‖=s
h(y) ∀ s ≥ 0 ,

is continuous. Moreover, β(0) = 0 and β(s) > 0 for s > 0, whence β ∈P . As

β(‖y‖) ≤ h(y) ≤ g(y) ≤ r‖y‖ − |F(y) − Ky|m ∀ y ∈Rp,

it follows that

|F(y) − Ky|m ≤ r‖y‖ − β(‖y‖) ∀ y ∈Rp.
727



M.E. Gilmore, C. Guiver and H. Logemann Journal of Differential Equations 300 (2021) 692–733
Furthermore, if the divergence condition (2.5) holds, then g(y) → ∞ as ‖y‖ → ∞, and so 
h(y) → ∞ as ‖y‖ → ∞, which in turn implies that lims→∞ β(s) = ∞. Consequently, the func-
tion γ̃ : R+ → R+ given by γ̃ (s) = (1 − e−s) inft≥s β(t) is in K∞ and satisfies γ̃ (s) ≤ β(s)

for all s ≥ 0. It follows now from [25, Lemma 1] that there exists a continuously differentiable 
function γ ∈ K∞ such that γ (s) ≤ γ̃ (s) ≤ β(s) for all s ≥ 0.

In the absence of the divergence condition (2.5), we invoke [25, Lemma 18] which guarantees 
that there exist β1 ∈K∞ and β2 ∈ L such that β(s) ≥ β1(s)β2(s) for all s ≥ 0. The existence of a 
continuously differentiable function γ ∈P such that γ (s) ≤ β(s) for all s ≥ 0 follows now from 
Lemmas 6.1 and 6.2 below. �

The following lemmas are not surprising. For completeness we provide proofs which can be 
found at the end of the Appendix.

Lemma 6.1. For each ϕ ∈ K, there exists a continuously differentiable θ ∈ K such that θ(s) ≤
ϕ(s) for all s ≥ 0 and θ ′(s) = O(1/s3) as s → ∞.

Lemma 6.2. For each ϕ ∈ L, there exists a continuously differentiable θ ∈ L such that θ(s) ≤
ϕ(s) for all s ≥ 0 and θ ′(0) = 0.

Proof of Lemma 3.1. Defining g :R+ ×Rp →Rm by

g(t, y) := f (t, y) − Ky ∀ t ≥ 0, ∀ y ∈ Rp, (6.1)

the claim can be written in the form

lim‖y‖→∞
(
rK‖y‖ − sup

t≥0
‖g(t, y + ξ) − g(t, ξ)‖) = ∞ ∀ ξ ∈ Rp. (6.2)

To establish (6.2), let ξ ∈Rp be fixed but arbitrary, set ζ := y + ξ − ξ0, where y ∈ Rp , and note 
that,

rK‖y‖ − ‖g(t, y + ξ) − g(t, ξ)‖ ≥ rK(‖ζ‖ − ‖ξ0 − ξ‖) − ‖g(t, ζ + ξ0) − g(t, ξ0)‖
− ‖g(t, ξ0) − g(t, ξ)‖ ∀ t ≥ 0.

By (A1), it follows that ‖g(t, ξ0) − g(t, ξ)‖ ≤ rK‖ξ − ξ0‖ for all t ≥ 0, and thus,

rK‖y‖−‖g(t, y+ξ)−g(t, ξ)‖ ≥ rK(‖ζ‖−2‖ξ −ξ0‖)−sup
τ≥0

‖g(τ, ζ +ξ0)−g(τ, ξ0)‖ ∀ t ≥ 0.

This in turn implies that

rK‖y‖ − sup
t≥0

‖g(t, y + ξ) − g(t, ξ)‖ ≥ rK‖ζ‖ − sup
τ≥0

‖g(τ, ζ + ξ0) − g(τ, ξ0)‖ − 2rK‖ξ − ξ0‖.
(6.3)

Since ‖ζ‖ → ∞ as ‖y‖ → ∞, it follows from (A2) that the RHS of (6.3) goes to ∞ as ‖y‖ → ∞, 
and, a fortiori, the same applies to the LHS of (6.3), establishing (6.2). �
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Proof of Lemma 3.2. Defining g : R+ ×Rp → Rm by (6.1), the function β
 can be written in 
the form

β
(s) := sup
t≥0, ξ∈
,‖y‖≤s

‖g(t, y + ξ) − g(t, ξ)‖.

To prove statement (1), we note that, by (A1),

∥∥g(t, y1 + ξ) − g(t, ξ) − (
g(t, y2 + ξ) − g(t, ξ)

)∥∥ ≤ rK‖y1 − y2‖ ∀ t ≥ 0, ∀ y1, y2, ξ ∈ Rp,

and hence,

‖g(t, y1 + ξ) − g(t, ξ)‖ ≤ ‖g(t, y2 + ξ) − g(t, ξ)‖ + rK‖y1 − y2‖ ∀ t ≥ 0, ∀ y1, y2, ξ ∈Rp.

Setting

h(y) := sup
t≥0, ξ∈


‖g(t, y + ξ) − g(t, ξ)‖ ∀ y ∈Rp,

it follows that

h(y1) ≤ h(y2) + rK‖y1 − y2‖ ∀ y1, y2 ∈ Rp.

Interchanging the roles of y1 and y2 in the above argument gives that h is globally Lipschitz with 
Lipschitz constant rK . Furthermore, we note that

β
(s) = max‖y‖≤s
h(y) ∀ s ≥ 0 . (6.4)

Let s1, s2 ≥ 0, s1 �= s2. Without loss of generality we assume that s2 > s1. Let y2 ∈ Rp be such 
that ‖y2‖ ≤ s2 and β
(s2) = h(y2). Setting y1 := (s1/s2)y2, it follows that ‖y1‖ ≤ s1, ‖y2 −
y1‖ ≤ s2 − s1 and

0 ≤ β
(s2) − β
(s1) ≤ h(y2) − h(y1) ≤ rK‖y2 − y1‖ ≤ rK(s2 − s1) ,

showing that β
 is globally Lipschitz with Lipschitz constant rK .
We proceed to show that the function α defined by α(s) = rKs − β
(s) for all s ≥ 0 is in P . 

Evidently, α(0) = 0, α(s) ≥ 0 for all s ≥ 0 and α is continuous. Therefore, it remains to show 
that α(s) > 0 for s > 0. To this end, note that, as a consequence of (A1),

∥∥g(t, y + ξ1) − g(t, ξ1) − (
g(t, y + ξ2) − g(t, ξ2)

)∥∥ ≤ 2rK‖ξ1 − ξ2‖ ∀ t ≥ 0, ∀ ξ1, ξ2, y ∈Rp .

Therefore, for each fixed y ∈ Rp , the function

gy : Rp → R+, ξ �→ sup
t≥0

‖g(t, y + ξ) − g(t, ξ)‖ ,

is globally Lipschitz. Invoking assumption (A1) once more, we have that
729



M.E. Gilmore, C. Guiver and H. Logemann Journal of Differential Equations 300 (2021) 692–733
sup
t≥0

‖g(t, y + ξ) − g(t, ξ)‖ = gy(ξ) < rK‖y‖ for all y, ξ ∈ Rp, y �= 0 ,

and it follows from continuity of gy and compactness of 
 that

sup
ξ∈


sup
t≥0

‖g(t, y + ξ) − g(t, ξ)‖ = sup
ξ∈


gy(ξ) < rK‖y‖ for all y ∈Rp, y �= 0 .

Since the LHS is equal to h(y), we conclude that h(y) < rK‖y‖ for all non-zero y ∈ Rp , and 
so, the continuity of h guarantees that β
(s) < rKs for all s > 0, implying that α(s) > 0 for all 
s > 0.

Moreover, by construction, it holds that, for all y ∈ Rp and all ξ ∈ 
,

sup
t≥0

‖f (t, y + ξ) − f (t, ξ) − Ky‖ = sup
t≥0

‖g(t, y + ξ) − g(t, ξ)‖ ≤ β
(‖y‖) = rK‖y‖ − α(‖y‖) ,

which is (3.4).
To complete the proof of statement (1), assume that (A2) holds. It is sufficient to prove that 

α(s) → ∞ as s → ∞, in which case the function α0 defined by

α0(s) = (1 − e−s) inf
t≥s

α(t) ∀ s ≥ 0 (6.5)

is a K∞-function satisfying α0(s) ≤ α(s) for all s ≥ 0. Seeking a contradiction, suppose that 
there exists a sequence (sj )j in R+ such that sj → ∞ as j → ∞ and (α(sj ))j is bounded. By 
(6.4), there exist vectors yj ∈ Rp such that ‖yj‖ ≤ sj and h(yj ) = β
(sj ). As α(sj ) = rKsj −
h(yj ), it follows that the sequence (rKsj − h(yj ))j is bounded. By (A1),

rKsj − h(yj ) ≥ rK(sj − ‖yj‖) ≥ 0 ∀ j ∈ N,

showing that the sequence (sj − ‖yj‖)j is bounded. Consequently, choosing sequences (tj )j in 
R+ and (ξj )j in 
 such that

lim
j→∞

(
h(yj ) − ‖g(tj , yj + ξj ) − g(tj , ξj )‖

) = 0,

we conclude that

0 ≤ sup
j∈N

(
rK‖yj‖ − ‖g(tj , yj + ξj ) − g(tj , ξj )‖

)
< ∞ (6.6)

As 
 is compact, we may assume, without loss of generality, that (ξj )j is convergent with limit 
ζ ∈ 
. Routine estimates show that

rK‖yj‖ − ‖g(tj , yj + ζ ) − g(tj , ζ )‖ ≤ rK‖yj‖ − ‖g(tj , yj + ξj ) − g(tj , ξj )‖ + 2rK‖ζ − ξj‖
∀ j ∈N . (6.7)
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By (6.6), the RHS of (6.7) is bounded. On the other hand, since the sequence (sj − ‖yj‖)j is 
bounded, we have that ‖yj‖ → ∞ as j → ∞, and so, invoking Lemma 3.1, the LHS of (6.7)
converges to ∞ as j → ∞, yielding the desired contradiction.

To prove statement (2), set α(s) := rKs − β{ξ0}(s) for all s ≥ 0. By statement (1), α ∈ P , and 
arguments very similar to those used in the proof of statement (1) show that lim infs→∞ α(s) > 0
(we leave the details to the reader). Consequently, the function α0 defined in (6.5) is in K and 
satisfies α0(s) ≤ α(s) for all s ≥ 0. �
Proof of Lemma 6.1. Let ϕ ∈K. As in the proof of [29, Lemma 5.42] it can be shown that there 
exists continuously differentiable ϕ1 ∈ K such that ϕ1(s) ≤ ϕ(s) for all s ≥ 0. Choose s∗ > 0
such that ϕ′

1(s∗) > 0 and define ϕ2 : [s∗, ∞) → R+ by

ϕ2(s) := min
(
ϕ′

1(s), s
3∗ϕ′

1(s∗)/s3) ∀ s ≥ s∗ .

Obviously, ϕ2(s∗) = ϕ′
1(s∗) > 0 and ϕ2(s) = O(1/s3) as s → ∞. Defining the function θ by

θ(s) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1(s) , 0 ≤ s ≤ s∗ ,

ϕ1(s∗) +
s∫

s∗

ϕ2(t)dt , s > s∗ ,

we see that θ is continuously differentiable, θ ∈K, θ(s) ≤ ϕ1(s) ≤ ϕ(s) for all s ≥ 0 and

θ ′(s) = ϕ2(s) = O(1/s3) as s → ∞,

completing the proof. �
Proof of Lemma 6.2. Let ϕ ∈ L and define ϕ1 : R+ → R+ by ϕ1(0) := 0 and ϕ1(s) := (1 −
e−s)ϕ(1/s) for s > 0. Then ϕ1 is a K-function with ϕ1(s) → ϕ(0) as s → ∞. It follows from 
Lemma 6.1 that there exists a continuously differentiable ϕ2 ∈ K such that ϕ2(s) ≤ ϕ1(s) for all 
s ≥ 0 and ϕ′

2(s) = O(1/s3) as s → ∞. Define θ : R+ → (0, ∞) by θ(0) := lims→∞ ϕ2(s) and 
θ(s) := ϕ2(1/s) for s > 0. The function θ is in L, 0 < θ(0) ≤ ϕ(0) and

θ(s) = ϕ2(1/s) ≤ ϕ1(1/s) = (1 − e−1/s)ϕ(s) < ϕ(s) ∀ s > 0.

Moreover, θ is continuously differentiable on (0, ∞) with

θ ′(s) = −ϕ′(1/s)/s2 ∀ s > 0 ,

and so, as ϕ′
2(s) = O(1/s3) as s → ∞,

lim
s→0

θ ′(s) = − lim
s→∞

(
s2ϕ′

2(s)
) = 0 . (6.8)

Finally, let c > 0 be such that ϕ′ (s) ≤ c/s3 for all s > 0, and note that
2
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∣∣∣∣θ(s) − θ(0)

s

∣∣∣∣ = 1

s

∞∫
1/s

ϕ′
2(t)dt ≤ c

s

∞∫
1/s

dt

t3 = c

2
s .

Consequently, θ ′(0) = 0, and thus, by (6.8) and the fact that θ is continuously differentiable on 
(0, ∞), we conclude that θ is continuously differentiable on [0, ∞), completing the proof. �
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