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a b s t r a c t

In this paper, adaptive discrete-time low-gain integral control strategies are presented for tracking
constant reference signals for infinite-dimensional discrete-time power-stable linear systems. The
discrete-time results are applied in the development of adaptive sampled-data low-gain integral control
of well-posed infinite-dimensional exponentially stable linear systems. Our results considerably extend,
improve and simplify previous work by two of the authors [H. Logemann, S. Townley, Discrete-time
low-gain control of uncertain infinite-dimensional systems, IEEE Trans. Automat. Control 42 (1997)
22–37].
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1. Introduction

There has been much interest in low-gain integral control over
the last thirty years. The following principle has become well
established (see Davison [1] and Morari [2]): an application of the
integrator (ε/s)I to an asymptotically stable, finite-dimensional
continuous-time plant, with a transfer function matrix G(s),
leads to an asymptotically stable closed-loop system which
achieves asymptotic tracking of arbitrary constant reference
signals, provided that the gain parameter ε > 0 is sufficiently small
and the eigenvalues of the steady-state matrix G(0) have positive
real parts. This principle has been extended to various classes
of infinite-dimensional systems (see, for example, the pioneering
contribution by Pohjolainen [3] and the paper by Logemann and
Townley [4]).
If the plant uncertainty is large, then it is natural to tune

the parameter ε adaptively. For continuous-time plants, low-gain
universal adaptive controllers which achieve asymptotic tracking
of constant reference signals have been presented by Cook [5]
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and Miller and Davison [6,7] in the finite-dimensional case and by
Logemann and Townley [4,8] in the infinite-dimensional case. By
‘‘universal’’ we mean that the controllers are not based on system
identification or plant parameter estimation algorithms.
In this paper, we first consider the problem of adaptive

low-gain integral control of discrete-time power-stable infinite-
dimensional systems. These discrete-time results are then applied
to the main objective of this paper, namely, the adaptive sampled-
data set-point control of well-posed systems. We remark that the
class of well-posed linear systems is the largest class of infinite-
dimensional systems for which a well-developed state-space and
frequency-domain theory exists. Well-posed systems are rather
general in the sense that they capture most distributed parameter
systems and all time-delay systems which are of interest in
applications.
In Section 2, we improve a result in [9] on adaptive low-gain

control of discrete-time systems. Theorem3.2 in [9] shows that the
adaptive controller

u(k+ 1) = u(k)+ γ−q(k)(r − y(k)),

γ (k+ 1) = γ (k)+ ‖r − y(k)‖2,
(1.1)

achieves asymptotic tracking of arbitrary constant reference
signals r , provided that the following three assumptions are
satisfied:
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(1) the plant is power stable;
(2) the steady-state gain matrix P(1) is symmetric and positive
definite, where P(z) is the transfer function of the discrete-
time plant;

(3) the parameter q in (1.1) satisfies q ∈ (0, 1/2).

The symmetry assumption in (2) is restrictive and highly
nonrobust, essentially limiting the applications of the above result
to single-input single-output systems. The main result of Section 2
(Theorem 2.1) shows that assumption (2) can be replaced by the
considerably weaker (and essentially necessary) assumption that
all the eigenvalues of P(1) have positive real parts, and (3) can be
replaced by q ∈ (0, 1]. Furthermore, in comparing the analysis
presented here to that in [9], we use a change of coordinates
technique which is the discrete-time counterpart to that used in
[8], leading to a dramatic simplification of the proofs.
In Section 3, we study adaptive low-gain sampled-data

control for well-posed systems. Our results are extensions and
improvements of those in [9]with respect to the following aspects.

• The plant is assumed to belong to the class of exponentially
stablewell-posed systems, which ismore general than the class
of exponentially stable regular systems considered in [9]. We
emphasize that it is often considerably easier to verify well-
posedness than to show regularity.
• In [9], it is assumed thatG(0) is symmetric and positive definite,
where G denotes the transfer of the continuous-time plant.
As discussed above, this assumption is restrictive and highly
nonrobust. In the present paper, we only assume that the
eigenvalues of G(0) have positive real parts.
• The sampled-data controller used in Section 3 is based on an
adaptive control law similar to (1.1): it processes a sampled
version of the plant output obtained by the application of a
generalized sampling operation, a special case of which is the
simple averaging prototype used in [9].
• The range of the parameter q is (0, 1] instead of (0, 1/2) in [9].
• The analysis of the behaviour of the tracking error has
been considerably improved, see statements (4) and (5) of
Theorem 3.2 and part (3) of Remark 3.3.

We illustrate the main result by a heat equation example with
two point controls and two point observations.
Notation. Let Z be a Banach space. The space of all Z-valued
sequences defined on Z+ is denoted by F(Z+, Z) and PC(R+, Z)
denotes the set of piecewise continuous functions defined on R+
with values in Z . For α ∈ R, define Cα := {s ∈ C : Re s > α} and
define the exponentially weighted L2-space L2α(R+, Z) by

L2α(R+, Z) := {f ∈ L
2
loc(R+, Z) | f (·)e

−α·
∈ L2(R+, Z)}.

We define

H2(Cα, Z) :=
{
f : Cα → Z | f is holomorphic and

sup
x>α

∫
∞

−∞

‖f (x+ iσ)‖2dσ <∞
}
,

H∞(Cα, Z) := {f : Cα → Z | f is holomorphic and bounded}.

The set of all bounded linear operators from a Banach space Z1 to
a Banach space Z2 is denoted by B(Z1, Z2); if Z1 = Z2 = Z , then
we write B(Z) for B(Z1, Z2). For T ∈ B(Z), let σ(T ) denote the
spectrum of T . The forward difference operator ∆ : F(Z+, Z) →
F(Z+, Z) is defined by (∆u)(k) := u(k + 1) − u(k). The Laplace
transform is denoted byL .

2. Adaptive discrete-time low-gain control

Let X , U and Y be Hilbert spaces. Consider the discrete-time
system

x(k+ 1) = Ax(k)+ Bu(k); x(0) = x0 ∈ X, (2.1a)
y(k) = Cx(k)+ Du(k), (2.1b)

where A ∈ B(X), B ∈ B(U, X), C ∈ B(X, Y ) and D ∈ B(U, Y ).
The transfer function of (2.1) is

P(z) := C(zI − A)−1B+ D.
System (2.1) is called power stable if A is power stable, i.e., there
existM ≥ 1 and ρ ∈ (0, 1) such that ‖Ak‖ ≤ Mρk for all k ∈ Z+. It
is well-known that (2.1) is power stable if and only if the spectral
radius of A is smaller than 1.
The aim is to find an adaptive controllerwhich achieves setpoint

tracking. Following [9], consider the adaptive controller given by

u(k) = Kw(k), (2.2a)

w(k+ 1) = w(k)+ γ−q(k)(r − y(k)); w(0) = w0, (2.2b)

γ (k+ 1) = γ (k)+ ‖r − y(k)‖2; γ (0) = γ 0 > 0, (2.2c)

where r ∈ Y is the reference vector, K ∈ B(Y ,U) and q ∈ (0, 1].
Note that the scalar adaptive variable γ (k) is increasing (with
rate of change given by ‖r − y(k)‖2), so that the gain γ−q(k) is
decreasing, hence the terminology ‘‘low-gain’’ controller.
The following theorem is themain result of this section. It forms

the discrete-time counterpart of the continuous-time result in [8].

Theorem 2.1. Assume that (2.1) is power stable, there exists K ∈
B(Y ,U) such that

σ(P(1)K) ⊂ C0,

and q ∈ (0, 1]. Then, for all (x0, w0) ∈ X × Y , all γ 0 > 0 and
all r ∈ Y , the closed-loop system given by (2.1) and (2.2) has the
following properties:
(1) r − y ∈ `2(Z+, Y ), so in particular limk→∞ y(k) = r;
(2) limk→∞ γ (k) = γ∞ <∞;
(3) u− u∞,∆u ∈ `2(Z+,U), where u∞ := K(P(1)K)−1r;
(4) x− x∞ ∈ `2(Z+, X), where x∞ := (I − A)−1Bu∞.

Proof. We proceed in several steps.
Step 1: A change of coordinates. We note first that, if the limit
limk→∞w(k) =: w∞ exists, then limk→∞ x(k) = (I − A)−1BKw∞
and limk→∞ y(k) = P(1)Kw∞. In particular, if w∞ = (P(1)K)−1r ,
then y(k) will converge to r as k → ∞. This motivates the
following change of coordinates:

z(k) := x(k)− (I − A)−1BKw(k), ∀k ∈ Z+, (2.3a)

v(k) := w(k)− (P(1)K)−1r, ∀k ∈ Z+. (2.3b)

Invoking the identity A(I − A)−1 + I = (I − A)−1 together with
(2.1)–(2.3), a routine calculation gives

z(k+ 1) = x(k+ 1)− (I − A)−1BKw(k+ 1)
= Ax(k)+ Bu(k)− (I − A)−1BKw(k+ 1)
= Az(k)+ [A(I − A)−1 + I]BKw(k)
− (I − A)−1BKw(k+ 1)

= Az(k)+ (I − A)−1BK [w(k)− w(k+ 1)]

= Az(k)− γ−q(k)Γ e(k), ∀k ∈ Z+, (2.4)

where Γ := (I − A)−1BK and e := r − y, and

v(k+ 1) = w(k+ 1)− (P(1)K)−1r
= w(k)− (P(1)K)−1r + γ−q(k)e(k)

= v(k)+ γ−q(k)e(k), ∀k ∈ Z+. (2.5)
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Moreover,

e = r − y = r − Cx− Du
= r − Cz − C(I − A)−1BKw − DKw
= −Cz − P(1)K [w − (P(1)K)−1r]
= −[Cz + P(1)Kv]. (2.6)

Step 2: A Lyapunov-type argument. Since A is power stable and
σ(P(1)K) ⊂ C0, there exist P ∈ B(X), P = P∗, P > 0 and
Q ∈ B(Y ), Q = Q ∗, Q > 0 such that

A∗PA− P = −I, (P(1)K)∗Q + Q (P(1)K) = I, (2.7)

(see [10], Proposition 5 and [11], p. 231, Theorem18),where P∗ and
Q ∗ are the adjoint operators of P and Q , respectively. Set

V (k) := 〈z(k), Pz(k)〉 + 〈v(k),Qv(k)〉, ∀k ∈ Z+.

By the positivity of P and Q , V (k) ≥ 0 for all k ∈ Z+. In the
following, we will estimate V (k+ 1)− V (k) in terms of z(k), v(k),
e(k) and γ (k). To this end, note that there existsM1 ≥ 0 such that

〈Γ d, PΓ d〉 ≤ M1‖d‖2, 〈d,Qd〉 ≤ M1‖d‖2, ∀d ∈ Y .

It follows from (2.4)–(2.7) that there existsM2 ≥ 0 such that

〈z(k+ 1), Pz(k+ 1)〉 − 〈z(k), Pz(k)〉
= 〈Az(k)− γ−q(k)Γ e(k), P[Az(k)− γ−q(k)Γ e(k)]〉
− 〈z(k), Pz(k)〉
≤ 〈z(k), (A∗PA− P)z(k)〉 + 2γ−q(k)|〈Az(k), PΓ e(k)〉|
+M1γ−2q(k)‖e(k)‖2

≤ −‖z(k)‖2 + 2γ−q(k)|〈Az(k), PΓ Cz(k)〉|
+ 2γ−q(k)|〈Az(k), PΓ P(1)Kv(k)〉| +M1γ−2q(k)‖e(k)‖2

≤ −‖z(k)‖2 +M2γ−q(k)‖z(k)‖2 +M2γ−q(k)‖z(k)‖‖v(k)‖
+M1γ−2q(k)‖e(k)‖2

≤ −‖z(k)‖2 +M2γ−q(k)
(
1+

µ

2

)
‖z(k)‖2

+
M2γ−q(k)
2µ

‖v(k)‖2 +M1γ−2q(k)‖e(k)‖2, ∀k ∈ Z+,

and

〈v(k+ 1),Qv(k+ 1)〉 − 〈v(k),Qv(k)〉
= 〈v(k)+ γ−q(k)e(k),Q [v(k)+ γ−q(k)e(k)]〉 − 〈v(k),Qv(k)〉
≤ −γ−q(k)〈[Q (P(1)K)+ (P(1)K)∗Q ]v(k), v(k)〉
+ 2γ−q(k)|〈v(k),QCz(k)〉| +M1γ−2q(k)‖e(k)‖2

≤ −γ−q(k)‖v(k)‖2 +M2γ−q(k)‖z(k)‖‖v(k)‖
+M1γ−2q(k)‖e(k)‖2

≤ −γ−q(k)‖v(k)‖2 +
M2γ−q(k)µ

2
‖z(k)‖2 +

M2γ−q(k)
2µ

‖v(k)‖2

+M1γ−2q(k)‖e(k)‖2, ∀k ∈ Z+,

where µ > 0 is arbitrary. Hence

V (k+ 1)− V (k) ≤ −[1−M2(1+ µ)γ−q(k)]‖z(k)‖2

+

(
−1+

M2
µ

)
γ−q(k)‖v(k)‖2

+ 2M1γ−2q(k)‖e(k)‖2, ∀k ∈ Z+. (2.8)

Step 3: Proof of statement (2). By (2.2c), γ is non-decreasing, so that
statement (2) will follow if we show that γ is bounded. To this end,
seeking a contradiction, suppose that γ is not bounded. Then, since
q > 0, k 7→ γ−q(k) is monotonically decreasing and converging to
0. Hence, there exists N1 ∈ Z+ such that

γ−q(k) ≤
1

2M2(1+ 2M2)
, ∀k ≥ N1.

Choosing µ = 2M2, it follows from (2.8) that

V (k+ 1)− V (k) ≤ −
1
2
(‖z(k)‖2 + γ−q(k)‖v(k)‖2)

+ 2M1γ−2q(k)‖e(k)‖2, ∀k ≥ N1.

Note from (2.6) that

‖e‖2 = ‖Cz + P(1)Kv‖2 ≤ 2(‖Cz‖2 + ‖P(1)Kv‖2).

Consequently, there existsM3 > 0 such that

V (k+ 1)− V (k) ≤ −4M3γ−q(k)(‖Cz(k)‖2 + ‖P(1)Kv(k)‖2)
+ 2M1γ−2q(k)‖e(k)‖2

≤ [−2M3 + 2M1γ−q(k)]γ−q(k)‖e(k)‖2, ∀k ≥ N1.

By the monotonicity of k 7→ γ−q(k) and (2.2c), there exists N2 ≥
N1 such that

V (k+ 1)− V (k) ≤ −M3γ−q(k)‖e(k)‖2

= −M3γ−q(k)[γ (k+ 1)− γ (k)], ∀k ≥ N2.

Summing up over k, we obtain

V (k)− V (N2) ≤ −M3
k−1∑
j=N2

γ−q(j)[γ (j+ 1)− γ (j)],

∀k ≥ N2 + 1.

Since k 7→ γ−q(k) is monotonically decreasing and the fact that V
is non-negative, it follows that∫ γ (k)

γ (N2)
s−qds =

k−1∑
j=N2

∫ γ (j+1)

γ (j)
s−qds ≤

k−1∑
j=N2

γ−q(j)[γ (j+ 1)− γ (j)]

≤
V (N2)− V (k)

M3
≤
V (N2)
M3

. (2.9)

However, since q ∈ (0, 1] and γ (k)→∞ as k→∞, we have that∫ γ (k)
γ (N2)

s−qds→∞ as k→∞, contradicting (2.9). Consequently, γ
is bounded, completing the proof of statement (2).
Step 4: Proof of statements (1), (3) and (4). It follows immediately
from (2.2c) that

r − y = e ∈ `2(Z+, Y ), (2.10)

so that, in particular, limk→∞ y(k) = r , showing that statement
(1) is true. Hence, by (2.2a) and (2.2b), ∆u = K∆w ∈ `2(Z+,U).
SinceA is power stable, statement (2) togetherwith (2.4) and (2.10)
imply

z ∈ `2(Z+, X), (2.11)

so that Cz ∈ `2(Z+, Y ). It follows from (2.6) and (2.10) and the
invertibility ofP(1)K that v ∈ `2(Z+, Y ). Invoking (2.2a) and (2.3b)
completes the proof of statement (3). Since

x− (I − A)−1Bu∞ = z + (I − A)−1B(u− u∞),

statement (4) follows from statement (3) and (2.11). �

Remark 2.2. Assume that (2.2a) is replaced by u(k) = Kw(k)+ d,
where d ∈ U is a constant input disturbance. Then the conclusions
of Theorem2.1 remain validwithu∞ = K(P(1)K)−1(r−P(1)d)+d.
To see this, we observe that the proof of Theorem 2.1 still applies,
provided that the change of coordinates (2.3) is replaced by z(k) :=
x(k)− (I − A)−1B(Kw(k)+ d) and v(k) := w(k)− (P(1)K)−1(r −
P(1)d). �
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3. Adaptive sampled-data low-gain control

We first recall briefly some facts about well-posed continuous-
time systems (see, for example, [12–15] for details). The class
of well-posed systems captures the systems theoretic properties
of linearity, time-invariance, and causality together with natural
continuity properties. Every well-posed system has a well-defined
transfer function. Throughout this section, we shall consider a
well-posed system Σ with state-space X , input space U , and
output space Y (all Hilbert spaces), generating operators (A, B, C),
input–output operator G and transfer function G. Here A is the
generator of a strongly continuous semigroup (C0-semigroup) T
on X , B ∈ B(U, X−1), and C ∈ B(X1, Y ), where X1 denotes the
domain of A, as an operator defined on X , endowed with the graph
norm ‖x‖1 := ‖x‖ + ‖Ax‖, and X−1 denotes the completion of
X with respect to the norm ‖x‖−1 := ‖(βI − A)−1x‖. Here β is
in the resolvent set of A. It can be verified that different choices
of β leads to equivalent norms. We have X1 ↪→ X ↪→ X−1. It is
known that T restricts to a C0-semigroup on X1 and extends to a
C0-semigroup on X−1 with the exponential growth constant being
the same on all three spaces X1, X and X−1. The generator of the
restricted (extended) semigroup is a restriction (extension) of A.
The restricted/extended semigroups and their generators will be
denoted by the same symbols T and A, respectively.
The control operator B is admissible, that is, for every t ≥ 0,

there exists bt ≥ 0 such that∥∥∥∥∫ t

0
T(t − s)Bv(s)

∥∥∥∥ ≤ bt‖v‖L2 , ∀v ∈ L2([0, t],U),
and the observation operator C is also admissible, that is, for every
t ≥ 0, there exists ct ≥ 0 such that∫ t

0
‖CT(t)z‖2dt ≤ ct‖z‖2, ∀z ∈ X1.

The so-calledΛ-extension of C is defined by

CΛz := lim
λ→∞, λ∈R

Cλ(λI − A)−1z, ∀z ∈ dom(CΛ),

where dom(CΛ) is the set of all z ∈ X for which the above limit
exists. Clearly, X1 ⊂ dom(CΛ). For each z ∈ X , T(t)z ∈ dom(CΛ)
for almost all t ≥ 0, and if α > ω(T), then CΛTz ∈ L2α(R+, Y ),
where

ω(T) := lim
t→∞

1
t
ln ‖T(t)‖

denotes the exponential growth constant of T. The transfer
function G satisfies
G(s)− G(η)
s− η

= −C(sI − A)−1(ηI − A)−1B,

∀s, η ∈ Cω(T), s 6= η, (3.1)

and G ∈ H∞(Cα,B(U, Y )) for every α > ω(T). Moreover,
the input–output operator G : L2loc(R+,U) → L2loc(R+, Y )
is continuous and shift-invariant; for every α > ω(T), G ∈
B(L2α(R+,U), L

2
α(R+, Y )) and

(L (Gv))(s) = G(s)(L (v))(s), ∀s ∈ Cα, ∀v ∈ L2α(R+,U).

For x0 ∈ X and v ∈ L2loc(R+,U), let x and y denote the state and
output functions of Σ , respectively, corresponding to the initial
condition x(0) = x0 ∈ X and the input function v. Then

x(t) = T(t)x0 +
∫ t

0
T(t − s)Bv(s)ds, ∀t ≥ 0, (3.2)

x(t)− (ηI − A)−1Bv(t) ∈ dom(CΛ) for almost all t ≥ 0, and

ẋ(t) = Ax(t)+ Bv(t); x(0) = x0 ∈ X, for a.a. t ≥ 0, (3.3a)

y(t) = CΛ[x(t)− (ηI − A)−1Bv(t)] + G(η)v(t), (3.3b)

where η ∈ Cω(T) is arbitrary. The differential equation (3.3a) has
to be interpreted in X−1. In the following, we identify Σ and (3.3)
and refer to (3.3) as a well-posed system. We say that (3.3) is
exponentially stable if T is exponentially stable, i.e., ω(T) < 0.
Let τ > 0 be the sampling period and let u = (u(k))k∈Z+ ∈

F(Z+,U) be an arbitrary sequence. Define the (zero-order) hold
operator H by

(Hu)(t) := u(k), ∀t ∈ [kτ , (k+ 1)τ ].

Let a ∈ L2([0, τ ],R) be such that

(i)
∫ τ

0
a(t)dt = 1, (ii)

∫ τ

0
a(t)T(t)zdt ∈ X1, ∀z ∈ X .

Whilst the above condition (ii) is difficult to check for general a, it
is easy to show (using integration by parts) that (ii) holds if there
exists a partition 0 = t0 < t1 < · · · < tm = τ such that
a|(tj−1, tj) ∈ W

1,1((tj−1, tj),R) for j = 1, 2, . . . ,m. An example for
a is a(t) ≡ 1/τ .
We define a generalized sampling operator S : L2loc(R+, Y ) →

F(Z+, Y ) by

yk := (Sy)(k) :=
∫ τ

0
a(t)y(kτ + t)dt, ∀k ∈ Z+. (3.4)

Define L : X → X1 by

Lz :=
∫ τ

0
a(t)T(t)zdt.

By the closed-graph theorem, we know that L ∈ B(X, X1). Define(
Aτ Bτ
Cτ Dτ

)
:=

T(τ )
∫ τ

0
T(s)dsB

CL CLA−1B+ G(0)

 . (3.5)

Trivially, Aτ ∈ B(X). Moreover, Bτ ∈ B(U, X), Cτ ∈ B(X, Y ) and
Dτ ∈ B(U, Y ).

Proposition 3.1. Assume that (3.3) is exponentially stable and
consider (3.3) with v = Hu where u ∈ F(Z+,U). Set xk := x(kτ)
for all k ∈ Z+, where x is the solution of (3.3a) given by (3.2), and
define yk by (3.4). Then

xk+1 = Aτ xk + Bτu(k), (3.6a)

yk = Cτ xk + Dτu(k). (3.6b)

Moreover, Aτ is power stable and

Gτ (1) = Cτ (I − Aτ )−1Bτ + Dτ = G(0),

where Gτ denotes the transfer function of the discrete-time system
(3.6).

Proof. Eq. (3.6a) follows easily from (3.2). To prove (3.6b), it is
useful to note that∫ τ

0
a(t)CΛT(t)zdt = CLz = Cτ z, ∀z ∈ X . (3.7)

Without loss of generality, wemay choose η = 0 in (3.3b) to obtain
that

y(kτ + t) = CΛ

[
T(t)xk +

∫ t

0
T(s)Bu(k)ds+ A−1Bu(k)

]
+G(0)u(k)

= CΛ[T(t)xk + T(t)A−1Bu(k)] + G(0)u(k),
∀k ∈ Z+,∀t ∈ [0, τ ).
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Hence, by (3.7),

yk =
∫ τ

0
a(t)y(kτ + t)dt

=

∫ τ

0
a(t)CΛT(t)(xk + A−1Bu(k))dt + G(0)u(k)

= CLxk + CLA−1Bu(k)+ G(0)u(k)
= Cτ xk + Dτu(k), ∀k ∈ Z+.

Moreover, Aτ is power stable since T(t) is exponentially stable.
Finally, since Bτ = (T(τ )− I)A−1B, it follows that

Gτ (1) = Cτ (I − Aτ )−1Bτ + Dτ = −CLA−1B+ CLA−1B+ G(0)
= G(0). �

We seek an adaptive controller which achieves setpoint
tracking. To this end, consider the adaptive control law given by

v(t) = (Hu)(t), (3.8a)
u(k) = Kw(k), (3.8b)

w(k+ 1) = w(k)+ γ−q(k)(r − (Sy)(k)); w(0) = w0, (3.8c)

γ (k+ 1) = γ (k)+ ‖r − (Sy)(k)‖2; γ (0) = γ 0, (3.8d)

where (Sy)(k) is defined in (3.4), r ∈ Y is the reference vector,
K ∈ B(Y ,U) and q ∈ (0, 1].

Theorem 3.2. Assume that (3.3) is exponentially stable, there exists
K ∈ B(Y ,U) such that

σ(G(0)K) ⊂ C0, (3.9)

and q ∈ (0, 1]. Then, for all (x0, w0) ∈ X × Y , γ 0 > 0 and all r ∈ Y ,
the closed-loop sampled-data system given by (3.3) and (3.8) has the
following properties.

(1) limk→∞ γ (k) = γ∞ <∞.
(2) limt→∞ v(t) = v∞ and v − v∞ ∈ L2(R+,U), where v∞ :=
K(G(0)K)−1r.

(3) limt→∞ x(t) = x∞ := −A−1Bv∞ and x− x∞ ∈ L2(R+, X).
(4) The error e := r − y can be decomposed as e = e1 + e2, where
limt→∞ e1(t) = 0 and e2 ∈ L2(R+, Y ).

(5) Under the additional assumption that

lim
t→∞

(Gf )(t) = 0, ∀f ∈ PC(R+,U) ∩ L2(R+,U)

with lim
t→∞

f (t) = 0, (3.10)

the error signal e = r−y can be decomposed as e = e1+e2, where
limt→∞ e1(t) = 0 and e2 ∈ L2α(R+, Y ) for every α > ω(T);
furthermore, if (3.10) holds and, for some t0 ≥ 0, T(t0)(Ax0 +
BKw0) ∈ X, then limt→0 e(t) = 0.

Proof. Let (x0, w0) ∈ X×Y and γ 0 > 0.We obtain x, y, (u(k))k∈Z+
and (γ (k))k∈Z+ by applying (3.8) to (3.3). Set xk := x(kτ) for
all k ∈ Z+ and define yk by (3.4), that is yk = (Sy)(k). It
follows from Proposition 3.1 that xk, u(k) and yk satisfy (3.6), with
(Aτ , Bτ , Cτ ,Dτ ) given by (3.5). By exponential stability of (3.3),
Proposition 3.1 guarantees that Aτ is power stable and, by (3.9),

σ(Gτ (1)K) = σ(G(0)K) ⊂ C0,

whereGτ denotes the transfer function of the discrete-time system
(3.6). Therefore, applying Theorem 2.1 to the discrete-time system
(3.6) and the discrete-time controller given by (3.8b)–(3.8d), we
see that limk→∞ γ (k) = γ∞, showing that statement (1) is true.
Moreover,

u− v∞ ∈ `2(Z+,U), ∆u ∈ `2(Z+,U). (3.11)

Hence, it is easy to see that v−v∞ = H(u−v∞) ∈ L2(R+,U) and

lim
t→∞

v(t) = lim
t→∞

(Hu)(t) = v∞,

so that statement (2) follows. To prove statement (3), note that, for
each k ∈ N and t ∈ [kτ , (k+ 1)τ ),

x(t) = T(t)x0 + T(t − kτ)
k−1∑
j=0

∫ (j+1)τ

jτ
T(kτ − s)Bu(j)ds

+

∫ t

kτ
T(t − s)Bu(k)ds

= T(t)x0 + T(t − kτ)[T(τ )− I]

×

k−1∑
j=0

T((k− j− 1)τ )A−1B(u(j)− v∞)

+ [T(t − kτ)− I]A−1B(u(k)− v∞)

+ [T(t)− I]A−1Bv∞. (3.12)

Consequently, for each k ∈ N and t ∈ [kτ , (k+ 1)τ ),

‖x(t)− x∞‖ ≤ ‖T(t)‖‖x0‖ +M‖A−1B‖‖T(τ )− I‖

×

k−1∑
j=0

‖T((k− 1− j)τ )‖‖(u(j)− v∞)‖

+ (M + 1)‖A−1B‖‖u(k)− v∞‖ + ‖T(t)‖‖x∞‖,

where M := maxt∈[0,τ ] ‖T(t)‖. Therefore statement (3) follows
from the exponential stability of T and the fact that u − v∞ ∈
`2(Z+,U).
To prove statement (4), define the integral operator J by

(Jv)(t) :=
∫ t

0
v(s)ds, ∀v ∈ L1loc(R+,U), ∀t ∈ R+,

and define the function θ : R+ → R by θ(t) := 1 for all t ∈ R+.
For every t ∈ R+, let kt ∈ Z+ be such that t ∈ [ktτ , (kt + 1)τ ).
Then,

(JH(∆u))(t) =
kt−1∑
j=0

∫ (j+1)τ

jτ
(H(∆u))(s)ds+

∫ t

kt τ
(H(∆u))(s)ds

= τ

kt−1∑
j=0

[u(j+ 1)− u(j)] + (t − ktτ)(H(∆u))(t)

= τ(Hu)(t)− τθ(t)u(0)+ h(t), ∀t ≥ 0, (3.13)

where h(t) := (t − ktτ)(H(∆u))(t) for all t ≥ 0. It follows from
(3.13) that

GJH(∆u)− G(0)JH(∆u) = τG(Hu)− τG(0)Hu− τG(θu(0))
+ τG(0)θu(0)+ Gh− G(0)h.

Consequently, we conclude that

e = r − y = r − CΛT(t)x0 − G(Hu) = e1 + e2,

where

e1 := −
1
τ
(GJ − G(0)J)H(∆u)−

1
τ
G(0)h+ r − G(0)Hu, (3.14)

and

e2 := −CΛT(t)x0 − [G(θu(0))− G(0)θu(0)] +
1
τ
Gh. (3.15)

We first prove that limt→∞ e1(t) = 0. By (3.11), it is clear that
H(∆u) ∈ L2(R+,U). Noting that the function s 7→ [L (GJ −
G(0)J)](s) = (1/s)(G(s)− G(0)) is in H∞(C0,B(U, Y )), it follows
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Fig. 3.1. Input signals v1 , v2 .

that GJ − G(0)J ∈ B(L2(R+,U), L2(R+, Y )). Hence

(GJ − G(0)J)H(∆u) ∈ L2(R+, Y ). (3.16)

Moreover, since, by shift-invariance, G and J commute,

[(GJ − G(0)J)H(∆u)]′ = (G− G(0))H(∆u) ∈ L2(R+, Y ). (3.17)

As a consequence of (3.16) and (3.17), we obtain

lim
t→∞
[(GJ − G(0)J)H(∆u)](t) = 0. (3.18)

Moreover, (3.11) implies that

lim
t→∞

h(t) = 0, h ∈ L2(R+,U) ∩ PC(R+,U), (3.19)

and

lim
t→∞

G(0)(Hu)(t) = G(0)v∞ = r. (3.20)

Combining (3.14) and (3.18)–(3.20) gives limt→∞ e1(t) = 0. We
proceed to prove that e2 ∈ L2(R+, Y ). Obviously,

CΛTx0 ∈ L2α(R+, Y ), ∀α > ω(T), ∀x0 ∈ X . (3.21)

Now

[L (G(θu(0))− G(0)θu(0))](s) =
1
s
[G(s)− G(0)]u(0),

and we see that L (G(θu(0)) − G(0)θu(0)) ∈ H2(Cα,U) for all
α > ω(T). Hence, by the Paley–Wiener theorem,

G(θu(0))− G(0)θu(0) ∈ L2α(R+,U), ∀α > ω(T). (3.22)

Using G ∈ B(L2(R+,U), L2(R+, Y )) and h ∈ L2(R+,U), we see
that Gh ∈ L2(R+, Y ). Combining this with (3.15), (3.21) and (3.22)
and the exponential stability of T, yields that e2 ∈ L2(R+, Y ). This
proves statement (4).
To prove statement (5), we assume that (Gf )(t)→ 0 as t → 0

for all f ∈ PC(R+,U) ∩ L2(R+,U) with limt→∞ f (t) = 0. Then by
(3.19), we have

lim
t→∞

(Gh)(t) = 0. (3.23)

Writing e = ẽ1 + ẽ2, where

ẽ1 :=
1
τ
Gh−

1
τ
(GJ − G(0)J)H(∆u)−

1
τ
G(0)h+ r − G(0)Hu,

and

ẽ2 := −CΛT(t)x0 − [G(θu(0))− G(0)θu(0)], (3.24)

it follows from (3.18)–(3.20) and (3.23) that limt→∞ ẽ1(t) = 0, and
from (3.21) and (3.22) that ẽ2 ∈ L2α(R+, Y ) for all α > ω(T). This

proves the first claimof statement (5).Moreover, assume that there
exists t0 ≥ 0 such that T(t0)(Ax0+BKw0) ∈ X . To prove the second
claim of statement (5), it suffices to show that limt→∞ ẽ2(t) = 0.
Laplace transform of (3.24) gives

(L (ẽ2))(s) = −C(sI − A)−1x0 −
1
s
[G(s)− G(0)]u(0).

It follows from (3.1) with η = 0 that

1
s
[G(s)− G(0)] = C(sI − A)−1A−1B,

so that

(L (ẽ2))(s) = −C(sI − A)−1A−1(Ax0 + BKw0).

Thus, for t ≥ t0,

ẽ2(t) = −CΛT(t)A−1(Ax0 + BKw0)
= −CA−1T(t − t0)T(t0)(Ax0 + BKw0).

Since T(t0)(Ax0 + BKw0) ∈ X and T is exponentially stable,
limt→∞ ẽ2(t) = 0. �

Remark 3.3. (1) Denoting the Lebesgue measure on R+ by µL,
statement (4) of Theorem 3.2 implies that, for every ε > 0,

lim
T→∞

µL ({t ≥ T : ‖e(t)‖ ≥ ε}) = 0,

showing that the error e(t) ‘‘converges to 0 inmeasure’’ as t →∞.
(2) If U and Y are finite-dimensional and the impulse response

of G is a (matrix-valued) Borel measure on R+, then G satisfies
(3.10). Furthermore, in this case, if T(t0)x0 ∈ X1 for some t0 ≥ 0,
then it can be shown that limt→0 e(t) = 0.
(3) Assume that (3.8a) is replaced by u(t) = (Hu)(t)+d, where

d ∈ U is a constant input disturbance. It follows from Remark 2.2
that the conclusions of Theorem 3.2 remain valid, provided that
v∞ is re-defined by v∞ := K(G(0)K)−1(r − G(0)d) + d and, in
statement (5), the condition T(t0)(Ax0+ BKw0) ∈ X is replaced by
T(t0)(Ax0 + B(Kw0 + d)) ∈ X .
(4) The proof of statement (4) of Theorem 3.2 is inspired by the

proof of Proposition 7.3.4 in [16]. �

Example 3.4. For purpose of illustration, we consider the problem
of heating a bar of length 1.Wekeepboth endpoints at temperature
0 and inject heat of magnitude vj(t) at the point ξj ∈ (0, 1),
j = 1, 2. Temperature measurements are taken at the points
η1, η2 ∈ (0, 1). The system to be controlled can be formulated as
follows

zt(ξ , t) = κzξξ (ξ , t)+ δ(ξ − ξ1)v1(t)+ δ(ξ − ξ2)v2(t),
∀ξ ∈ (0, 1),∀t > 0, (3.25a)
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Fig. 3.2. Temperature measurements y1 , y2 .

Fig. 3.3. Sequence γ and temperature z(ξ , t).

G(s) =


sinh((1− η1)

√
s/κ) sinh(ξ1

√
s/κ)

√
s κ sinh(

√
s/κ)

sinh((1− ξ2)
√
s/κ) sinh(η1

√
s/κ)

√
s κ sinh(

√
s/κ)

sinh((1− η2)
√
s/κ) sinh(ξ1

√
s/κ)

√
s κ sinh(

√
s/κ)

sinh((1− η2)
√
s/κ) sinh(ξ2

√
s/κ)

√
s κ sinh(

√
s/κ)

 .
Box I.

y1(t) = z(η1, t), y2(t) = z(η2, t); ∀t > 0, (3.25b)
z(0, t) = z(1, t) = 0, ∀t ≥ 0;

z(ξ , 0) = z0(ξ), ∀ξ ∈ (0, 1). (3.25c)

Here κ is a positive constant. Non-adaptive continuous-time low-
gain integral control of this system was studied in [17].
System (3.25) can be formulated as a well-posed system with

state space X = L2(0, 1). In particular, the semigroup T(t), given
by

(T(t)z0)(ξ) =
∞∑
n=1

2 exp(−κn2π2t) sin(nπξ)

×

∫ 1

0
sin(nπλ)z0(λ)dλ,

is exponentially stable. Assuming that

0 < ξ1 ≤ η1 ≤ ξ2 ≤ η2 < 1,

the transfer function G(s) is given in Box I. It is then easy to see that

G(0) =
1
κ

(
(1− η1)ξ1 (1− ξ2)η1
(1− η2)ξ1 (1− η2)ξ2

)
.

As a consequence, the characteristic polynomial of G(0) is given by

det(λI − G(0)) = λ2 − κ−1[(1− η1)ξ1 + (1− η2)ξ2]λ

+ κ−2ξ1(1− η2)(ξ2 − η1).

Since ξ1, ξ2, η1, η2 ∈ (0, 1), it follows that σ(G(0)) ⊂ C0 if and
only if ξ2 > η1. We sample the output using the simple averaging
sampling operation defined by

(Sy)(k) =
1
τ

∫ τ

0
y(kτ + t)dt, (i.e., a(t) ≡ 1/τ).

To be specific, we set

ξ1 = 0.2, ξ2 = 0.6, η1 = 0.4, η2 = 0.8, τ = 1,

K = I, κ = 0.1, z0(ξ) = sin(πξ), r =
(
1
2

)
,

q = 0.55, γ 0 = 2, w0 = 0.

Matlab simulations of the closed-loop system given by (3.25) and
(3.8) (with v = (v1, v2)

T and y = (y1, y2)T) are shown in
Figs. 3.1–3.3. By Theorem 3.2, we know that

lim
t→∞

v(t) = (G(0))−1r =
(
−2.5
2.5

)
,

as is illustrated by Fig. 3.1. Since w0 = 0 and Az0 ∈ X , it follows
from statement (5) in Theorem 3.2 that

lim
t→∞

y(t) = r =
(
1
2

)
,
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as is illustrated by Fig. 3.2. The sequence γ and the evolution of the
temperature profile are shown in Fig. 3.3.
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