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Abstract
Stability results are presented for a class of differential and difference inclusions,
so-called positive Lur’e inclusions which arise, for example, as the feedback inter-
connection of a linear positive system with a positive set-valued static nonlinearity.
We formulate sufficient conditions in terms of weighted one-norms, reminiscent of
the small-gain condition, which ensure that the zero equilibrium enjoys various global
stability properties, including asymptotic and exponential stability. We also consider
input-to-state stability, familiar from nonlinear control theory, in the context of forced
positive Lur’e inclusions. Typical for the study of positive systems, our analysis
benefits from comparison arguments and linear Lyapunov functions. The theory is
illustrated with examples.

Keywords Differential inclusion · Exponential stability · Input-to-state stability ·
Lur’e systems · Population biology · Positive systems

Mathematics Subject Classification 34A60 · 37N35 · 39A30 · 47B65 · 93D20

1 Introduction

Positive dynamical systems, or simply positive systems, are dynamical systems where
the evolutionmap leaves a positive cone invariant. Themost natural positive cone is the
nonnegative orthant of Euclidean space, equipped with the partial order of component
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wise inequality, noting also the often interchangeable use of the words “positive” and
“nonnegative” in this context. The study of positive systems is motivated by numer-
ous applications across a diverse range of scientific and engineering contexts, such
as communications, logistics, economics, biology, chemistry, and ecology. Invari-
ance of a positive cone captures the essential property that state-variables of positive
systems, typicallymodelling abundances or concentrations,must take nonnegative val-
ues to be meaningful. Consequently, positive systems are well-studied objects, with
textbooks which address the subject including [1–6]. The study of positive systems
described by linear dynamic equations is grounded in the seminal work by Perron
and Frobenius in the early 1900s on irreducible and primitive matrices. Attention has
more recently turned to generalisations of the Perron–Frobenius theorem to nonlinear
maps, including [7–9], for instance. Related to the theory of positive systems is the
theory of monotone dynamical systems, where solutions inherit the same ordering
(that is, with respect to the partial order which defines the positive cone) through-
out time as their initial states; see, for example [10,11] or [12], and the references
therein.

The breadth and depth of applications of positive and monotone systems has gener-
ated significant interest in their control [1,13]which is currently an active researchfield.
The analysis of positive control systems benefits from readily constructed and easily
scalable Lyapunov functions [14]. In addition to numerous important examples, con-
trol of positive systems is motivated by the challenges which nonnegativity constraints
place, since subtraction is not always well-defined in positive cones, for instance. As
such, the following fundamental facets of linear control theory all require different
treatments for positive systems: reachability and controllability [15,16], observability
[17], realisability [18,19] and stabilisability [20,21]. However, the additional structure
afforded by positivity is often intuitive, mathematically helpful and thus simplifies
matters. For example, in classical robust control, the complex and real stability radii,
introduced in [22,23] are, in general, different for linear systems, but are known to be
equal for linear positive systems, see [24].

Differential inclusions arise as the appropriate mathematical framework for rig-
orously describing the solutions of differential equations specified by discontinuous
functions and are now a classical subject addressed in many textbooks, including [25–
27]. Their study has partly been motivated by optimal control theory [28], developed
in economics and engineering, see also [29,30]. Crucial to the mathematical under-
pinning of differential inclusions is the concept of a set-valued (or multi-valued) map
[31], one of the building blocks of non-smooth analysis. In systems and control the-
ory, differential inclusions provide a toolbox formodelling hybrid systems [32], robust
control [33,34] as well as hysteresis effects, such as backlash or play [35,36].

We consider the class of positive differential inclusions

ẋ − Ax ∈ BF(Cx), x(0) = x0, (1.1)

so-called Lur’e inclusions, where A, B and C are appropriately sized matrices, with
certain nonnegativity properties and F is a nonnegative set-valued function. Differ-
ential inclusions of the form (1.1) often arise in closed-loop from the linear control
system
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ẋ = Ax + Bu, x(0) = x0, y = Cx, (1.2)

in feedback connection with the static set-valued (nonlinear) output feedback

u ∈ F(y),

and generalise the well-known and important class of nonlinear control systems
referred to as (positive) Lur’e or Lurie systems, towhich (1.1) reduces if F is singleton-
valued.

In the usual situation that 0 ∈ F(0), it follows that zero is an equilibrium of (1.1).
We present sufficient conditions in Theorem 2.5 for the zero equilibrium to be globally
stable, asymptotically stable, and exponentially stable. We note that in a dynamical
systems context, exponential stability is in many respects a more important and natural
notion of stability than asymptotic stability alone, see [37]. Our results are instances
of so-called absolute stability theory; see, for example [36,38–42] and the references
therein, in that we formulate assumptions on the transfer function G(s) = C(s I −
A)−1B, where s is a complex-variable, which ensure the respective notions of stability
for all set-valued functions F for which the “product”G(0)F(y) satisfies certain norm
bounds. The conditions may be interpreted as small-gain conditions in a weighted
one-norm. In the spirit of absolute stability theory, stability of the zero equilibrium
is determined by the norm-estimates and not by the individual nonlinearity F itself.
The inherent robustness to uncertainty in F adds to the appeal and utility of absolute
stability results. As corollarieswe obtain stability results for certain time-varyingLur’e
inclusions and to systems of positive Lur’e differential inequalities, both of which we
describe. Our analysis crucially depends on the positive systems structure as we make
extensive use of comparison arguments, and linear Lyapunov functions, which also
go by the names of linear copositive Lyapunov functions [43] and are examples of
sum-separable Lyapunov functions [44]. These techniques are not applicable in the
general (non-positive) case, where, for example (see [47, Theorem 3.2]), quadratic
Lyapunov functions are used which come from classical systems theoretic concepts
such as the solutions of controller/observer Lyapunov equations or algebraic Riccati
equations associated with the bounded real lemma or positive real lemma.

Related to (1.1) is the forced version

ẋ − Ax ∈ BF(Cx) + D, x(0) = x0, (1.3)

where D is a set-valued function which models external forcing or disturbances.
Clearly, when D(t) = {0} for all t ≥ 0, then (1.1) and (1.3) coincide. A sample
forced Lur’e system is depicted in a block diagram arrangement in Fig. 1. We com-
ment that (1.3) includes the situation wherein the forcing acts through B, that is,
D = BE , for another set-valued function E , in which case (1.3) is the feedback
interconnection of (1.2) and

u ∈ F(y) + E .

Here the natural notion of stability, now of the zero equilibrium pair (x = 0, D = {0})
of (1.3), is so-called input-to-state stability (ISS) initiated in [45]; see as well the
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G(s) = C(sI − A)−1B

F

D
y

u

Fig. 1 Block diagram of the forced Lur’e system (1.3)

tutorial paper [46]. Roughly, ISSmeans that themap from (x0, D) to ‖x(t)‖ has “nice”
uniform boundedness properties, where x is a solution of (1.3). Our Theorem 2.11
states that the same assumptions which ensure exponential stability of zero in (1.1)
also ensure that the zero equilibrium pair of (1.3) enjoys the exponential ISS property,
paralleling recent findings in [47,48].

The approach we adopt readily admits treatment of positive Lur’e difference inclu-
sions, that is,

x+ − Ax ∈ BF(Cx) + D, x(0) = x0, (1.4)

where x+ denotes the image of x under the left-shift operator, viz. x+(t) = x(t + 1),
for all t ∈ N0. In Theorem 3.1 we present analogous sufficient small-gain conditions
for various global stability properties of (1.4).

The motivation for the current study is to derive stability results for multivariable
(that is, multi-input multi-output, or MIMO) positive Lur’e inclusions—nonlinear
positive control systems—which, as already stated, arise in a variety of applied sce-
narios. Of particular interest to the authors are models arising in biology and ecology,
naturally positive systems, which are the subject of Example 4.2. In this context,
Lur’e difference equations have been proposed as models in, for example [49–52],
and have also been proposed for models of plant species with seed banks [53]. Briefly,
this connection has been made as Lur’e systems allow both vital or transition rates
which are density-independent (that is, linear) and density-dependent (that is, nonlin-
ear), the latter facilitating the modelling of Allee [54–56], competition or crowding
effects. As inherently “noisy” systems, not described by classical, well-understood
equations of motion, there is often much uncertainty in parametrising ecological mod-
els, with different qualitative trends being observed in different parametrisations [57].
The robustness to such uncertainty afforded by the treatment of dynamic inclusions
and set-valued analysis is thus especially applicable and appealing. Although clearly
existing results for the absolute stability of Lur’e inclusions such as those in [36,48]
do apply here, since these papers are not aimed at positive systems, their results are
necessarily more conservative.

There is some partial overlap between the present work and [58,59], where absolute
stability results for continuous- and discrete-time positive dynamical systems (of dif-
ferential or difference equations, respectively, including Lur’e systems) are presented,
although for unforced systems only. These results also appear in the monograph [1,
Chap. 5] by the same authors. In [1,58,59] a linear dissipativity theory approach is
adopted and we compare results in Remarks 2.14 and 3.4. Our work in part extends
that of [49,60] which consider positive Lur’e difference and differential equations,
respectively, both with scalar nonlinearities. It is possible in these specific situations
to present “trichotomies of stability” explicitly in terms of themodel data,which ensure
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that, under certain assumptions, solutions either converge to the zero equilibrium, or
a unique non-zero equilibrium, or diverge. Similar limit set trichotomies have been
established for various classes of monotone discrete-time dynamical systems in [2,61,
Chap. 6] for finite-dimensional systems and in [12,50,51] for infinite-dimensional sys-
tems. In Remark 3.5, we compare some of our findings with those from the monotone
systems and control literature, namely [62,63]. In the present paperwe restrict attention
to stability of the zero equilibrium alone and do not consider limit set trichotomies.

The paper is organised as follows. Sections 2 and 3 contain ourmain results, namely,
global stability properties of the Lur’e differential inclusions (1.1) and (1.3), and
the Lur’e difference inclusion (1.4), respectively. Section 4 contains three examples
discussed in detail. We present some brief summarising remarks in Sect. 5.

NotationWe collect notation and terminology used in the sequel. The symbols N and
R denote the sets of positive integers and real numbers, respectively, andN0 = {0}∪N.
For n,m ∈ N, we let n := {1, 2, . . . , n}, R

n and R
n×m denote usual n-dimensional

Euclidean space, and the set of n × m matrices with real entries, respectively. The
superscript T denotes both matrix and vector transposition. For M, N ∈ R

n×m with
entries mi j and ni j , respectively, we write

M ≤ N ifmi j ≤ ni j for all i ∈ n, j ∈ m,

M < N ifM ≤ N and M �= N ,

M � N ifmi j < ni j for all i ∈ n, j ∈ m,

with the corresponding respective conventions for ≥, > and 	. If M ∈ R
n×m+ or,

equivalently, 0 ≤ M , then we say that M is nonnegative. We call M positive or strictly
positive if 0 < M or 0 � M , respectively, noting that there are different conventions
present in the literature for the term positive matrix. Given v ∈ R

n+, 0 � v, we let

v
�

:= min
j∈n v j > 0 and |x |v := vT |x | =

n∑

j=1

v j |x j |, ∀ x = (x1 . . . xn
)T ∈ R

n,

where the i-th component of |x | ∈ R
n+ is defined to be |xi |. We note that | · |v is a norm

on R
n and, if x ∈ R

n+, then |x |v = vT x .
We recall that a nonnegative square matrix M ∈ R

n×n+ is irreducible if, and only
if, for each i, j ∈ n there exists k ∈ N such that the (i, j)-th entry of Mk is positive.
Strictly positive matrices are evidently irreducible, and small irreducible matrices
(which are not strictly positive) include

(
0 1
1 0

)
and

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ .

Irreducible matrices presently play a role because Perron–Frobenius theory applies to
them, which we discuss later in the text.

A matrix M ∈ R
n×n is called Metzler, also known as quasi-positive or essen-

tially nonnegative, if every off-diagonal entry is nonnegative (see, for example
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[5, Chap. 6]). We let r(M) and α(M) denote the spectral radius and spectral abscissa
of M , respectively, which we recall are given by

r(M) := max{|λ|: λ ∈ σ(M)} and α(M) := max{Re λ: λ ∈ σ(M)},

where σ(M) denotes the spectrum of M . For v ∈ R
n , ‖v‖ and ‖M‖ denote a (any)

monotonic norm of v and the corresponding induced operator norm ofM , respectively.
Recall that a norm is monotonic if for all x, y ∈ R

n

|x | ≤ |y| ⇒ ‖x‖ ≤ ‖y‖ where |x | := (|x1| . . . |xn|
)T

.

Every p-norm for 1 ≤ p ≤ ∞ is monotonic. We let ‖ · ‖1 denote both the one-norm
and induced one-norm.

For v,w ∈ R
n with v ≤ w, we define the order interval [v,w] ⊆ R

n as

[v,w] := {x ∈ R
n : v ≤ x ≤ w},

which, in light of the componentwise definition of the partial order ≤, is equal to the
Cartesian product of intervals, viz.

[v,w] = [v1, w1] × [v2, w2] × . . . × [vn, wn] where

v = (v1 . . . vn
)T

, w = (w1 . . . wn
)T

.

The symbols I and 1 denote the identity matrix and vector with every component
equal to one, respectively, the size of which shall be consistent with the context. We
note that with the above definitions ‖x‖1 = |x |1, for x ∈ R

n .
For a set X , we let P(X) denote the power set of X , P0(X) = P(X)\{∅} and, if X

is a subset of a normed-space,

|||X ||| := sup
x∈X

‖x‖,

with the convention that |||∅||| = 0. If X ,Y ⊆ V are subsets of a vector space and
T : V → V a linear operator, then the sum X + Y and image T X are defined as

X + Y := {x + y: x ∈ X , y ∈ Y } and T X := {T x : x ∈ X}.

Finally, a function g : R
n → R

m is said to be lower semi-continuous if every compo-
nent gi : R

n → R is lower semi-continuous, where i ∈ m, that is

gi (x) ≤ lim inf
y→x

gi (y) ∀ x ∈ R
n .
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2 Continuous-time systems

In this section we consider continuous-time Lur’e inclusions, treating the unforced
and forced cases in separate subsections.We first collect some terminology and results
which are used in both subsections.

Given a set-valued map H : R+ × R
n → P0(Rn) and x0 ∈ R

n , we say that an
absolutely continuous function x : [0, ω) → R

n for 0 < ω ≤ ∞, is a solution of the
initial value problem

ẋ(t) ∈ H(t, x(t)), x(0) = x0, (2.1)

if (2.1) holds for almost all t ∈ [0, ω). If ω = ∞, then x is said to be a global solution.
If x : [0, ω) → R

n is a solution of (2.1) for some 0 < ω ≤ ∞, then ẋ is a locally
integrable selection of t �→ H(t, x(t)). Therefore, for all 0 ≤ t1 ≤ t2 < ω, the set

∫ t2

t1
H(s, x(s)) ds

:=
{∫ t2

t1
h(s) ds

∣∣∣ h ∈ L1([t1, t2]; R
n) is a selection of t �→ H(t, x(t))

}
,

is non-empty and, with this notation, x satisfies the integral inclusion

x(t2) − x(t1) ∈
∫ t2

t1
H(s, x(s)) ds. (2.2)

We shall consider the special case of (2.1) with

H(t, x) = Ax + BG(t,Cx) + D(t), (2.3)

and

(A, B,C) ∈ R
n×n×R

n×m×R
p×n, D : R+ → P0

(
R
n) , and G : R+×R

p → P0
(
R
m) ,

(2.4)
for some m, n, p ∈ N. We will impose positivity and stability properties on the data
in (2.4) later in the section. Combined, (2.1), (2.3) and (2.4) give rise to the system of
Lur’e differential inclusions

ẋ(t) − Ax(t) ∈ BG(t,Cx(t)) + D(t), x(0) = x0, t ∈ R+. (2.5)

Our primary, but not exclusive, focus is the autonomous case whereinG(t, y) = F(y),
for some F : R

p → P0(Rn), so that (2.5) reduces to (1.3). The set-valued forcing
term D : R+ → P0(Rn) does not play a role in Sect. 2.1, where (1.1) is considered
by taking D = {0}. As mentioned in the Introduction, when G is singleton-valued
then (2.5) simplifies to a systemofLur’e differential equations; a special casewhichwe
consider in Sect. 2.3.Wenext state and prove a “variation of parameters” expression for
solutions of forced Lur’e inclusions. No stability or positivity properties are required
for this result.
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Lemma 2.1 For model data (2.4) and x0 ∈ R
n, let x : [0, ω) → R

n denote a solution
of (2.5) for some ω > 0. Then x satisfies the inclusion

x(t) − eAt x0 ∈
∫ t

0
eA(t−τ)

[
BG(τ,Cx(τ )) + D(τ )

]
dτ ∀ t ∈ [0, ω). (2.6)

Proof Let 0 < t < ω be fixed, but arbitrary, and define an absolutely continuous
function z on [0, t] by z(τ ) := eA(t−τ)x(τ ). Obviously, z(0) = eAt x0 and z(t) = x(t),
and a routine calculation shows that z satisfies the differential inclusion

d

dτ
z(τ ) ∈ eA(t−τ)

[
BG(τ,Cx(τ )) + D(τ )

]
almost all τ ∈ (0, t).

Therefore, in light of (2.2),

z(t) − z(0) =
∫ t

0

d

dτ
z(τ ) dτ ∈

∫ t

0
eA(t−τ)

[
BG(τ,Cx(τ )) + D(τ )

]
dτ,

which implies that

x(t) − eAt x0 ∈
∫ t

0
eA(t−τ)

[
BG(τ,Cx(τ )) + D(τ )

]
dτ.

Since 0 < t < ω was arbitrary, we conclude that (2.6) holds. ��
The following equivalence, known as “loop-shifting” in the control engineering

jargon, shall also play a key role, and is easily established. Namely, for fixed K ∈
R
m×p, x0 ∈ R

n and model data (2.4), the function x is a solution of (2.5) if, and only
if, x is a solution of

ẋ(t)−(A+BKC)x(t) ∈ B
(
G(t,Cx(t))−KCx(t)

)
+D(t), x(0) = x0, t ∈ R+.

(2.7)
We introduce the positivity and stability properties of A, B, C , D and G as in (2.4):

(A1) (A, B,C) ∈ R
n×n × R

n×m+ × R
p×n
+ , A is Metzler, D : R+ → P0(Rn+) and

G : R+ × R
p
+ → P0(Rm+);

(A2) α(A) < 0;
(A3) there exists R > 0 such that

‖w‖ ≤ R‖y‖ ∀ w ∈ G(t, y) ∀ t ∈ R+ ∀ y ∈ R
p
+.

We comment that we shall interpret (A1) and (A3) in the autonomous case as well,
meaning that G(t, y) = F(y) for some F : R

p → P0(Rm).
We briefly discuss an issue pertaining to domains which often arises when studying

positive systems, to reconcile the general case (2.4) to the assumptions made in (A1).
Indeed, under (A1), the functionG is only defined onR+×R

p
+. Some existence theory

(see, for example [25, Theorem 1, p. 97]) for (2.1) assumes that H : I ×Ω → P0(X)
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where I ⊆ R and Ω ⊆ X ⊆ R
n are open, which clearly fails with I = R+ and

Ω = R
n+. Therefore, if J : R+ × R

n+ → P0(Rn+) denotes the right hand side of the
differential inclusion (2.5) under (A1), then we extend J to R × R

n , and denote the
extension Je : R × R

n → P0(Rn+), by setting Je(t, x) := J (max{0, t}, μ(x)) with
μ : R

n → R
n+ defined by

μ(x) := (max{0, x1}, max{0, x2} . . . max{0, xn}
)T ∀ x = (x1 . . . xn

)T ∈ R
n .

(2.8)
Since J and Je coincide on R

n+, we may seek solutions of ẋ ∈ Je(x), as an immediate
consequence of the positivity assumptions in (A1) is the following.

Lemma 2.2 Under assumption (A1), every solution x : [0, ω) → R
n of (2.5) with

x0 ∈ R
n+ takes values in R

n+ for all t ∈ [0, ω).

Proof The claim follows from the variation of parameters inclusion (2.6) combined
with the nonnegativity assumptions in (A1). Crucially, we have used that A is Metzler
if, and only if, eAt > 0 for all t ≥ 0; see, for example [10, Section 3.1]. ��

We conclude this section by commenting that the loop-shifting property, see (2.7),
holds without the assumptions (A1)–(A3). It demonstrates that we may replace A and
G in (1.3) by A+BKC and (t, y) �→ G(t, y)−Ky, respectively. In particular, Amay
not satisfy assumption (A2), but A+ BKC may do so, for some K ∈ R

p×m . In other
words, this means that there is a so-called stabilising static output feedback u = Ky
for the linear system (1.2), which is the approach we take in Example 4.1. Of course,
in the current setting of positive Lur’e inclusions, the choice of K shall be constrained
by the requirement that A + BKC and (t, y) �→ G(t, y) − Ky satisfy (A1) as well,
which may be infeasible in some cases.

2.1 Unforced systems

We consider the Lur’e inclusion (1.1) with assumptions (A1)–(A3). Recall from the
previous section that this is a special case of (2.5). We note that the assumptions on
A, B,C and F do not a priori guarantee that (1.1) admits solutions. Existence of
solutions is not the focus of the present investigation, primarily as it is an extensively
studied subject in the literature. That said, we do make some comments and provide
some references regarding the existence of solutions. Recall the extension Je from
Sect. 2, defined in terms of μ from (2.8). The following lemma shows that Je inherits
many useful properties from J . The proofs are readily established once it is noted that
μ is Lipschitz with Lipschitz constant equal to one.

Lemma 2.3 Let J : R+ × R
n+ → P0(Rn+) and define Je(t, x) := J (max{0, t}, μ(x))

where μ is given by (2.8). If J has any of the following properties: bounded, closed
valued, convex valued, upper semi-continuous, lower semi-continuous, then Je has
the corresponding property.

Examples of results ensuring existence of solutions of (1.1) include [25, Theo-
rem 3, p. 98], [26, Proposition 6.1, p. 53] and [27, Theorem 7.5.1, p. 279]. The
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results [25, Theorems 1 and 4, p. 97, p. 101], [26, Lemma 5.1, p. 53] and [26, Theo-
rem 6.1, p. 53] provide conditions under which global solutions of (1.1) exist, from
which we obtain the following.

Proposition 2.4 Given the Lur’e inclusion (1.1), assume that (A1) and (A3) hold and
that F is upper semi-continuous with closed, convex values. Then, for all x0 ∈ R

n+,
there is a global solution of (1.1), and every solution may be extended to a global
solution. Further, every solution x satisfies x(t) ∈ R

n+ for all t where x(t) is defined.

Proof The lemma follows from applications of [26, Lemma 5.1, p. 53] and [26,
Corollary 5.2, p. 58], which establish existence of solutions, and extension to global
solutions, respectively. Lemma 2.2 ensures that every solution is nonnegative. ��

We shall later briefly consider non-autonomous versions of (1.1), specifically (2.5).
In this context [26, Theorem 5.2, p. 58] provides further assumptions on G which,
combined with (A1)–(A3), guarantee the existence of global solutions. In fact,
under (A1)–(A3), any result guaranteeing existence of local solutions which uses
continuous (or Caratheodory) selections of x �→ Ax + BF(Cx) (or (t, x) �→
Ax + BG(t,Cx)) will, in fact, ensure existence of global solutions by well-known
theory of maximally defined solutions of ordinary differential equations (see the proof
of [25, Theorem 1, p. 97]).

The main result of this section is presented next, and contains a suite of stability
results for (1.1) formulated in terms of weighted one-norm inequalities and G(0),
assuming that global solutions exist. HereG denotes the transfer function of the triple
(A, B,C), that is,G(s) = C(s I − A)−1B, where s is a complex variable. Recall that a
matrix A ∈ R

n×n isMetzlerwithα(A) < 0 if, and only if,−A−1 > 0 (see, for example
[5, Characterisation N38 in Section 6.2] or [66, characterisation F15]). Consequently,
under assumptions (A1) and (A2), it follows that G(0) = −CA−1B ∈ R

p×m
+ .

Theorem 2.5 Given the Lur’e inclusion (1.1), assume that (A1)–(A3) hold.

(i) If there exists a strictly positive v ∈ R
p
+ such that

|G(0)w|v ≤ |y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+, (2.9)

then there exists Γ > 0 such that, for all x0 ∈ R
n+, every global solution x

of (1.1) satisfies

‖x(t)‖ ≤ Γ ‖x0‖ ∀ t ∈ R+.

(ii) If there exist a strictly positive v ∈ R
p
+ and a lower semi-continuous function

e : R
p
+ → R+ such that

e(y) > 0 and |G(0)w|v + e(y) ≤ |y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+\{0}, (2.10)

then, for all x0 ∈ R
n+, every global solution x of (1.1) satisfies x(t) → 0 as

t → ∞.
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(iii) If there exist a strictly positive v ∈ R
p
+ and ρ ∈ (0, 1) such that

|G(0)w|v ≤ ρ|y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+, (2.11)

then there exist Γ , γ > 0 such that, for all x0 ∈ R
n+, every global solution x

of (1.1) satisfies

‖x(t)‖ ≤ Γ e−γ t‖x0‖ ∀ t ∈ R+.

The notion of stability concluded in statement (i) is often called “stability in the large”,
see [36, Definition 3], which, when combined with statements (ii) and (iii) yield that
the zero equilibrium of (1.1) is globally asymptotically and globally exponentially
stable, respectively. Before proving the above theorem, we provide some commentary
on assumptions (2.9)–(2.11).

Remark 2.6 The weighted one-norm estimates (2.9)–(2.11) provide conditions on the
norm of the “product”G(0)F(y) and not on a product of norms. Sufficient conditions
for (2.9)–(2.11) are linear constraints which are reminiscent of sector-type conditions
in a nonnegative orthant. Namely, if there exists an irreducible matrix M ∈ R

p×p
+ with

r(M) ≤ 1 such that

G(0)w ≤ My ∀ w ∈ F(y) ∀ y ∈ R
p
+, (2.12)

then (2.9) holds. To see this, multiply both sides of (2.12) on the left by vT , a strictly
positive left eigenvector of M corresponding to the eigenvalue r(M), the existence
of which is ensured by the Perron–Frobenius Theorem (see, for example [5, Theo-
rem1.4, p. 27]). Further, if there exists an irreduciblematrixM ∈ R

p×p
+ with r(M) ≤ 1

and a lower semi-continuous function ζ : R
p
+ → R

p
+ such that

ζ(y) > 0 and G(0)w + ζ(y) < My ∀ w ∈ F(y) ∀ y ∈ R
p
+\{0},

then (2.10) holds with e := vT ζ , by the same argument as above. If there exists a
nonnegative (not necessarily irreducible) matrix M which satisfies (2.12) with the
property that r(M) < 1, then (2.11) holds. ��
Proof of Theorem 2.5 Throughout the proof, we let x : R+ → R

n+ denote a global
solution of (1.1) for given x0 ∈ R

n+.
(i): As G(0) ≥ 0, the condition (2.9) may be rewritten as

vTG(0)F(Cx(t)) ⊆ [0, vTCx(t)] ∀ t ∈ R+. (2.13)

Multiplying both sides of (1.1) by −vTC A−1 and invoking (2.13) yields that

−vT C A−1 ẋ(t) ∈ −vT C A−1[Ax(t) + BF(Cx(t))
] = −vT Cx(t) + vTG(0)F(Cx(t))

⊆ [−vT Cx(t), 0] for almost all t ≥ 0,
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whence
− vTC A−1 ẋ(t) ≤ 0 for almost all t ≥ 0, (2.14)

and, further,
0 ≤ −vTC A−1x(t) ≤ −vTC−1Ax0 ∀ t ∈ R+. (2.15)

We claim that there exists θ > 0 such that

θ z ≤ −A−1z ∀ z ∈ R
n+. (2.16)

To that end, choose β > 0 such that A + β I ≥ 0, so that in particular

e(A+β I )t =
∞∑

k=0

tk

k! (A + β I )k ≥ I ∀ t ∈ R+. (2.17)

As A is Metzler with α(A) < 0, in light of (2.17) we have, for z ∈ R
n+,

−A−1z =
∫ ∞

0
eAt z dt =

∫ ∞

0
e(A+β I )te−βt z dt ≥

∫ ∞

0
e−βt z dt = z

β
,

which is (2.16) with θ := 1/β > 0. Using (2.15) and (2.16) shows that

θv
�
‖Cx(t)‖1 ≤ θvTCx(t) ≤ −vTC A−1x(t) ≤ −vTC A−1x0 ∀ t ∈ R+,

which implies, by norm equivalence, that there exists P > 0 such that

‖Cx(t)‖ ≤ P‖x0‖ ∀ t ∈ R+. (2.18)

Invoking Lemma 2.1, the variation of parameters inclusion (2.6) with G(t,Cx(t)) =
F(Cx(t)) and D = {0}, combined with (A3) and (2.18), we may estimate

‖x(t)‖ ≤
(

‖eAt‖ + RP
∫ t

0
‖eA(t−τ)B‖ dτ

)
‖x0‖ ∀ t ∈ R+,

whence, by (A2), we conclude that statement (i) holds.
(ii): Our hypotheses ensure that statement (i) holds. First, suppose that

Cx(t) → 0 as t → ∞, (2.19)

and fix ε > 0. We note that for any T1 ≥ 0, we may use (A2), (A3) and (2.19) to
estimate that ξ satisfying

ξ(t) ∈
∫ t

T1
eA(t−τ)BF(Cx(τ )) dτ ∀ t ≥ T1,
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admits the estimate

‖ξ(t)‖ ≤
∫ t

T1
‖eA(t−τ)‖‖B‖|||F(Cx(τ ))||| dτ ≤ ‖B‖R

∫ t

T1
‖eA(t−τ)‖‖Cx(τ )‖ dτ

≤ ε

2
,

for T1 > 0 sufficiently large. Consequently, ‖ξ(t)‖ ≤ ε/2 for all t ≥ T1. Since x
satisfies

x(t) − eA(t−T1)x(T1) ∈
∫ t

T1
eA(t−τ)BF(Cx(τ )) dτ ∀ t ≥ T1,

(which follows easily from (2.6)), invoking (A2) gives T2 > T1 such that for all t ≥ T2

‖x(t) − eA(t−T1)x(T1)‖ ≤ ε

2
⇒ ‖x(t)‖ ≤ ‖eA(t−T1)x(T1)‖ + ε

2
< ε,

hence limt→∞ x(t) = 0 as t → ∞, as required, provided that (2.19) holds.
Therefore, it remains to establish (2.19). For which purpose, fix x0 ∈ R

n+\{0}
and, seeking a contradiction, suppose that (2.19) fails. Then there exist a sequence
(tk)k∈N ⊆ R+ and ε > 0 such that tk ↗ ∞ as k → ∞ and

2ε ≤ ‖Cx(tk)‖ ∀ k ∈ N.

By statement (i) we have that x is bounded, and hence from (1.1) and (A3) it follows
that ẋ is bounded aswell.Hence x is uniformly continuous, and so isCx . Consequently,
there exists δ > 0 such that

ε ≤ ‖Cx(t)‖ ≤ Γ ‖C‖‖x0‖ ∀ t ∈ [tk, tk + δ] ∀ k ∈ N, (2.20)

where we have used the bound for x from statement (i). As tk ↗ ∞ as k → ∞ we
may assume that tk+1 > tk + δ for all k ∈ N (by redefining the sequence (tk)k∈N if
necessary). Define

M := {ξ ∈ R
p
+: ε ≤ ‖ξ‖ ≤ Γ ‖C‖‖x0‖}, (2.21)

a compact set which does not contain zero. We claim that there exists η > 0 such that

inf
ξ∈M

w∈F(ξ)

[
vT ξ − vTG(0)w

] ≥ η. (2.22)

To establish (2.22), note that by (2.10),

[
vT ξ − vTG(0)w

] ≥ e(ξ) ≥ inf
ζ∈M

e(ζ ) =: η > 0, ∀ w ∈ F(ξ), ∀ ξ ∈ M,
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as e is a lower semi-continuous function which is positive-valued for positive argu-
ments, and M is a compact set which does not contain zero.

Consider next the real-valued, nonnegative function

f : R+ → R+, f (t) := −vTC A−1x(t),

which is absolutely continuous, non-increasing by (2.14) and, furthermore, satisfies

ḟ (t) = −vTC A−1 ẋ(t) ∈ −vTCx(t) + vTG(0)F(Cx(t)) for almost all t ∈ R+.

(2.23)
In light of (2.20), (2.22) and (2.23), we see that for every k ∈ N

ḟ (t) ∈ (−∞,−η] for almost all t ∈ [tk, tk + δ],

which yields that

f (tk + δ) − f (tk) ≤ −ηδ.

Since f is non-increasing and tk+1 ≥ tk + δ for all k ∈ N

f (tk+1) − f (tk) ≤ −ηδ, ∀ k ∈ N,

showing that

f (tN+1) − f (t1) =
N∑

k=1

[
f (tk+1) − f (tk)

] ≤ −ηδN → −∞ as N → ∞,

which contradicts the nonnegativity of f .
(iii): Let 0 < c1 ≤ c2 be such that

c1‖y‖ ≤ |y|v ≤ c2‖y‖ ∀ y ∈ R
p. (2.24)

Fix ε > 0 such that ρ + ε < 1. Since α(A) < 0 and as G is continuous at 0, there
exists δ > 0 such that

0 < γ < δ ⇒ α(A + γ I ) < 0 and ‖G(−γ ) − G(0)‖ <
εc1
c2R

. (2.25)

Thus, for fixed γ ∈ (0, δ), we note that G(−γ ) ≥ 0 and, further, for y ∈ R
p
+ and

w ∈ F(y),

|G(−γ )w|v = vTG(−γ )w = vT [G(−γ ) − G(0)]w + |G(0)w|v
≤ |[G(−γ ) − G(0)]w|v + |G(0)w|v
≤ c2‖G(−γ ) − G(0)‖ · ‖w‖ + ρ|y|v ≤ εc1

R
‖w‖ + ρ|y|v ≤ (ε + ρ)|y|v

≤ |y|v, (2.26)
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where we have used (A3), (2.11), (2.24) and (2.25). Multiplying both sides of (2.26)
by eγ t , and taking w ∈ F(e−γ tξ) with ξ ∈ R

p
+, we see that

|eγ tG(−γ )w|v ≤ eγ t · |e−γ tξ |v = |ξ |v ∀ w ∈ F(e−γ tξ), ∀ ξ ∈ R
p
+, ∀ t ∈ R+.

(2.27)
Define z(t) := eγ t x(t) for t ∈ R+. A routine calculation using (1.1) shows that z is a
solution of

ż(t) − (A + γ I )z(t) ∈ Beγ t F(e−γ tCz(t)), z(0) = x0, t ∈ R+. (2.28)

Multiplying both sides of (2.28) by −vTC(A+γ I )−1 and invoking (2.27), we obtain
the estimate

θγ vTCz(t) ≤ −vTC(A + γ I )−1z(t) ≤ −vTC(A + γ I )−1x0 ∀ t ∈ R+,

for some θγ > 0, so that there exists L > 0 such that

‖Cz(t)‖ ≤ L‖x0‖ ∀ t ∈ R+.

Applying Lemma 2.1 to (2.28) with D = {0} and G(t,Cx(t)) = F(Cx(t)) shows
that

z(t) − e(A+γ I )t x0 ∈
∫ t

0
e(A+γ I )(t−τ)Beγ τ F(e−γ τCz(τ )) dτ ∀ t ∈ R+.

Invoking the boundedness of Cz and (A3) we see that

‖z(t)‖ ≤ ‖e(A+γ I )t x0‖ +
∫ t

0

∣∣∣
∣∣∣
∣∣∣e(A+γ I )(t−τ)Beγ τ F(e−γ τCz(τ ))

∣∣∣
∣∣∣
∣∣∣ dτ

≤
(

‖e(A+γ I )t‖ + LR
∫ t

0

∥∥∥e(A+γ I )(t−τ)B
∥∥∥ dτ

)
‖x0‖ ∀ t ∈ R+.

Since α(A+γ I ) < 0 and x0 ∈ R
n+ was arbitrary, we conclude that there exists Γ > 0

such that

‖z(t)‖ ≤ Γ ‖x0‖ ∀ t ∈ R+, ∀ x0 ∈ R
n+,

and so

‖x(t)‖ ≤ Γ e−γ t‖x0‖ ∀ t ∈ R+, ∀ x0 ∈ R
n+,

as required. ��
In certain cases, the weighted one-norm estimate (2.9) itself implies that F must

satisfy (A3), which we formulate as the next lemma.

Lemma 2.7 Assume that A, B, C and F satisfy (A1) and (A2), and letG(s) = C(s I −
A)−1B. If (2.9), and at least one of the two conditions
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(a) m = p and G(0) is irreducible;
(b) B,C �= 0, B has no zero columns and there existsΔ ∈ R

m×p
+ such that A+BΔC

is irreducible;

hold, then F satisfies (A3).

Proof Assume that (a) holds. By the Perron–Frobenius theorem, irreducibility ofG(0)
implies that there exists a strictly positive ν ∈ R

m+ and r > 0 such that

νTG(0) = rνT and so |G(0)z|ν = r |z|ν ∀ z ∈ R
m+.

The above equality, combined with norm equivalence of all norms onR
m , implies that

there exists θ1, θ2 > 0 such that

θ1‖z‖ ≤ ‖G(0)z‖ ≤ θ2|G(0)z|v ∀ z ∈ R
m+. (2.29)

Thus, by (2.9) and (2.29)

θ1‖w‖ ≤ ‖G(0)w‖ ≤ θ2|G(0)w|v ≤ θ2|y|v ≤ cθ2‖y‖ ∀ w ∈ F(y), ∀ y ∈ R
p
+,

for some c > 0, which demonstrates that (A3) holds with R := cθ2/θ1.
Now assume that (b) holds. Suppose that z ∈ R

m+ is such that G(0)z = 0. Since
α(A) < 0 we have that

0 = G(0)z = −CA−1Bz =
∫ ∞

0
Ce(A+δ I )te−δt Bz dt ≥ 0, (2.30)

where δ > 0 is such that 0 ≤ A+δ I (such a δ exists as A is Metzler). As the integrand
is continuous and nonnegative, (2.30) implies that

0 = Ce(A+δ I )t Bz =
∞∑

k=0

tk

k!C(A + δ I )k Bz ∀ t ≥ 0,

whence,

C(A + δ I )k Bz = 0 ∀ k ∈ N0,

and, therefore,
C(A + δ I + BΔC)k Bz = 0 ∀ k ∈ N0. (2.31)

Let cTi �= 0 and b j denote the i-th row and j-th column of C and B, respectively,
where we have used that C �= 0. For each r ∈ m, we see from (2.31) that

cTi (A + δ I + BΔC)kbr zr = 0 ∀ k ∈ N0. (2.32)
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As br �= 0 for every r ∈ m and A + δ I + BΔC is irreducible, it follows from (2.32),
by appropriate choices of k ∈ n, that zr = 0. Therefore, we deduce that z = 0 as
r ∈ m was arbitrary and thus G(0) has no zero columns. Defining

β = min
j∈m

( p∑

i=1

[G(0)]i j
)

> 0,

we obtain, for z ∈ R
m+,

‖G(0)z‖1 =
p∑

i=1

(G(0)z)i =
m∑

j=1

( p∑

i=1

[G(0)]i j
)
z j ≥ β

m∑

j=1

z j = β‖z‖1.

We deduce that (2.29) holds, for some θ1, θ2 > 0 which, when combined with (2.9)
and using arguments identical to those used in the first part of the proof, establishes
the claim. ��
The condition (2.10) is an intermediate between (2.9) and (2.11) which, as the next
result shows, simplifies if more regularity assumptions are made on F .

Corollary 2.8 Assume that (A1)–(A3) hold and that F is upper semi-continuous with
closed values. If there exists a strictly positive v ∈ R

p
+ such that

|G(0)w|v < |y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+\{0}, (2.33)

then, for all x0 ∈ R
n+, every global solution x of (1.1) satisfies x(t) → 0 as t → ∞.

Proof We note that it is sufficient to show that (2.22) holds, because in this case the
proof of the corollary may be completed by arguments identical to those used in the
proof of statement (ii) of Theorem 2.5. To see that (2.22) holds, let yk ∈ M and
wk ∈ F(yk) be such that

vT yk − vTG(0)wk → inf
{
vT ξ − vTG(0)w: w ∈ F(ξ), ξ ∈ M}

as k → ∞,

where M is given by (2.21). Since yk ∈ M and M is compact, (yk)k∈N has a
convergent subsequence, not relabelled, with limit y∗ ∈ M, hence y∗ �= 0. The upper
semi-continuity of F means that we may choose another subsequence of (yk)k∈N,
again not relabelled, such that

wk ∈ F(yk) ⊆ F(y∗) + B(0, 1/k), (2.34)

where B(x, r) ⊆ R
m denotes the open ball centred at x with radius r > 0. Assump-

tion (A3) implies that F(y∗) is bounded and so, by (2.34), (wk)k∈N is bounded,
and hence has a convergent subsequence, not relabelled, with limit w∗. Necessar-
ily, from (2.34) we see that w∗ ∈ F(y∗) = F(y∗), as F is assumed to be closed
valued. We conclude that
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inf
{
vT ξ − vTG(0)w: w ∈ F(ξ), ξ ∈ M} = lim

k→∞
[
vT yk − vTG(0)wk

]

= vT y∗ − vTG(0)w∗ > 0,

by (2.33) as y∗ �= 0, showing that (2.22) holds. ��
Although formulated for autonomous problems, Theorem 2.5 readily extends to

the non-autonomous differential inclusion (2.5) (still with D = {0}), provided the
conditions in Theorem 2.5 hold uniformly in time. We formulate these claims in the
next corollary.

Corollary 2.9 Given the Lur’e inclusion (2.5) with D = {0}, assume that A, B, C and
G satisfy (A1)–(A3). Define

F : R
p
+ → P0(R

m+), F(y) :=
⋃

t≥0

G(t, y). (2.35)

If F given by (2.35) satisfies the conditions (2.9)–(2.11) in Theorem 2.5, then the
conclusions of Theorem 2.5 hold for every global solution of (2.5) with D = {0}.

2.2 Forced systems

We next consider the system of forced Lur’e differential inclusions (1.3), where D :
R+ → P0(Rn+). We say that D : R+ → P0(Rn+) is (essentially) locally bounded or
(essentially) bounded if

ess sup
τ∈[0,t]

|||D(τ )||| < ∞ ∀ t ∈ R+ or ess sup
τ∈[0,∞)

|||D(τ )||| < ∞,

respectively.
With regards to the existence of solutions of (1.3), we refer to, for example [26,

Chap. 3, Sections 5–6] or [67, Theorems 1.1, 1.3, pp. 30–31]. The following result is
based on [26, Theorem 5.2].

Proposition 2.10 Given the forced Lur’e inclusion (1.3), assume that:

(i) (A1)–(A3) hold;
(ii) F has closed, convex values, F(t, ·) is upper semi-continuous and F(·, x) is

measurable;
(iii) D is measurable, locally bounded with closed, convex values.

Then, for every x0 ∈ R
n+, (1.3) has a global solution, and every solution may be

extended to a global solution. Further, every solution x satisfies x(t) ∈ R
n+ for all t

where x(t) is defined.

Proof Existence of global solutions follows from an application of [26, Theorem 5.2]
and [26, Corollary 5.2, p. 58] ensures that solutions may be extended to global solu-
tions. Lemma 2.2 ensures that every solution is nonnegative. ��
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Assumption (A3) implies that F(0) = {0} and hence x = 0, D = {0} is a solution
of (1.3) with x0 = 0, which we shall hereafter refer to as the zero equilibrium pair.
We proceed to state and prove the main result of the present section, namely that
the assumptions made in statement (iii) of Theorem 2.5 are sufficient for the zero
equilibrium pair of (1.3) to be so-called exponentially ISS. The proof is similar to
that of statement (iii) of Theorem 2.5, and uses a so-called exponential weighting
argument, see [36].

As will become apparent in the proof of Corollary 2.12, it is convenient in the next
result to impose no assumption on sign of the disturbance term D, but instead assume
that the state x remains nonnegative.

Theorem 2.11 Given the forced Lur’e inclusion (1.3), assume that (A1)–(A3) hold. If
there exist a strictly positive v ∈ R

p
+ and ρ ∈ (0, 1) such that (2.11) holds, then there

exists Γ , γ > 0 such that, for all x0 ∈ R
n+, all locally bounded D : R+ → P0(Rn)

and every global nonnegative solution x of (1.3),

‖x(t)‖ ≤ Γ
(
e−γ t‖x0‖ + ess sup

τ∈[0,t]
|||D(τ )|||

)
∀ t ∈ R+. (2.36)

If D is nonnegative-valued, that is D(t) ⊆ R
n+ for almost all t ≥ 0, then the hypotheses

of Theorem 2.11 ensure that (2.36) holds for every global solution x of (1.3). The
inequality (2.36) is the definition of exponential ISS of the zero equilibrium pair (in
the current set-valued setting).

Proof of Theorem 2.11 Fix x0 ∈ R
n+ and D : R+ → P0(Rn) as above and let x be

a global, nonnegative solution of (1.3). Let ε, γ > 0 be such that ρ + ε < 1 and
α(A + γ I ) < 0. Defining z(t) := eγ t x(t) for t ≥ 0, which is also nonnegative, an
elementary calculation using (1.3) shows that z is a solution of

ż(t)−(A+γ I )z(t) ∈ Beγ t F(e−γ tCz(t))+eγ t D(t), z(0) = x0, t ∈ R+. (2.37)

Multiplying both sides of the above by vTC(−γ I − A)−1 yields that, for almost all
t ∈ R+

vTC(−γ I − A)−1 ż(t) + vTCz(t) ∈ vTG(−γ )eγ t F(e−γ tCz(t)) + H(t) (2.38)

where

H(t) := vTC(−γ I − A)−1eγ t D(t) ∀ t ∈ R+.

Using arguments similar to those involved in the derivation of (2.26), we see that for
sufficiently small γ > 0

vTG(−γ )eγ t F(e−γ tCz(t)) ⊆ [0, (ρ + ε)vTCz(t)] ∀ t ∈ R+, (2.39)

whence, for almost all t ∈ R+

vTG(−γ )eγ t F(e−γ tCz(t)) + H(t) ⊆ [0, (ρ + ε)vTCz(t)] + H(t) (2.40)
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Setting δ = 1 − (ρ + ε) ∈ (0, 1) and

E(t) := [−vTCz(t),−δvTCz(t)]
a(t) := −δvT

∫ t

0
Cz(τ ) dτ

ξ(t) := κ ess sup
τ∈[0,t]

|||D(τ )|||
∫ t

0
eγ τ dτ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∀ t ∈ R+, (2.41)

where κ := ‖vTC(γ I + A)−1‖ > 0, it follows from (2.38)–(2.40) that

vTC(−γ I − A)−1 ż(τ ) ∈ E(τ ) + H(τ ) for almost all τ ∈ R+,

so that

vTC(−γ I − A)−1z(t) − vTC(−γ I − A)−1x0 ∈
∫ t

0

(
E(τ ) + H(τ )

)
dτ ∀ t ∈ R+.

(2.42)
Choose σ ∈ (0, δ), and note that by definition of a and monotonicity of the integral

σv
�
‖Cz‖L1(0,t) + a(t) ≤ σ

∫ t

0
vTCz(τ ) dτ + a(t) ≤ 0 ∀ t ∈ R+. (2.43)

Be definition of a and ξ , it follows from (2.42) that

vTC(−γ I − A)−1z(t) + σv
�
‖Cz‖L1(0,t) ≤ vTC(−γ I − A)−1x0 + σv

�
‖Cz‖L1(0,t)

+ a(t) + ξ(t)

≤ vTC(−γ I − A)−1x0 + ξ(t) ∀ t ∈ R+,

by (2.43). Now, as 0 ≤ vTC(−γ I − A)−1z(t), appealing to (2.41) yields that

‖Cz‖L1(0,t) ≤ K1‖x0‖ + K2e
γ t sup

τ∈[0,t]
|||D(τ )||| ∀ t ∈ R+, (2.44)

for some positive constants K1 and K2, which are independent of t , D and x0.
An application of Lemma 2.1 to (2.37) implies that

z(t) − e(A+γ I )t x0 ∈
∫ t

0
e(A+γ I )(t−τ)

[
Beγ τ F(e−γ τCz(τ )) + eγ τ D(τ )

]
dτ ∀ t ∈ R+.

Invoking (A3) and α(A + γ I ) < 0, we estimate ‖z(t)‖ using the above inclusion as
follows
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‖z(t)‖ ≤ K3‖x0‖ + K4‖Cz‖L1(0,t) + K5e
γ t sup

τ∈[0,t]
|||D(τ )|||

≤ (K3 + K4K1)‖x0‖ + (K4K2 + K5)e
γ t ess sup

τ∈[0,t]
|||D(τ )||| ∀ t ∈ R+,

by (2.44), for some K3, K4, K5 > 0 which are independent of t , D and x0. Thus,

‖x(t)‖ ≤ Γ (e−γ t‖x0‖ + ess sup
τ∈[0,t]

|||D(τ )|||) ∀ t ∈ R+,

where Γ := max
{
K3 + K4K1, K4K2 + K5

}
, completing the proof. ��

The next corollary is a so-called ISS with bias result (see [36,48]) which states that
if the condition (2.11) fails on a bounded set, then solutions of (1.3) (which include
those of (1.1)) still admit uniform estimates of the form (2.36), but with an additional
positive constant term. We note that ISS with bias is closely related to the concept of
input-to-state practical stability (ISpS), see [68,69]. Although ISpS applies to more
general nonlinear forced control systems, a difference is that it does not typically
specify the form of the additional constant, denoted β in the bounds below.

Corollary 2.12 Given the forced differential Lur’e inclusion (1.3), assume that (A1)–
(A3) hold. If there exist a strictly positive v ∈ R

p
+, ρ ∈ (0, 1) and Θ ≥ 0 such

that
|G(0)w|v ≤ ρ|y|v ∀ w ∈ F(y) ∀ y ∈ R

p
+, ‖y‖ ≥ Θ, (2.45)

then there exist Γ , γ > 0 such that, for all x0 ∈ R
n+ and all locally bounded D :

R+ → P0(Rn+), every global solution x of (1.3) satisfies

‖x(t)‖ ≤ Γ
(
e−γ t‖x0‖ + ess sup

τ∈[0,t]
|||D(τ )||| + β

)
∀ t ∈ R+. (2.46)

Here

β := ‖B‖ sup
‖y‖≤θ

(
sup

w∈F(y)

(
dist
(
w, S(y)

))
)

, (2.47)

and
S(y) := {w ∈ F(y): |G(0)w|v ≤ ρ|y|v

} ⊆ F(y). (2.48)

The number β in (2.47) seeks to capture the extent to which the inequality in (2.45)
is violated on the set {y ∈ R

p
+: ‖y‖ < Θ}. Observe that if Θ = 0, then β = 0 and the

conclusions of Theorem 2.11 and Corollary 2.12 coincide.

Proof of Corollary 2.12 Define H : R
p
+ → P0(Rm+) by

H(y) =
{
F(y) ‖y‖ ≥ Θ,

S(y) ‖y‖ < Θ,
(2.49)
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where S(y) is given by (2.48), so that H satisfies (A3). For given x0 ∈ R
n+ and

D : R+ → P0(Rn+), let x denote a global solution of (1.3). As D(t) ⊆ R
n+ for almost

all t ≥ 0, we have that x ≥ 0 and thus x is also a global nonnegative solution of

ẋ−Ax ∈ BH(Cx)+B
[
F(Cx)−H(Cx)

]+D = BH(Cx)+E, x(0) = x0, (2.50)

where E := B
[
F(Cx) − H(Cx)

] + D. We seek to apply Theorem 2.11 to (2.50),
with F and D in (1.3) replaced by H and E , respectively. Although it is possible that
E(t) � R

n+ for some t ≥ 0, since x is nonnegative it suffices to verify that E is locally
bounded. We consider two exhaustive cases: if ‖Cx(t)‖ ≥ Θ , then

ess sup
τ∈[0,t]

|||E(t)||| = ess sup
τ∈[0,t]

|||D(τ )||| < ∞,

by construction. Alternatively, if ‖Cx(t)‖ < Θ

ess sup
τ∈[0,t]

|||E(t)||| ≤ sup
t∈[0,τ ]

∣∣∣∣∣∣B
[
F(Cx(t)) − H(Cx(t))

]∣∣∣∣∣∣+ ess sup
τ∈[0,t]

|||D(τ )|||

≤ β + ess sup
τ∈[0,t]

|||D(τ )||| < ∞. (2.51)

Therefore, the hypotheses of Theorem 2.11 hold which, when combined with (2.51),
yield the existence of Γ , γ > 0 such that x satisfies the estimate (2.46). ��

2.3 Positive Lur’e differential equations and inequalities

As indicated in the Introduction, the stability (or otherwise) of equilibria of Lur’e
differential equations, or simply Lur’e systems, has been the focus of much attention
in the control theory literature. The forced positive Lur’e system

ẋ(t) = Ax(t) + Bg(t,Cx(t)) + d(t), x(0) = x0, t ∈ R+, (2.52)

where g : R+ ×R
p
+ → R

m+ and d : R+ → R
n+, is a special case of the forced positive

Lur’e inclusion (1.3) with

F(y) :=
⋃

t∈R+
{g(t, y)} ∀ y ∈ R

p
+ and D(t) := {d(t)} ∀ t ∈ R+.

In certain applications, the so-called forced positive Lur’e inequality

0 ≤ ẋ(t) − Ax(t) ≤ Bg(t,Cx(t)) + d(t), x(0) = x0, t ∈ R+, (2.53)

is also of interest. Note that an absolutely continuous function x : R+ → R
n is a

solution of (2.53) if, and only if, x is a solution of (1.3) with

F(y) :=
⋃

t∈R+
[0, g(t, y)] ∀ y ∈ R

p
+ and D(t) := [0, d(t)] ∀ t ∈ R+.
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In both of the special cases above, the set-valued map F satisfies assumption (A3) if,
and only if, there exists R > 0 such that

‖g(t, y)‖ ≤ R‖y‖ ∀ t ∈ R+, ∀ y ∈ R
p
+. (2.54)

We note that (2.52) is a particular case of (2.53), and so focus attention on (2.53).
The following corollary is an immediate consequence of Theorems 2.5, 2.11 and
Corollary 2.12.

Corollary 2.13 Given the forced positive Lur’e inequality (2.53), assume that (A1)
and (A2) hold and that g satisfies (2.54).

(i) If d = 0 and there exists a strictly positive v ∈ R
p
+ such that

|G(0)g(t, y)|v ≤ |y|v ∀ t ∈ R+, ∀ y ∈ R
p
+, (2.55)

then there exists Γ > 0 such that, for all x0 ∈ R
n+, every global solution x

of (2.53) satisfies

‖x(t)‖ ≤ Γ ‖x0‖ ∀ t ∈ R+.

(ii) If d = 0 and there exist a strictly positive v ∈ R
p
+ and a lower semi-continuous

function e : R
p
+ → R+ such that

e(y) > 0 and |G(0)g(t, y)|v + e(y) ≤ |y|v ∀ t ∈ R+, ∀ y ∈ R
p
+\{0}

(2.56)
then, for all x0 ∈ R

n+, every global solution x of (2.53) satisfies x(t) → 0 as
t → ∞.

(iii) If there exist a strictly positive v ∈ R
p
+, ρ ∈ (0, 1) and Θ ≥ 0 such that

|G(0)g(t, y)|v ≤ ρ|y|v ∀ t ∈ R+, ∀ y ∈ R
p
+ ‖y‖ ≥ Θ, (2.57)

then there exist Γ , γ > 0 such that, for all x0 ∈ R
n+ and all d ∈ L∞

loc(R+; R
n+),

every global solution x of (2.53) satisfies

‖x(t)‖ ≤ Γ
(
e−γ t‖x0‖ + ‖d(τ )‖L∞(0,t) + β

)
∀ t ∈ R+.

Here

β = β(Θ) = ‖B‖ sup
‖y‖≤Θ

(
sup
t≥0

(
dist
(
g(t, y), T (t, y)

))
)

,

and

T (t, y) := {w ∈ [0, g(t, y)] ⊆ R
m+: |G(0)w|v ≤ ρ|y|v

}
.
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The following remark provides some commentary on the above corollary.

Remark 2.14 As the conditions (2.55)–(2.57) are assumed to hold uniformly in the
first variable, for ease of presentation the following comments suppress this variable.

(a) In the situation where m = p = 1 and g is continuous, the conditions (2.55),
(2.56) and (2.57) (the latter with Θ = 0) simplify to:

G(0)g(y) ≤ y, G(0)g(y) < y (for y > 0) and G(0)g(y) ≤ ρy ∀ y ∈ R+,

respectively.
(b) When m = p, a sufficient condition for (2.55) or (2.57) are the inequalities

‖G(0)‖v‖g‖v ≤ 1 or ‖G(0)‖v‖g‖v < 1, (2.58)

respectively, where

‖G(0)‖v := sup
ξ∈Rm+
ξ �=0

|G(0)ξ |v
|ξ |v and ‖g‖v := sup

ξ∈Rm+
ξ �=0

|g(ξ)|v
|ξ |v ,

are the induced v-norms. The inequalities in (2.58) are reminiscent of classical
small-gain conditions, only here formed in the induced v-norm. We note that in
general, ‖G(0)‖v �= ‖G(0)‖2 = ‖G‖H∞ , where the final equality is a property
enjoyed by linear positive systems; see, for example [24, Theorem 5].

(c) The conclusions of statements (i) and (ii) of Corollary 2.13 are similar to those
in [58, Theorem 7.2] or [1, Theorem 5.6, p. 156], where a linear dissipativity
theory approach to the absolute stability of positive Lur’e systems is taken. In
[58, Theorem 7.2] the authors assume that the pair (C, A) is observable, and that
the nonlinearity g satisfies 0 ≤ g(y) ≤ My for all y ∈ R

p
+, for some nonnegative

matrixM ∈ R
m×p
+ . Further, it is assumed that the triple (A, B,C) is exponentially

linearly dissipativewith respect to the supply rate s(u, y) = 1T u−1T My, which
is equivalent to the inequality

1T MG(0) � 1T . (2.59)

The inequality (2.59) is itself equivalent to |MG(0)|1 = ‖MG(0)‖1 < 1 andmay
be interpreted as a small-gain condition in the induced the one-norm. Although
not directly comparable, our norm conditions in (i)–(iii) are more general as they
allow a small-gain condition in a weighted one-norm induced by any strictly
positive vector, not just the usual one-norm, see Example 4.3. Finally, we remark
that [58] focusses on unforced systems only. ��

3 Discrete-time systems

In this section we turn attention to the systems of forced Lur’e difference inclu-
sions (1.4) with properties:
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(B1) (A, B,C) ∈ R
n×n+ × R

n×m+ × R
p×n
+ , D : N0 → P0(Rn+) and F : R

p
+ →

P0(Rm+);
(B2) r(A) < 1;

where F is also assumed to satisfy (A3). Given x0 ∈ R
n+ and D : N0 → P0(Rn+), a

function x : N0 → R
n+ satisfying (1.4) is called a solution of (1.4), the guaranteed

existence of which is not a concern in discrete-time. As with the continuous-time
setting, assumption (A3) implies that x = 0, D = {0} is a solution of (1.4) with
x0 = 0 which we refer to as the zero equilibrium pair. We comment that “loop-
shifting”, see (2.7), is also possible in discrete-time, particularly if (B2) fails, by
replacing A and F by A + BKC and y �→ F(y) − Ky, respectively, for K ∈ R

m×p.
Our main result of this section contains a series of global stability (when D =

{0}) and ISS results for (1.4), formulated in terms of induced weighted one-norm
constraints. As before, let G denote the transfer function of the triple (A, B,C) with
G(1) = C(I−A)−1B. Assumption (B2) implies thatG(1) iswell-defined and together
with (B1) implies that G(1) ∈ R

p×m
+ .

Theorem 3.1 Given the Lur’e difference inclusion (1.4), assume that (B1), (B2)
and (A3) hold.

(i) If D = {0} and there exists a strictly positive v ∈ R
p
+ such that

|G(1)w|v ≤ |y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+, (3.1)

then there exists Γ > 0 such that, for all x0 ∈ R
n+, every solution x of (1.1)

satisfies

‖x(t)‖ ≤ Γ ‖x0‖ ∀ t ∈ N0.

(ii) If D = {0} and there exist a strictly positive v ∈ R
p
+ and a lower semi-continuous

function e : R
p
+ → R+ such that

e(y) > 0 and |G(1)w|v + e(y) < |y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+\{0},

then, for all x0 ∈ R
n+, every solution x of (1.1) satisfies x(t) → 0 as t → ∞.

(iii) If there exist a strictly positive v ∈ R
p
+ and ρ ∈ (0, 1) such that

|G(1)w|v ≤ ρ|y|v ∀ w ∈ F(y) ∀ y ∈ R
p
+, (3.2)

then there exist Γ > 0 and γ ∈ (0, 1) such that, for all x0 ∈ R
n+ and all

D : N0 → P0(Rn+), every solution x of (1.1) satisfies

‖x(t)‖ ≤ Γ
(
γ t‖x0‖ + max

τ∈t−1
|||D(τ )|||) ∀ t ∈ N. (3.3)

Statements (i), (ii) and (iii) of Theorem 3.1 imply that, with D = {0}, the zero equi-
librium of (1.4) is stable in the large, globally asymptotically stable and globally
exponentially stable, respectively. Moreover, statement (iii) implies that the zero equi-
librium pair of (1.4) is exponentially ISS.
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Proof of Theorem 3.1 Throughout the proof let x denote a solution of (1.4) for given
x0 ∈ R

n+.
(i): The inequality (3.1) implies that

vTG(1)w ∈ [0, vT y] ∀ w ∈ F(y) ∀ y ∈ R
p
+. (3.4)

Multiplying both sides of (1.4) by vTC(I − A)−1, subtracting vTC(I − A)−1x(t) and
invoking (3.4) yields

vT C(I−A)−1x(t+1)−vT C(I−A)−1x(t) ∈ vT C(I − A)−1[Ax(t) + BF(Cx(t))
]

− vT C(I − A)−1x(t)

⊆ −vT Cx(t)+[0, vT Cx(t)]=[−vT Cx(t), 0],

so that
vTC(I − A)−1x(t + 1) − vTC(I − A)−1x(t) ≤ 0 ∀ t ∈ N0. (3.5)

Furthermore, as A ≥ 0 and r(A) < 1,

Cz ≤ C

( ∞∑

k=0

Ak

)
z = C(I − A)−1z ∀ z ∈ R

n+,

and hence, arguing inductively in (3.5), we see that

vTCx(t) ≤ vTC(I − A)−1x(t) ≤ vTC(I − A)−1x0 ∀ t ∈ N0.

Consequently, there exists P > 0 such that

‖Cx(t)‖ ≤ P‖x0‖ ∀ t ∈ N0. (3.6)

As r(A) < 1, statement (i) now follows from the variation of parameters inclusion

x(t) − At x0 ∈
t−1∑

j=0

At−1− j BF(Cx( j)) t ∈ N, (3.7)

(which is easily established from (1.4) via induction on t), the estimate (3.6) and (A3).
(ii): Our hypotheses ensure that statement (i) holds, in particular meaning that every
global solution is bounded. It is sufficient to show that Cx(t) → 0 as t → ∞, as
then x(t) → 0 as t → 0 by (3.7), (B2) and (A3). To that end, fix x0 ∈ R

n+\{0} and,
seeking a contradiction, suppose thatCx(t) �→ 0 as t → ∞, implying that there exists
(tk)k∈N0 ⊆ N with tk ↗ ∞ as k → ∞ and ε > 0 such that

ε ≤ ‖Cx(tk)‖ ∀ k ∈ N0.
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Invoking statement (i), we conclude further that

ε ≤ ‖Cx(tk)‖ ≤ Γ ‖C‖‖x0‖ ∀ k ∈ N0,

and so Cx(tk) ∈ M for all k ∈ N0, with M defined as in (2.21). We claim that there
exists η > 0 such that

inf
ξ∈M

w∈F(ξ)

[
vT ξ − vTG(1)w

] ≥ η. (3.8)

The proof of (3.8) is identical to that of (2.22), and hence is omitted.
Next note that, by (3.5), the nonnegative sequence (vTC(I − A)−1x(t))t∈N0 is

non-increasing and thus convergent. We now estimate that

vTC(I − A)−1x(tk) − vTC(I − A)−1x(tk + 1) ∈ vTCx(tk) − vTG(1)F(Cx(tk))

⊆ [η,∞),

where the final inclusion follows from (3.8). As a consequence,

vTC(I − A)−1x(tk) − vTC(I − A)−1x(tk + 1) ≥ η ∀ k ∈ N0,

which contradicts the convergence of (vTC(I − A)−1x(t))t∈N0 .
(iii): Fix x0 ∈ R

n+, locally bounded D : N0 → P0(Rn+) and let ε > 0 be such that
κ := ρ + ε < 1. Since r(A) < 1 andG is continuous at 1, there exists δ ∈ (0, 1) such
that

1

1 + δ
< γ < 1 ⇒ r(A/γ ) < 1 and ‖G(γ ) − G(1)‖ <

εc1
Rc2

, (3.9)

where c1, c2 > 0 are the constants in (2.24). Thus, for fixed γ ∈ (1/(1 + δ), 1) we
note that G(γ ) ≥ 0 and, further, for y ∈ R

p
+ and w ∈ F(y)

|G(γ )w|v = vTG(γ )w = vT [G(γ ) − G(1)]w + |G(1)w|v
≤ c2‖G(γ ) − G(1)‖‖w‖ + ρ|y|v ≤ εc1

R
‖w‖ + ρ|y|v

≤ κ|y|v,

where we have used (A3), (2.24), (3.2) and (3.9). Multiplying both sides of the above
inequality by γ −t , and taking y = γ tξ for ξ ∈ R

p
+, we see that

|γ −tG(γ )w|v ≤ γ −t · κ|γ tξ |v = κ|ξ |v ∀ w ∈ F(γ tξ) ∀ ξ ∈ R
p
+ ∀ t ∈ N0,

or, equivalently,

vT γ −tG(γ )F(γ tξ) ⊆ [0, κvT ξ ] ∀ ξ ∈ R
p
+ ∀ t ∈ N0. (3.10)
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Define z(t) := γ −t x(t) and H(t) := vTC(I − γ −1A)−1γ −(t+1)D(t) for t ∈ N0. An
elementary calculation using (1.4) shows that

z(τ + 1) − γ −1Az(τ ) ∈ γ −1Bγ −τ F(γ τCz(τ )) + γ −(τ+1)D(τ ) ∀ τ ∈ N0. (3.11)

Multiplying both sides of (3.11) by vTC(I − γ −1A)−1 and invoking (3.10), we have
that

vTC(I − γ −1A)−1(z(τ + 1)−z(τ )
)+vTCz(τ ) ∈ [0, κvTCz(τ )] + H(τ ) ∀ τ ∈ N0,

whence

vTC(I−γ −1A)−1(z(τ+1)−z(τ )
) ∈ [−vTCz(τ ), (κ−1)vTCz(τ )]+H(τ ) ∀τ ∈ N0.

(3.12)
Defining E(t) := [−vTCz(t), (κ −1)vTCz(t)] for t ∈ N0, it follows from (3.12) that
there exist selections ζ and η of E and H , respectively, such that

vTC(I − γ −1A)−1(z(τ + 1) − z(τ )
) = ζ(τ ) + η(τ) ∀ τ ∈ N0.

Consequently,

vTC(I−γ −1A)−1z(t) = vTC(I−γ −1A)−1x0+
t−1∑

τ=0

[ζ(τ )+h(τ )] ∀t ∈ N. (3.13)

Noting that, by construction, for θ ∈ (0, 1 − κ)

ζ(τ ) + θvTCz(τ ) ≤ 0, ∀ τ ∈ N0,

we infer from (3.13) that

θv
�
‖Cz‖�1(0,t−1) ≤

t−1∑

τ=0

θvTCz(τ ) ≤ vTC(I − γ −1A)−1z(t) +
t−1∑

τ=0

θvTCz(τ )

= vTC(I − γ −1A)−1x0 +
t−1∑

τ=0

[
ζ(τ ) + θvTCz(τ ) + h(τ )

]

≤ vTC(I − γ −1A)−1x0 +
t−1∑

τ=0

h(τ ) ∀ t ∈ N. (3.14)

A straightforward estimate shows that there exists K > 0 such that

t−1∑

τ=0

h(τ ) ≤ Kγ −tδ(t) ∀ t ∈ N, (3.15)
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where

δ(t) := max
τ∈t−1

|||D(τ )||| ∀ t ∈ N.

In light of (3.14) and (3.15) we may infer the existence of K1, K2 > 0, independent
of x0, t and D, such that

‖Cz‖�1(0,t−1) ≤ K1‖x0‖ + K2γ
−t max

τ∈t−1
|||D(τ )||| ∀ t ∈ N. (3.16)

Invoking (3.11), z satisfies the following inclusion

z(t) − (γ −1A)t x0 ∈
t−1∑

j=0

(γ −1A)t−1− j

×
[
γ −1Bγ − j F(γ jCz( j)) + γ −( j+1)D( j)

]
∀ t ∈ N,

which, by (A3) and (3.9), may be estimated as follows:

‖z(t)‖ ≤ K3‖x0‖ + K4‖Cz‖�1(0,t−1) + K5γ
−tδ(t) ∀ t ∈ N, (3.17)

for positive constants K3, K4 and K5, independent of x0, t and D. Inserting (3.16)
into (3.17) establishes the claim with Γ := max

{
K3 + K1K4, K5 + K2K4

}
, as

required. ��
Remark 3.2 In Sect. 2 we obtained two corollaries to Theorem 2.5—stability of cer-
tain non-autonomous differential inclusions and boundedness of solutions when the
linear constraint (2.9) fails on a compact set, formulated as Corollary 2.9 and Corol-
lary 2.12, respectively. The corresponding discrete-time versions of these results also
hold mutatis mutandis, but, for the sake of brevity, are not formally stated. ��

3.1 Lur’e difference equations and inequalities

In parallel to Sect. 2.3, attention in the control theory literature has been devoted to
the study of (forced) positive Lur’e difference equations of the form

x(t + 1) = Ax(t) + Bg(t,Cx(t)) + d(t), x(0) = x0, t ∈ N0, (3.18)

where g : N0 × R
p
+ → R

m+ and d : N0 → R
n+. It is also of interest to study the

stability properties of solutions of positive Lur’e difference inequalities, that is,

0 ≤ x(t + 1) − Ax(t) ≤ Bg(t,Cx(t)) + d(t), x(0) = x0, t ∈ N0, (3.19)

of which (3.18) is a special case. Both (3.18) and (3.19) are special cases of the forced
positive Lur’e differential inclusion (1.4) with respective F defined analogously to
those in Sect. 2.3.

123



278 C. Guiver et al.

The current section pertains to the difference inequalities (3.19) and we present
a suite of discrete-time stability results which forms the discrete-time analogue of
Corollary 2.13. The discrete-time version of the linear bound (2.54) is

‖g(t, y)‖ ≤ R‖y‖ ∀ t ∈ N0, ∀ y ∈ R
p
+, (3.20)

for some R > 0.

Corollary 3.3 Given the forced positive Lur’e difference inequality (3.19), assume
that (B1) and (B2) hold and that g satisfies (3.20).

(i) If d = 0 and there exists a strictly positive v ∈ R
p
+ such that

|G(1)g(t, y)|v ≤ |y|v ∀ y ∈ R
p
+, ∀ t ∈ N0,

then there exists Γ > 0 such that, for all x0 ∈ R
n+, every solution x of (2.53)

satisfies

‖x(t)‖ ≤ Γ ‖x0‖ ∀ t ∈ N0.

(ii) If d = 0 and there exist a strictly positive v ∈ R
p
+ and a lower semi-continuous

function e : R
p
+ → R+ such that

e(y) > 0 and |G(1)g(t, y)|v + e(y) ≤ |y|v ∀ y ∈ R
p
+\{0}, t ∈ N0,

then, for all x0 ∈ R
n+, every solution x of (3.19) satisfies x(t) → 0 as t → ∞.

(iii) If there exist a strictly positive v ∈ R
p
+, ρ ∈ (0, 1) and Θ ≥ 0 such that

|G(1)g(t, y)|v ≤ ρ|y|v ∀ y ∈ R
p
+, ‖y‖ ≥ Θ, ∀ t ∈ N0,

then there exist Γ > 0, γ ∈ (0, 1) such that, for all x0 ∈ R
n+ and all d ∈

�∞
loc(N0; R

n+), every solution x of (3.19) satisfies

‖x(t)‖ ≤ Γ
(
γ t‖x0‖ + max

τ∈t−1
‖d(τ )‖ + β

)
∀ t ∈ N.

Here

β = β(Θ) = ‖B‖ sup
‖y‖≤Θ

(
sup
t∈N0

(
dist
(
g(t, y), T (t, y)

))
)

,

and

T (t, y) := {w ∈ [0, g(t, y)] ⊆ R
m+: |G(1)w|v ≤ ρ|y|v

}
.

We conclude this section with some commentary on the discrete-time Lur’e sys-
tem (3.18), and compare our results with others available in the literature.
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Remark 3.4 (a) Note that ifΘ = 0 in statement (iii) of Corollary 3.3, then β(Θ) = 0
and the zero equilibrium pair of the Lur’e difference inequality (3.19) is exponen-
tially ISS, that is, (3.3) holds. Consequently, if Θ = 0, then the zero equilibrium
of the unforced (d = 0) Lur’e difference inequality is globally exponentially
stable.

(b) The comments in Remark 2.14 pertaining to the continuous-time result Corol-
lary 2.13 have discrete-time analogues in the context of Corollary 3.3. To avoid
repetition, we do not repeat them here, other than noting that the statements (i)–
(iii) of Corollary 3.3 are similar to [59, Theorem15], where different assumptions
are made to those made here.

(c) Corollary 3.3 demonstrates that the weighted one-norm constraints imposed
in (i)–(iii) are sufficient for respective notions of absolute stability. We claim
that when m = p = 1, the conclusions of statements (ii) and (iii) do not hold if
their hypotheses are not satisfied. To that end, consider (3.18) with m = p = 1,
d = 0 and a linear function y �→ g(y) = β y, for some β > 0. Suppose further
that β and G(1) are such that (3.1) holds with equality (for any 0 � vT—when
p = 1, v appears as a multiplicative scalar on both sides), that is,

G(1)β y = y ∀ y ≥ 0.

Clearly, β and G(1) must be related by

β = 1

G(1)
= 1

‖G‖H∞
,

and it is straightforward to prove that r(A + βbcT ) = 1 meaning that β is a
destabilising perturbation. In particular, (3.18) becomes

x(t + 1) =
(
A + βbcT

)
x(t), x(0) = x0, t ∈ N0,

and so ‖x(t)‖ �→ 0 as t → ∞ in general (dependent on x0). We note that
statement (i) of Corollary 3.3 holds, but that statements (ii) and (iii) do not. More
generally, for arbitrary g : R+ → R+, whenever y∗ > 0 is such that

G(1)g(y∗) = y∗, (3.21)

in particular meaning that the estimates in both (ii) and (iii) do not hold, then
x∗ := (I − A)−1Bg(y∗) is a non-zero equilibrium of (3.18) and the zero equi-
librium of (3.18) cannot then be globally asymptotically or exponentially stable.
The papers [49,64] consider attractivity and stability properties of the non-zero
equilibrium x∗ when m = p = 1 and under conditions on A, B,C and g which
ensure that y∗ > 0 in (3.21) is unique. ��

Remark 3.5 We provide some commentary comparing our results with material from
the positive systems and control literature. The paper [63] (see also [65]) considers
ISS for forced monotone dynamical systems, including those of the form
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x(t + 1) = Γ (x(t), v(t)), x(0) = x0, t ∈ N0, (3.22)

where Γ : R
n+ × R

m+ → R
n+ satisfies Γ (0, 0) = 0 and is monotone increasing, that

is,

(x1, v1) ≤ (x2, v2) ⇒ Γ (x1, v1) ≤ Γ (x2, v2) ∀ (x j , v j ) ∈ R
n+ × R

m+.

Clearly, in the case that the discrete-time Lur’e system (3.18) is autonomous, then it
is an instance of (3.22) with n = m and

R
n+ × R

n+ � (x, v) �→ Γ (x, v) := Ax + Bg(Cx) + v ∈ R
n+. (3.23)

Moreover, if g : R
p
+ → R

m+ is continuous and monotone with g(0) = 0, then Γ

defined by (3.23) is continuous, monotone and satisfies Γ (0, 0) = 0. It is straightfor-
ward to prove that, under the assumptions of Corollary 3.3, if the first inequality in
statement (iii) of Corollary 3.3 holds with Θ = 0, then Γ given by (3.23) satisfies the
inequality [63, Eq. (17)]. Hence, by [63, Theorem 3], it follows that the zero equilib-
rium pair of (3.18) is ISS. Similarly, in the unforced case, it can be shown that the first
inequality in statement (ii) of Corollary 3.3 implies that

s ∈ R
n+ and Γ (s, 0) ≥ s ⇒ s = 0,

and so global asymptotic stability of the zero equilibrium of (3.18) may be inferred
from [62, Proposition 5.12]. Thus there is partial overlap between our results and those
of [62,63], in the special case that the Lur’e system under consideration is monotone.
Byway of contrast, we comment that the positive Lur’e systems considered throughout
the current paper, although positive, need not be monotone. ��

4 Examples

We consider three worked examples.

Example 4.1 Weconsider stabilisationof single-input single-output (SISO) continuous-
time, linear positive systems by quantised output feedback. Given

ẋ = Ax + bu + d, x(0) = x0,

y = cT x,
(4.1)

where, as usual,u, x, y andd denote the input, state, output and exogenous disturbance,
respectively, suppose that A ∈ R

n×n is Metzler and b, c ∈ R
n+ are nonnegative, that

x0 ∈ R
n+, and that α(A) ≥ 0, meaning that the uncontrolled linear system is unstable.

The control objective is to stabilise (4.1) by static output feedback which is subject
to quantisation. Specifically, for fixed τ > 0, consider the upper semi-continuous
quantisation function q : R+ → R+ defined by

q(y) := τ(m − 1) ∀ y ∈ [(m − 1)τ,mτ), m ∈ N, (4.2)
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τ 2τ 3τ 4τ
0

τ

2τ

3τ

4τ

y

y
q
(y
)

(a)
τ 2τ 3τ

0

kτ

y

F
(y
)

(b)

Fig. 2 a Quantisation function q from (4.2) (solid line) and y �→ y (dashed line). b Set-valued function F
with singleton-values in solid lines and interval-values in dotted lines

which is a coarse under-estimate of the identity function y �→ y, and an example of
which is plotted in Fig. 2a.

We assume that G �= 0, where G is the transfer function of (4.1), and that there
is a feedback-gain k > 0 such that A − kbcT is Metzler and Hurwitz. With these
assumptions we seek to apply Theorem 2.11 or Corollary 2.12 to investigate stability
properties of the zero equilibrium of the linear system (4.1) in feedback connection
with the quantised output feedback u = −kq(y), together with the requirement that
x(t) ∈ R

n+ for all t ∈ R
n+. The feedback connection may be formally written as

ẋ = Ax − kbq
(
cT x

)
+ d, x(0) = x0.

Associated with q and k is the set-valued function Hk : R+ → P0(R+), given by

Hk(y) =
{
kq(y) y ∈ ((m − 1)τ,mτ)

[(m − 1)kτ,mkτ ] y = mτ
m ∈ N,

which “fills in the jumps” in kq with closed intervals and leads to the differential
inclusion for x

ẋ − Ax ∈ −bHk

(
cT x

)
+ D, x(0) = x0, (4.3)

where D := {d}. To fit our current framework of positive Lur’e inclusions, we
rewrite (4.3) as

ẋ −
(
A − kbcT

)
x ∈ b

[
kcT x − Hk

(
cT x

)]
+ D(t), x(0) = x0, (4.4)

which is in the form (1.3) with A replaced by A−kbcT and F : R+ → P0(Rn+) given
by F(y) := ky − Hk(y), which is plotted in Fig. 2b.

By our hypothesis on k and construction of Hk , assumptions (A1)–(A3) are satisfied
by the Lur’e inclusion (4.4). Further, F has compact values and is upper semi-
continuous (which is readily verified or see, for example [26, Example 1.3, p. 5])
and D is locally bounded, measurable, with closed, convex values. Therefore, by
Proposition 2.10, for every x0 ∈ R

n+, there is a global solution of (4.4) which satisfies
x(t) ∈ R

n+ for all t ∈ R+.
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Let Gk denote the transfer function of the triple (A − bkcT , b, cT ), that is,

Gk = (I + kG)−1G.

We have that Gk(0) = ‖Gk‖H∞ is positive (indeed, we have that G = 0 if, and only
if, Gk = 0).

For simplicity, assume thatG is defined at zero.1 We consider two exhaustive cases.
IfG(0) ≥ 0, thenGk(0) = G(0)/(1+ kG(0)) = ρ/k for some ρ ∈ [0, 1), and noting
from Fig. 2b that

w ≤ ky ∀ w ∈ F(y), ∀ y ≥ 0,

it follows that Theorem 2.11 applies and the zero equilibrium of (4.3) is exponentially
ISS, which implies that A is Hurwitz, which is false by hypothesis. We conclude that
G(0) < 0, so that Gk(0) > 1/k and by choosing ρ = Gk(0)(k − θ) ∈ (0, 1) for θ

sufficiently close to k, in light of Fig. 2b it follows that

Gk(0)w ≤ ρy ∀ w ∈ F(y), ∀ y ∈ R+ y ≥ τ.

Corollary 2.12 now applies, so that the zero equilibrium of (4.3) is exponentially ISS
with bias, here with Θ in that result equal to τ and

β = ‖b‖ sup {w − ρy/Gk(0): w ∈ F(y), 0 ≤ y ≤ τ
} = ‖b‖(k(1 − ρ) − ρ/G(0)

)
τ,

which, note, is a linear function of τ .
For a numerical simulation, consider (4.1) with the following

A =
⎛

⎝
− 3 2 4
2 − 1 5
4 0 − 3

⎞

⎠ , B =
⎛

⎝
1
0
0

⎞

⎠ , C = (0 1 1
)
, x0 =

⎛

⎝
10
10
10

⎞

⎠ . (4.5)

Upon inspection, we see that k = 2 renders A − kBC = A − 2BC Metzler with
α(A − 2BC) = −0.172 < 0, so that k = 2 is stabilising. Figure 3 plots solutions
of (4.3) with k = 2 for several τ > 0, subject to a nonnegative, periodic disturbance
d given by

d(t) = 0.3(1 + sin(0.6t)) t ∈ R+. (4.6)

The norm of the state decreases with decreasing τ , corresponding to finer quantisation.
For comparison, Fig. 3 also contains a plot of the solution of (4.1) subject to the output
feedback u = −ky (without quantisation).

We conclude by summarising that “linear positive stability”, that is, A − kbcT

Metzler and Hurwitz, is sufficient to ensure that the zero equilibrium pair of the
closed-loop quantised feedback system is ISS with bias and the state remains positive.
Consequently, the problem is one of static output feedback control design for linear
positive systems via the choice of k, which has been considered in, for example [21].

1 Although this assumption is not needed, it eases exposition.
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Fig. 3 Numerical simulations
of (4.3) with model data (4.5)
and disturbance (4.6), k = 2 and
τ ∈ {0.5, 0.25, 0.125} in solid,
dashed and dashed-dotted,
respectively. The dotted line is
un-quantised feedback
system—the solution of (4.1)
with u = −ky

Observe that the constant Γ depends only on A, b, c, k and ρ ∈ (0, 1). Clearly, β is
a decreasing function of τ , which captures the coarseness of the quantisation, and, as
such, the ISS with bias bound for ‖x(t)‖ decreases (viz. improves) with decreasing τ ,
or finer quantisation, as we would expect, and as seen in Fig. 3. ��
Example 4.2 Consider the following model for a population partitioned into n ∈ N,
n ≥ 3, discrete stage-classes:

x1(t + 1) − s1x1(t) ∈ F1

⎛

⎝
n∑

j=1

u1(t)c j x j (t)

⎞

⎠
n∑

j=1

u2(t)c j x j (t), x1(0) = x01

x2(t + 1) − s2x2(t) ∈ F2(x1(t))u3(t)x1(t), x2(0) = x02

xi (t + 1) = si xi (t) + hi−1xi−1(t), xi (0) = x0i , i ∈ {3, 4, . . . , n}

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

t ∈ N0.

(4.7)
Here xi (t) denotes the abundance or distribution of the i-th stage-class at time-step t .
The si and hi are probabilities denoting survival (or stasis) within a stage-class, and
growth into the next stage-class, respectively. As such si , h j ∈ (0, 1] and s j + h j ≤ 1
for all i ∈ {1, 2, . . . , n} and j ∈ {2, . . . , n − 1}. The ci terms are non-negative
constants which capture the fecundity of the i-th stage-class. The set-valued functions
F1 and F2 capture per-capita reproduction and per-capital survival rates, respectively,
and are modelled thus to accommodate for uncertainty in accurately describing these
processes. If F1 and F2 are constant singleton-valued functions, meaning that there is
no density-dependence, then (4.7) may be expressed as matrix population projection
model, see [70]. We are assuming, as is often the case, that recruitment is into the first
stage-class, which typically denotes eggs, juveniles or seeds, in an insect, animal or
plant model, respectively.

Finally, u1, u2 and u3 are forcing (controls or disturbances) affecting the repro-
ductive rates, the number of offspring of reproductive individuals and the number of
individuals which transition from the first to second stage-classes, respectively. They
are modelled to act multiplicatively so that, in particular, u1 = u2 = u3 ≡ 1 corre-
sponds to the absence of forcing. In an animal model, to reduce a population, the term
u1(t) < 1 could reflect applying contraceptives to (a proportion of) the population,
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for instance, and u2(t) < 1 could model the removal of new juvenile members of the
population, whilst u3(t) < 1 corresponds to the removal of members of the popula-
tion which are transitioning from first stage class into the second, perhaps by culling,
harvesting or moving individuals.

For constant u1, u2 and u3, the model (4.7) may be written in the form of (1.4) with

A :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

s1 0 0 · · · 0

0 s2
. . .

...
...

... h2
. . .

. . .

...
. . .

. . . 0
0 . . . 0 hn−1 sn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, B :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
... 0
...

...

0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, C :=

(
c1 c2 . . . cn
1 0 . . . 0

)
,

F

((
y1
y2

))
:=
(
1
0

)
F1(u1y1)u2y1 +

(
0
1

)
F2(y2)u3y2.

For ease of exposition in the present example, we address the following problem:
assuming that

F1(y) = [ f −
1 (y), f +

1 (y)] and F2(y) = [ f −
2 (y), f +

2 (y)] ∀ y ∈ R+,

for functions f −
1 , f +

1 , f −
2 , f +

2 : R+ → R+ which satisfy

f −
1 (y) ≤ f +

1 (y) and f −
2 (y) ≤ f +

2 (y) ∀ y ∈ R+,

find conditions on G(1), F1, F2, u1, u2 and u3 such that zero equilibrium of (4.7)
is stable. The functions f −

1 , f +
1 , f −

2 , f +
2 are typically assumed to be continuous,

non-negative valued and either sub-linear for large arguments or bounded. These lat-
ter qualitative properties seek to model density-dependent crowding, saturation and
competition effects in the population, particularly at large abundances.

It is clear that A, B and C satisfy (B1) and as σ(A) = {s1, . . . , sn}, it follows that
A satisfies (B2). An elementary calculation shows that

G(1) = C(I − A)−1B =
(
c1 c2 . . . cn
1 0 . . . 0

)

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 − s1 0 0 · · · 0

0 1 − s2
. . .

...
...

... −h2
. . .

. . .

...
. . .

. . . 0
0 . . . 0 −hn−1 1 − sn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

−1⎛

⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
... 0
...

...

0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

=
(

c1
1−s1

∑n
i=2 ci

∏i
j=2

h j−1
1−s j

1
1−s1

0

)
=:
(

α1 α2
α3 0

)
with h1 := 1,
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where α1, α2, α3 ≥ 0. To apply Theorem 3.1, we require vT = (
v1 v2

) 	 0 and
ρ ∈ [0, 1] such that

vTG(1)w ≤ ρvT y ∀ w ∈ F(y), ∀ y ∈ R
2+,

and, without loss of generality, wemay assume that v1 = 1. If ρ = 1, then statement (i)
of Theorem 3.1 applies and if ρ < 1, then statement (iii) of Theorem 3.1 applies.
Expanding the above inequality, we require v2 > 0 such that

α1w1+α2w2+v2α3w1 ≤ ρy1+ρv2y2 ∀
(

w1
w2

)
∈ F

( ( y1
y2

) )
, ∀y1, y2 ∈ R+. (4.8)

Using the definition of F , we see that (4.8) holds if

(α1 + v2α3) f
+
1 (u1y1)u2y1 ≤ ρy1 and α2 f

+
2 (y2)u3y2 ≤ ρv2y2 ∀ y1, y2 ∈ R+,

or, equivalently, if

(α1 + v2α3) f
+
1 (u1y1)u2 ≤ ρ and α2 f

+
2 (y2)u3 ≤ ρv2 ∀ y1, y2 ∈ R+. (4.9)

It follows that (4.9) is a sufficient condition for stability of the zero equilibrium which
is independent of the lower bounds f −

1 and f −
2 for F . Indeed, the “worst case” scenario

from the point of view of destabilising the zero equilibrium corresponds to the upper
bounds f +

1 and f +
2 for F , which both appear in (4.9). Furthermore, if f +

1 and f +
2 are

assumed bounded, then (4.9) can be satisfied for ρ < 1, if u2 and u3 are sufficiently
small. Recall that in the present context control acts multiplicatively, and so “small” u2
and u3 correspond to “large” control efforts. For fixed αi , f

+
i and ρ, the first inequality

in (4.9) may be satisfied by making u2 sufficiently small. There is then some freedom
in how small u3 has to be to satisfy the second inequality, through the choice of
v2, which itself may be large. However, we note that the functions z �→ f +

1 (z) and
z �→ f +

1 (u1z) have the same image for each fixed positive u1, and hence u1 alone
cannot necessarily guarantee that the first inequality in (4.9) is satisfied—and small u2
may be required as well. Arguably these observations would have not been as apparent
from the difference equations (4.7) alone. ��
Example 4.3 To illustrate the difference between Corollary 2.13 and the absolute sta-
bility results of [58], we consider (2.52), with n = m = p = 2 and

G(0) :=
(

α β

γ δ

)
, g : R

2+ → R
2+ g (y) :=

(
y2e−y1

y1e−y2

)
∀ y =

(
y1
y2

)
∈ R

2+,

(4.10)
where α, β, γ, δ > 0 are parameters. Throughout this example we are considering
the unforced version of (2.52), and so assume that d = 0 in (2.52). A positive, stable
realisation of G is

A := −I , B := I , C :=
(

α β

γ δ

)
.
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which clearly satisfies assumptions (A1), (A2). It is readily seen that (A3) holds as
well. We seek conditions on α, β, γ, δ > 0 which ensure that there exists a strictly
positive vT = (v1 v2

) ∈ R
2+ such that

vTG(0)g(y) < vT y ∀ y =
(
y1
y2

)
∈ R

2+, y �= 0,

which, by statement (ii) ofCorollary 2.13 guarantees that the zero equilibriumof (2.52)
with model data (4.10) is globally asymptotically stable. Note that there is no loss of
generality in assuming that v1 = 1 and, expanding the above expression, we require
that α, β, γ, δ and v2 satisfy

(α + v2γ )y2e
−y1 + (β + v2δ)y1e

−y2 < y1 + v2y2 ∀ y =
(
y1
y2

)
∈ R

2+, y �= 0,

which is certainly satisfied if

α + v2γ ≤ v2 and β + v2δ ≤ 1. (4.11)

In order to apply [58, Theorem 7.2] we require M ∈ R
2×2+ such that

g(y) ≤ My ∀ y ∈ R
2+ and 1TG(0)M � 1T .

The first condition necessitates that

N :=
(
0 1
1 0

)
≤ M,

and so substituting M = N into the second condition yields

α + γ < 1 and β + δ < 1, (4.12)

which corresponds to taking v2 = 1 in (4.11). Clearly, if β +δ ≥ 1, then (4.12) cannot
hold, but if β, γ < 1 and

α

1 − γ
< v2 <

1 − β

δ
,

then (4.11) holds, and so statement (ii) of Corollary 2.13 applies. Similar examples
may be constructed in discrete-time. ��

5 Discussion

Global stability of the zero equilibrium of systems of positive Lur’e differential and
difference inclusions has been considered. We have also considered input-to-state
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stability of the zero equilibrium pair of these inclusions when subject to exogenous
forcing. Under rather mild assumptions on the set-valued term F , results available
in the literature germane to the existence of local solutions of differential inclusions
are readily applicable in the present context. Therefore, in the continuous-time case,
we have focussed on stability of global solutions, and have presented conditions in
terms of weighted one-norms of the “product”G(0)F(y) of the steady-state gainG(0)
and set-valued nonlinearity F , reminiscent of classical small-gain conditions, which
are sufficient for global stability properties, including ISS for forced inclusions. As
we commented in Remark 2.6, sufficient conditions for the small-gain estimates are
the existence of suitable nonnegative matrices M such that linear constraints of the
form G(0)w ≤ My for all w ∈ F(y) and y ∈ R

p
+ hold. The stability conditions

presented guarantee existence of global solutions provided standard assumptions for
existence of local solutions are satisfied. Our main results are Theorems 2.5 and 2.11
in the continuous-time case, and Theorem 3.1 in discrete-time. As corollaries we
obtained a so-called ISS with bias result, Corollary 2.12, for forced inclusions where
the small-gain condition fails on some bounded set, and suites of stability results
for systems of positive Lur’e differential and difference equations and inequalities,
Corollaries 2.13 and 3.3. Two key differences to our earlier work, notably [60], is
that the linear components of the Lur’e inclusions are multivariable and, second, here
we consider differential inclusions, rather than differential equations. Comparisons to
other relevant results available in the literature appear in Remarks 2.14, 3.4 and 3.5
and worked Examples were presented in Sect. 4.
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