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Abstract. Tracking of reference signals (assumed bounded with essentially bounded derivative)
is considered for a class of single-input, single-output, nonlinear systems, described by a functional
differential equation with a hysteresis nonlinearity in the input channel. The first control objective
is tracking, by the output, with prescribed accuracy: determine a feedback strategy which ensures
that, for every reference signal and every system of the underlying class, the tracking error ultimately
satisfies the prescribed accuracy requirements. The second objective is guaranteed output transient
performance: the graph of the tracking error should be contained in a prescribed set (performance
funnel). Under a weak sector boundedness assumption on the hysteresis operator, both objectives
are achieved by a memoryless feedback which is universal for the underlying class of systems.
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1. Introduction. We consider a class N of nonlinear, single-input, single-output
systems modeled by nonlinear functional differential equations of the form

(1.1) ẏ(t) = f(p(t), (T (y))(t)) + g v(t), y|[−h,0] = y0 ∈ C[−h, 0],

with input u and output y. We assume that the continuous function f : R× R → R is
locally Lipschitz in its second argument, p ∈ L∞(R+) (R+ := [0,∞)) is a perturbation
or disturbance, T is a causal operator (of a class to be described in due course), g �= 0 is
a real parameter, and h ≥ 0 quantifies the “memory” in the system. With reference to
Figure 1.1, the main concern is control of a cascade consisting of a hysteresis operator
Φ (with properties to be defined in section 2) and a nonlinear system (f, p, T, g) ∈ N:

(1.2) ẏ(t) = f(p(t), (T (y))(t)) + g (Φ(u))(t), y|[−h,0] = y0 ∈ C[−h, 0].

We remark that, in a systems and control context, hysteretic effects have received
increasing attention in recent years: applications include passivity-based control of
hysteresis in smart actuators [5], inverse compensation of hysteresis [13, 20, 21], inte-
gral control in the presence of hysteretic actuators [16], stability of hysteretic feedback
systems [17, 18], and positioning control problems using piezoelectric actuators [4].

In the present paper, the primary control objective is tracking with prescribed
accuracy: given λ > 0 (arbitrarily small), determine a single feedback strategy which
ensures that, for every (f, p, T, g) ∈ N, every admissible Φ, and every reference signal
r ∈ W 1,∞(R+), the tracking error e = y − r is ultimately bounded by λ (that is,
|e(t)| < λ for all t sufficiently large or, equivalently, lim supt→∞ |e(t)| < λ). The
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Fig. 1.1. System with input hysteresis.

Error evolution

Fβ

Fig. 1.2. Performance funnel Fβ.

second objective is guaranteed output transient performance: for some prescribed
function β : [0,∞) → [0,∞), the tracking error e is required to satisfy β(t)|e(t)| < 1
for all t ≥ 0. Under mild assumptions on the operators T and Φ (including, in
particular, a weak sector boundedness condition for Φ), both objectives are achieved
by a memoryless feedback of the form u(t) = ν(k(t))e(t), with k(t) = α(β(t)|e(t)|)
(for suitably chosen functions α and ν), while maintaining boundedness of the control
u and of the “gain” function k. If the parameter g in (1.2) is known to be positive,
then the control may take the simplified form u(t) = −k(t)e(t).

The issue of tracking with prescribed transient behavior dates back at least to the
work of Miller and Davison [19], who—in the context of linear systems—introduced a
controller which guarantees the “error to be less than an (arbitrarily small) prespec-
ified constant after an (arbitrarily small) prespecified period of time”: the approach
involves a monotonically nondecreasing dynamically generated gain and invokes a
piecewise constant switching strategy. In the context of nonlinear systems, the present
paper subsumes the Miller and Davison performance objective as a special case and
adopts a methodology that is intrinsically different: distinguishing features are a non-
dynamically generated and nonmonotone gain and greater flexibility in “shaping”
transient behavior.

The essence of the approach of the present paper centers on the concept of a
performance funnel, introduced in [8] (with extensions thereof in [9, 10, 11]),

(1.3) Fβ :=
{
(t, e) ∈ R+ × R

∣∣ β(t) |e| < 1
}

associated with the function β : R+ → R (the reciprocal of which determines the fun-
nel boundary); see Figure 1.2. The memoryless feedback, alluded to above, ensures
that, for every reference signal r ∈ W 1,∞(R+), the tracking error e = y − r evolves
within the funnel Fβ and all signals are bounded. For example, if β ∈ W 1,∞(R+) is
chosen so that lim inft→∞ β(t) ≥ 1/λ > 0, then evolution within the funnel ensures
that the first control objective is achieved: other properties may be imposed on β
in order to “shape” the transient behavior; for example, if β is chosen as the func-
tion t �→ min{t/τ, 1}/λ, then evolution within the funnel ensures that the prescribed
tracking accuracy λ > 0 is achieved within the prescribed time τ > 0. The funnel
control methodology has been applied to electric drive systems: experimental results
are reported in [12].
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The paper is structured as follows. Section 2 first makes precise the class N of
nonlinear systems and the class of admissible hysteresis operators which constitute the
cascades of the form shown in Figure 1.1 underlying the paper: a prototype subclass
of linear retarded systems illustrates the former system class; explicit constructions
of backlash, Preisach, and Prandtl operators serve to illustrate the latter hysteresis
class. Then, we proceed to elucidate the concept of a performance funnel and to
formulate the associated control problem. Section 2 terminates with a description
of the proposed memoryless feedback control. Section 3 addresses the fundamental
question of well posedness of the closed-loop system. This question is answered in
the affirmative in Theorem 3.1. Section 4 contains the main results of the paper:
Theorem 4.1 establishes that the proposed feedback structure ensures attainment of
the control objectives of asymptotic tracking with prescribed accuracy and transient
behavior; Corollary 4.1 identifies an additional assumption on the input hysteresis
under which rejection of continuous and bounded input disturbances is achieved;
Corollary 4.3 highlights a simplified control structure applicable to cases wherein the
sign of the nonzero system parameter g is known a priori. Finally, in section 5, a
problem of tracking with disturbance rejection is considered—in a context of second-
order hysteretic systems and reference signals of class W 2,∞(R+)—and resolved via
an application of Theorem 3.1 and Corollary 4.3. Some technicalities are relegated to
three Appendices, including the proof of Theorem 3.1 which is provided in Appendix 3.

Notation and terminology. Set R+ := [0,∞) and C+ := {s ∈ C |Re s ≥ 0} (the
closed right-half real line and the closed right-half complex plane, respectively). Let
I ⊂ R+ be an interval. We denote the space of continuous functions I → Rn by
C(I,Rn): if I = [a, b] or I = [a, b) and n = 1, then we simply write C[a, b] or C[a, b).
Moreover, BV [a, b] denotes the space of real-valued functions of bounded variation
defined on [a, b]. For h, t ∈ R+, w ∈ C[−h, t], τ > t, and δ > 0, define

C(w;h, t, τ, δ) :=
{
x ∈ C[−h, τ ]

∣∣ x|[−h,t] = w, |x(s)− w(t)| ≤ δ ∀ s ∈ [t, τ ]
}
.

The space of essentially bounded (respectively, locally essentially bounded) measur-
able functions I → R is denoted by L∞(I) (respectively, L∞

loc(I)). The space of locally
absolutely continuous bounded functions I → R with essentially bounded derivative is
denoted by W 1,∞(I): the space of continuously differentiable bounded functions I →
R with locally absolutely continuous bounded first derivative and essentially bounded
second derivative is denoted by W 2,∞(I). An operator S : C[−h,∞) → L∞

loc(R+),
h ≥ 0, is causal if, and only if, for all x, y ∈ C[−h,∞) and all τ > 0,

x|[−h,τ ] = y|[−h,τ ] =⇒ (S(x))(t) = (S(y))(t) for a.a. t ∈ [0, τ ].

We will have occasion to give meaning to S(x), where x ∈ C(I) and I is a bounded
interval of the form [−h, a) or [−h, a] with 0 < a < ∞. This we do by showing that S
“localizes,” in a natural way, to an operator S̃ : C(I) → L∞

loc(J), where J := I\[−h, 0).
For each x ∈ C(I) and each σ ∈ J , define xσ ∈ C[−h,∞) by

xσ(t) :=

{
x(t), t ∈ [−h, σ],
x(σ), t > σ.

By causality, we may define S̃(x) ∈ L∞
loc(J) by the property

S̃(x)|[0,σ] = S(xσ)|[0,σ] ∀σ ∈ J.

Henceforth, we will not distinguish notationally between an operator S and its “lo-
calization” S̃, the correct interpretation being clear from the context.
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yΛ1 : ẏ = f(p, q) + gvv
p
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Λ2 : q = T (y)

Fig. 2.1. System of class N.

2. Formulation of the control problem. The purpose of this section is to
give a precise formulation of the problem.

Nonlinear system class. With reference to (1.1), we first define the class of oper-
ators Oh, parameterized by h ≥ 0, to which T belongs.

Definition 2.1 (operator class Oh). An operator T is deemed to be of class Oh

if, and only if, the following hold:
(i) T : C[−h,∞) → L∞

loc(R+).
(ii) T is a causal operator.
(iii) For all t ≥ 0 and all w ∈ C[−h, t], there exist τ > t, δ > 0, and c0 > 0 such

that

ess-sups∈[t,τ ]|(T (x))(s)− (T (y))(s)| ≤ c0 sup
s∈[t,τ ]

|x(s) − y(s)| ∀x, y ∈ C(w;h, t, τ, δ);

(iv) For all c1 > 0, there exists c2 > 0 such that, for all y ∈ C[−h,∞),

sup
t∈[−h,∞)

|y(t)| ≤ c1 =⇒ ess-supt∈R+
|(T (y))(t)| ≤ c2.

In interpreting property (iii) of the operator class Oh, recourse should be made
to the “localization” procedure outlined previously.

We are now in a position to define the class N of nonlinear systems.
Definition 2.2 (system class N). The class N is composed of single-input,

single-output, nonlinear systems (f, p, T, g) of the form (1.1), satisfying the following
assumptions:

(i) f : R× R → R is continuous and f(z, ·) is locally Lipschitz for every z ∈ R;
(ii) g ∈ R is nonzero;
(iii) p ∈ L∞(R+);
(iv) T ∈ Oh, where h ≥ 0.
With reference to Figure 2.1, a system (1.1) of class N can be thought of as

an interconnection of two (sub)systems. The dynamical system Λ1, which can be
influenced directly by the system input v, is also driven by the output q from the
system Λ2, formulated as a causal operator T mapping the system output y to q (an
internal quantity, unavailable for feedback purposes); for example, Λ2 can encompass
infinite-dimensional processes (e.g., delays and diffusions) or nonlinear, input-to-state
stable systems given by

ż(t) = a(z(t), y(t)), q(t) = c(z(t)), z(0) = z0 ∈ R
m,

with locally Lipschitz functions a : Rm × R → Rm and c : Rm → R (for details, see
[8]). By way of illustration, in the following we consider a class of linear retarded
systems and show that it is contained in N.
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Example 2.3. Let h > 0, let A be an n× n matrix with entries in BV [0, h], and
let b, cT ∈ Rn. Consider the retarded system

ẋ = dA ∗ x+ bv, x|[−h,0] = x0 ∈ C([−h, 0],Rn),(2.1a)

y = cx,(2.1b)

where (dA ∗ x)(t) :=
∫ h

0
dA(τ)x(t − τ) for all t ∈ R+. We assume that the system

(2.1) satisfies the following two conditions:
• minimum-phase condition, i.e.,

det

(
sI − Â(s) −b

c 0

)
�= 0 ∀ s ∈ C+,

where Â(s) :=
∫ h

0
exp(−sτ)dA(τ).

• relative degree one condition, i.e., cb �= 0.
It is well known that, under these assumptions, there exists a similarity tranformation
which takes the system into the form

ẏ = dA11 ∗ y + dA12 ∗ z + cbv, y|[−h,0] = y0,(2.2a)

ż = dA21 ∗ y + dA22 ∗ z, z|[−h,0] = z0,(2.2b)

where, by the minimum-phase condition, A22 has the property that

(2.3) det(sI − Â22(s)) �= 0 ∀ s ∈ C+;

see [7, 15] for details. For given z0 ∈ C([−h, 0],Rn−1) and given ξ ∈ C[−h,∞), let
z(·; z0, ξ) denote the unique solution of the initial-value problem

ż = dA22 ∗ z + dA21 ∗ ξ, z|[−h,0] = z0.

Setting

T (ξ) := dA11 ∗ ξ + dA12 ∗ z(· ; 0, ξ), p := dA12 ∗ z(· ; z0, 0),

(2.2a) can be expressed as

(2.4) ẏ = p+ T (y) + cbv, y0 = cx0.

By a standard result from the theory of retarded functional differential equations (see
[6, Corollary 6.1, p. 215]), (2.3) implies that the zero solution of the retarded equation
ż = dA22 ∗ z is exponentially stable, so that there exists K > 0 such that, for all
z0 ∈ C([−h, 0],Rn−1) and all ξ ∈ C[−h,∞),

sup
t∈[0,∞)

|z(t; z0, ξ)| ≤ K

(
sup

t∈[−h,0]

|z0(t)|+ sup
t∈[−h,∞)

|ξ(t)|
)
.

We conclude that p is bounded and that T ∈ Oh. Consequently, the system given by
(2.4) is in the system class N.
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Class of input nonlinearities. Causal operators Φ: C(R+) → C(R+) satisfying
some or all of the following conditions will be considered.

H1. For all t ≥ 0 and all w ∈ C[0, t], there exist c0 > 0, τ > t and δ > 0 such
that

(2.5) sup
s∈[t,τ ]

|(Φ(u1))(s)− (Φ(u2))(s)|
≤ c0 sup

s∈[t,τ ]

|u1(s)− u2(s)| ∀u1, u2 ∈ C(w; 0, t, τ, δ).

H2. For all ω ∈ (0,∞], boundedness of u ∈ C[0, ω) implies boundedness of Φ(u).
H3. There exist c1 > 0 and a nondecreasing unbounded function ϕ : R+ → R+

such that, for all u ∈ C(R+) and all t ∈ R+,

|u(t)| ≥ c1 =⇒ ϕ(|u(t)|)|u(t)| ≤ u(t)(Φ(u))(t).

The following hypothesis will be invoked only in circumstances wherein the system
under consideration is subject to bounded input disturbances.

H4. For each bounded d ∈ C(R+), there exists cd > 0 such that

|(Φ(u + d))(t)− (Φ(u))(t)| ≤ cd ∀u ∈ C(R+) ∀ t ∈ R+.

Again, in interpreting H1 and H2, recourse should be made to the “localization”
procedure outlined at the beginning of this section. A sufficient condition for H1, H2,
and H4 to be satisfied is that Φ is Lipschitz continuous in the sense that there exists
a Lipschitz constant L ≥ 0 such that

sup
t∈R+

|(Φ(u1))(t)− (Φ(u2))(t)| ≤ L sup
t∈R+

|u1(t)− u2(t)| ∀u1, u2 ∈ C(R+).

Furthermore, if there exist c1, c2 > 0 such that, for all u ∈ C(R+) and all t ∈ R+,

|u(t)| ≥ c1 =⇒ c2u
2(t) ≤ u(t)(Φ(u))(t),

then H3 holds with ϕ given by ϕ(v) = c2v for all v ∈ R+.
We emphasize that many hysteresis operators satisfy conditions H1–H3 (and H4),

where we say that Φ: C(R+) → C(R+) is a hysteresis operator if, and only if, Φ is
causal and rate independent. Here rate independence means that Φ(u ◦ ζ) = (Φu) ◦
ζ for every u ∈ C(R+) and every time transformation ζ, where ζ : R+ → R+ is
said to be a time transformation if, and only if, it is continuous, nondecreasing,
and surjective. While H3 fails to hold for saturating hysteresis, we emphasize that
H3 allows for nonlinearities with slow (sublinear) growth: specifically, elements with
growth quantified by an arbitrary nondecreasing unbounded function ϕ : R+ → R+.

We briefly digress to state the following lemma (which will play a role in Corol-
lary 4.1 below). The proof can be found in Appendix 1.

Lemma 2.4. Let Φ: C(R+) → C(R+) be causal, let d ∈ C(R+) be bounded,
and define the causal operator Φd : C(R+) → C(R+) by Φd(u) = Φ(u + d) for all
u ∈ C(R+). Then the following statements hold:

(i) If Φ satisfies any of the assumptions H1 or H2, then so does Φd.
(ii) If Φ satisfies H3 and H4, then H3 holds for Φd.
In the following, we give examples of hysteresis operators satisfying H1–H4.
Backlash hysteresis. A discussion of the backlash operator (also called play oper-

ator) can be found in a number of references; see, for example, [2], [3], [14], and [16].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRACKING FOR HYSTERETIC SYSTEMS 4737

u

Bσ,ξ(u)

−σ

σ

Fig. 2.2. Backlash hysteresis.

Let σ ∈ R+ and introduce the function bσ : R
2 → R given by

bσ(v1, v2) := max{v1 − σ, min{v1 + σ, v2}} =

⎧⎨
⎩
v1 − σ, if v2 < v1 − σ,
v2, if v2 ∈ [v1 − σ, v1 + σ],
v1 + σ, if v2 > v1 + σ.

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined on
R+. For all σ ∈ R+ and all ξ ∈ R, we define the operator Bσ, ξ : Cpm(R+) → C(R+) by

(Bσ, ξ(u))(t) =

{
bσ(u(0), ξ) for t = 0,
bσ(u(t), (Bσ, ξ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < · · · , limn→∞ tn = ∞, and u is monotone on each interval
[ti, ti+1]. We remark that ξ plays the role of an “initial state.” It is not difficult to
show that the definition is independent of the choice of the partition (ti). Figure 2.2
illustrates how Bσ, ξ acts. It is well known that Bσ, ξ extends to a Lipschitz continuous
operator on C(R+) (with Lipschitz constant L = 1), the so-called backlash operator,
which we shall denote by the same symbol Bσ, ξ. It is well known (and easy to check)
that Bσ, ξ is a hysteresis operator. By Lipschitz continuity, Bσ, ξ satisfies H1, H2, and
H4. It is clear that Bσ, ξ also enjoys property H3. We also remark that the operator
Bσ, ξ is in the class O0.

Preisach and Prandtl hysteresis. The Preisach operator described below encom-
passes both backlash and Prandtl operators. It can model complex hysteresis effects:
for example, nested loops in input-output characteristics. Let ξ : R+ → R be a com-
pactly supported and globally Lipschitz function with Lipschitz constant 1. Let μ be
a signed Borel measure on R+ such that |μ|(K) < ∞ for all compact sets K ⊂ R+,
where |μ| denotes the total variation of μ. Denoting the Lebesgue measure on R by
μL, let l : R× R+ → R be a locally (μL ⊗ μ)-integrable function and let l0 ∈ R. The
operator Pξ : C(R+) → C(R+) defined by

(2.6) (Pξ(u))(t) =

∫ ∞

0

∫ (Bσ, ξ(σ)(u))(t)

0

l(s, σ)μL(ds)μ(dσ) + l0

∀u ∈ C(R+) ∀ t ∈ R+,

is called a Preisach operator. This definition of a Preisach operator is equivalent to
that adopted in [3, Section 2.4]. It is well known that Pξ is a hysteresis operator (this
follows from the fact that Bσ, ξ(σ) is a hysteresis operator for every σ ≥ 0). Under the
assumption that the measure μ is finite and l is essentially bounded, the operator Pξ is
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Fig. 2.3. Example of Prandtl hysteresis.

Lipschitz continuous with Lipschitz constant |μ|(R+)‖l‖∞ (see [16]), and thus, Pξ

satisfies H1, H2, and H4 (implying that Pξ is also in the class O0). If, in addition,
μ and l are nonnegative,

∫∞
0 σμ(dσ) < ∞ and there exist ε > 0 and σ1, σ2 ≥ 0 with

σ1 ≤ σ2 such that

(2.7)
μ([σ1, σ2]) > 0 and |s|l(s, σ) ≥ ε for a.e. (s, σ) with |s| ≥ 1/ε and σ ∈ [σ1, σ2],

then H3 is also satisfied (a proof of this fact is provided in Appendix 2). Special cases
for which (2.7) is satisfied are

• μ is nonnegative, μ �= 0, and ess inf l > 0;
• μ([σ1, σ2]) > 0 and l(s, σ) is of the form l(s, σ) = l1(σ)/l2(s), where l1 : R+ →
R and l2 : R → R are such that ess inf l1|[σ1,σ2] > 0 and ess inf l2 > 0, l1 are
essentially bounded and there exists κ > 0 such that l2(s) ≤ κ|s| for almost
all sufficiently large |s|.

Setting l(·, ·) = 1 and l0 = 0 in (2.6), we obtain the Prandtl operator Pξ : C(R+) →
C(R+) defined by

(2.8) (Pξ(u))(t) =

∫ ∞

0

(Bσ, ξ(σ)(u))(t)μ(dσ) ∀u ∈ C(R+) ∀ t ∈ R+.

For ξ ≡ 0 and μ given by μ(E) =
∫
E χ[0,5](σ)dσ (where χ[0,5] denotes the indicator

function of the interval [0, 5]), the Prandtl operator is illustrated in Figure 2.3.
Control objectives, the performance funnel, and control strategy. The first control

objective is approximate tracking, by the output y of system (1.2) (illustrated in
Figure 1.1), of reference signals r ∈ W 1,∞(R+). In particular, for arbitrary γ ≥ 0
and λ > 0, we seek an output feedback strategy which ensures that, for every r ∈
W 1,∞(R+) and y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the unique solution of the
closed-loop system is bounded and the tracking error e(t) = y(t) − r(t) is ultimately
bounded by λ (that is, |e(t)| < λ for all t sufficiently large). The second control
objective is prescribed transient behavior of the tracking error signal. We capture
both objectives in the concept of a performance funnel, introduced in [8] and defined
in (1.3), associated with a function β : R+ → R (the reciprocal of which determines
the funnel boundary) belonging to

Wγ,λ :=
{
β ∈ W 1,∞(R+)

∣∣ β(0) = γ, β(s) > 0 ∀ s > 0, lim inf
s→∞ β(s) ≥ 1/λ

}
,

with γ ≥ 0 and λ > 0. The aim is an output feedback strategy ensuring that, for every
reference signal r ∈ W 1,∞(R+) and every y0 ∈ C[−h, 0] with γ|y0(0)− r(0)| < 1, the
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tracking error e = y− r evolves within the funnel Fβ and all signals are bounded. For
every γ ≥ 0, λ > 0, and β ∈ Wγ,λ, evolution within the funnel ensures that the first
control objective is achieved: moreover, β can be chosen to influence the transient
behavior; for example, reiterating comments in the Introduction, if τ > 0, γ = 0,
and β is chosen as the function t �→ min{t/τ, 1}/λ, then evolution within the funnel
ensures that the prescribed tracking accuracy λ > 0 is achieved within the prescribed
time τ > 0 for all y0 ∈ C[−h, 0] and all r ∈ W 1,∞(R+).

Remark 2.5. Some elucidation on the role of the parameter γ ≥ 0 is warranted.
In the absence of a priori information on the initial function y0 ∈ C[−h, 0], we sim-
ply set γ = 0. On the other hand, if sufficient a priori information is available to
compute an upper bound δ > 0 for the quantity |y0(0)− r(0)|, then any γ ∈ [0, 1/δ)
may be chosen: in particular, the choice 0 < γ < 1/δ yields a uniform bound, viz.
supt∈R+

|y(t)− r(t)| ≤ 1/β∗, β∗ := inft∈R+ β(t) > 0, on the tracking error associated

with the solution y corresponding to any initial function y0 and reference signal r
with the property γ|y0(0) − r(0)| < 1. This observation will play a role in section 5
below. In many situations, a nondecreasing function β is a natural choice, in which
case β∗ = γ.

Let ν : R → R be locally Lipschitz and let α : [0, 1) → R+ be a locally Lipschitz
unbounded injection (for example, α : s �→ 1/(1− s)). For r ∈ W 1,∞(R+), λ > 0, and
β ∈ Wγ,λ, consider the control strategy

(2.9) u(t) = ν(k(t))
(
y(t)− r(t)

)
, k(t) = α

(
β(t) |y(t)− r(t)|).

The main contribution of the paper is to show that the feedback (2.9) applied to any
cascade (as in Figure 1.1), given by (1.2), achieves the control objectives provided
that the function ν has the following properties:

(2.10) lim sup
k→∞

ν(k) = +∞ and lim inf
k→∞

ν(k) = −∞.

A simple example of a function satisfying (2.10) is ν : k �→ k cos k. Anticipating
Remark 4.2 below, if the sign of g is known, then the need for ν is obviated and the
linear function k �→ −k sgn(g) may be adopted in its place.

The control structure is of a high-gain nature: if the tracking error e = y − r
approaches the funnel boundary (equivalently, if β|e| approaches 1 from below), then
the function k takes values sufficiently large to preclude boundary contact. However,
in contrast to classical high-gain adaptive control strategies (see, e.g., [7, 15] and the
references therein), the function k is not monotone and decreases as the tracking error
recedes from the funnel boundary.

In view of the nature of the function α, care must be exercised in interpreting
the closed-loop system. This we do in the next section, wherein we show that the
closed-loop initial-value problem is well posed.

3. The closed-loop system. Let (f, p, T, g) ∈ N and let Φ: C(R+) → C(R+)
be a causal operator satisfying H1. Let r ∈ W 1,∞(R+), λ > 0, and β ∈ Wγ,λ. Let
ν : R → R be locally Lipschitz and let α : [0, 1) → R+ be a locally Lipschitz unbounded
injection. The conjunction of the system (1.2) and control (2.9) yields the closed-loop
initial-value problem

(3.1)

⎧⎨
⎩
ẏ(t) = f(p(t), (T (y))(t)) + g(Φ(u))(t), y|[−h,0] = y0 ∈ C[−h, 0],
u(t) = ν(k(t))

(
y(t)− r(t)

)
,

k(t) = α
(
β(t)|y(t)− r(t)|).
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Writing

(3.2) D := {(t, z) ∈ R+ × R | β(t)|z − r(t)| < 1},

then, by a solution of (3.1), we mean a continuous function y : I → R on some interval
I of the form [−h, ρ], with 0 < ρ < ∞, or of the form [−h, ω), with 0 < ω ≤ ∞,
such that (a) y|[−h,0] = y0 and (b) y|J , J := I \ [−h, 0), has a graph in D, is locally
absolutely continuous, and satisfies the differential equation in (3.1) almost everywhere
on J . A solution is maximal if, and only if, it has no right extension that is also a
solution.

Theorem 3.1. Let (f, p, T, g) ∈ N and let Φ: C(R+) → C(R+) be a causal
operator satisfying H1 and H2. Let r ∈ W 1,∞(R+), γ ≥ 0, λ > 0, and β ∈ Wγ,λ. Let
ν : R → R be locally Lipschitz and let α : [0, 1) → R+ be a locally Lipschitz unbounded
injection. Then, for each y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the initial-value
problem (3.1) has a unique maximal solution y ∈ C[−h, ω). Moreover, if ω < ∞,
then lim supt↑ω β(t)|y(t)− r(t)| = 1 (or, equivalently, lim supt↑ω k(t) = ∞).

A proof of this theorem is contained in Appendix 3. We emphasize that, in
Theorem 3.1, the causal operator Φ is required only to satisfy H1 and H2 and the
function ν is assumed only to be locally Lipschitz. These assumptions are not sufficient
to ensure that, for each y0 ∈ C[−h, 0], the unique maximal solution y ∈ C[−h, ω) is
such that ω = ∞; however, if Φ is such that H3 also holds and ν has properties (2.10),
then ω = ∞. The latter is the essence of Theorem 4.1 below.

4. The main result. We are now in a position to state and prove the main
result of the paper, part (ii) of which asserts that the tracking error evolves within
the performance funnel (and so the control objectives are achieved) and, moreover, is
bounded away from the funnel boundary.

Theorem 4.1. Let (f, p, T, g) ∈ N and let Φ: C(R+) → C(R+) be causal and
such that H1–H3 are satisfied. Let γ ≥ 0, λ > 0, and β ∈ Wγ,λ. Let ν : R → R be
a locally Lipschitz function with properties (2.10) and let α : [0, 1) → R+ be a locally
Lipschitz unbounded injection. For each r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with
γ|y0(0) − r(0)| < 1, the unique maximal solution y : [−h, ω) → R of the closed-loop
initial-value problem (3.1) is such that

(i) ω = ∞;
(ii) there exists ε ∈ (0, 1) such that β(t) |y(t)− r(t)| ≤ 1− ε for all t ∈ R+ ;
(iii) the continuous functions u, Φ(u) : R+ → R, and k : R+ → R+ are bounded.
Proof. Let r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] be such that γ|y0(0) − r(0)| < 1.

An application of Theorem 3.1 establishes the existence of a unique maximal solution
y ∈ C[0, ω) of (3.1), with 0 < ω ≤ ∞. Since (t, y(t)) ∈ D for all t ∈ [0, ω) and r is
bounded, it follows from (3.2) that y is bounded. Writing

e(t) = y(t)− r(t), k(t) = α(β(t)|e(t)|), u(t) = ν(k(t))e(t) ∀ t ∈ [0, ω),

we have β(t)|e(t)| < 1 for all t ∈ [0, ω) and, since y and r are bounded, the function
e = y−r is bounded. We claim that it is sufficient to show that k is bounded. Indeed,
boundedness of k implies the existence of a constant ε > 0 such that β(t)|e(t)| ≤ 1−ε
for all t ∈ [0, ω). By the second assertion of Theorem 3.1, it then follows that ω = ∞.
Moreover, boundedness of e and k yields boundedness of u = ν(k)e whence, by
property H2 of Φ, boundedness of Φ(u).

It remains to show that k is bounded. To this end, note that, by property (iv)
of the operator class Oh (see Definition 2.1) and the boundedness of y, the function



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRACKING FOR HYSTERETIC SYSTEMS 4741

T (y) is bounded. Moreover,

ė(t) = f(p(t), (T (y))(t)) + g (Φ(u))(t) − ṙ(t), for a.a. t ∈ [0, ω).

By continuity of f , boundedness of T (y) and e, and essential boundedness of p and ṙ,
there exists c0 > 0 such that

(4.1) e(t)ė(t) ≤ c0 + g e(t)(Φ(u))(t), for a.a. t ∈ [0, ω).

Observe that, by boundedness of β and e, essential boundedness of β̇, and inequality
(4.1), there exists c1 > 0 such that

d

dt

(
β(t)e(t)

)2
= 2β(t)β̇(t)e2(t) + 2β2(t)e(t)ė(t)(4.2)

≤ c1
(
1 + g e(t)(Φ(u))(t)

)
, for a.a. t ∈ [0, ω).

Next, we show that k is bounded. By properties (2.10) of ν, there exists a strictly
increasing unbounded sequence (kn)n∈N, with kn > max{k(0), α(1/2)} for all n ∈ N,
such that

(
g ν(kn)

)
is a strictly decreasing unbounded sequence, with g ν(kn) < 0 for

all n ∈ N. Seeking a contradiction, suppose that k is unbounded. For each n ∈ N,
define

τn := inf{t ∈ [0, ω)| k(t) = kn+1}, σn := sup{t ∈ [0, τn]| ν(k(t)) = ν(kn)} < τn,

wherein the latter inequality holds since |ν(k(τn))| = |ν(kn+1)| > |ν(kn)|. Then, the
following inequalities hold:

(4.3)

kn ≤ k(t) and |ν(kn)| ≤ |ν(k(t))|
β(t)|e(t)| = α−1(k(t)) ≥ α−1(kn) > 1/2

|e(t)| ≥ 1/
(
2 sups≥0 β(s)

)
=: c2 > 0

⎫⎪⎪⎬
⎪⎪⎭ ∀ t ∈ [σn, τn] ∀n ∈ N,

wherein α−1 denotes the inverse of the bijection α : [0, 1) → [α(0),∞). By property
H3 of Φ, there exist c3 > 0 and a nondecreasing unbounded function ϕ : R+ → R+

such that

|u(t)| ≥ c3 =⇒ ϕ(|u(t)|)|u(t)| ≤ u(t)(Φ(u))(t).

Choose N ∈ N sufficiently large so that c2|ν(kN )| ≥ c3. By (4.3), it follows that

|u(t)| = |ν(k(t))e(t)| ≥ c2|ν(kN )| ≥ c3 ∀ t ∈ [σn, τn] ∀n > N.

Hence,

ν(k(t))e(t)(Φ(u))(t) = u(t)(Φ(u))(t) ≥ ϕ(|u(t)|)|u(t)| ∀ t ∈ [σn, τn] ∀n > N,

so that

(4.4) ν(k(t))e(t)(Φ(u))(t) ≥ ϕ(|ν(k(t))e(t)|)|ν(k(t))e(t)| ∀ t ∈ [σn, τn] ∀n > N.

Since gν(k(t)) ≤ gν(kn) < 0 for all t ∈ [σn, τn] and all n ∈ N, we may conclude, from
(4.3) and (4.4), that

g e(t)(Φ(u))(t) ≤ −|g|ϕ(|ν(k(t))e(t)|)|e(t)|
≤ −|g|c2ϕ(c2|ν(kn)|), ∀ t ∈ [σn, τn] ∀n > N,
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which, in conjunction with (4.2), yields

(4.5)
d

dt

(
β(t)e(t)

)2 ≤ c1
(
1− |g|c2ϕ(c2|ν(kn)|)

) ∀ t ∈ [σn, τn] ∀n > N.

Now fix m > N sufficiently large so that

|g|c2ϕ(c2|ν(kn)| > 1.

By (4.5), we have (
β(τm)e(τm)

)2 − (β(σm)e(σm)
)2

< 0,

and so β(τm)|e(τm)| < β(σm)|e(σm)|, whence the contradiction

0 > α
(
β(τm)|e(τm)|)− α

(
β(σm)|e(σm)|) = k(τm)− k(σm) ≥ 0.

This proves boundedness of k, completing the proof.
Finally, let us consider the closed-loop system (3.1) in the presence of a bounded

continuous input disturbance d; that is, we replace (3.1) by

(4.6)

⎧⎨
⎩
ẏ(t) = f(p(t), (T (y))(t)) + g (Φ(u + d))(t), y|[−h,0] = y0 ∈ C[−h, 0],
u(t) = ν(k(t))

(
y(t)− r(t)

)
,

k(t) = α
(
β(t)|y(t) − r(t)|).

The following result shows that, if Φ satisfies H1–H4, then the conclusions of Theo-
rem 4.1 remain valid in the presence of bounded continuous input disturbances d.

Corollary 4.1. Let (f, p, T, g) ∈ N and let Φ: C(R+) → C(R+) be causal and
such that H1–H4 are satisfied. Let γ ≥ 0, λ > 0, and β ∈ Wγ,λ. Let ν : R → R

be a locally Lipschitz function with properties (2.10) and let α : [0, 1) → R+ be a
locally Lipschitz unbounded injection. Then, for each bounded d ∈ C(R+), and each
r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with γ|y0(0) − r(0)| < 1, the unique maximal
solution y : [−h, ω) → R of the closed-loop initial-value problem (4.6) is such that
statements (i)–(iii) of Theorem 4.1 hold.

The proof of Corollary 4.1 is a straightforward application of Lemma 2.4 and
Theorem 4.1.

Remark 4.2. Inspection of the proof of Theorem 4.1 reveals that the role of prop-
erties (2.10) of ν is simply to ensure the existence of a strictly increasing unbounded
sequence (kn), with kn > α(1/2) for all n, such that

(
g ν(kn)

)
is a strictly decreasing

unbounded sequence with g ν(kn) < 0 for all n. If (f, p, T, g) ∈ N is such that the sign
of g is known a priori, then the latter property is assured if ν is replaced by the linear
function k �→ −k sgn(g). This observation leads immediately to the following result.

Corollary 4.3. Let (f, p, T, g) ∈ N be such that g > 0. Let Φ: C(R+) → C(R+)
be causal and such that H1–H4 are satisfied. Let γ ≥ 0, λ > 0, and β ∈ Wγ,λ. Let
ν : R → R, k �→ −k, and let α : [0, 1) → R+ be a locally Lipschitz unbounded injection.
Then, for each bounded d ∈ C(R+), and each r ∈ W 1,∞(R+) and y0 ∈ C[−h, 0] with
γ|y0(0) − r(0)| < 1, the unique maximal solution y : [−h, ω) → R of the closed-loop
initial-value problem (4.6) is such that statements (i)–(iii) of Theorem 4.1 hold.

5. Tracking and disturbance rejection for second-order hysteretic sys-
tems. Consider the problem of tracking a reference signal ρ ∈ W 2,∞(R+) for single-
input systems of the following form:

(5.1) mẍ+ cẋ+ Ψ(x) = Φ(u+ d) + q, x(0) = x0, ẋ(0) = x1, m > 0,
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with control input t �→ u(t) ∈ R, bounded disturbances d ∈ C(R+) and q ∈ L∞(R+),
and causal operators Ψ and Φ. In a mechanical context, x(t) represents displacement
at time t ∈ R+, and m, c ∈ R are the mass and damping constants. The operator
Ψ models a restoring force which may exhibit hysteresis phenomena, a particular
example of which is the “hysteretic spring” model discussed in, for example, [1]; the
operator Φ may model hysteretic actuation (as in, for example, control problems using
piezoelectric actuators or smart actuators investigated in, inter alia, [4, 5, 13, 20, 21]).
Without loss of generality, we may assume that m = 1. We also assume that both the
displacement x(t) and velocity ẋ(t) are available for feedback purposes. Finally, we
assume that the vector of initial data (x0, x1) belongs to a known compactum and,
moreover, the vector (ρ(0), ρ̇(0)) also belongs to a known compactum; viz. there exist
compact X,Y ⊂ R2 such that

(x0, x1) ∈ X, (ρ(0), ρ̇(0)) ∈ Y.

Fix λ > 0 and η > 0. The control objective is formulated as follows: determine a
(time-dependent) feedback strategy which ensures the existence of a constant M > 0
such that, for every ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , for all initial data (x0, x1) ∈
X and all bounded disturbances d ∈ C(R+) and q ∈ L∞(R+), the closed-loop initial-
value problem has unique solution x on R+ and there exists δ ∈ (0, 1) such that the
tracking error x − ρ approaches the interval [−δλ, δλ] η-exponentially fast, in the
following sense:

|x(t)− ρ(t)| ≤ Me−ηt + δλ ∀ t ∈ R+.

We proceed to construct a feedback which achieves this objective. Define

(5.2) y∗ := max
{|x0 − ρ0 + (x1 − ρ1)/η| ∣∣ (x0, x1) ∈ X, (ρ0, ρ1) ∈ Y

}
.

Let γ > 0 be such that γ < min{1/λ, 1/y∗}. Let τ > 0 be arbitrary and define
β ∈ Wγ,λ by

(5.3) β(t) := min{max{γλ, t/τ}, 1}/λ.
Observe that β is nondecreasing with mint∈R+ β(t) = β(0) = γ and maxt∈R+ β(t) =
β(τ) = 1/λ. Let α : [0, 1) → R be a locally Lipschitz unbounded injection. Introducing
the feedback strategy

u(t) = −k(t)
(
x(t)− ρ(t) + (ẋ(t)− ρ̇(t))/η

)
,

k(t) = α
(
β(t)

∣∣x(t) − ρ(t) + (ẋ(t)− ρ̇(t))/η
∣∣),

we arrive at the closed-loop initial-value problem

(5.4)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẍ(t) + cẋ(t) + (Ψ(x))(t) = (Φ(u+ d))(t) + q(t), c ∈ R,

(x(0), ẋ(0)) = (x0, v0) ∈ X,

u(t) = −k(t)(y(t)− r(t)), k(t) = α(β(t)|y(t) − r(t)|),
y(t) = x(t) + ẋ(t)/η, r(t) := ρ(t) + (ρ̇(t)/η, ), (ρ(0), ρ̇(0)) ∈ Y.

Theorem 5.1. Let Ψ be a causal operator of class O0, and let Φ : C(R+) →
C(R+) be a causal operator satisfying (H1)–(H4). Define

M := (x∗ + 1/γ)eητ , where x∗ := max
{|x0 − ρ0| ∣∣ (x0, v0) ∈ X, (ρ0, ρ1) ∈ Y

}
.
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For every ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , (x0, v0) ∈ X, q ∈ L∞(R+), and
bounded d ∈ C(R+), the closed-loop initial-value problem (5.4) has a unique maximal
solution x : [0, ω) → R. Moreover,

(i) ω = ∞;
(ii) there exists δ ∈ (0, 1) such that |x(t)− ρ(t)| ≤ Me−ηt + δλ for all t ∈ R+;
(iii) the continuous function ẋ is bounded and lim supt→∞ |ẋ(t)− ρ̇(t)| < 2ηλ;
(iv) the continuous functions u, Φ(u + d), and k are bounded.
Proof. Let ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) = (ρ0, ρ1) ∈ Y , let (x0, v0) ∈ X ,

q ∈ L∞(R+), and let d ∈ C(R+) be bounded. Define the causal operator T̃ : C(R+) →
C(R+) by

(T̃ (y))(t) := e−ηtx0 + η

∫ t

0

e−η(t−s)y(s)ds ∀ t ∈ R+ ∀ y ∈ C(R+).

It is clear that T̃ is of class O0; moreover, since Ψ ∈ O0, the operator T given by

(T (y))(t) := (η − c)
(
y(t)− (T̃ y)(t)

)− (1/η)(Ψ(T̃ (y)))(t) ∀ t ∈ R+ ∀ y ∈ C(R+),

is also of class O0. Defining

f : R× R → R, (w, z) �→ w + z, p(·) := q(·)
η

, g :=
1

η

(in which case (f, p, T, g) ∈ N, with g > 0, and r ∈ W 1,∞(R+)), consider the initial-
value problem

(5.5)

{
ẏ(t) = f(p(t), (T (y))(t)) + g (Φ(u + d))(t), y(0) = y0 := x0 + (v0/η)

u(t) = −k(t)(y(t)− r(t)), k(t) = α(β(t)|y(t) − r(t)|).
Observe that γ|y0−r(0)| ≤ γy∗ < 1 and, in the context of problem (5.5), all hypothe-
ses of Theorem 3.1 and Corollary 4.3 are in place.

The initial-value problems (5.4) and (5.5) are equivalent in the sense that, if
y : [0, ω) → R is a (maximal) solution of (5.5), then x : [0, ω) → R, t �→ (T̃ (y))(t), is a
(maximal) solution of (5.4) and, conversely, if x : [0, ω) → R is a (maximal) solution
of (5.4), then y : [0, ω) → R, t �→ x(t) + ẋ(t)/η, is a (maximal) solution of (5.5).

By Theorem 3.1, (5.5) has unique maximal solution y : [0, ω) → R, and so
x : [0, ω) → R, t �→ (T̃ (y))(t) is the unique maximal solution of (5.4). By Corol-
lary 4.3, ω = ∞ and the functions u, Φ(u + d), and k are bounded, thereby estab-
lishing assertions (i) and (iv). It remains only to prove assertions (ii) and (iii). By
Corollary 4.3, there exists ε > 0 such that β(t)|y(t)− r(t)| ≤ 1− ε =: δ for all t ∈ R+.
Recalling the definition of β, it follows that γ|y(t)− r(t)| ≤ δ for all t ∈ R+. Since

ẋ(t) = −ηx(t) + ηy(t) and ρ̇(t) = −ηρ(t) + ηr(t) ∀ t ∈ R+,

we may infer that

|x(t)− ρ(t)| ≤ e−ηt|x0 − ρ(0)|+ δη

γ

∫ t

0

e−η(t−s)ds < x∗ +
1

γ
= Me−ητ ∀ t ∈ R+,

and so, a fortiori, |x(t) − ρ(t)| ≤ Me−ηt for all t ∈ [0, τ ]. Furthermore, since |y(t) −
r(t)| ≤ δλ for all t ≥ τ , we conclude that

|x(t)− ρ(t)| ≤ e−η(t−τ)|x(τ) − ρ(τ)|+ δηλ

∫ t

τ

e−η(t−s)ds ≤ Me−ηt + δλ ∀ t ≥ τ.
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Fig. 5.1. Example: Solution x (solid line) and reference ρ (dashed line).

Assertion (ii) now follows. Finally, |ẋ(t) − ρ̇(t)| ≤ η|x(t) − ρ(t)| + η|y(t) − r(t)| ≤
ηMe−ηt + 2δηλ for all t ≥ τ , whence assertion (iii).

Remark 5.1. The essence of the above proof is first to define the variable y(t) as
an appropriate linear combination, viz. x(t) + ẋ(t)/η, of the variables x(t) and ẋ(t)
(assumed available for feedback) and then recast the closed-loop initial value problem
in the form of (5.5) to which Theorem 3.1 and Corollary 4.3 may be applied. In
particular, given ρ ∈ W 2,∞(R+) and defining r := ρ + ρ̇/η ∈ W 1,∞, the following
relation holds: y− r = H(D)(x−ρ), where D is the differential operator and H is the
Hurwitz polynomial s �→ 1+s/η. The approach extends to tracking, with disturbance
rejection, of signals ρ ∈ Wn,∞(R+) for higher-order hysteretic systems in the obvious
manner. Consider a generalization of (5.1) of the form P (D)x+Ψ(x) = Φ(u+ d)+ q,
where P is a monic real polynomial of degree n and (x(0), ẋ(0), . . . , x(n−1)(0)) ∈ X ⊂
Rn. Assume that x(t) and the derivatives ẋ(t), . . . , x(n−1)(t) are available for feedback
and define y(t) as a linear combination, viz. y(t) = x(t) + c1ẋ(t) + · · ·+ cnx

(n−1)(t),
with the property that H : s �→ 1+c1s+· · ·+cns

n−1 is a Hurwitz polynomial of degree
n − 1. Given ρ ∈ Wn,∞(R+) with (ρ(0), ρ̇(0), . . . , ρ(n−1)(0)) ∈ Y ⊂ Rn and defining
r := H(D)ρ, we have the relation y−r = H(D)(x−ρ). If η > 0 is such that every root
of H has real part less than −η, then the arguments used in establishing Theorem 5.1
applymutatis mutandis to conclude that, under the feedback u(t) = −k(t)(y(t)−r(t)),
k(t) = α(β(t)|y(t)−r(t)|) and for suitably defined M > 0, we achieve the performance
objective |x(t)−ρ(t)| ≤ Me−ηt+ δλ for all t ∈ R+ (while maintaining boundedness of
all signals). The proof of this intuitively clear generalization is routine and is therefore
omitted.

Example 5.2. For purposes of illustration, consider system (5.4) with

m = 1, c = 0, d =
sin

2
, q =

cos

2
, Ψ = B 1

2 ,0
, Φ = P0,

where B 1
2 ,0

is the backlash operator (with σ = 1/2 and ξ = 0) illustrated in Figure 2.2,

and P0 is the Prandtl operator, given by (2.8) with ξ = 0 and μ(E) :=
∫
E χ[0,5](ρ)dρ,

illustrated in Figure 2.3. Assume that X = Y = [−1, 1] × [−1, 1]. For the function
α, we take s �→ 1/(1− s). Adopting the performance parameter values λ = 0.02 and
η = 1, we have x∗ = 2 and y∗ = 4. Choosing γ = 1/4 yields M = 6eτ and so, by
Theorem 5.1, for all (x0, v0) ∈ X and ρ ∈ W 2,∞(R+) with (ρ(0), ρ̇(0)) ∈ Y , the unique
global solution of the closed-loop system has the property that dλ(x(t)−ρ(t)) ≤ Me−t.
Figure 5.1 depicts the (MATLAB generated) solution x (solid line) for τ = 1, ρ : t �→
1 + (sin(t/2))/2 (dashed line) and initial data x0 = 0 = v0.
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6. Appendix 1: Proof of Lemma 2.4. To facilitate the proof, we first state
the following remark.

Remark 6.1. Assume that the operator Φ: C(R+) → C(R+) is causal, t ≥ 0,
and w ∈ C[0, t]. Furthermore, assume that there exist c0 > 0, τ > t, and δ > 0 such
that

sup
s∈[t,τ ]

|(Φ(v1))(s) − (Φ(v2))(s)| ≤ c0 sup
s∈[t,τ ]

|v1(s)− v2(s)| ∀ v1, v2 ∈ C(w; 0, t, τ, δ).

Then it follows easily from the causality of Φ that, for every σ ∈ (t, τ ],

sup
s∈[t,σ]

|(Φ(v1))(s)− (Φ(v2))(s)| ≤ c0 sup
s∈[t,σ]

|v1(s)− v2(s)| ∀ v1, v2 ∈ C(w; 0, t, σ, δ).

As a consequence, if Φ satisfies H1, then inequality (2.5) holds with τ replaced by σ
for every σ ∈ (t, τ ].

Proof of Lemma 2.4. (i) It is clear that Φd satisfies H2 if Φ does so. Assume that
Φ satisfies H1 and let t ≥ 0 and w ∈ C[0, t]. We obtain from H1 (with w replaced by
w + d) that there exist c0 > 0, τ > t, and δ > 0 such that

(6.1) sup
s∈[t,τ ]

|(Φ(v1))(s) − (Φ(v2))(s)|

≤ c0 sup
s∈[t,τ ]

|v1(s)− v2(s)| ∀ v1, v2 ∈ C(w + d; 0, t, τ, δ).

Choosing σ ∈ (t, τ ] such that |d(t)− d(s)| ≤ δ/2 for all s ∈ [t, σ], it follows that

u1 + d, u2 + d ∈ C(w; 0, t, σ, δ) ∀u1, u2 ∈ C(w; 0, t, σ, δ/2).

Hence, using Remark 6.1, we conclude that, for all u1, u2 ∈ C(w; 0, t, σ, δ/2),

sup
s∈[t,σ]

|(Φd(u1))(s)− (Φd(u2))(s)| = sup
s∈[t,σ]

|(Φ(u1 + d))(s)− (Φ(u2 + d))(s)|

≤ c0 sup
s∈[t,σ]

|u1(s)− u2(s)|,

showing that Φd satisfies H1 with τ and δ replaced by σ and δ/2, respectively.
(ii) Assume that Φ satisfies H3 and H4. It then follows that there exist constants

c1 > 0 and cd > 0 and a nondecreasing unbounded function ϕ : R+ → R+ such that,
for all u ∈ C(R+) and all t ∈ R+ with |u(t)| ≥ c1,

u(t)Φd(u(t)) = u(t)Φ(u(t)) + u(t)
(
(Φ(u + d))(t) − (Φ(u))(t)

)
≥ ϕ(|u(t)|)|u(t)| − cd|u(t)| = ϕ(|u(t)|)(1− cd/ϕ(|u(t)|)

)|u(t)|.
Choosing c2 ≥ c1 such that cd/ϕ(v) ≤ 1/2 for all v ≥ c2, it follows that, for all
u ∈ C(R+) and all t ∈ R+,

|u(t)| ≥ c2 =⇒ (1/2)ϕ(|u(t)|)|u(t)| ≤ u(t)(Φd(u))(t),

showing that Φd satisfies H3.
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7. Appendix 2: Property H3 of the Preisach operator.
Proposition 7.1. Let Pξ be the Preisach operator defined in (2.6). Assume that

the measure μ is nonnegative, finite, and
∫∞
0

σμ(dσ) < ∞ and that l is nonnegative
and essentially bounded. Moreover, assume that there exist ε > 0 and σ1, σ2 ≥ 0 with
σ1 ≤ σ2 such that

μ([σ1, σ2]) > 0 and |s|l(s, σ) ≥ ε for a.e. (s, σ) with |s| ≥ 1/ε and σ ∈ [σ1, σ2].

Then Pξ satisfies H3.
Proof. Note initially that, by the definition of the backlash operator, we have

(Bσ, ξ(σ)(u))(t) ∈ [u(t)− σ, u(t) + σ] ∀u ∈ C(R+) ∀ t ∈ R+ ∀σ ∈ R+.

Set

b0 := μ([σ1, σ2]), b1 := ess sup(s,σ)∈R×R+
l(s, σ), b2 :=

∫ ∞

0

σμ(dσ).

Let u ∈ C(R+) and t ∈ R+.
Case 1. Assume that u(t) ≥ σ2 +1/ε. Writing E1 = [0, u(t)] and E2 = (u(t),∞),

it follows that

(Pξ(u))(t) ≥
(∫

E1

+

∫
E2

)∫ u(t)−σ

0

l(s, σ)μL(ds)μ(dσ) − |l0|

≥
∫
[σ1,σ2]

∫ u(t)−σ2

1/ε

l(s, σ)μL(ds)μ(dσ) + b1

∫
E2

(u(t)− σ)μ(dσ) − |l0|

≥ ε

∫
[σ1,σ2]

∫ u(t)−σ2

1/ε

(1/s)μL(ds)μ(dσ) − b1b2 − |l0|

= εb0
(
log(u(t)− σ2) + log ε

)− b1b2 − |l0|.

Choosing c ≥ σ2 + 1/ε sufficently large so that

εb0
(
log(c− σ2) + log ε

)− b1b2 − |l0| ≥ (ε/2)b0 log(c− σ2),

we may conclude that

(7.1) u(t) ≥ c =⇒ (Pξ(u))(t) ≥ (ε/2)b0 log(u(t)− σ2),

Case 2. Now assume that u(t) ≤ −(σ2 + 1/ε). Writing E1 = [0,−u(t)] and
E2 = (−u(t),∞), it follows that

(Pξ(u))(t) ≤
(∫

E1

+

∫
E2

)∫ u(t)+σ

0

l(s, σ)μL(ds)μ(dσ) + |l0|

≤
∫
[σ1,σ2]

∫ u(t)+σ2

−1/ε

l(s, σ)μL(ds)μ(dσ) + b1

∫
E2

(u(t) + σ)μ(dσ) + |l0|

≤ ε

∫
[σ1,σ2]

∫ u(t)+σ2

−1/ε

(1/|s|)μL(ds)μ(dσ) + b1b2 + |l0|

= −εb0
(
log(−u(t)− σ2) + log ε

)
+ b1b2 + |l0|.
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Choosing c as in Case 1, we may conclude that

(7.2) u(t) ≤ −c =⇒ (Pξ(u))(t) ≤ −(ε/2)b0 log(−u(t)− σ2).

Defining a nondecreasing unbounded function ϕ : R+ → R+ by

ϕ(v) :=

{
0, v ∈ [0, σ2 + 1],
(ε/2)b0 log(v − σ2), v > σ2 + 1,

it follows from (7.1) and (7.2) that

|u(t)| ≥ c+ 1 =⇒ u(t)(Pξ(u))(t) ≥ |u(t)|ϕ(u(t)),
showing that H3 holds.

8. Appendix 3: Proof of Theorem 3.1. To facilitate the proof, we first
consider, with notation and assumptions as in section 3, the following family of initial-
value problems, parameterized by t0 ∈ R+:

(8.1)

⎧⎪⎪⎨
⎪⎪⎩
ẏ(t) = f(p(t), ((y)(t)) + g (Φ(u))(t), y|[−h,t0] = y0 ∈ C[−h, t0],

u(t) = ν(k(t))
(
y(t)− r(t)

)
,

k(t) = α
(
β(t)|y(t)− r(t)|).

We will prove the following theorem, of which Theorem 3.1 is a special case (t0 = 0).
Theorem 8.1. Under the assumptions of Theorem 3.1, for every t0 ∈ R+ and

every y0 ∈ C[−h, t0] with (t, y0(t)) ∈ D for all t ∈ [0, t0], the initial-value prob-
lem (8.1) has a unique maximal solution y ∈ C[−h, ω). Moreover, if ω < ∞, then
lim supt↑ω β(t)|y(t) − r(t)| = 1 (or, equivalently, lim supt↑ω k(t) = ∞).

By a solution of (8.1) we mean the obvious generalization of the earlier concept:
a continuous function y : I → R on an interval of the form [−h, ρ], with t0 < ρ < ∞,
or of the form [−h, ω), with t0 < ω ≤ ∞, such that (a) y|[−h,t0] = y0 and (b) y|J ,
J := I \ [−h, t0), is a locally absolutely continuous function, with graph in D and
satisfying the differential equation in (8.1) almost everywhere on J .

Proof of Theorem 8.1. Let t0 ∈ R+ and y0 ∈ C[−h, t0] be such that (t, y0(t)) ∈ D

for all t ∈ [0, t0].
Step 1. First, we establish the existence of a unique solution on an interval

[−h, ρ] with ρ > t0 sufficiently close to t0. By property (iii) of the operator class Oh,
there exist τ0 > t0, δ0 > 0, and c0 > 0 such that

ess-supt∈[t0,τ0]|(T (y1))(t) − (T (y2))(t)|
≤ c0 max

t∈[t0,τ0]
|y1(t)− y2(t)| ∀ y1, y2 ∈ C(y0;h, t0, τ0, δ0).

We may assume that δ0 ∈ (0, 1) and τ0 − t0 > 0 are sufficiently small so that

D0 := [t0, τ0]× [y0(t0)− δ0, y
0(t0) + δ0] ⊂ D.

Next, consider the map

U : D → R, (t, z) �→ ν(α(β(t)|z − r(t)|))(z − r(t)).

Since α and ν are locally Lipschitz and β and r are bounded, it follows that there
exists c1 > 0 such that

|U(t, z1)− U(t, z2)| ≤ c1|z1 − z2| ∀ (t, z1), (t, z2) ∈ D0.
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For each ρ ∈ (t0, τ0], define C0
ρ := C(y0;h, t0, ρ, δ0). Observe that, if y ∈ C0

ρ, then
(t, y(t)) ∈ D0 for all t such that t0 ≤ t ≤ ρ ≤ τ0. Therefore, for each ρ ∈ [t0, τ0], we
may define an operator Uρ : C0

ρ → C[0, ρ] by

(Uρy)(t) := U(t, y(t)) ∀ t ∈ [0, ρ],

and record the following fact:

(8.2) |(Uρy1)(t)− (Uρy2)(t)| ≤ c1|y1(t)− y2(t)| ∀ t ∈ [0, ρ] ∀ y1, y2 ∈ C0
ρ.

Defining w ∈ C[0, t0] by w(t) := U(t, y0(t)) for all t ∈ [0, t0], we have, in particular,

(Uρy)(t) = w(t) ∀ t ∈ [0, t0] ∀ y ∈ C0
ρ.

By hypothesis H1 on Φ, there exist τ1 ∈ (t0, τ0], δ1 ∈ (0, δ0], and c2 > 0 such that

(8.3) max
t∈[0,τ1]

|(Φ(v1))(t)− (Φ(v2))(t)|

≤ c2 max
t∈[0,τ1]

|v1(t)− v2(t)| ∀ v1, v2 ∈ C(w; 0, t0, τ1, δ1).

Furthermore, by continuity of U , there exist τ2 ∈ (t0, τ1] and δ2 ∈ (0, δ0] such that, if
ρ ∈ (t0, τ2], then

(8.4) Uρy ∈ C(w; 0, t0, ρ, δ1) ∀ y ∈ C(y0;h, t0, ρ, δ2) ⊂ C0
ρ.

For each ρ ∈ (t0, τ2], we define Cρ := C(y0;h, t0, ρ, δ2). Invoking (8.2)–(8.4), we may
conclude that there exists c3 > 0 such that, for every ρ ∈ (t0, τ2],

(8.5) max
t∈[0,ρ]

|(Φ(Uρy1))(t) − (Φ(Uρy2))(t)| ≤ c3 max
t∈[0,ρ]

|y1(t)− y2(t)| ∀ y1, y2 ∈ Cρ.

Furthermore, as a consequence of (8.5), there exists c4 > 0 such that, for every
ρ ∈ (t0, τ2],

|(Φ(Uρy))(t)| ≤ c4 ∀ t ∈ [0, ρ] ∀ y ∈ Cρ.

Equipped with the metric

(y1, y2) �→ μρ(y1, y2) := max
t∈[−h,ρ]

|y1(t)− y2(t)|,

Cρ is a complete metric space. For each ρ ∈ (t0, τ2], define the operator Cρ on Cρ by

Cρ(y)(t) :=

{
y0(t), t ∈ [−h, t0],

y0(t0) +
∫ t

t0

(
f(p(s), (T (y))(s)) + g (Φ(Uρy))(s)

)
ds, t ∈ (t0, ρ].

We proceed to show that there exists ρ∗ ∈ (t0, τ2] such that, for all ρ ∈ (t0, ρ
∗],

Cρ(Cρ) ⊂ Cρ and Cρ is a contraction (and, consequently, for each such ρ, Cρ has a
unique fixed point). By property (iv) of the operator class Oh, there exists c5 > 0
such that, for every ρ ∈ (t0, ρ

∗],

|(T (y))(t)| ≤ c5, for a.a. t ∈ [t0, ρ] ∀ y ∈ Cρ.
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By the local Lipschitz property of f , together with essential boundedness of p, there
exists c6 > 0 such that

|f(p(t), x1)− f(p(t), x2)| ≤ c6|x1 − x2|
for a.a. t ∈ [t0, τ2] and all x1, x2 ∈ R with |x1|, |x2| ≤ c5.

Set c7 := max{|f(q, x)| | |q| ≤ ‖p‖L∞, |x| ≤ c5} and fix ρ∗ ∈ (t0, τ2] sufficiently close
to t0 so that

(ρ∗ − t0)
(
c7 + c0c6 + c3|g|+ c4|g|

) ≤ δ2.

Let ρ ∈ (t0, ρ
∗] and y ∈ Cρ. By definition, (Cρy)|[−h,t0] = y0 and, moreover,

|Cρ(y)(t)− y0(t0)| ≤
∫ ρ

t0

|f(p(s), (T (y))(s)) + g (Φ(Uρy))(s)|ds

≤ (ρ− t0)(c7 + c4|g|) ≤ δ2 ∀ t ∈ [t0, ρ].

Therefore, Cρ(y) ∈ Cρ, establishing that Cρ(Cρ) ⊂ Cρ for all ρ ∈ (t0, ρ
∗]. Further-

more, for ρ ∈ (t0, ρ
∗] and y1, y2 ∈ Cρ,

μρ(Cρ(y1), Cρ(y2)) = sup
t∈[t0,ρ]

∣∣∣∣∣
∫ t

t0

(
f(p(s), (T (y1))(s)) − f(p(s), (T (y2))(s))

+ g (Φ(Uρy1))(s)− g (Φ(Uρy2))(s)
)
ds

∣∣∣∣∣
≤ (ρ− t0)

(
sup

t∈[t0,ρ]

|f(p(t), (T (y1))(t)) − f(p(t), (T (y2))(t))|

+ |g| sup
t∈[t0,ρ]

|Φ(Uρy1)(t) − Φ(Uy2)(t)|
)

≤ (ρ− t0) (c0c6 + c3|g|)μρ(y1, y2).

Since (ρ − t0)(c0c6 + c3|g|) ≤ δ2 < 1, it follows that Cρ : Cρ → Cρ is a contraction.
Therefore, for each ρ ∈ (0, ρ∗], Cρ has a unique fixed point y ∈ Cρ and so (8.1)
has a unique solution in Cρ. We emphasize that the uniqueness property is specific
to solutions of class Cρ: there may exist other solutions on [−h, ρ] which are not of
class Cρ. However, the following argument establishes the existence of precisely one
solution for ρ ∈ (t0, ρ

∗] with ρ − t0 sufficiently small. Let ỹ be a solution on [−h, ρ̃]
(not necessarily of class Cρ̃) for some ρ̃ ∈ (0, ρ∗]. Define

Δ :=
{
t ∈ [t0, ρ̃]

∣∣ |ỹ(t)− y0(t0)| = δ2
}
, ρ :=

{
inf Δ, Δ �= ∅,
ρ̃, Δ = ∅.

Clearly, ρ > t0 and ỹ|−h,ρ] is in Cρ. Therefore, ỹ|−h,ρ] is the unique solution of (8.1)
on [−h, ρ].

Step 2. Next, we show that any two solutions must coincide on the intersection of
their domains. Let y1 ∈ C(I1) and y2 ∈ C(I2) be solutions of (8.1). For contradiction,
suppose that there exists t ∈ J := I1 ∩ I2 such that y1(t) �= y2(t). Let t∗ := inf{t ∈
J | y1(t) �= y2(t)}. Evidently, t∗ < sup J . By the result in Step 1 above, t∗ > t0. An
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application of the result of Step 1 in the context of an initial-value problem of the
form (8.1), with t∗ replacing t0 and with the function y1|[−h,t∗] ∈ C[−h, t∗] replacing
y0, yields the existence of a unique solution y ∈ C[−h, ρ] for some ρ > t∗. It follows
that y1(t) = y2(t) = y(t) for all t ∈ [−h, ρ] ∩ J , contradicting the definition of t∗.

Step 3. We now establish the existence of a unique maximal solution. Let R be
the set of all ρ > t0 such that there exists a solution yρ ∈ C[−h, ρ] of (8.1). By Step 1,
we know that R �= ∅. Let ω := supR (ω = ∞ is possible) and define y ∈ C[−h, ω) by
the property

y|[−h,ρ] = yρ for all ρ ∈ R.

The function y is well defined since, by Step 2, we have(
ρ1, ρ2 ∈ R ∧ ρ2 ≤ ρ1

)
=⇒ yρ2 = yρ1 |[−h,ρ2].

Clearly, y is a maximal solution of (8.1) and uniqueness follows by Step 2.
Step 4. Assume that ω < ∞. We have to show that lim supt↑ω β(t)|y(t)−r(t)| =

1. Seeking a contradiction, suppose that the latter does not hold, in which case
lim supt↑ω β(t)|y(t)− r(t)| < 1. Then k is bounded and therefore, since y is bounded,
the function u is also bounded. By property (iv) of the operator class Oh, T (y)
is essentially bounded and, by property H2, Φu is bounded. From the differential
equation in (8.1), it now follows that ẏ is essentially bounded on [0, ω). Therefore, y
is uniformly continuous on [−h, ω) and so extends to y∗ ∈ C[−h, ω]. Furthermore,

β(ω)|y∗(ω)− r(ω)| = lim
t↑ω

β(t)|y∗(t)− r(t)| = lim sup
t↑ω

β(t)|y(t) − r(t)| < 1,

showing that (ω, y∗(ω)) ∈ D. An application of the result in Step 1 in the context
of an initial-value problem of the form (8.1), with ω replacing t0 and y∗ replacing
y0, yields the existence of a unique solution ye ∈ C[−h, ρ] for some ρ > ω, with
ye|[−h,ω) = y. This contradicts maximality of the solution y.
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