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1. Introduction. The analysis and synthesis of sampled-data control schemes
is not only important for digital control applications, but is also interesting from a
theoretical point of view, because of the interaction of continuous-time and discrete-
time dynamics. Over the last 20 years, a variety of sampled-data control problems
for infinite-dimensional systems have been studied; for example,

e tracking for stable systems by low-gain sampled-data control [6, 7, 8, 10, 13,
14]7
e stabilization by discretization of continuous-time feedback, so-called indirect
sampled-data control [12],
e stabilization by periodic sampled-data output feedback [11, 15, 21, 22],
e stabilization by piecewise polynomial control [16],
e robust sampled-data control of a class of semilinear parabolic systems via
linear matrix inequalities [4].
In this paper, we consider the problem of existence of stabilizing (finite-dimensional)
dynamic sampled-data controllers for well-posed linear continuous-time infinite-di-
mensional systems. Somewhat surprisingly, it seems that this problem has not been
systematically studied in the literature. The contributions in the present paper fill
this gap and complement the results in the above references.

There exists a highly developed state-space and frequency-domain theory for the
class of well-posed infinite-dimensional systems; see, for example, [17, 19, 20, 25,
26]. Systems in this class allow for considerable unboundedness of the control and
observation operators B and C' and they encompass many of the most commonly
studied partial differential equations with boundary control and observation, and all
functional differential equations of retarded and neutral type with delays in the inputs
and outputs.

A well-posed system ¥ has generating operators (A, B, C'), where A is the gener-
ator of a strongly continuous semigroup T = (T);>0 governing the state evolution of
the uncontrolled system, B is the control operator, and C' the observation operator.
Denote by u and y the input and output of 3, respectively. For a given sampling
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period T > 0, we consider sampled-data feedback of the form
(1.1) u=v—Hrys, uq=0vq+Sry;

see Figure 1.1. Here the continuous-time signal v and the discrete-time signal vq are
external inputs to the closed-loop sampled-data system, ugq and yq are the input and
output, respectively, of a linear strictly causal discrete-time system X4 (the controller),
H, is the zero-order hold operator, and S, is a generalized sampling operator, that
is,

(Sry)(k) = /OT w(t)y(kr +t)dt VkeZg,

where the scalar weighting function w is in L?(0, 7). This kind of generalized sampling
is natural for well-posed systems, since their outputs are in L] ., but can otherwise
be quite irregular, making the ideal Samphng operation y — (y(kT))rez. meaning-
less. Obviously, if w is nonnegative, fo t)dt = 1, and w(t) = 0 for all ¢ € [e, 7],
where € > 0 is small as compared to the samphng period 7, then the generalized
sampling operation “mimics” ideal sampling (because, under these conditions, w can
be considered as an “approximation” of the Dirac delta function).

In this paper, we give a set of conditions which are necessary and sufficient for the
existence of a linear strictly causal discrete-time system with input ugq and output yq
such that the feedback interconnection given by (1.1) leads to a stable sampled-data
system. By “stable” we mean exponentially L9/l9-input-to-state stable in the sense
that there exist positive constants I and =y such that the state x of the continuous-time
well-posed system and the state xq of the discrete-time controller satisfy

58] 0o It

for all t € [0,7), all k& € Z,, all initial values x(0) and x4(0), and all inputs v €
L%(0,00) and vq € 1%(Z.), where 2 < g < 0.

Loosely speaking, the main result of this paper (Theorem 9) states that, for a
given well-posed system 3, there exists a stabilizing linear sampled-data controller if
and only if the following six conditions are satisfied:

(i) the unstable portion of the spectrum of A consists of at most finitely many
eigenvalues with finite algebraic multiplicities;
(ii) the semigroup generated by the stable part of A is exponentially stable;
(iii) the unstable (finite-dimensional) part of the controlled discrete-time system
(T, B) is controllable;

(iv) the unstable (finite-dimensional) part of the observed discrete-time system
(C,T,) is observable;

(v) The numbers 2k7i/T are in the resolvent set of A for all integers k # 0;

(vi) [y w(t)eMdt # 0 for all unstable eigenvalues A of A.
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As it turns out, if these conditions are satisfied, then there even exists a finite-
dimensional stabilizing sampled-data controller (see Theorem 9).

The paper is organized as follows. Preliminaries on well-posed systems are dealt
with in section 2. Discretization of well-posed systems by sample and hold is discussed
in section 3. In section 4, the basic sample-data system is studied and a characteriza-
tion of exponential L?/l%-input-to-state stability of the sampled-data system in terms
of its behavior at the sampling instants is derived. In section 5, the above six con-
ditions are studied in some detail and a number of consequences of these conditions
are discussed. In particular, it is shown that if conditions (i) and (ii) hold and the
sampled-data system is exponentially L?/I2-input-to-state stable, then ||y|| 12 + ||vall:
can be “nicely” estimated in terms of ||z(0)||, [[za(0)||, ||v||z2, and ||v4l/;2. The main
result is stated and proved in section 6. Since spectral theory (in particular, spectral
projections) plays an important role in this paper, it is convenient to work with com-
plex vector spaces. Therefore the theory in sections 2—6 is developed in a complex
setting. The question of the existence of stabilizing real sampled-data controllers for
real sytems is addressed in section 7. Finally, the proofs of two results have been
relegated to an appendix (section 8).

Notation and terminology. Let Z, denote the set of all nonnegative integers.
For o € R, set C, := {s € C: Res > a} and, for n > 0, set E, := {z € C: |z] > n}.
Let Y and Z be real or complex Banach spaces. The space of all linear bounded
operators mapping Y to Z is denoted by B(Y,Z). We write B(Y) for B(Y,Y). An
operator T € B(Y) is said to be power stable if there exist constants I' > 1 and
6 € (0,1) such that

|T*| <T6* VkeZ,.

For a linear operator T' defined in Y and mapping into Z, we write dom(7") for the
domain of T'. The resolvent set and spectrum of a linear operator 7' : dom(7T") C Y —
Y are denoted by o(T") and o(T'), respectively.

Let @ = C, or = E,. The space of all holomorphic and bounded func-
tions Q — CP*™ is denoted by H* (£, CP*™). We write H>*(f2) for H>*(2,C).
For a € R, we define the exponentially weighted L%-space LL(R,,Y) := {f €
LI (Ry,Y) : f(-)exp(—a-) € LY(R4,Y)} and we endow LZ(Ry,Y’) with the norm
| fllze :== lle=* f(-)]lze. The space of all functions Zy — Y (unilateral sequences in
Y) is denoted by F(Z4,Y). Finally, £ denotes the Laplace transform.

2. Preliminaries. We start by providing some background material on well-
posed infinite-dimensional linear systems. There are a number of equivalent defini-
tions of well-posed systems; see [17, 19, 20, 25, 26]. We will be brief in the following
and refer the reader to the above references for more details. Throughout, we shall be
considering a well-posed system Y with state space X, input space C™, and output
space CP, generating operators (A, B, C'), input-output operator G, and transfer func-
tion G. Here X is a separable complex Hilbert space, A is the generator of a strongly
continuous semigroup T = (Ty);>0 on X, B € B(C™,X_1), and C € B(X;,CP).
Since we will be using spectral theory and spectral projections it is convenient to
work with complex spaces. However, the important question of existence of real sta-
bilizing sampled-data controllers for real systems needs to be addressed and this will
be done in section 7. The spaces X; and X_;, respectively, are interpolation and
extrapolation spaces associated with X. The space X; is given by X; := dom(A),
endowed with the graph norm of A, while X_; denotes the completion of X with
respect to the norm [|£]|—1 = [|[(A] — A)~1&]|, where A € g(A) (different choices of A
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lead to equivalent norms), and || - || denotes the norm on X. Clearly, X1 C X C X_;
and the canonical injections are bounded and dense. The semigroup T restricts to a
strongly continuous semigroup on X; and extends to a strongly continuous semigroup
on X_; with the exponential growth constant being the same on all three spaces;
the generator of the restriction (extension) of T is a restriction (extension) of A; we
shall use the same symbol T (respectively, A) for the original semigroup (respectively,
generator) and the associated restrictions and extensions: with this convention, we
may write A € B(X, X_1) (considered as a generator on X_1, the domain of A is X).
The spectra of A and its extension coincide. If A € p(A), then AI — A, considered
as an operator in B(X, X_1), provides an isometric isomorphism from X to X_; (we
refer the reader to [3] and [24] for more details on the extrapolation space X_1).

Moreover, the operator B is an admissible control operator for T, i.e., for each
t > 0 there exists b; > 0 such that

The operator C' is an admissible observation operator for T, i.e., for each t > 0 there
exists ¢; > 0 such that

¢
/ T;_sBu(s)ds
0

< bellullz20,) VueE L*([0,¢],C™).

t 1/2
([ 1eTeas) <l veex
0

The control operator B is said to be bounded if it is so as a map from the input
space C™ to the state space X; otherwise, it is said to be unbounded; the observation
operator C' is said to be bounded if it can be extended continuously to X; otherwise,
C is said to be unbounded.

The so-called A-extension Cy of C' is defined by

Cpaé = lim ROS(SI—A)*lg,

5—00, SE

with dom(Cy) consisting of all £ € X for which the above limit exists. For every
€€ X, Ti € dom(Cy) for a.e. t > 0 and, if @ > w(T), then CATE € L2 (R, CP),
where

.1
w(T) := tlggo glnHTtH

denotes the exponential growth constant of T.
The transfer function G satisfies
1
s—A

(G(s) = G(N) = —=C(sI — A) "M — A)'B Vs, A € Cy(r), s # A,

and G € H*(C,, CP*™) for every a > w(T). Moreover, the input-output operator
G : L} (Ry,C™) — L (R4, CP) is continuous and shift invariant; for every o >

w(T), G € B(L2(R,,C™), L2(R,CP)) and
(£(Gu))(s) = G(s)(L(u))(s) VsecCq,, Yuc Li(R,,C™).

While, a priori, G is only defined on the half-plane C,(t), we say that G is holomor-
phic (meromorphic) on C, (where o < w(T)) if there exists a holomorphic (mero-
morphic) function C, — CP*™ extending G. This function (if it exists) will also be
denoted by G.
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In the following, let A € C, () be fixed, but arbitrary. For 20 € X and v €
L (Ry,C™), let z and y denote the state and output functions of X, respectively,
corresponding to the initial condition #(0) = 2° € X and the input function u. Then
x(t) = T2 + fot T;_sBu(s)ds for all t > 0, x(t) — (A — A)~'Bu(t) € dom(C}) for
a.e. t >0, and

£(t) = _ .0
(2.1) {x(t) = Az(t) + Bu(t), (0)=2"¢€ X ae. t>0,

y(t) = Cp(2(t) — (M — A)7'Bu(t)) + G(Nu(t) a.e. t>0.

Of course, the differential equation in (2.1) has to be interpreted in X_;. Note that
the second equation in (2.1) yields the following formula for the input-output operator

G:

= t u(s)ds — — A)~'Bu u
. <Gu><t>—cA[ | T Bu(s)as = O = ) Bu(o)| + Gute)

VYue LE (Ry,R™), ae. t>0.

In the following, we identify ¥ and (2.1) and refer to (2.1) as a well-posed system.
The above formulas for the output, the input-output operator, and the transfer
function reduce to a more recognizable form for the subclass of regular systems. Recall
that the well-posed system (2.1) is called regular if the limit
lim G(s)=:D
s—o00, sER

exists. In this case, z(t) € dom(Cy) for a.e. t > 0, the output equation in (2.1) and
the formula (2.2) for the input-output operator simplify to

y(t) = Cpx(t) + Du(t) ae. t>0

and

loc

¢
(Gu)(t) = CA/ T Bu(s)ds + Du(t) VYue€ L} (Ry,C™), ae. t>0,
0

respectively; moreover, (sI —A)~!BC™ C dom(C,) for all s € o(A) and we have that
G(s) =Ca(sI—A)"'B+D VseCyr).

The matrix D is called the feedthrough matriz of (2.1). It can be shown that, if B is
a bounded control operator or if C' is a bounded observation operator, then (2.1) is
regular.

The following result, the proof of which can be found in [11], relates to the asymp-
totic behavior of the output of an exponentially stable well-posed system under the
assumption that a certain “smoothness” condition is satisfied.

PROPOSITION 1. Assume that (2.1) is exponentially stable. Let 2° € X and
u € WH2(R,,C™). If there exists tg > 0 such that Ty, (Ax° + Bu(0)) € X, then the
output y of (2.1) is continuous® on [ty,00) and lim;_ y(t) = 0.

! The output y of the well-posed system (2.1) is an element in L? (R;,CP) and so, strictly
speaking, y is not a function, but an equivalence class of functions coinciding a.e. in R4. We say that
y is continuous on [tg, 00) if there exists a representative in the equivalence class which is continuous
on [tp, 00).
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3. Discretization of (2.1) by sample and hold. Let 7 > 0 denote the sam-
pling period. As usual, the zero-order hold operator H#, : F(Z,,C™) — L3 (R,C™)
is defined by

(H, f)(t) = f(k) Vtekr,(k+1)7), Vk € Zy.

Moreover, S; : L (R4, CP) — F(Z,CP) denotes the generalized sampling operator
defined by

(S, )(k):/OTw(t)g(kr+t)dt VkeZ,,

where the scalar weighting function w is in L%(0, 7). Note that, for g € L2 (R, CP),

loc
the ideal sampling operation g +— (g(kT))rez, is meaningless since point evalua-

tions do not make sense for Ll200 functions. This becomes relevant in the context of

well-posed infinite-dimensional systems because, in general, their outputs (which are

functions in L (R, CP)) are too irregular for ideal sampling to be meaningful.
Define

A, =T, € B(X).
Invoking the admissibility of B, we conclude that the operator

B, : L*([0,7],C™) = X, g>—>/ T;Bg(t —t)dt
0

is in B(L?(0,7), X). Setting

B,¢ =B, (1) YEeCm,
where 1 € L?(0,7) denotes the function identically equal to 1, it follows that the map
C™ — X, &~ B;{is in B(C™, X). Furthermore, by admissibility of C, there exists a

constant ¢, > 0 such that () [|CAT:&[|? dt)'/2 < ¢;[[€] for all ¢ € X. Consequently,
the operator C; defined by

Cr¢ :/ w(t)OpATeEdt VE € X,
0
is in B(X,CP). Finally, we define
D, : L*([0,7],C™) = CP, g+ / w(t)(Gg)(t) dt.
0

Setting
D £:=D.(£1) veEeC™,
then, trivially, the map C™ — CP, £ — D¢ is in B(C™,CP).

LEMMA 2. Let u = H.f + g, where f € F(Z+,C™) and g € L _(R4+,C™), and
let 2° € X. Set

¢
x(t) == T(t)z° —l—/ T:_sBu(s)ds Vt>0.
0
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Then
2((k +1)7) = Ayo(kt) + By f(K) + BrLirg,
(S:9)(k) = Cra(k7) + Dy f(k) + Dy Lyrg,

where Ly,g € L2([0,7],C™) is defined by (L, g)(t) = g(kT +t) for all t € [0, 7].
Proof. To obtain the first identity note that, for all k € Z,,

(k+1)7
z((k+1)71) =T a(kr) + / T (k41)r—sBu(s)ds
k

= A;x(kT) + /T T;Bf(k)ds + /T T;Bg((k+ 1) —s)ds
0 0

= A;x(kt) + B, f(k) + B;Lgrg.
To prove the second identity, let k € Z4 and ¢ € [0, 7]. Then
y(kT +1t) = CATix(k7) + (G(Lgru))(¢)
= CaATea(kr) + (G(f(k)1))(t) + (G(Likrg))(t)-

Hence,

(Sry)(k) = /O " w(t)CATyx(kr) dt + Dy f(K) + Dy Lirg

= Cra(kt) + Dy f(k) + D;Lyrg. O

4. Dynamic sampled-data feedback. Consider the (strictly causal) discrete-
time controller ¥4 given by

zY (k) = Prg(k) + Qua(k), zq4(0) =z € X4,
ya(k) = Raa(k),

where X4 is a complex Hilbert space, P € B(X4), @ € B(C?, X4), R € B(Xq4,C™),

and zJ (k) := zq(k +1). As illustrated in Figure 1.1, we connect the continuous-time

system (2.1) and the discrete-time controller (4.1) via the following sampled-data
feedback law:

(4.1)

(4.2) u=v—Hrys, ud=uvq+ Sy,

where v € L{ (Ry,C™) and vq € F(Z4,CP) are the inputs of the closed-loop system.

The resulting sampled-data system is given by

i = Az + B(v —Hrya), x(0)=2"¢€ X,

y=Cr(z— (M —A)"'Bv—Hrya)) + G\) (v — Hrya),
zy = Prg + Qva + Sry), 24(0) =29 € Xy,
yq = Rzgq.

(4.3)

In the following, let ¢ € [2,00]. We say that the sampled-data system (4.3) is ex-
ponentially L1/19-input-to-state stable if there exist T' > 1 and v > 0 such that the

solution (z,zq) satisfies
20
’<$d>

) =r (e
za(k

VkeZ,, Vte[0,7), Vo' e X, Va € Xq,
Vove Ll (Ry,C™), Yog € F(Zy,CP),

loc

+ [Perse vl + [Pralle
(4.4)
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where Pj, 0 LL (Ry,C™) — LY(R4,C™) and Py, : F(Z4,CP) — 19(Z4,CP) denote

the usual projection (respectively, truncation) operators defined by

(Pir)(s) ;:{ 8,(8)’ SEZT§+]€Z,+ b Pa)) = { S‘f(j)’ ;)

V- IA

J <k,
k.

PROPOSITION 3. Let g € [2,00]. The sampled-data system (4.3) is exponen-
tially L1/19-input-to-state stable if and only if (4.1) stabilizes (A;, B;,Cr,D;) (the
discretization of (2.1) obtained by sampling and holding) in the sense that

A, —B;R
(4.5) A= (QO‘F P—QDTR)

is power stable.

Furthermore, if ¢ < co and the sampled-data system (4.3) is exponentially L9/19-
input-to-state stable, then, for all v € LY(Ry,C™) and all vq € 19(Z4,CP), x(t) — 0
(in X) ast = oo and zq(k) = 0 as k — oo.

Proof. Let 2° € X, 29 € X4, v € L] (R4,C™), vq € F(Z4,CP), and let (z,2q)

loc
be the solution of the sampled-data system (4.3). Invoking Lemma 2, we obtain

z((k+1)71) = Arz(k7) — Brya(k) + B;Lg v
= A,;x(kT) — B;Rzq(k) + B-Lgrv
and, furthermore,
za(k +1) = Pra(k) + Q(va(k) + (Sry)(k))

= Pzqa(k) + Q(va(k) + Cra(kt) — Dy Rzq(k) + D Lyrv)
= QC x(kT) + (P — QD;R)xq(k) + QD;Lirv + Qug(k).

Consequently,
z((k+ 1)) x(kT)
(4.6) < zalk+1) ) =A (xd(k)) + 1K),
where f:Z; — X x Xq is defined by
(4.7) f(k) = (QBTT) Ly,v + (C%) va(k).

To prove necessity, assume that the sampled-data system (4.3) is exponentially L4/19-
input-to-state stable, that is, there exist constants I' > 1 and v > 0 such that (4.4)
holds. Then, for the unforced sampled-data system (4.3) (that is, v =0 and vq = 0),

(4.6) and (4.7) yield
0 0
k(L _ Qf(kT) —vkT €
o Gl =[Gl =Gl
showing that A is power stable.

To prove sufficiency, assume that A is power stable. Then there exist I'y > 1 and
6 € (0,1) such that

A% <T10* VEkez,.
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Here I'; and 0 depend only on A. Therefore, by (4.6), (4.7), and Holder’s inequality,

(4.8) H(‘;SZB) H <1 |6 @g)H +§0’“”|f(j)ll
(4.9) <Ts (0’< (ig) H + |Pk_1f|lq> VkeZ,,

where I's > I'; depends only on I'y and 6. Set

fik) = (QBTT) Lirv,  falk) = (g) vak).

Then f = f1 + fo. Furthermore, defining

q
= —— € [1,00],
r= e o

we have that 1/r 4+ 2/q = 1. Denoting the norm of the bounded operator
B,
QD,

by «a, it follows from Hoélder’s inequality that

(k+1)7

2/q
1f1(E)|1? < 0| Lgrv| 3200y < @®7Y7 ( /k |v<s>|qu> VkeZy.

Hence,
(4.10) LA < oD ol pager ey Vh € Ze
showing that
IPr1fillie < am/ o] oo ry = ar/C|Pyrv|l e VE € Zoy.
Trivially, we have that
[Pr—1f2llie < B||Pr—1valie Yk €Zy,

where 8 denotes the norm of the operator (). Consequently, by (4.9),

a ()= (G

where I's > I's depends only on I's, 7, 7, «, and 5. Moreover, for k& € Z, and
tef0,7),

’ + IPrrv| e + ||Pk1Ud|zq> VkeZ,,

x(kT +1t) = Tyx(kT) + /:TH Trrit—sBu(s)ds,
and so
le(kr + )]l < | Tea(hr)]| + H/Ot T, Bu(kr + ¢ — 5)ds
(4.12) <Ly (lz(kn) || + ull L2 irie) Yk €Zy, Yt e 0,7),
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where I'y depends only on T and the admissibility constant b,. Since

lull L2(kr krt6) < 0l L2er kr4e) + Tl/2||yd(k)”
(4.13) < YN0l pagr prre) + TR 2a(k) ||
< 7YCNPrryvll e + 72| R) ||za(k)| Yk €Zy, Ve |0,7),

it follows from (4.12) that
(4.14) Jlz(kr + )| < Ts(l2(kr)ll + lza(B)| + |Prrrevllea) Yk € Zy, Yt €[0,7),

where I's > I'y depends only on I'y, 7, r, and || R||. Setting

~0 iCO
T =1
Tq

and combining (4.11) and (4.14), we obtain

z(kT +t)|| < T (0%]|Z°)| + [|Prrsev)Lo + [|Pro1vallie) Yk € Zy, Vit € [0,7).
Here I's depends only on I's and I's. Set v := —(In#)/7 > 0. Then
(4.15) OF = ek < e VTR YR e Z, Ve |0,7).

Hence,
(4.16)
|2kt + )| < T (e ® )20 + | Prryevll Lo + [Prorvallis) Vi € Zy, Vit € [0,7),

where I'7 := ¢¥"T'g. Furthermore, by (4.11) and (4.15),
(4.17)
lza(®)| < Ts(e " *+92° + |Parsevlza + [Prorvallia) Yk € Zy Vi€ [0,7),

where I's := €7"T's. Exponential L?/]9-input-to-state stability now follows from (4.16)
and (4.17).

To prove the claim of Proposition 3 relating to the convergence of z and x4
to 0, assume that ¢ < oo and that the sampled-data system (4.3) is exponentially
L7/1%-input-to-state stable. By what we have already proved, we know that A is
power stable. Let v € LY(Ry,C™) and vg € 19(Z4,CP). Then, by (4.7) and (4.10),
f(k) — 0 as k — oo, and therefore, invoking (4.6) and the power stability of A, we
conclude that x(k7) — 0 (in X) and zq(k) as k — oco. Combining this with (4.12)
and (4.13) shows that z(t) — 0 (in X) as t — oco. O

Note that Proposition 3 implies that if the sampled-data system (4.3) is expo-
nentially L9/l9-input-to-state stable for some g € [2,00], then (4.3) is exponentially
L1/]%-input-to-state stable for every ¢ € [2, c0].

5. Assumptions on the well-posed system (2.1). In the following, we im-
pose six assumptions on the well-posed system (2.1).

(A1) There exists € > 0 such that o(A) N C_. consists of finitely many isolated
eigenvalues of A with finite algebraic multiplicities.

If (A1) holds, then there exists a smooth, positively oriented, and simple closed
curve ® in C not intersecting o(A), enclosing o(A) N Cy in its interior and having
o(A) N (C\ Cyp) in its exterior. The operator

1

_ !
(5.1) Il := 57 CI)(sI A)"Hds
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is a projection on X and we have
(5.2) X=XToX", where X7 :=1I1X, X :=(-1)X.
%t follows from a standard result (see, for example, Lemma 2.5.7 in [1] or p.178 in

5]) that dim X+ < co, X* C X3, Xt and X~ := (I — II)X are T¢-invariant for all
t > 0, and

(5.3) o(AT) =o(A)NCo, (A7) =0a(A)N(C\Co),
where
(5.4) At = A}X+, A = A}lex—'

Moreover, we define

(5.5) T, =T T, =T, Ct:=C|., C

|+ |x- = C|X1mX*'

Note that TT = (T} )i>0 and T~ = (T} )i>0 are Cp-semigroups with generators
AT and A™, respectively. Since the spectrum of A considered as an operator on X
coincides with the spectrum of A considered as an operator on X_1,? the projection
operator IT on X defined in (5.1) extends to a projection II_; on X_;. Note that, if
A€ o(A), thenIT_; = (A — A)II(N — A)~!, where A\I — A is considered as an operator
in B(X, X_1). Moreover, it is important to observe that II_; X_; = IIX = X*. We
define

(5.6) Bt :=1_yB, B~ :=(I-1I_;)B.

In the following, we will use the same symbol II for the original projection and its
associated extension II_;. Obviously, the operator A~ extends to an operator in
B(X~,(X7)-1) and the same symbol A~ will be used to denote this extension. The
following simple lemma, the proof of which can be found in [11], will be useful in the
following.

LEMMA 4. Assume that (A1) holds. There exists a well-posed system ¥~ with gen-
erating operators® (A=, B~,C~) and input-output operator G~ := G — G™T, where G+
denotes the input-output operator of the ( finite-dimensional) system (A*, B+, CT),
that is, (GTu)(t) = fot CteA (=) Bty(s)ds for allt € Ry and allu € L2 (Ry,C™).
For every 2° € X and u € L (Ry,C™), the output y of the well-posed system (2.1)
can be written in the form

y(t) = (CAT; (I =)z + (G~ u)(t) + CTIz(t) ae t >0,

where z(t) = Tyx® + fot T;_sBu(s)ds for all t > 0.

2 The point and approximate point spectra coincide as well.

3 For (A=, B~,C7) to be the generating operators of a well-posed system it is of course necessary
that B~ maps into (X~ )_1 = (({ —II)X)_1, the extrapolation space associated with A~. Since, by
definition, B~ maps into (I —II)X_q1 =: (X_1)~, there seems to be a difficulty. However, it is clear
that the spaces (X~ )_1 and (X_1)~ are both completions of X~ endowed with the norm || - ||-1.

Hence there exists an isometric isomorphism (X~ )_1 — (X_1), the restriction of which to X~ is
the identity, and so we can safely identify (X ~)_1 and (X_1)~.
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We are now in position to formulate the remaining assumptions.

(A2) The Cyp-semigroup T~ = (T, );>0 is exponentially stable.

(A3) (T, BT) is discrete-time controllable.

(A4) (C*,TF) is discrete-time observable.

(A5) 2]€7TZ/7' ¢ o(A") Vk e Z\{0}.

(A6) [y w(t)eMdt £0V A€ a(AT).

Under sultable conditions, assumptions (A3)—(A5) can be replaced by the follow-
ing assumptions.

(A3) (A*, BT) is continuous-time controllable.

(A4") (C*, AT) is continuous-time observable.

(A" ) TN — ) # 2kmi Y\, u € o(AT) VEk € Z )\ {0}.

Assumptions (A3’) and (A4’) seem slightly more natural than (A3) and (A4),
because (A3’) and (A4’) are formulated entirely in terms of continuous-time data.
Assumptions (A1)-(A4), (A3'), and (A4') are quite common in feedback control of
infinite-dimensional systems; see [1] for the continuous-time case, [9] for the discrete-
time case and [11, 16] for sampled-data systems. In particular, (Al), (A2), (A3'),
and (A4’) have been invoked in the past to establish the existence and facilitate
the construction of stabilizing finite-dimensional dynamic continuous-time controllers
(but, to the best of my knowledge, in settings more restrictive than the well-posed
systems framework). Here, (A1)—(A4) will be used to guarantee the existence of
stabilizing finite-dimensional dynamic sampled-data controllers for well-posed systems
and for sampling periods 7 satisfying the constraints imposed by (A5) and (A6).
Spectral conditions such as (A5) and (A5’) arise naturally in sampled-data control;
see [18]. Finally, assumption (A6), which also appears in [11], implies discrete-time
detectability of (Cr, A;) (see proof of Theorem 9).

The following propositions shows that (A3)—(A5) and (A3")—(A5’) are closely
related.

PROPOSITION 5. Assume that (Al) is satisfied. Then the following statements
hold.

(A3") and (A5') hold, then (A3) holds. Conversely, assume that (A3) holds.
") holds and, if m =1, (Ab') is also satisfied. If m > 1, then (A3) does not
(A5’

(1) If
(A3
)-
) If (A4") and (A5") hold, then (A4) holds. Conversely, assume that (A4) holds.
(A4
)

Then
imply
(2
Then
imply
(3

") holds and, if p =1, (A5') is also satisfied. If p > 1, then (A4) does not
(A5').
(A5) implies (AD) (the converse is not true).

(4) If w is equal to a nonzero constant, then (A5) and (A6) are equivalent.

Proof. To prove statement (1), note that the first implication mentioned in the
statement is a consequence of [18, Theorem 4, p. 102]. Now assume that (A3) holds.
Let » be in the dual space of XT and A € o(AT). Assume that ¢ o AT = Ap
and ¢ o BT = 0. By the Hautus criterion, (A3") will follow if we can show that
© = 0. Noting that ¢ o TT = ¢ o AT = e, the Hautus criterion, applied to the
controllable discrete-time system (TF, BT), yields that ¢ = 0. Furthermore, under
the additional assumption that m = 1, controllability of (T}, BT) together with the
Hautus criterion yields that dimker(zI — T}) < rk Bt =1 for every z € C. If (A)
is not satisfied, then there exist \, u € o(A™") such that A # p and e = et7 =: (.
As in [18, Remark 3.4.5, p. 103], it then follows that dimker(¢I — T}) > 1 which
is impossible. Therefore, (A5") holds. It is a straightforward exercise to construct
examples which show that, if m > 1, then (A3) does not imply (A5’). The details are
left to the reader.
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Statement (2) can be obtained from statement (1) by duality. Statements (3) and
(4) are trivial. O

The following proposition shows that if (Al) and (A2) hold and if the sampled-
data system (4.3) is exponentially L?/I?-input-to-state stable, then the output (v, yq)
behaves nicely in the sense that ||y|| .2 + ||yall;2 can be estimated in terms of ||v] 2,
|lvall;z, and the norm of the initial condition.

PROPOSITION 6. Assume that (Al) and (A2) hold. Furthermore assume that
the sampled-data system (4.3) is exponentially L?/1?-input-to-state stable. Then there
exists Tout > 0 such that the output (y,ya) of the sampled-data system satisfies the
estimate

330
ol + Il < T (| (20} + Tl + )
val e X, Val € X4, Vv € L*(R;,C™), Yuq € I*(Zy,CP).

(5.7)

Proof. Let 2° € X, 23 € Xq, v € L*(R4,C™), and vq € [*(Z4+,CP) and let
(z,zq) and (y,yq) be the corresponding state trajectory and output, respectively, of
the sampled-data system (4.3). Write

Gh(s):=CT(sI - A")"'B", G (s):=G(s) — GT(s).

It follows from Lemma 4 that G~ is the transfer function of an exponentially stable
well-posed system with generating operators (A~, B~,C ™) and input-output operator
G~ and the output y of (2.1) can be written in the form

(5.8) y=y" +y,
with
yti=CTla; y (t):= (CHAT; (I — )" + (G u)(t) ae. t >0,

where u = v — H,yq. By Proposition 3, A is power stable and thus (4.8) holds with
0 € (0,1). Therefore,

o A2
; <§§](3) <T, (H@”g) ’+||f||l2>

for a suitable constant I's > 0 depending only on I'; and 6. By the definition of f
(see (4.7)), there exist constants a, 8 > 0 such that

s G+ 5 s _
IfOI" <o | [o(s)I*ds + Bllva(II" Vi € Zy.
J

Thus there exists I's > 0 (depending only on I's, , and ) such that

- x(j7) 2\ 0
59) SCEN ) =ee (Gl et )
Since u = v — H,yq, we have
(5.10) lullL2er, k1)) < IVllL2@er, ety + IRIVTlza (k)] VE € Zy,
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and so, by (4.12),

(k7 + )| < Ta(lzED) + vl 22k, (b+-1)r) HIRIVT[za (F)])
VkeZi, Vtel0,7).

Therefore, there exists I's > 0 (depending only on Ty, |R||, and 7) such that

(k+1)7
A lo(s)]12ds < T2 (a2 + (0125 r.esaye + l2a(®)|2) VY € Zy

T

Hence,

o0
lxl|7> < T3 <Z o (k) |* + vl + de|?2> :

k=0

and thus
o 1/2
[zl <T's (Z IIx(kT)II2> + ol + llzalle |,
k=0

which in turn implies via (5.9) that

0
X
Izl < otz < T (| (3 )| + Holles + Bealle )

where I's > 0 is a suitable constant which depends only on I's and I's. As a conse-
quence,

xO
(5.11) e < ([ ()| + el + ).

where I'7 := ||CT||Ts. By (5.10),

lull> < 2 (IIvliz +RIPr Y Ide(k)||2> :

k=0

leading to
lull 2 < V2([[vll 2 + IRIVT Y llzalli2)-
k=0

Consequently, by (5.9),

(5.1 fullze <7 (| (%)

for some suitable I's > 0 depending only on I's, |R||, and 7. By exponential stability
of T, there exists I'g > 0 depending only on T~ and G~ such that

]+Mm+mm0

ly~ N2 < To(l2°] + flullz2)-
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v S S
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Yd 4—1—‘.2_51' Yd ¥ g

Fic. 5.1. Sampled-data system with precompensator.

Invoking (5.12), we conclude

(5.13) ly~llzs < o (

ZEO
( ) lolle + ||vd||lz) ,
Tq

where I'1g > 0 depends only on I's and I'g. Finally, as a trivial consequence of (5.9),

330
(5.14) lyalle < Tur <\ ( )\ T llollze + |vd|l2) ,

0
T4

where the constant I';; depends only on I's and ||R||. The claim now follows from
(5.8), (5.11), (5.13), and (5.14). O

Under the assumptions of Proposition 6, while yq(k) — 0 as & — oo (since
ya € 1?(Z,C™)), it is of course not guaranteed that y(¢) — 0 as t — oo (even under
zero initial conditions). This issue can be addressed by using a smoothing stable
precompensator X, of the form

(5.15) ip = —azp +up, xp(0) =) € C™,

where a > 0. Consider the sampled-data system shown in Figure 5.1. Formally, this
system is given by (2.1), (5.15), (4.1), and the feedback law

(5.16) U=2=Ip, Up=0—Hsys, ud=v4+Sry,
that is

i = Az + Bz,, z(0)=2"¢€ X,
y = COr(z — (M — A)"'Bzp,) + G(\)zp,

(5.17) ip = —azy +v—Hrya, xp(0) =2l eC™,
zy = Prg+ Qva + Sry), z4(0) =z € Xy,
ya = Rzgq.

PROPOSITION 7. Assume that (A1) and (A2) hold for (2.1) and that the sampled-
data system (5.17) is exponentially L?/I?-input-to-state stable. Then there exists
Tout > 0 such that the output (y,yq) of the sampled-data system satisfies the esti-
mate

0
X
llyllze + llyalliz < Cout 2o | [+ vllze + llvallie | Va° € X,

(5.18) 0

P
Zq
Va:g € C™, Vai € Xq, Vv € L*(R,,C™), Yuq € I*(Z,CP).

Furthermore, if v € L*(Ry,C™), vq € I>(Zy,CP), and Ty,(Az°+ Bal) € X for some
to > 0, then y is continuous on [tg,00) and y(t) — 0 as t — co.
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The proof of Proposition 7 can be found in the Appendix. For later purposes we
record another consequence of assumptions (A1) and (A2).
LEMMA 8. Assume that (Al) and (A2) hold and set

G, (2) :=C.(2I — A;)"'B, + D,.

Then G, = G; + G, where Gy € H*®(E,,,CP*™) for some n € (0,1) and G is
rational and strictly proper.
Proof. Define
(5.19)
At =T+ A- =T, Bf :=1IB,, B, .= (I —-1)B,, C := C;|x+, C7 = Cy|x-.

T

Then
Co(zl —A) B, + D, =C- (21 — A7) 'B; + D, + CH (21 — AD)"'BF.

Setting Gy (z) = C; (2 — A7)"'B; + D, and G/ (2) == CH(zI — AF)"'Bf, it
follows that G, = G; + G. It is clear that G is rational (since, as a consequence
of (A1), dim X < o) and strictly proper. Furthermore, by (A2), A= = T, is power
stable, implying that G} is holomorphic and bounded on E,, for some n € (0, 1). O

6. Stabilization by dynamic sampled-data feedback. We are now in the
position to state and prove the main result of this paper.

THEOREM 9. The following statements are equivalent.

(1) (A1)-(A6) hold.

(2) There exists a discrete-time controller (4.1) such that the sampled-data system
(4.3) is exponentially L1/1%-input-to-state stable for every q € [2,00].

(3) There exists a finite-dimensional discrete-time controller (4.1) such that the
sampled-data system (4.3) is exponentially L9/19-input-to-state stable for every q €
[2, 00].

Proposition 5 shows that statement (1) remains sufficient for statements (2) and
(3) to hold if assumptions (A3)—(A5) are replaced by (A3')—(A5’). Furthermore, if
m = p = 1, then Theorem 9 remains true if (A3)—(A5) are replaced by (A3")-(A5').

Proof of Theorem 9. Obviously, it suffices to show (2) = (1) = (3).

(2) = (1). To prove this implication, we start by noting that (Al) and (A2) hold
by a general result on necessary conditions for stabilization of (2.1) by step-function
controls (see [16, 23]). Moreover, by Proposition 3, the operator A is power stable.
To show that (A3) and (A5) hold, note that, by (A1), dim X+ < co. We show first
that (T, B)) is discrete-time controllable. Seeking a contradiction, assume that this
is not the case. Then, by the Hautus criterion, there exists a linear functional ¢ # 0
in the dual space of X and A € o(T7) such that

poTy =\p, ¢oBI=0.

By the spectral mapping theorem, o(T}) = ¢™(A) and therefore, by (5.3), A > 1.
Define the linear functional ¢ in the dual space of X x Xgq by ¥(§,&q) = ¢(II§) for
all (§,8q) € X x X4. Then

(¥ A)(&, &) = @(IIT7E — 1B, REa) = @(TTIIE) — p(BI Réa) = Ap(IIE) = Mp (&, &a).-
Consequently,

poAF =Xy VEkeZ,,
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which, combined with the fact that |A| > 1, yields a contradiction to the power
stability of A. Hence, (T, BX) is discrete-time controllable. Since

T

TH=e?'" and Br¢=1B,¢= / eATIBTEdt VEe O™,
0

it follows from finite-dimensional sampled-data control theory ([18, p. 100]) that
(T, BT) is discrete-time controllable and 2kmi/T & o(A™) for all k € Z\{0}, showing
that (A3) and (A5) hold.

To show that (A4) and (A6) hold, we note that, by an argument similar to that
establishing discrete-time controllability of (T}, Bf), it can be proved that (C;, T})
is discrete-time observable. Let O and O, denote the observability matrices of the
pairs (C*,T/)) and (C/}, T}), respectively. Defining W+ € B(X™) by

(6.1) Wte = /T w(t)THedt = /Tw(t)ef‘*tgdt Vée X,
0 0

it follows that C- = CTW*. Since W and T} commute, we have that
O, =0WT.

Since O, has full rank, we conclude that O has full rank and W is invertibe. Conse-
quently, (C*, T}) is discrete-time observable, that is, (A4) holds. Furthermore, note
that

(6.2) f:C—>C, s— /T w(t)etdt
0

is an entire function and

(6.3) Wt = f(A").
By the spectral mapping theorem,

(6.4) o(W7) = f(a(AT)).

Since W is invertible, 0 ¢ o(W™) and so f(\) # 0 for every A\ € o(A"), showing
that (A6) holds.

(1)=(3). Using Lemma 8, it can be shown that there exists a strictly proper
rational transfer function K stabilizing G, in the sense that

I G\
(6.5) (_K IT) = (I+HJ) ' e H®(E;,C*),

where [ :=m + p, H := diag(G,, K) and

(%),

To prove the existence of such a strictly proper rational K will require us to go into a
number of technical details and therefore we relegate this argument to the end of the
proof.

Let (P,Q, R) be a minimal realization of K and define A by (4.5). By Proposi-
tion 3, it is sufficient to show that A is power stable. Note that the transfer function
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of the discrete-time system (A, diag(B.,Q),diag(C,, R)) is given by (I + HJ) 'H.

Invertibility of J together with (6.5) implies that (I + HJ)"'H € H*>(E,,C*!). By

a result in [9] on the equivalence of power stability and input-output stability, power

stability of A will follow if we can show that (A, diag(B,,Q@)) is discrete-time stabi-

lizable and (diag(Cr, R), A) is discrete-time detectable. For this it suffices to show

that (A;, B;) and (C;, A;) are discrete-time stabilizable and detectable, respectively.
With Af, A7, BY, B, Cf, and C; as defined in (5.19), it follows that

(A 0 _ (B o
AT_<0 A)a BT_<B)7 CT_(CT7CT)'

T T

Since AT = T} = A7 and B = N eA"tdt BT, it follows from (A3) and (A5) via
a well-known result in finite-dimensional sampled-data control (see Lemma 3.4.1 in
[18]) that the pair (A, B}) is discrete-time controllable. Hence there exists a linear
operator F.t : XT — C™ such that AT + BFF* is power stable. Consequently,
invoking (A2), we conclude that

+ 4 pHpet
A, + BL(F,0) = (AT Al 0)

B-Ff A-
is power stable, showing that (A,, B,) is discrete-time stabilizable.

To show that (Cr, A;) is discrete-time detectable, note that, by (6.2)—(6.4) and
(A6), the operator W, defined in (6.1), is invertible. Hence,

(CH, AF) = (CWH,eATT) = (CT W, (W) leA T,

where we have made use of the fact that W+ and e ™ commute. Consequently, the
observed discrete-time systems (C;, AT) and (CF,e4"7) = (C+, TF) are similar. It
follows from (A4) that (C, A) is discrete-time observable, and thus, there exists a
linear operator HF : C» — X such that Al + H}C} is power stable. Combining
this with (A2) then shows that

HFY .  [(Af+HrCH HiC:
e () (10 )

is power stable. Hence, the pair (Cr, A;) is discrete-time detectable.

It remains to prove that there exists a strictly proper rational K such that (6.5)
holds. By Lemma 8, G, = G + G, where Gy € H*(E,, C**™) for some 7 € (0,1)
and G is rational and strictly proper. It is well known that there exist matrices N,
D., Y., and Z, with rational entries in H*°(E;), with N and Y strictly proper
and such that

G () =D;'N;, N,Y,+D,Z, =1I;

see, for example, Theorem 7.3.8 in [1]. In particular, DjrlNJr is a left-coprime factor-
ization of GI over H*(E;) N C(z). Setting

(66) N := D+G; + N_;,_, Z = Z+ — G;YJ’_,
we have that the entries of the matrices N and Z are in H*(E,), G, = DjrlN7 and

(6.7) NY, +D,Z =1
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Obviously, the Taylor expansion of Gy at oo, G (2) = Y po, Grz~*, converges
absolutely in E,. Fixing 6 € (n,1), it follows that > j- ; [|Gx[/6~* < co. Thus, there
exists a constant y > 0 such that |G| < u* for k € Z,. Hence,

n . oo 97L+1
sup HGT_(z)—Zsz_ I < Z HGkHS,ul_a—)O as n — oo.
2€ks k=0 k=n+1

Consequently, there exists a rational matrix R € H*>(E;, CP*™) such that

D+ (G = R)Y ¢ [, = sup D+ (2)(G (2) —R(2) Y1 (2)] < 1.

Combining this with (6.7), it follows that
INY} + D (Zy —RY) — I||go(ry) = [[D+(G7 —R)Y i [[gee ey <1,

implying that U := NY; +D_(Z; — RY) is unimodular over H*°(E;), that is, the
entries of U™t are in H*®(E;). Now set K := Y, (Z; — RY )~ !. Then, obviously,
K is rational. Moreover, since Y (00) = 0 and Z4 (c0) is invertible, it follows that
K is strictly proper. Finally, noting that

I G\ ' [((I+GK™ -G, (I+KG,)!
(—K I ) - (K(I+GTK)1 (I+KG,)™ ! )
_( U+GK)! ~(I+G;K)'G,
- (K(I+ G, K)™' I-K(I+ GTK)—1G7>

and (I + G,K)™! = (Z; — RY,)U'D_, we obtain

I G,\ ' [((Z,-RY,)U'D, —(Z, -RY,)UIN,
K 1) = Y,U D, I-Y,U"'N '

Since the matrices D, N, R, Y, Z,, and U~! have entries in H>*(E;), it follows
that (6.5) holds. O

We discuss a simple example which illustrates Theorem 9 and the construction of
K in its proof.

Ezample. Consider the heating of a metal rod of length 1. Let 6(&,t) denote
the temperature at position £ € [0,1] and at time ¢ > 0. We assume that the
rod is insulated at either end. The temperature is controlled by a heating element
at & € (0,1) and it is measured at the point & € (0,1) (point control and point
observation). The system is described by the following (formal) partial differential
equation:

(6.5) 0:(€,) = Oee (&) + O, ()u(t),  0¢(0,8) = 0c(1,8) =0, 6(£,0) = 6°(¢),
' y(t) = 0(&1,t); €€[0,1], t>0.

Here d¢, denotes the delta function supported at the point &.

It is well known (see, for example, [19]) that (6.8) defines a regular well-posed sys-
tem (with feedthrough equal to zero) on the state space X = L?(0,1). The generating
operators (A, B, C) of this well-posed system are given by

Af =f" V¥ feXi=dom(A)={f e W»*(0,1): f'(0) = f'(1) = 0},
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Bs = sd¢, for all s € C, and Cf = f(&) for all f € X;. Setting s, := —n?n? for
n € Z4 and defining f, € X; by

fo€) =1, ful(&) = V2cos(nmé) (n=1.2,...) VEe(0,1],

we have that 0(A4) = {s, : n € Z,}, each s, is an eigenvalue of A, the functions f,
form an orthonormal basis of L?(0,1),

AF =Y sulf fa)fn Y€ X1, and (sI—A)_lf:Z%fn VfeX,
n=0 n=0 n

where (-, ) denotes the inner product in X = L?(0,1) and s # s, for n € Z,. The
strongly continuous semigroup (T+:):>o generated by A is given by

Tif = ef, fulfn VFEX, VE>0.

n=0

The transfer function G can be expressed as

fol€o)fn(&) 1 cos(nméo) cos(nméy)
G(s e = 2
+ Z 5 — Sn s P nz:l 5 — Sn
The derivation of the above expressions for A, (T);>¢, and G can be found, for
example, in [1].
Let ¢ € (0,72) and set ®(¢) = @e*™ for t € [0,1]. Obviously, assumption (A1)
holds. For the spectral projection II we have

Hf‘zjm[;“ AN fds = (f. folfo VI EX.

Hence, X* =1IX = {sfo: s € C}, AT =0, BTs = sfy, and Ctsfy = s for all s € C.
Furthermore, the expansions of T,f and T;IIf have the same first term (namely,
(f, fo)fo). Consequently, (T} );>o is exponentially stable, showing that (A2) holds.
The assumptions (A3)—(A5) are trivially satisfied and (A6) holds, provided that the
weighting function w is such that fo t)dt # 0.

In the following, we assume that w satisfies fOT w(t)dt = 1. Since (A1)—(A6)
hold, Theorem 9 applies. In particular, there exists a finite-dimensional discrete-
time controller which achieves exponential L?/l%-input-to-state stability (for every
q € [2,00]). To compute such a stabilizing controller, we will follow the construction
used in the proof of Theorem 9. To this end, note that G (z) = 7/(z — 1). Define
Hec H*(C,) by
H(s) = i cos(nmép) cos(nméy)

S — Sp

)

and denote the corresponding input-output operator by H. Denoting the continuou-
time integrator by J, the input-output operator G of (6.8) can be written as G =
J + H. A routine calculation shows that S, JH, = GI + (7/2)I, where G is the
discrete-time operator with transfer function G} . Hence, the transfer function G,
can be written in the form G (z) = 7/2 + H,(z), where H, is the transfer function
of the operator S; HH,. The hold H., as an operator from [*(Z;) to L*(R;), has
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norm /7, while S,, as an operator from L?(R,) to (*(Z,), has norm v := |w| 2.
Hence ||S; HH || < v/7||H|| and consequently,

2u\/T i 1 2V\/?7r_2 v\/T
n? '
n=1

T2

”I_IT”H"O(JEl)S’/\/F”HHH“(‘C+)S T r2 6 3

Let o € [0,1) and define

T z—1 1-a)? 1 z+1-2a
N = D = Y = Z =
+(2) — o +(2) —a’ +(2) - — o +(2) o
Then, GI = D:LlNJr and N1 Y, +D,Z, =1, that is, D;1N+ is a left-coprime
factorization of G over H*(E;) N C(z). Routine calculations show that

2 l1—«
||D+HH°°(IE1):D+(_1):1+O/ 1Y oo 1) = Y4 (1) = -
Choosing R(z) = 7/2, it follows that
21—«
: D, (G —R)Y. | germy = [DiH Y, | ooy < e ——
(6.9) D+(G; )Y g~ = D+ +llm ®) <3717,

By the construction used in the proof of Theorem 9, the controller

(1-a)? 1
T z—(a?/24a—-1/2)

K(2) = Y (2)(Z4(2) ~ R(2) Y ()7 =

will be stabilizing (in the sense that the sampled-data system (4.3), with (P, Q, R)
given by a minimal realization of K, is exponentially L?/l9-input-to-state stable for
every ¢ € [2,00]), provided the term on the right-hand side of (6.9) is smaller than
1. For given 7 > 0 and given w, this can be achieved by choosing « sufficiently close
to 1.

Specifically, for 7 = 1 and w(t) = 1 (in which case v = 1), the choice o = v/2 — 1,
leads to the controller

2(3 - 2v/2)

(6.10) K(z) = =———

which is stabilizing because

2V 1—«o 2
o SV <L
31+ a 3(V2-1) <

Furthermore, if, with the aim to “mimic” ideal sampling, we choose 7 =1 and

12, 0<t<1/12
w(t)_{o, 1/12<t<1,

(in which case v = 1/12), then the controller (6.10) remains stabilizing because

2v l—a_ 2v12

- 53— 1) < 0.957 < 1.
571 a - 3 (V2D <0957<

The next result shows that exponential L>° /I*°-input-to-state stability guarantees
the converging-input converging-state property. The proof makes essential use of
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the fact that (A1), (A2), and (A5) are necessary conditions for exponential L /-
input-to-state stability and therefore provides a nice illustration of the usefulness of
Theorem 9.

THEOREM 10. Assume that v € L®(Ry,C™) and vq € [*°(Z4,CP) are conver-
gent, that is, the limits

tli>I£o v(t) =: v, klgigo va(k) =:vg

exist.* If the sampled-data system (4.3) is exponentially L™ /1>°-input-to-state stable,
then, for all 2° € X and all xg € Xq, the corresponding state trajectory (z,zq) of
(4.3) satisfies

lim x(t) = 2™, lim z4(k) = 23°,

t—00 k— o0

where

(6.11) <i;> —(T-A) <QD71])9°:’U:—OQU§°>'

Proof. Let 2° € X and 2 € X4 be arbitrary and let (z,z4) denote the corre-
sponding state trajectory of (4.3). Assume that (4.3) is exponentially L°°/I°°-input-
to-state stable. Then, by Proposition 3, the operator A given by (4.5) is power stable.
Combining this with (4.6) and (4.7) shows that

lim z(k7) =2, lim xq4(k) = 23°.
k—o00 k—o00

It remains to prove that lim;_, o z(t) = 2°°. To this end, write u := v — H,Rzq and
note that

(kT +1t) = Tyx(kT) + /Ot T;Bu(kr +t—s)ds Vte][0,7].
For every k € Z., define xj, € C([0,7], X) and uy € L*=([0,7],C™) by
xp(t) = x(kr +1t), wupt) =ulkr+t) Vte]|0,7].
Then
A flug — w1 p~ =0,

where 4 := v — Rz3 and 1 denotes the function identically equal to 1 on [0, 7].
Defining ¢ € C([0,7], X) by

t
C(t) = Tz™ —|—/ T Bu*ds Vtel0,71],
0

it follows that

sup |lzx(t) —C@#)|]| = 0 as k — oo.
tel0,7]

4 The input v is in L>° (R4, C™) and hence is an equivalence class of functions coinciding almost
everywhere in Ry. We say that limi— o0 v(t) = v if there exists a representative of v with limit
equal to v>° as t — oo or, equivalently, if esssup{||v(t) —v>®°||: ¢t > T} - 0as T — oo.
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To show that () — 2 as t — oo, it is sufficient to prove that
(6.12) C(t)y=a> Vtelo,r7].

To this end, note that, in X_,

¢(t) = A((t) + Bu™ Vtelo,7].
Since ¢(0) = 2, (6.12) will follow, provided that
(6.13) Az 4+ Bu™ = 0.
By (4.5) and (6.11), (I — T;)z* + B, Rz = B,v™ and thus
(6.14) (T; = I)z™ 4 Bru™ = 0.

Defining J, € B(X_1,X) by J.£ = fOT T:£dt for all £ € X_1, we have that B, = J.B
and J,A = T, — I. Therefore, by (6.14), J,(Az> + Bu*>) = 0 and (6.13) follows if
Jr has an inverse. Invoking Theorem 9, we see that (A1), (A2), and (A5) hold. In
particular, J, = diag (JI, J-), where

Jjg:/ eATtedt ve e Xt J;g:/ T, ¢dtVeEe X
0 0

It remains to show that JT and J~ are invertible. Note that J* = f(A™T), where f
is the entire function defined by f(s) = [ e**dt. Obviously, f(s) = 0 if and only if
s = 2kmi/7 for some k € Z\{0}. Consequently, by (A5) and the spectral mapping
theorem, 0 & f(o(A1)) = o(J), showing that J is invertible. By (A2), A~ is
invertible and thus J~ = (A7)~}(T- — I). Furthermore, again invoking (A2), T is
power stable (on X as well as on X_;) and so T, — I is invertible. Hence, J has an
inverse, completing the proof. 0O

The next result relates to the sampled-data scheme (5.17) which includes the
precompensator (5.15). Recall that, by Proposition 7, exponential L?/I?-input-to-
state stability of this scheme ensures that y(t) — 0 as t — oo, provided that v €
L*(Ry,C™), vq € I?(Zy,CP), and Ty, (Az" + Bx)) € X for some to > 0.

THEOREM 11. The following statements are equivalent.

(1) (A1)-(A6) hold for (2.1).

(2) There ezists a discrete-time controller (4.1) such that the sampled-data system
(5.17) is exponentially L1/1%-input-to-state stable for every q € [2,00].

(3) There exists a finite-dimensional discrete-time controller (4.1) such that the
sampled-data system (5.17) is exponentially L1/1%-input-to-state stable for every q €
[2, 00].

The proof of Theorem 11 can be found in the Appendix.

If the sampled-data scheme (5.17) is exponentially L°°/I*°-input-to-state sta-
ble, then, using Theorem 11, it can be shown that (5.17) has the convergent-input
convergent-state property. If in addition, Ty, (Az" 4+ Bz}) € X for some to > 0, then
(5.17) has also the convergent-input convergent-output property (that is, the outputs
converge whenever the inputs converge). We omit the details for the sake of brevity.

7. Real sampled-data controllers for real systems. We now assume that
the underlying well-posed system (2.1) is real in the sense that its state space X
is a real Hilbert space and the input and output spaces are given by R and RP,
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respectively. In order to use spectral theory and, in particular, the spectral projection
IT defined in (5.1), we need to work with the complexification X¢ of X. This is the
complex Hilbert space X x X, endowed with the scalar multiplication C x (X x X) —
X x X given by

(o1 + ita2) (&1, &2) = (1&1 — aéa, a1 + a2y).

Let £ = (&1,&2) € X°. Tt is convenient to write £ = &1 + i€, Re& = &1, and Im & = &
(real and imaginary parts of £). We define the complex conjugation operation by

£:=Reé—ilmé VEe X
The inner product (-,-) on X extends to an inner product on X°¢ in a natural way:
(€.¢) = (Re& Re () + (Im &, Im () +i((Im& Re () — (Re&,Im()) V¢ € X°

Consequently, [|¢]| = v/[[Re&]> + [[Im&]J? for all £ € X©.

Linear operators defined on X extend in an obvious way to linear operators defined
on X¢. In particular, we define the complexification A° of A by setting dom(A°) :=
{£ € X°:Re&, Im¢ € dom(A)} and

A€ = A(Re€) +iA(Im¢) V¢ € dom(A°).

Complexifications B¢ and C° of B and C, respectively, can be defined similarly.
Obviously, A° generates a Cp-semigroup T°® = (T);>o which extends T to X°.

An operator S : dom(S) C X¢ — X¢ is said to be redl if, for all £ € dom(S5),
& € dom(S) and S& = SE. If S is real, then S¢ € X for all £ € dom(S) N X. Trivially,
the operator A° defined above is real. Moreover, a function H € H>*(E,,CP*™) is
said to be real if H(z) = H(Z) for all z € E, or, equivalently, if the coefficients of the
Taylor expansion of H at co are in RP*",

Let A € o(A°) NR. Then (A — A°)~! is real, the operator A\l — A : dom(A4) — X
is bijective, and (A — A°)71X = (A — A)~1X. With ||£]|-1 = |[(M] — A°)72¢]|, the
completions X_; and (X¢)_; of X and X¢ with respect to || - || =1 satisfy (X_1)¢ =
(X€)-1.

Assume now that (A1)-(A6) hold (for the complexifications X¢, A°, T°, B¢,
and C¢). Theorem 9 guarantees that there exists a (finite-dimensional) discrete-time
controller (4.1) such that the sampled-data system (4.3) is exponentially L?/1%-input-
to-state stable for every ¢ € [2,00]. We want to prove that this stabilizing discrete-
time controller can be chosen to be real. An inspection of the proof of Theorem 9
(the argument proving that statement (1) implies statement (3)) reveals that it is
sufficient to show that the matrix Z € H*°(E;, CP*P) defined in (6.6) is real in the
sense defined above. This in turn will be true if GI is real. Indeed, if the latter is
the case, then, since G is real, G; = G, — G is real, and moreover, N, and D,
and therefore also Y4 and Z,, can be chosen to be real. The realness of G is an
immediate consequence of the following lemma.

LEMMA 12. Assume that (A1) holds for A°. Let ® be a smooth, positively ori-
ented, and simple closed curve in C not intersecting o(A°), enclosing o(A°) N Cqy in
its interior, and having o(A°) N (C\ Co) in its exterior. Then the spectral projection
II: X°¢ — X¢ defined by

1
M= _— [ (sI — A 'ds
2mi Jg

is real. Furthermore, I1 extends to a projection on (X¢)_1 and IX_; =1IX C X.
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Proof. By (A1), there exists § € (0,¢) such that o(A°) N Cy = o(A°) N C_s (this
means in particular that there is no spectrum of A€ in the vertical strip —§ < Res <
0). For r > 0, let S, denote the open disk with center r — § and radius r. Choose
r > 0 sufficiently large such that

o(A°)NTy C 8,

Define the curve ¢ : [0,27] — C by ¢(t) = (r — &) + re®t, that is, ¢ parametrizes 95,
with positive orientation. By Cauchy’s theorem,

/(SI — A% tds = /(SI— A°)ds.
¢ (2
Therefore, using the realness of A¢ and the fact that B(t) = (27 — t) =: ¢_(t), we
conclude that, for all £ € X¢,

m- - B - A F R = L [ (o (01 — A%l (L = 1IE

o 21 0 14 14 o 21 0 ¥ Y- o '

Therefore, II is real and consequently, IIX C X. As was already pointed out earlier,
IT extends to a projection on (X€)_;. As a consequence of (Al), IIX is a finite-

dimensional subspace of X_; and hence is closed. On the other hand IIX_; is the
closure of I1X, showing that IIX_; =IIX C X. d

8. Appendix: Proofs of Proposition 7 and Theorem 11. We start by
considering the series interconnection of (2.1) and (5.15) which is obtained by setting
u = zp. The series interconnection is a regular system Y with input up, the input
of (5.15), and output y, the output of (2.1). Its transfer function G is given by
G(s) = G(s)/(s + a). The state space of 3 is X := X x C™ and the generating

operators A, B, and C' are

A= (Ig —€I> , dom(A) := {(€1,&) € X : A& + B& € X}, B:= (?) ’
and

C (2) =C(& — (M - A)7'B&) + GV v (2) € dom(A).

The semigroup generated by A is denoted by T = (Tt)t20~ The regular system ¥ can
be written as

(8.1)

where

Therefore, the sampled-data system (5.17) can be expressed in the form

i=Af+ Bw—Hya), #0)=i"cX,

14

(8.2) y = CaZ,
zy = Pzg+ Qva + Sry), za(0) =z € X4,
Ya = Ruq.
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Since o(A) = o(A) U {—a}, it follows trivially that (A1) holds for (2.1) if and only if
(A1) holds for (8.1). Assume that (A1) holds for (2.1). Without loss of generality we
may assume that the curve ® used in the definition of the spectral projection (5.1)
has —a < 0 in its exterior. Then ® does not not intersect o(A), encloses o(A) N Co
in its interior, and o(A) N (C\ Cp) is contained in its exterior. Defining the spectral
projection

~ 1

(8.3) = @(sI A1

and setting X+ := ILX and X~ := (I —II)X, we have that X+ C dom(A4), dim X+ <
00, and X = Xt @ X~. We can now decompose system (8.1) accordingly, yielding
an infinite-dimensional regular system with generating operators (A B~,C~ ) and a
finite-dimensional system (A*, BY,C) with corresponding semigroups T and TT;
cf. (5.4)-(5.6). Consider the operator

1 1
(8.4) Si=—
21 Jp s+ a

(sI — A)~tds € B(X)NB(X_y).

As has been mentioned earlier, Il extends to a projection on X_; and 11X ; =
IIX = X*. It can be shown that IIS = SII = S on X and X_; (see the proof
of Theorem 1.5.4 in [2]). Consequently, S is in B(X_1, X) satisfying SX_; C X ™.
Noting that

. sT— A)-1 L (s — A)-1
(85) (SI—A)71 _ <( I OA) s+a( Il }4) B>7

s+a

it follows that, for all (£1,&2) € X,

w0 1(E) = (B9 o (§) - (U108 s,

In particular, since SBC™ C X, we conclude that
(8.7) Xt =X7Tx{0}.

Proof of Proposition 7. To prove (5.18), it is sufficient to show that (Al) and
(A2) hold in the context of (8.1) (in which case we may apply Proposition 6 to
(8.2)). It is clear that (A1) holds for (8.1). To prove that (A2) holds for (8.1), that
is, T is exponentially stable, it is sufficient to show that the resolvent of A is in
H>(Cy,B(X™)) (see, for example, Theorem 5.1.5 in [1], Theorem 10.6.4 in [2], or
Theorem 1.11 on p. 302 in [3]). To this end, note that, for all (&;,&) € X,

(s — A (2) — ([ —TT)(sI — )~ (2) .

Therefore, invoking (8.5) and (8.6), we obtain

(&) (=AD& + 5 (s - A7) ' B ¢ — SBE)
(SI—A ) (52) - ( ;:_aé_z )

(8.8) (2) X~
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By (A2), the resolvent of A~ is in H>(Co, B(X ™)), and thus the resolvent of A~ is
in H>(Cy, B(X™)).

Now assume that v € L*(Ry,C™), vq € I>(Z,CP), and Ty, (Az° 4+ Bx)) € X for
some to > 0. The input of (2.1) is z, and it follows from Lemma 4 that

y=y +CTHz, where y~ := (C)AT (I — )2’ + G z,.

Obviously, x is continuous and, by Proposition 3 (applied to (8.2)), we have that
Z(t) — 0, and hence z(t) — 0 as ¢t — oo. It remains to show that y~ is continuous
on [tg,00) and y~(t) — 0 as t — oo. To this end, note that y~ is the output of an
exponentially stable well-posed system corresponding to the initial condition (I —1T)x°
and the input x,. By Proposition 6 (applied to (8.2)), H,yq € L*(R4+,C™). Since

ro(t) = et [ €70 (0(s) = (o) (s))ds,

it follows that z, € W12(R,C™). Furthermore,
T, (A~ (I =11)2° + B~ x,(0)) = (I — II) Ty, (Az° + Bal) € X~

An application of Proposition 1 to the exponentially stable well-posed system with
generating operators (A~, B~,C~) and input-output operator G~ shows that y~ is
continuous on [tg,o0) and y~(t) - 0 ast — co. 0O

Proof of Theorem 11. As has been already noted, (A1) holds in the context of
(8.1) if and only if it holds for (2.1). Assume that (A1) holds. By Theorem 9, it is
sufficient to show that any of the assumptions (A2)—(A6) holds in the context of (8.1)
if and only if it holds for (2.1). Since o(A) = o(A) U {—a}, this is certainly the case
for (A5) and (A6). As for (A2), we have seen in the proof of Proposition 7 that if
(A2) holds for (2.1), then it holds for (8.1). Formula (8.8) shows that the converse is
also true.

Let us now consider (A3). Invoking (8.6), we obtain

~.. = {0\, [SB¢ .
B+§_H(I>g_(0> VEeCm,

Setting ST := S| x+, it follows from (8.4) and (finite-dimensional) functional calculus
(see, for example, p.44 in [5]) that

S+_L 1

27 Jp s4a

Since S = S1I, it follows that SB = STB™ and so

B o ((aI+ AO+)13+> .

(s — AT)"lds = (al + A7) L.

Appealing to (8.7), we conclude

C(Q)-4(5)- () H(Qex-rte

()= (") = (1) v(B)ex—xrxi

and thus,
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Now (aI+A™)"'T}(al+A") = T}, showing that the pairs (T}, BY) and (T}, (al+

AT)7L1B*) are similar. Consequently, by the above formulas for B* and T, the
reachability map of (T, B*) has full rank (that is, rank equal to dim Xt = dim X )
if and only if the reachability map of (T}, BT) has full rank. This shows that (A3)
holds in the context of (8.1) if and only if (A3) holds for (2.1).

Finally, noting that

ot () (& —Cte v & e X+ = X+ x {0},
€2 0 &
it is clear that a similar argument can be used to establish that (A4) holds in the
context of (8.1) if and only if (A4) holds for (2.1). O
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