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We consider operator-valued positive-real functions H and show that the intersections of the point,
continuous and residual spectra of H(s) with the imaginary axis do not depend on s. In particular,
if H is positive real and H(z) is invertible for some z in the open right-half plane, then H(s) is
invertible for all s in the open right-half plane. Furthermore, we prove that the eigenspace of H(s)
corresponding to an imaginary eigenvalue does not depend on s. It is also shown that the intersection
of the numerical range of H(s) with the imaginary axis is independent of s. Finally, we prove that,
under suitable assumptions, application of a ‘‘sufficiently positive-real’’ static output feedback to a
positive-real transfer function leads to a strictly positive-real closed-loop system.
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1. Introduction

I met Ruth in November 1984 when I gave a seminar to the
ystems & Control Group in the Department of Mathematics at
he University of Groningen. At the time I was a Ph.D. student
supervised by Diederich Hinrichsen) at the University of Bremen
nd Ruth had invited me to talk about my research.1 Her interest
n my work provided strong encouragement. In subsequent years,
uth and I became collaborators and friends. I visited Groningen
any times, and, with great fondness, I remember the relaxed
nd stimulating atmosphere in the Groningen Systems & Control
roup and the many discussions I had with Ruth and other mem-
ers of the group (including Hans Nieuwenhuis, Martin Weiss,
an Willems and Hans Zwart) over coffee, lunch and dinner, not
nly on systems & control (or, more generally, on mathematics),
ut also on politics and on art, movies and music. Sadly, these
nspiring conversations and discussions with Ruth are now a
hing of the past.

Ruth had a longstanding interest in frequency-domain meth-
ds, positive realness and their role in absolute stability the-
ry [1–7] and therefore I believe that the topic of the current

E-mail address: h.logemann@bath.ac.uk.
1 My seminar was well received and when I got on the train back to Bremen,

I felt quite pleased with myself. But this did not last long: just after the train
had crossed the border, into Germany, I was confronted and searched by two
plain clothes German police officers who suspected me to be a drug smuggler.
They did not hide their frustration when it became clear that I did not have
any drugs on me. Being a gentleman, I apologized to the two officers for not
being a drug smuggler, but they were not amused. Bizarrely, in 1998/99, Ruth
suffered a similar fate: due to a clerical error by Australian customs and excise
staff, Ruth came under suspicion of being a drug smuggler.
https://doi.org/10.1016/j.sysconle.2020.104786
0167-6911/© 2020 Elsevier B.V. All rights reserved.
paper is very appropriate for this memorial issue of Systems &
Control Letters.

Positive realness and the corresponding time-domain notion
of passivity are key concepts in the theory of circuits and net-
works and in systems & control (e.g. [8–17]), with the positive-
real lemma (or Kalman–Yakubovich–Popov lemma) being one
of the best known results of the field. Here we will consider
operator-valued positive-real functions which, for example, arise
as resolvent operators of dissipative operators or as transfer func-
tions of impedance-passive well-posed infinite-dimensional sys-
tems (or, more generally, impedance-passive system nodes) [9,
18–21]. Specific instances of the latter are distributed parameter
systems with certain passivity properties and with control and
observation applied on infinitely many points of the boundary (a
submanifold of the boundary, for example).

The question which triggered the research presented in this
paper is as follows: given an operator-valued positive-real func-
tion H, and assuming that there exists a point z in the open
right-half plane such that H(z) is invertible, does it follow that
H(s) is invertible for every s with Re s > 0 (in which case H−1

s positive real)? The answer to the above question is yes and
an be obtained as a relatively straightforward consequence of
undamental results in [22] (see the proof of Proposition 4.1). The
nswer follows also from Theorem 4.8, the main result of this
aper and a considerable refinement of Proposition 4.1: it says
hat the intersections of the imaginary axis with the point, contin-
ous and residual spectra of H(s), where H is an operator-valued
ositive-real function, do not depend on s, with the intersection
f the imaginary axis with the residual spectrum of H(s) being

empty for all s with Re s > 0. Moreover, the eigenspaces of

https://doi.org/10.1016/j.sysconle.2020.104786
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2020.104786&domain=pdf
mailto:h.logemann@bath.ac.uk
https://doi.org/10.1016/j.sysconle.2020.104786
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(s) corresponding to imaginary eigenvalues do not depend on
. We also prove that 0 is not in the residual spectrum of the
eal part of H(s) for any s with Re s > 0, and that if 0 is in the
point (continuous) spectrum of the real part of H(z) for some z
in the open right-half plane, then 0 is in the point (continuous)
spectrum of the real part of H(s) for all s with Re s > 0. The
intersection of the numerical range of H(s) with the imaginary
axis is also shown to be independent of s.

Invertibility of positive-real functions plays a key role in Sec-
tion 5 which addresses the problem of obtaining a strictly
positive-real closed-loop transfer function by the application of
a suitable static output feedback to a positive-real transfer func-
tion. The results in Section 5 provide easily checkable sufficient
conditions for the existence of such output feedback operators.

The paper is structured as follows. Section 2 is devoted to a
number of preliminaries. In Section 3, we investigate certain spec-
tral properties of matrix-valued positive-real functions, and, in
Section 4, we consider the infinite-dimensional operator-valued
case. Section 5 focuses on the problem of achieving strict posi-
tive realness by application of a ‘‘sufficiently positive-real’’ static
output feedback to a positive-real transfer function.

2. Preliminaries

As usual, N, R and C denote the natural, real and complex
numbers, respectively. For α ∈ R, we define Cα := {s ∈ C :

Re s > α}. We denote the set of all imaginary numbers by I, that
s,

:= iR = {ir : r ∈ R} ⊂ C.

or a set S ⊂ C, the closure of S is denoted by cl S. For the rest of
his paper, U denotes a complex Hilbert space with inner product
· , ·⟩ and we set EU := {u ∈ U : ∥u∥ = 1}, where ∥ · ∥ is the norm
nduced by the inner product. The Banach algebra of all bounded
inear operators U → U is denoted by L(U). We say that T ∈ L(U)
s positive semi-definite, and write T ⪰ 0, if ⟨Tu, u⟩ ≥ 0 for all

∈ U . Since U is a complex vector space, every positive semi-
efinite operator is necessarily self-adjoint. For T1, T2 ∈ L(U), we
rite T1 ⪰ T2 if T1 − T2 ⪰ 0.
Let σ (T ) denote the spectrum of T ∈ L(U). We recall that

(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ),

here σp(T ), σc(T ) and σr(T ) denote the point, continuous and
esidual spectra of T , respectively, that is, σp(T ) is the set of all

λ ∈ C such that T − λI is not injective (the set of all eigenvalues
of T ), σc(T ) consists of all λ ∈ C such that T − λI is injective, not
urjective and im(T − λI) is dense, and

σr(T ) = {λ ∈ C: T − λI is injective and im(T − λI) is not dense}.

Clearly, if λ ∈ σc(T ), then the densely defined operator (T −λI)−1

s unbounded. Moreover, it is obvious that the sets σp(T ), σc(T )
and σr(T ) are mutually disjoint. As usual, we say that λ ∈ C is an
approximate eigenvalue of T if infu∈EU ∥(T − λI)u∥ = 0. Setting

σap(T ) := {λ ∈ C : λ is an approximate eigenvalue of T },

we have that σc(T ) ⊂ σap(T )\σp(T ). If λ ∈ σap(T ), then every
sequence (uj)j∈N in EU such that (T − λI)uj → 0 as j → ∞ is
said to be an eigensequence of T associated with λ.

The numerical range W (T ) of an operator T ∈ L(U) is defined
by

W (T ) := {⟨Tu, u⟩ : u ∈ EU }.

It is well-known that W (T ) is convex, σ (T ) ⊂ clW (T ) and, if
T is normal, then clW (T ) is the convex hull of σ (T ), see, for

example, [23,24].

2

For T ∈ L(U), we define the real part Re T of T by

Re T :=
1
2
(T + T ∗),

where T ∗ is the Hilbert space adjoint of T .
In the following lemma, we present some simple properties of

operators which have positive semi-definite real part.

Lemma 2.1. Let T ∈ L(U) and assume that Re T ⪰ 0. Then the
following statements hold.

(1) If λ ∈ σ (T ), then Re λ ≥ 0.
(2) If 0 /∈ σ (T ) (that is, T is invertible), then Re T−1

⪰ 0.
(3) ker(T − λI) = ker(T ∗

+ λI) for all λ ∈ I.
(4) I ∩ σr(T ) = ∅.

Proof. (1) Let z ∈ C with Re z < 0. Then, for all u ∈ EU ,

∥(T − zI)u∥ ≥ |⟨(T − zI)u, u⟩| ≥ |Re ⟨(T − zI)u, u⟩|
= ⟨(Re T + |Re z|I)u, u⟩ ≥ |Re z| > 0,

hat is, T − zI is bounded away from 0. By an identical argument,
t can be shown that the adjoint (T − zI)∗ = T ∗

− z̄I of T − zI is
lso bounded away from 0, showing that T − zI is invertible [24,
roposition 3.2.6], that is, z /∈ σ (T ). Consequently, if λ ∈ σ (T ),

then Re λ ≥ 0.
(2) Assume that T is invertible. Let u ∈ U and set v := T−1u. Then

Re T−1u, u⟩ = Re ⟨T−1u, u⟩ = Re ⟨v, Tv⟩ = Re ⟨Tv, v⟩ ≥ 0,

and since u ∈ U was arbitrary, it follows that Re T−1
⪰ 0.

(3) Let λ ∈ I and u ∈ ker(T − λI). Then

u, (T ∗
+ λI)u⟩ = ⟨(T − λI)u, u⟩ = 0.

onsequently,

(T + T ∗)u, u⟩ = ⟨(T − λI)u, u⟩ + ⟨(T ∗
+ λI)u, u⟩ = 0,

howing that ⟨(Re T )u, u⟩ = 0. Since Re T ⪰ 0, we conclude that
Re T )u = 0. Thus, T ∗u = −Tu, implying that (T ∗

+ λI)u =

(T − λI)u = 0, whence u ∈ ker(T ∗
+ λI). We have now shown

hat

ker(T − λI) ⊂ ker(T ∗
+ λI) (2.1)

eplacing in (2.1) T by T ∗ and λ by −λ and using that (T ∗)∗ = T
nd Re T ∗

= Re T ⪰ 0, we see that ker(T ∗
+ λI) ⊂ ker(T − λI),

ompleting the proof of statement (3).
4) It is well-known that σr(T ) ⊂ σp(T ∗) (because (im(T −λI))⊥ =

er(T ∗
− λ̄I) for all λ ∈ C). As σp(T ) ∩ σr(T ) = ∅, it now follows

rom statement (3) that I ∩ σr(T ) = ∅. □

For a non-empty open set Ω ⊂ C and a complex Banach
pace X , the vector space of all holomorphic functions Ω → X
s denoted by H(Ω, X). Furthermore, H∗(Ω, X) is the set of all
-valued functions which are holomorphic on Ω with excep-

tion of isolated points, namely poles and essential singularities
(where it is understood that any removable singularities have
been removed by holomorphic extension).

For α ∈ R, we set

Hα(X) := H(Cα, X) and H∗

α(X) := H∗(Cα, X).

Definition 2.2. A function H ∈ H∗

0(L(U)) is said to be positive
real if ReH(s) ⪰ 0 for all s ∈ C0 which are not singularities of
H. ⋄

Note that holomorphy of H on C0 is not assumed in the above
definition. In fact, the holomorphy of H on the open right-half
plane, or, equivalently, the absence of any singularities in C0, is a
consequence of the positive-real property as was shown in [9].



H. Logemann Systems & Control Letters 145 (2020) 104786

P
h

w

γ

t

s

i
(
l

0

3
f

U

P
t

P
I
s
r

G
t
o
a
a
R
p
h
s

s

C
e
f
d

i

C
e
s

d
p
t
f
R
e
h

4
i

o

P
t

H
d
λ
t

E
i
g

H

i
(
a
e
p
(
b
e
Γ
e

t
a
i
s

roposition 2.3. If H ∈ H∗

0(L(U)) is positive real, then H does not
ave any singularities in C0, that is, H ∈ H0(L(U)).

We recall that H ∈ H∗
α(L(U)), where α < 0, is said to be strictly

positive-real if there exists β ∈ [α, 0) such that the function
s ↦→ H(s + β) is positive real (in which case H is holomorphic
on Cβ ).

We close this section with two examples of operator-valued
positive-real functions.

Example 2.4. (a) Consider the following heat equation on the
square (0, 1) × (0, 1):

∂w

∂t
(x1, x2, t) =

∂2w

∂x21
(x1, x2, t) +

∂2w

∂x22
(x1, x2, t),

w(0, x2, t) = 0, w(1, x2, t) = 0,
∂w

∂x2
(x1, 0, t) = 0,

∂w

∂x2
(x1, 1, t) = u(x1, t),

y(x1, t) = w(x1, 1, t),

where (x1, x2) ∈ (0, 1)×(0, 1), t > 0, u is the control function and
y is the observation. It is shown in [9] that the transfer function
of the above system is given by

H(s)v =

∞∑
n=1

cosh(
√
s + n2π2)γn(v)

√
s + n2π2 sinh(

√
s + n2π2)

√
2 sin(nπ ·)

∀ v ∈ L2(0, 1),

here the linear functional γn is defined by

n(v) :=
√
2
∫ 1

0
v(x1) sin(nπx1)dx1.

We note that H ∈ H0(L(U)) with U = L2(0, 1). For each n ∈ N,
he scalar-valued function

↦→
1

√
s + n2π2 tanh(

√
s + n2π2)

s positive real, implying the positive realness of H.
b) Let A : D(A) ⊂ U → U be densely defined and closed, and
et H be the resolvent of A, that is, H(s) = (sI − A)−1. Then the
following statements are equivalent.

(1) A is dissipative and there exists z ∈ C0 such that z /∈ σ (A).
(2) H belongs to H∗

0(L(U)) and is positive real.
(3) A is the generator of a strongly continuous contraction

semigroup.

The equivalence of statements (1) and (3) is the Lumer–Phillips
Theorem (see, for example, [19, Theorem 3.4.8]), and the equiva-
lence of statements (1) and (2) is proved in [9]. Note that, under
the assumption that (1) holds, 0 ∈ σc(H(s)) for every s ∈ C0 if
A is unbounded, whilst there does not exist s ∈ C0 such that

∈ σ (H(s)) if A is bounded. ⋄

. Spectral properties of positive-real functions: the case of
inite-dimensional U

In this section, we assume that dimU = m < ∞, that is,
= Cm, for some positive integer m.

roposition 3.1. Assume that H ∈ H0(Cm×m) is positive real. Then
he set I ∩ σ (H(s)) does not depend on s ∈ C0.

roof. Let z ∈ C0 and λ ∈ I be fixed and assume that λ /∈ σ (H(z)).
t is sufficient to show that λ /∈ σ (H(s)) for all s ∈ C0. To this end,
et G(s) := H(s) − λI . Obviously, G ∈ H0(Cm×m), G is positive

eal, G(z) is invertible and, for each s ∈ C0, the invertibility of

3

(s) is equivalent to λ /∈ σ (H(s)). We therefore have to show
hat G(s) is invertible for s ∈ C0. Since G(z) is invertible, the set
f zeros of detG(s) does not have any accumulation points in C0
nd therefore, G−1 is a meromorphic Cm×m-valued function on C0,
nd, a fortiori, G−1

∈ H∗

0(C
m×m). By statement (2) of Lemma 2.1,

eG(s) ⪰ 0 for s ∈ C0 such that detG(s) ̸= 0, showing that G−1 is
ositive real. Proposition 2.3 now guarantees that G−1 does not
ave any singularities in C0, implying that G(s) is invertible for
∈ C0. □

The following corollary is an immediate consequence of Propo-
ition 3.1.

orollary 3.2. Assume that H ∈ H0(Cm×m) is positive real. If there
xists z ∈ C0 such that H(z) is invertible, then H(s) is invertible
or all s ∈ C0. Equivalently, if detH(z) = 0 for some z ∈ C, then
etH(s) = 0 for all s ∈ C0.

Another consequence of Proposition 3.1 is the following result
n which the focus is on the scalar case (m = 1).

orollary 3.3. Assume that H ∈ H0(C) is positive real. If there
xists z ∈ C0 such that ReH(z) = 0, then H(s) = i ImH(z) for all
∈ C0, and, in particular, ReH(s) = 0 for all s ∈ C0.

Of course, Corollary 3.3 is well-known, but the way we have
erived it here seems to be new. The usual proof involves an ap-
lication of the maximum principle for holomorphic functions to
he function s ↦→ e−H(s) (or, alternatively, the maximum principle
or harmonic functions applied to s ↦→ −ReH(s)) to establish that
eH(s) ≡ 0, followed by an application of the Cauchy–Riemann
quations (or, alternatively, of the open mapping theorem for
olomorphic functions) to show that H(s) ≡ i ImH(z).

. Spectral properties of positive-real functions: the case of
nfinite-dimensional U

We start by stating the generalization of Proposition 3.1 to the
perator-valued case.

roposition 4.1. Assume that H ∈ H0(L(U)) is positive real. Then
he set I ∩ σ (H(s)) does not depend on s ∈ C0.

The proof of Proposition 3.1 relies on the fact that, for H ∈

0(Cm×m) and λ ∈ C, the set {s ∈ C0 : H(s)−λI is not invertible}
oes not have any accumulation points in C0, provided that H(z)−
I is invertible for some z. The following simple example shows
hat this does not necessarily hold when dimU = ∞.

xample 4.2. Let U = ℓ2(N,C), let (ξj)j∈N be a bounded sequence
n C0 and set Ξ := {ξj : j ∈ N}. Then the function H : C0 → L(U)
iven by

(s) := diagj∈N(s − ξj) ∀ s ∈ C0 (4.1)

s in H0(L(U)) and 0 ∈ σp(H(ξ )) for every ξ ∈ Ξ
a) Assume that ξj → ξ∞ ∈ C0 as j → ∞ and ξj ̸= ξ∞ for
ll j ∈ N. Obviously, clΞ = Ξ ∪ {ξ∞} ⊂ C0, H(z) is invertible for
very z ∈ C0\clΞ , 0 ∈ σc(H(ξ∞)) and ξ∞ ∈ C0 is an accumulation
oint of the set {s ∈ C0 : H(s) is not invertible} = clΞ .
b) It is easy to construct more striking examples. Let Γ ⊂ C0
e a compact set (a closed disc, for example) and let (ξj)j∈N be an
numeration of the countable set Γ ∩ {p + iq : p, q ∈ Q}. Then
= clΞ , H(z) is invertible for every z ∈ C0\Γ , 0 ∈ σc(H(ζ )) for

very ζ ∈ Γ \Ξ and {s ∈ C0 : H(s) is not invertible} = Γ . ⋄

Whilst the above example shows that the proof of Proposi-
ion 3.1 does not extend to the operator-valued case, there is
n alternative argument which is based on certain subharmonic-
ty properties of the spectrum [22,25]. For the basic theory of
ubharmonic functions we the reader to [26,27].
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roof of Proposition 4.1. By [22, Proposition 2.5] (or [25, Corol-
ary 3.4.9]) the function

: C0 → R, s ↦→ max{Re λ : λ ∈ σ (−H(s))}

s subharmonic. Invoking statement (1) of Lemma 2.1, we have
hat θ (s) ≤ 0 for all s ∈ C0. Let z ∈ C0 and assume that
∩σ (H(z)) ̸= ∅. Then θ (z) = 0, and thus, the maximum principle
or subharmonic functions implies that θ (s) ≡ 0. It follows now
rom [22, Proposition 2.10] that the set I ∩ σ (H(s)) does not
epend on s ∈ C0. □

The following corollary is a straightforward consequence of
tatement (2) of Lemma 2.1 and Proposition 4.1.

orollary 4.3. Assume that H ∈ H0(L(U)) is positive real and there
xists z ∈ C0 such that H(z) is invertible (that is, 0 /∈ σ (H(z))). Then
(s) is invertible for every s ∈ C0 and H−1 is positive real.

The main result of this paper (see Theorem 4.8) is a refinement
f Proposition 4.1: the point, continuous and residual spectra
ill be considered separately and properties of eigenvectors and
igensequences will be proved. To this end, it is convenient
o first establish some spectral properties of the real part of a
ositive-real function.

heorem 4.4. Assume that H ∈ H0(L(U)) is positive real and let
∈ C0. The following statements hold.

(1) For every s ∈ C0, 0 /∈ σr(ReH(s)).
(2) If 0 ∈ σp(ReH(z)), then 0 ∈ σp(ReH(s)) for all s ∈ C0 and the

subspace ker(ReH(s)) does not depend on s.
(3) If 0 ∈ σap(ReH(z)), then 0 ∈ σap(ReH(s)) for all s ∈ C0,

and, furthermore, if (uj)j∈N is an eigensequence of ReH(z) associated
with the approximate eigenvalue 0, then there exists a subsequence
(ujk )k∈N of (uj)j∈N which, for every s ∈ C0, is an eigensequence of
ReH(s) associated with 0.
(4) If 0 ∈ σc(ReH(z)), then 0 ∈ σc(ReH(s)) for all s ∈ C0.

Proof. Applying statement (4) of Lemma 2.1 with T = ReH(s), we
obtain that 0 /∈ σr(ReH(s)) for all s ∈ C0, establishing statement
(1).

To prove statement (2), assume that 0 ∈ σp(ReH(z)) and let u
be an arbitrary element in ker(ReH(z)). Defining a scalar-valued
function h ∈ H0(C) by h(s) = ⟨H(s)u, u⟩, it is clear that h is
positive real and Re h(z) = 0. Hence, by Corollary 3.3, Re h(s) = 0
for all s ∈ C0. By positive realness of H, the operator ReH(s) has
a self-adjoint positive semi-definite square root (ReH(s))1/2 for
each s ∈ C0. Consequently,

∥(ReH(s))1/2u∥2
= ⟨(ReH(s))1/2u, (ReH(s))1/2u⟩
= ⟨(ReH(s))u, u⟩ = Re h(s) = 0 ∀ s ∈ C0.

Hence, (ReH(s))u = 0 for all s ∈ C0 and thus 0 ∈ σp(ReH(s)) and
u ∈ ker(ReH(s)) for all s ∈ C0, establishing statement (2).

We proceed to prove statement (3). Assume that 0 is in
σap(ReH(z)) and let (uj)j∈N be an eigensequence of ReH(z) cor-
responding to the approximate eigenvalue 0, that is, uj ∈ EU for
all j ∈ N and (ReH(z))uj → 0 as j → ∞. We define a sequence
(hj)j∈N of functions in H0(C) by setting

hj(s) := ⟨H(s)uj, uj⟩ ∀ s ∈ C0, ∀ j ∈ N.

Then, obviously, hj is positive real for all j ∈ N and Re hj(z) → 0
as j → ∞. Moreover,

|hj(s)| ≤ ∥H(s)∥ ∀ s ∈ C0, ∀ j ∈ N,

showing that the sequence (hj)j∈N is locally bounded. An ap-
plication of Montel’s theorem [26, Theorem 2, p. 34] yields the
 c

4

existence of a subsequence (hjk )k∈N which converges locally uni-
formly to a function g ∈ H0(C) as k → ∞. It is clear that
g is positive real and Re g(z) = 0, and thus, by Corollary 3.3,
Re g(s) = 0 for all s ∈ C0. As a consequence, for every s ∈ C0,

⟨ReH(s)ujk , ujk⟩ = Re ⟨H(s)ujk , ujk⟩

= Re hjk (s) → Re g(s) = 0 as k → ∞.

Thus, for every s ∈ C0, (ReH(s))1/2ujk → 0 as k → ∞, which
in turn implies that, for every s ∈ C0, (ReH(s))ujk → 0 as
k → ∞. We conclude that, for all s ∈ C0, 0 ∈ σap(ReH(s)) and
the subsequence (ujk )k∈N of (uj)j∈N is an eigensequence of ReH(s)
associated with 0.

Finally, to prove statement (4), assume that 0 ∈ σc(ReH(z)).
As σc(ReH(z)) ⊂ σap(ReH(z)), it follows from statement (3), that
0 ∈ σap(ReH(s)) for all s ∈ C0. Since 0 ∈ σc(ReH(z)), statement (2)
yields that 0 /∈ σp(ReH(s)) for all s ∈ C0. Furthermore, appealing
to statement (1), we see that 0 /∈ σr(ReH(s)) for all s ∈ C0. It
now follows that 0 ∈ σc(ReH(s)) for every s ∈ C0, completing the
proof. □

An interesting consequence of Theorem 4.4 is provided by the
following corollary.

Corollary 4.5. Assume that H ∈ H0(L(U)) is positive real and let
z ∈ C0. If ReH(z) is invertible, then, for every compact set Γ ⊂ C0,
there exists γ > 0 such that ReH(s) ⪰ γ I for all s ∈ Γ .

Proof. Define the function h : C0 → [0, ∞) by

h(s) := inf
u∈EU

Re ⟨H(s)u, u⟩ = inf
u∈EU

⟨(ReH(s))u, u⟩ ∀ s ∈ C0,

nd note that h is continuous. We prove the claim by contraposi-
ion. To this end, assume that there exists a compact set Γ ⊂ C0
uch that there does not exist γ > 0 with ReH(s) ⪰ γ I for all
∈ Γ , in which case mins∈Γ h(s) = 0. Consequently, h(s0) = 0 for
ome s0 ∈ Γ , and so

inf
∈EU

∥(ReH(s0))1/2u∥2
= inf

u∈EU
⟨(ReH(s0))u, u⟩ = 0,

howing that (ReH(s0))1/2 is not invertible. Consequently, ReH(s0)
s not invertible, and so, by Theorem 4.4, for every s ∈ C0, the
perator ReH(s) is not invertible, completing the contraposition
rgument. □

orollary 4.6. Let α < 0, H ∈ Hα(L(U)) and D ∈ L(U). Assume
hat H is strictly positive-real and H(s) converges to D in the uniform
opology of L(U) as |s| → ∞ in C0. If ReD is invertible, then there
xists γ > 0 such that ReH(s) ⪰ γ I for all s ∈ C0.

A function H ∈ H∗

0(L(U)) for which there exists γ > 0 such
hat ReH(s) ⪰ γ I for all s ∈ C0 which are not singularities of
is sometimes called strongly positive-real, see, for example, [9].
dopting this terminology, Corollary 4.6 says that strict positive
ealness together with the existence of a uniform limit with
nvertible real part guarantees strong positive realness.

roof of Corollary 4.6. By the positive realness of H and the
onvergence assumption, it is clear that ReD ⪰ 0, and, so by
nvertibility of ReD, there exists γ1 > 0 such that ReD ⪰ 2γ1I .
onsequently, there exists ρ > 0, such that ReH(s) ⪰ γ1I for
ll s ∈ clC0 with |s| > ρ. By strict positive realness of H, there
xists β ∈ [α, 0) such that H̃, defined by H̃(s) := H(s + β) for
ll s ∈ C0, is positive real. Choose z ∈ C0 such that z + β ∈ C0
nd |z + β| > ρ. Then Re H̃(z) = ReH(z + β) ⪰ γ1I , implying
hat Re H̃(z) is invertible. Setting Γ := {s ∈ clC0 : |s| ≤ ρ},
t is clear that the set Γ̃ := Γ − β = Γ + |β| is compact and

˜
ontained in C0, and an application of Corollary 4.5 to H yields
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he existence of a number γ2 > 0 such that Re H̃(s) ≥ γ2I for
ll s ∈ Γ̃ . Consequently, ReH(s) ≥ γ2I for all s ∈ Γ . Setting
:= min(γ1, γ2) > 0, it now follows that ReH(s) ≥ γ I for all

∈ C0, completing the proof. □

The following result on the numerical range of a positive-real
unction can be proved by arguments similar to those used in the
roof of Theorem 4.4, and we therefore omit the details.

roposition 4.7. Assume that H ∈ H0(L(U)) is positive real. The
ollowing statements hold.

(1) The set I∩W (H(s)) does not depend on s. If there exists z ∈ C0
uch that I ∩ W (H(z)) ̸= ∅, then, for every u ∈ EU such that
H(z)u, u⟩ ∈ I, it follows that ⟨H(s)u, u⟩ = ⟨H(z)u, u⟩ for all s ∈ C0.
(2) The set I ∩ clW (H(s)) does not depend on s. If there exist

z ∈ C0 and λ ∈ I such that λ ∈ clW (H(z))\W (H(z)), then there
exists a sequence (uj)j∈N in EU , such that ⟨H(s)uj, uj⟩ → λ as j → ∞

for all s ∈ C0.

We are now in the position to state and prove the main result
of this paper, a refinement of Proposition 4.1.

Theorem 4.8. Assume that H ∈ H0(L(U)) is positive real. The
following statements hold.

(1) For all s ∈ C0, I ∩ σr(H(s)) = ∅.
(2) The set I∩σp(H(s)) does not depend on s and, for every λ ∈ I,

the subspace ker(H(s) − λI) is independent of s.
(3) The set I ∩ σc(H(s)) does not depend on s. Moreover, if there

exists z ∈ C0 such that I ∩ σc(H(z)) ̸= ∅ and if (uj)j∈N is an
eigensequence of H(z) associated with the approximate eigenvalue
λ ∈ I ∩ σc(H(z)), then there exists a subsequence (ujk )k∈N of (uj)j∈N
which, for every s ∈ C0, is an eigensequence of H(s) associated with
λ.

Proof. Statement (1) follows immediately from statement (4) of
Lemma 2.1. To establish statements (2) and (3), we will use a rep-
resentation theorem for positive-real functions which guarantees
that there exist H0,H1 ∈ L(U) and a L(U)-valued measure H [17,
Definition 2.2-1] defined on the σ -algebra B of Borel subsets of
R such that H∗

0 = H0, H1 ⪰ 0, H(B) ⪰ 0 for all B ∈ B and

H(s) = iH0 + sH1 +

∫
∞

−∞

1 − iτ s
s − iτ

dH(τ ) ∀ s ∈ C0, (4.2)

ee [28, Satz 9.2] or [17, Theorem 8.11-2].2 Note that (4.2) implies
n particular

eH(1) = H1 + H(R). (4.3)

t is useful to note that, as the map B ↦→ ⟨H(B)u, u⟩, for each
u ∈ U , defines a finite positive measure on B [17, Theorem 2.2-1],
we have

H(R) ⪰ H(B) ∀ B ∈ B. (4.4)

urthermore, for every s ∈ C0, let (fs,n)n∈N be a sequence of
simple complex-valued functions defined on R (that is, fn,s is Borel
measurable and attains only a finite number of values) such that

sup
τ∈R

⏐⏐⏐⏐1 − iτ s
s − iτ

− fs,n(τ )
⏐⏐⏐⏐ → 0 as n → ∞ ∀ s ∈ C0.

2 The representation formula (4.2) is the operator-valued version of a result
y Cauer [29] which in turn is the right-half plane version of a theorem due to
erglotz, see, for example, [30, Theorem 31].
5

We then have that∫
∞

−∞

fs,n(τ )dH(τ )

→

∫
∞

−∞

1 − iτ s
s − iτ

dH(τ ) in L(U) as n → ∞, ∀ s ∈ C0. (4.5)

e proceed to prove statement (2). To this end, let z ∈ C0
nd assume that I ∩ σp(H(z)) ̸= ∅. Let λ ∈ I ∩ σp(H(z)) and
∈ ker(H(z) − λI). Consequently, as 2ReH(z) = (H(z) − λI) +

H∗(z) + λI), it follows from statement (3) of Lemma 2.1 that
eH(z)u = 0. Invoking statement (2) of Theorem 4.4, we obtain
hat u ∈ ker(ReH(1)). Hence, as H1 ⪰ 0 and H(R) ⪰ 0, it follows
rom (4.3) that

1u = 0, (4.6)

nd, furthermore, H(R)u = 0. Combining the latter with (4.4), we
btain that H(B)u = 0 for all B ∈ B, and so,(∫

∞

−∞

fs,n(τ )dH(τ )
)
u = 0 ∀ n ∈ N, ∀ s ∈ C0. (4.7)

ogether with (4.5) this yields∫
∞

−∞

1 − iτ s
s − iτ

dH(τ )
)
u = 0 ∀ s ∈ C0.

Invoking (4.2) and (4.6), we conclude that (H(s) − λI)u = (iH0 −

I)u for all s ∈ C0. But (H(z)−λI)u = 0, showing that (iH0−λI)u =

. Therefore, (H(s)−λI)u = 0 for all s ∈ C0, establishing statement
2).

To prove statement (3), let z ∈ C0, assume that I∩ σc(H(z)) ̸=

, let λ ∈ I∩ σc(H(z)) and let (uj)j∈N be an eigensequence of H(z)
orresponding to λ, that is,

lim
→∞

(H(z) − λI)uj = 0, ∥uj∥ = 1 ∀ j ∈ N.

s an obvious consequence we have that

ReH(z)uj, uj⟩ = Re ⟨H(z)uj, uj⟩

= Re ⟨(H(z) − λI)uj, uj⟩ → 0 as j → ∞.

s ReH(z) ⪰ 0, we conclude that ReH(z)uj → 0 as j → ∞, and
o, in particular, 0 ∈ σap(ReH(z)). Statement (3) of Theorem 4.4
ow guarantees the existence of a subsequence (ujk )k∈N of (uj)j∈N
uch that ReH(1)ujk → 0 as k → ∞. Hence, as H1 ⪰ 0 and
(R) ⪰ 0, it follows from (4.3) that

1ujk → 0 as k → ∞ (4.8)

nd H(R)ujk → 0 as k → ∞. The latter, together with (4.4) and
he fact that H(B) ⪰ 0 for all B ∈ B implies that H(B)ujk → 0 as
→ ∞ for every B ∈ B. Therefore,(∫

∞

−∞

fs,n(τ )dH(τ )
)
ujk → 0 as k → ∞, ∀ n ∈ N, ∀ s ∈ C0.

(4.9)

or each s ∈ C0 and n ∈ N, we define operators J(s) and Jn(s) in
(U) by setting

(s) :=

∫
∞

−∞

1 − iτ s
s − iτ

dH(τ ) and Jn(s) :=

∫
∞

−∞

fs,n(τ )dH(τ )

et ε > 0. By (4.5), for every s ∈ C0, there exists m = m(s) ∈ N
uch that

Jm(s) − J(s)∥ ≤
ε

2
. (4.10)

oreover, (4.9) shows that, for every s ∈ C0, there exists k∗
=

∗(s) ∈ N such that

Jm(s)uj ∥ ≤
ε

∀ k ≥ k∗. (4.11)
k 2
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ow, for every s ∈ C0 and every k ∈ N,

J(s)ujk∥ ≤ ∥J(s)ujk − Jm(s)ujk∥ + ∥Jm(s)ujk∥

≤ ∥J(s) − Jm(s)∥ + ∥Jm(s)ujk∥.

Thus, by (4.10) and (4.11), we have that, for every s ∈ C0,J(s)ujk

 ≤ ε ∀ k ≥ k∗,

whence(∫
∞

−∞

1 − iτ s
s − iτ

dH(τ )
)
ujk = J(s)ujk → 0 as k → ∞, ∀ s ∈ C0.

(4.12)

Since (H(z) − λI)ujk → 0 as k → ∞ by hypothesis, it now
follows from (4.8) and the representation formula (4.2) with s = z
that (iH0 − λI)ujk → 0 as k → ∞. Another application of (4.2)
together with (4.8) and (4.12) now shows that, for every s ∈ C0,
(H(s) − λI)ujk → 0 as k → ∞. Hence, for every s ∈ C0, (ujk ) is
an eigensequence of H(s) associated with λ. As λ ∈ σc(H(z)), it is
now a consequence of statements (1) and (2) that λ ∈ σc(H(s))
for all s ∈ C0, completing the proof. □

An alternative proof of statement (2) of Theorem 4.8 which
does not rely on the representation formula (4.2) can be found
in Appendix.

The following corollary shows that if H ∈ H∗

0(Ω,L(U)) where
Ω ⊃ C0 and if the restriction of H to C0 is positive real, then
some of the spectral properties of the restriction are inherited by
H(s) for all s in Ω\C0 which are not singularities of H.

Corollary 4.9. Let Ω ⊂ C be open, connected and such that
C0 ⊂ Ω . Let H ∈ H∗(Ω,L(U)) and set Ω∗

:= {s ∈ Ω :

s is not a singularity of H}. Assume that H|C0 is positive real. Then
C0 ⊂ Ω∗ and the following statements hold.

(1) Let z ∈ C0 be such that I ∩ σp(H(z)) ̸= ∅ and let λ ∈

I∩ σp(H(z)). Then λ ∈ σp(H(s)) and ker(H(z)−λI) ⊂ ker(H(s)−λ)
for all s ∈ Ω∗.
(2) Let z ∈ C0 be such that I ∩ σc(H(z)) ̸= ∅ and let λ ∈

I ∩ σc(H(z)). Then λ ∈ σap(H(s)) for all s ∈ Ω∗; furthermore, if
(uj)j∈N is an eigensequence of H(z) associated with λ, then there
exists a subsequence (ujk )k∈N of (uj)j∈N which, for all s ∈ Ω∗, is an
eigensequence of H(s) associated with λ.

Proof. By hypothesis, H|C0 is positive real, and so Proposition 2.3
guarantees that H does not have any singularities in C0. Since
C0 ⊂ Ω , we conclude that C0 ⊂ Ω∗.

To prove statement (1), let λ ∈ I∩σp(H(z)) and u ∈ ker(H(z)−
λI). By statement (2) of Theorem 4.8, u ∈ ker(H(s) − λI) for all
s ∈ C0, that is, (H(s) − λI)u = 0 for all s ∈ C0. As C0 ⊂ Ω∗ and
Ω∗ is connected, the identity theorem yields that (H(s)−λI)u = 0
for all s ∈ Ω∗. Consequently, ker(H(z) − λI) ⊂ ker(H(s) − λI) and
λ ∈ I ∩ σp(H(s)) for all s ∈ Ω∗, establishing statement (1).

We proceed to prove statement (2). To this end, let z ∈ C0 be
such that I ∩ σc(H(z)) ̸= ∅, let λ ∈ I ∩ σc(H(z)) and let (uj)j∈N be
an eigensequence of H(z) associated with λ. Invoking statement
(3) of Theorem 4.8, there exists a subsequence (vl)l∈N := (unl )l∈N
of (un)n∈N which, for all s ∈ C0, is an eigensequence of H(s)
associated with λ, whence

lim
l→∞

(H(s) − λI)vl = 0 ∀ s ∈ C0.

Setting hl(s) := (H(s) − λ)vl for all s ∈ Ω∗ and all l ∈ N, it
is clear that (hl)l∈N is a locally bounded sequence in H(Ω∗,U)
and hl(s) → 0 for all s ∈ C0 as l → ∞. By the vector-valued
version of Vitali’s theorem (see [31, Theorem 2.1] or [32, Theorem

3.14.1]), there exists a subsequence (hlk )k∈N of (hl)l∈N such that H

6

(hlk )k∈N converges locally uniformly to a function h ∈ H(Ω∗,U)
as k → ∞. As hl(s) → 0 for all s ∈ C0 as l → ∞, we see that
h(s) = 0 for all s ∈ C0 and an application of the identity theorem
shows that h(s) = 0 for all s ∈ Ω∗. Hence, setting jk := nlk , we
obtain

lim
k→∞

(H(s) − λI)ujk = 0 ∀ s ∈ Ω∗.

We conclude that, for every s ∈ Ω∗, λ ∈ σap(H(s)) and (ujk )k∈N is
an eigensequence of H(s) associated with λ. □

Under the assumptions of statement (2), it follows from The-
orem 4.8 that λ ∈ σ (H(s)) for all s ∈ C0. It may therefore be
tempting to expect that there is a version of the identity theorem
for the spectrum which ensures that λ ∈ σ (H(s)) for all s ∈

∗ (and which could replace the use of the vector-valued Vitali
heorem in the proof of statement (2) of Corollary 4.9). However,
n the absence of any compactness assumptions on H(s), such an
dentity theorem does not hold as Example 4.2 shows.

. Strict positive realness through feedback

Proposition 4.1 (or, alternatively, Theorem 4.8) shows that if H
s an operator-valued positive-real function and H(z) is invertible
t some point z ∈ C0, then H(s) is invertible for all s ∈ C0. This
nvertibility property of positive-real functions will play a key role
n this section.

Let H ∈ H∗

0(L(U)) be positive real and let K ∈ L(U) be such
hat Re K ⪰ κI for some κ > 0. Then, by [9, Lemma 2], the
perator I + KH(s) is invertible for every s ∈ C0, and so,
K

:= H(I + KH)−1
∈ H0(L(U)).

n fact, by [9, Theorem 6.4], HK (s) is bounded on C0 as a function
f s, that is, K is a stabilizing feedback for H. Furthermore, letting
∈ U , s ∈ C0, and setting v := (I + KH(s))−1u, we have that

e ⟨HK (s)u, u⟩ = Re ⟨H(s)v, (I + KH(s))v⟩

= Re ⟨H(s)v, v⟩ + Re ⟨H(s)v, KH(s)v⟩ ≥ 0,

nd we see that HK is positive real. We will show that, under
uitable additional assumptions, HK is strictly positive-real. This
an be useful in the context of absolute stability theory where
requently strict positive realness assumptions are made: a Lur’e
ystem with positive-real linear part H and nonlinearity N can
e replaced, via loop-shifting, by an equivalent Lur’e system with
trictly positive-real linear part HK and nonlinearity N + K .

heorem 5.1. Let H ∈ H∗
α(L(U)) with α < 0 and let β ∈ (α, 0).

ssume that H|C0 is positive real and that there exists z ∈ C0 such
hat H(z) is invertible. Then H(s) is invertible for every s ∈ C0 and
−1 is positive real. Under the additional assumptions

(A1) H−1 extends holomorphically to clCβ ,
(A2) there exists κ > 0 such that

e ⟨H−1(β + iω)u, u⟩ ≥ −κ ω ∈ R, ∀u ∈ EU ,

(A3) lim inf|s|→∞

(
Re ⟨H−1(s)u, u⟩/log |s|

)
≥ 0 for all u ∈ EU ,

here the limes inferior is taken in the vertical strip β ≤ Re s ≤ 0,

he function HK is strictly positive-real for every K ∈ L(U) such that
e K ⪰ κ I .

roof. Since H|C0 is positive real and there exists z ∈ C0 such
hat H(z) is invertible, it follows from Corollary 4.3 that H(s) is
nvertible for all s ∈ C0 and H−1 is positive real. Let K ∈ L(U) be
uch that Re K ⪰ κI . Noting that
K −1 −1 −1
= H(I + KH) = (H + K ) ,
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t is clearly sufficient to show that H−1
+K is strictly positive-real.

bviously, by assumption (A1), the function s ↦→ H−1(β + s) is
olomorphic on clC0 and, in particular, does not have any poles
n clC0. Invoking assumption (A2), we obtain

e ⟨(H−1(β + iω) + K )u, u⟩ ≥ 0 ∀ ω ∈ R, ∀ u ∈ EU . (5.1)

urthermore, the positive realness of H−1 together with assump-
tion (A3) yields

lim inf
|s|→∞, s∈clC0

(
Re ⟨(H−1(s+β)+K )u, u⟩/log |s + β|

)
≥ 0 ∀ u ∈ EU .

(5.2)

Inequalities (5.1) and (5.2) together with the Phragmén-
indelöf principle (see [27, Corollary 2.3.3]) applied to the har-
onic function C0 → R, s ↦→ −Re ⟨(H−1(s + β) + K )u, u⟩ lead

o

e ⟨(H−1(s + β) + K )u, u⟩ ≥ 0 ∀ s ∈ C0, ∀ u ∈ EU ,

stablishing the strict positive realness of the function s ↦→
−1(s) + K . □

orollary 5.2. Let H ∈ H∗
α(L(U)) with α < 0 and let β ∈ (α, 0).

ssume that H|C0 is positive real and that there exists z ∈ C0 such
hat H(z) is invertible. Then H(s) is invertible for every s ∈ C0 and
−1 is positive real. If assumption (A1) of Theorem 5.1 holds and
here exists κ > 0 such that

lim inf
|s|→∞, β≤Re s≤0

(
inf
u∈EU

Re ⟨H−1(s)u, u⟩
)

> −κ, (5.3)

hen the function HK is strictly positive-real for every K ∈ L(U) such
hat Re K ⪰ κI .

roof. By hypothesis there exists ρ > 0 such that

inf
u∈EU

Re ⟨H−1(s)u, u⟩ ≥ −κ for all s ∈ C such that

β ≤ Re s ≤ 0 and |s| > ρ.

he function Cβ → R, s ↦→ infu∈EU Re ⟨H−1(s)u, u⟩ is continuous
nd since infu∈Eu Re ⟨H−1(iω)u, u⟩ ≥ 0 for all ω ∈ R, it follows
hat there exists γ ∈ (β, 0) such that

inf
u∈EU

Re ⟨H−1(s)u, u⟩ ≥ −κ for all s ∈ C such that

γ ≤ Re s ≤ 0 and |s| ≤ ρ.

onsequently,

e ⟨H−1(s)u, u⟩ ≥ −κ for all u ∈ EU and
all s ∈ C such that γ ≤ Re s ≤ 0,

mplying that assumptions (A2) and (A3) of Theorem 5.1 hold
with β in Theorem 5.1 replaced by γ ). Hence, HK is strictly
ositive-real for every K ∈ L(U) such that Re K ⪰ κI . □

xample 5.3. Consider the matrix-valued function

(s) :=

⎛⎜⎜⎝
1

√
s tanh(

√
s)

1
s

1
s

2(s2 + s + 1)
s(s + 1)

⎞⎟⎟⎠
Noting that the function 1/(

√
s tanh(

√
s)) is meromorphic on C,

it is clear that H is also meromorphic on C. The poles of H are
located at 0, −1 and −n2π2, where n ∈ N. It is straightforward to
check that 2(s2+s+1)/(s(s+1)) is positive real. Furthermore, it is
ell-known that 1/(

√
s tanh(

√
s)) is positive real, see [4, Section

1.1] or [9, Example 7.11]. Combining this with [9, Theorem 3.7],
it is a routine exercise to show that H is positive real.
7

We claim that the conditions of Corollary 5.2 hold. This means
we need to show that assumption (A1) of Theorem 5.1 and (5.3)
are satisfied.
Assumption (A1) of Theorem 5.1. Setting

N(s) :=

⎛⎜⎜⎝
√
s

tanh(
√
s)

1

1
2(s2 + s + 1)

s + 1

⎞⎟⎟⎠ and

D(s) :=

(
s 0
0 s

)
,

we see that H = ND−1. Obviously, for all sufficiently large x > 0,
N(x) is invertible, and, hence, so is H(x). Therefore, N−1 and H−1

are meromorphic on C and

H−1(s) = D(s)N−1(s)

=
s

detN(s)

⎛⎜⎜⎝
2(s2 + s + 1)

s + 1
−1

−1
√
s

tanh(
√
s)

⎞⎟⎟⎠ . (5.4)

As H is positive real, it follows from Proposition 3.1 that H(s) is
invertible for all s ∈ C0. Consequently, N(s) is invertible for all
s ∈ C0. Furthermore, it can be shown that⏐⏐⏐⏐ √

s
tanh(

√
s)

⏐⏐⏐⏐ ≥ 1 and
⏐⏐⏐⏐2(s2 + s + 1)

s + 1

⏐⏐⏐⏐ >
4
3

∀ s ∈ I,

and thus, N(s) is invertible for all s ∈ I. It now follows that,

(s) is invertible for all s ∈ clC0. (5.5)

et α ∈ (−1, 0). Since

lim
s|→∞, s∈Cα

⏐⏐⏐⏐ √
s

tanh(
√
s)

⏐⏐⏐⏐ = lim
|s|→∞, s∈Cα

⏐⏐⏐⏐2(s2 + s + 1)
s + 1

⏐⏐⏐⏐ = ∞,

we see that there exists ρ > 0 such that N(s), and hence H(s),
is invertible for all s ∈ Cα with |s| ≥ ρ. Together with (5.5) this
implies that there exists β ∈ (α, 0) such that H(s) is invertible for
ll s ∈ clCβ . Thus, H−1 is holomorphic on clCβ , showing that the

assumption (A1) of Theorem 5.1 holds.
Condition (5.3). Note that

detN(s) = 2s3/2h(s) ∀ s ∈ Cβ\(β, 0]

here h is holomorphic on Cβ\(β, 0] and

lim
|s|→∞,s∈Cβ

h(s) = 1. (5.6)

etting

1(s) :=
1

√
s(s + 1)

and h2(s) :=
1

2 tanh(
√
s)

∀ s ∈ Cβ\(β, 0]

it follows from (5.4) that

H−1(s) =
1

h(s)

⎛⎜⎝
√
s + h1(s) −

1
2
√
s

−
1

2
√
s

h2(s)

⎞⎟⎠ .

ow h1(s) → 0 and h2(s) → 1/2 as |s| → ∞ in Cβ , and so,
nvoking (5.6), we see that there exists r > 0 such that

e
(
(
√
s + h1(s))/h(s)

)
> 0 and Re(h2(s)/h(s)) > 0

∀ s ∈ Cβ such that |s| ≥ r .

s a consequence, it is now straightforward to show that

(ReH−1(s))u, u⟩ ≥ −2|1/(2h(s)
√
s)| ∀ u ∈ EC2 ,

∀ s ∈ C such that |s| ≥ r ,
β
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hich in turn implies that

lim inf
s|→∞, s∈Cβ

(
inf

u∈EC2
Re ⟨H−1(s)u, u⟩

)
≥ 0.

his means that (5.3) holds for every κ > 0 and it follows from
orollary 5.2 that HK is strictly positive-real for every K ∈ C2×2

uch that Re K is positive definite. ⋄

If H is a square rational matrix, then Theorem 5.1 takes a
articularly simple form. We recall that z ∈ C is said be a zero of
square rational matrix H = ND−1 if detN(z) = 0, where D and
are right-coprime polynomial matrices. The poles of H coincide
ith the zeros of detD.

orollary 5.4. Let H be a rational Cm×m-valued positive-real
unction and assume that H does not have any zeros in I. Then HK is
trictly positive-real for every K ∈ Cm×m such that Re K is positive
efinite.

roof. Write H = ND−1, where D and N are right-coprime
polynomial matrices. It follows from the assumption on the zeros
of H that detN(s) ̸≡ 0, and so there exists z ∈ C0 such that
etN(z) ̸= 0. By positive realness of H, z is not a pole of H, and
hus, detD(z) ̸= 0. Consequently, H(z) is invertible with inverse
(z)N−1(z). Therefore, by Corollary 4.3, H(s), and hence N(s), are
nvertible for all s ∈ C0 and H−1 is positive real. Furthermore,
−1(s) = D(s)N−1(s) ∀ s ∈ C0. (5.7)

y hypothesis, detN(s) ̸= 0 for all s ∈ Iwhich, together with (5.7),
mplies that there exists α < 0 such that H−1 does not have any
oles in Cα , showing that assumption (A1) of Theorem 5.1 holds
or any β ∈ (α, 0).

Since H−1 is rational and positive real, it follows from [8,
heorem 2.7.2] or [9, Corollary 3.10] that
−1(s) = J0 + J1s + J(s) ∀ s ∈ C, (5.8)

here J0, J1 ∈ Cm×m with J1 = J∗1 ⪰ 0 and J is a strictly proper
ational matrix. As an immediate consequence of (5.8) we have
hat

eH−1(iω) = Re J0 + Re J(iω) ∀ ω ∈ R.

s ReH−1(iω) ⪰ 0 for all ω ∈ R and Re J(iω) → 0 as |ω| → ∞,
e see that

e J0 ⪰ 0. (5.9)

et K ∈ Cm×m be such that Re K is positive definite. Then there
xists κ > 0 such that Re K ⪰ κ I . Invoking (5.8) and (5.9)
nd using that J is strictly proper, we conclude that there exist
∈ (α, 0) and ρ > 0 such that

eH−1(s) + κ I ⪰ 0 ∀ s ∈ Σ(γ , 0) such that |s| > ρ, (5.10)

here Σ(γ , 0) denotes the closed vertical strip given by γ ≤

e s ≤ 0. On the compact set Σ(γ , 0) ∩ {ξ ∈ C : |ξ | ≤ ρ}, the
unction ReH−1 is uniformly continuous and, since ReH−1(iω) ⪰

for all ω ∈ R, it is clear that there exists β ∈ [γ , 0) such that

eH−1(s) + κI ⪰ 0 ∀ s ∈ Σ(β, 0) such that |s| ≤ ρ, (5.11)

t now follows from (5.10) and (5.11) that

eH−1(s) + κ I ⪰ 0 ∀ s ∈ Σ(β, 0),

howing that assumptions (A2) and (A3) of Theorem 5.1 hold.
onsequently, Theorem 5.1 guarantees that HK is strictly positive-
eal. □
 t
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ppendix

Here we give an alternative proof of statement (2) of The-
rem 4.8 which does not rely on the representation formula
4.2).

lternative proof of statement (2) of Theorem 4.8. Let H ∈

0(L(U)) be a positive-real function, let z ∈ C0, assume that
∩ σp(H(z)) ̸= ∅, let λ ∈ I ∩ σp(H(z)) and u ∈ ker(H(z) − λI).

We need to prove that u ∈ ker(H(s)−λI) for all s ∈ C0. We claim
hat it is sufficient to show that

(s)v = H(z)v ∀ s ∈ C0, ∀ v ∈ ker(ReH(z)). (A.1)

ndeed, as u ∈ ker(H(z) − λI), it follows from statement (3) of
emma 2.1 that u ∈ ker(H∗(z) + λI), and so u ∈ ker(ReH(z)),
hich, together with (A.1), yields

H(s) − λI)u = (H(z) − λI)u = 0 ∀ s ∈ C0.

o establish (A.1), let v ∈ ker(ReH(z)). By statement (2) of
heorem 4.4, v ∈ ker(ReH(s)) for all s ∈ C0, and so

(s)v = −H∗(s)v ∀ s ∈ C0.

onsequently,

H(s)v, w⟩ = −⟨v,H(s)w⟩ ∀ s ∈ C0, ∀ w ∈ U .

ence, for s ∈ C0 and ζ ∈ C, ζ ̸= 0, such that s + ζ ∈ C0, the
ollowing identity holds⟨
1
ζ
(H(s + ζ ) − H(s))v, w

⟩
= −

⟨
v,

1
ζ̄
(H(s + ζ ) − H(s))w

⟩
∀ w ∈ U .

ow consider the special cases ζ = r and ζ = ir , where r ∈ R,
̸= 0, and let r → 0 to obtain

H′(s)v, w⟩ = ∓⟨v,H′(s)w⟩ ∀ s ∈ C0, ∀ w ∈ U .

It follows that
d
ds

⟨H(s)v, w⟩ = 0 ∀ s ∈ C0, ∀ w ∈ U,

whence

⟨H(s)v, w⟩ = ⟨H(z)v, w⟩ ∀ s ∈ C0, ∀ w ∈ U .

Therefore, H(s)v = H(z)v for all s ∈ C0, establishing (A.1) and
ompleting the proof. □

The above proof is similar to that of [33, Proposition 2.2] which
hows that for a rational Cm×m-valued positive-real function H,
he function s ↦→ H(s)u is constant for every u ∈ Cm for which
here exists z ∈ C such that ⟨H(z)u, u⟩ = 0.
0



H. Logemann Systems & Control Letters 145 (2020) 104786

R
eferences

[1] R.F. Curtain, Old and new perspectives on the positive-real lemma in
systems and control theory, Z. Angew. Math. Mech. 79 (1999) 579–590.

[2] R.F. Curtain, H. Logemann, O. Staffans, Stability results of Popov-type for
infinite-dimensional systems with applications to integral control, Proc.
Lond. Math. Soc. 86 (2003) 779–816.

[3] R.F. Curtain, H. Logemann, O. Staffans, Absolute stability results in infinite
dimensions, Proc. R. Soc.: Math. Phys. Eng. Sci. 460 (2004) 2171–2196.

[4] R.F. Curtain, K. Morris, Transfer functions of distributed parameter systems:
a tutorial, Automatica 45 (2009) 1101–1116.

[5] R.F. Curtain, J.C. Oostveen, The Popov criterion for strongly stable
distributed parameter systems, Internat. J. Control 74 (2001) 265–280.

[6] R.F. Curtain, H.J. Zwart, An Introduction to Infinite-Dimensional Systems
Theory, Springer-Verlag, New York, 1995.

[7] H. Logemann, R.F. Curtain, Absolute stability results for infinite-
dimensional well-posed systems with applications to low-gain control,
ESAIM Control Optim. Calc. Var. 5 (2000) 395–424.

[8] B.D.O. Anderson, S. Vongpanitlerd, Network Analysis and Synthesis,
Prentice Hall, Englewood Cliffs, 1973.

[9] C. Guiver, H. Logemann, M.R. Opmeer, Transfer functions of infinite-
dimensional systems: positive realness and stabilization, Math. Control
Signals Systems 29 (2017) http://dx.doi.org/10.1007/s00498-017-0203-z.

[10] C. Guiver, H. Logemann, M.R. Opmeer, Infinite-dimensional Lur’e systems:
input-to-state stability and convergence properties, SIAM J. Control Optim.
57 (2019) 334–365.

[11] W.M. Haddad, V. Chellaboina, Nonlinear Dynamical Systems and Control,
Princeton University Press, Princeton, 2008.

[12] B. Jayawardhana, H. Logemann, E.P. Ryan, The circle criterion and input-
to-state stability: new perspectives on a classical result, IEEE Control Syst.
Mag. 31 (2011) 32–67.

[13] H.K. Khalil, Nonlinear Systems, third ed., Prentice-Hall, Upper Saddle River,
NJ, 2002.

[14] R.W. Newcomb, Linear Multiport Synthesis, McGraw-Hill, New York, 1966.
[15] E. Sarkans, H. Logemann, Input-to-state stability of Lur’e systems, Math.

Control Signals Systems 27 (2015) 439–465.
[16] A.H. Zemanian, Distribution Theory and Transform Analysis, McGraw-Hill,

New York, 1965, (Dover edition, 1987).
9

[17] A.H. Zemanian, Realization Theory for Continuous Linear Systems,
Academic Press, New York, 1972, (Dover edition, 1995).

[18] D. Salamon, Infinite-dimensional linear systems with unbounded control
and observation: a functional analytic approach, Trans. Amer. Math. Soc.
300 (1987) 383–431.

[19] O.J. Staffans, Well-Posed Linear Systems, Cambridge University Press,
Cambridge, 2005.

[20] M. Tucsnak, G. Weiss, Well-posed systems – the LTI case and beyond,
Automatica 50 (2014) 1757–1779.

[21] G. Weiss, Transfer functions of regular linear systems. Part I:
characterizations of regularity, Trans. Amer. Math. Soc. 342 (1994)
827–854.

[22] E. Vesentini, Maximum theorems for vector-valued holomorphic functions,
Rend. Semin. Mat. Fis. Milano 40 (1970) 24–55.

[23] P.R. Halmos, A Hilbert Space Problem Book, second ed., Springer-Verlag,
New York, 1982.

[24] G.K. Pedersen, Analysis Now, Springer-Verlag, New York, 1989.
[25] B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, New York, 1991.
[26] R. Narasimhan, Y. Nievergelt, Complex Analysis in One Variable, second

ed., Birkhäuser, New York, 2001.
[27] T. Ransford, Potential Theory in the Complex Plane, Cambridge University

Press, Cambridge, 1995.
[28] R. Schwindt, Lineare Transformationen Vektorwertiger Funktionen (PhD

thesis), Universität Köln, 1965.
[29] W. Cauer, The Poisson integral for functions with positive real part, Bull.

Amer. Math. Soc. 38 (1932) 713–717.
[30] L. de Branges, J. Rovnyak, Square Summable Power Series, Holt, Rinehart

& Winston, New York, 1966.
[31] W. Arendt, N. Nikolski, Vector-valued holomorphic functions revisited,

Math. Z. 234 (2000) 777–805.
[32] E. Hille, R.S. Phillips, Functional Analysis and Semi-Groups, American

Mathematical Society, Providence (RI), 1957.
[33] T. Berger, T. Reis, Structural properties of positive real and reciprocal ratio-

nal matrices, in: Proceedings of 21st Symposium on Mathematical Theory
of Networks and Systems, July 7-11, 2014, Groningen, The Netherlands,
402–409.

http://refhub.elsevier.com/S0167-6911(20)30168-7/sb1
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb1
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb1
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb2
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb2
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb2
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb2
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb2
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb3
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb3
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb3
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb4
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb4
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb4
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb5
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb5
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb5
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb6
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb6
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb6
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb7
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb7
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb7
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb7
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb7
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb8
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb8
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb8
http://dx.doi.org/10.1007/s00498-017-0203-z
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb10
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb10
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb10
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb10
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb10
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb11
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb11
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb11
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb12
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb12
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb12
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb12
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb12
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb13
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb13
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb13
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb14
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb15
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb15
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb15
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb16
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb16
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb16
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb17
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb17
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb17
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb18
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb18
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb18
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb18
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb18
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb19
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb19
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb19
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb20
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb20
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb20
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb21
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb21
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb21
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb21
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb21
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb22
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb22
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb22
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb23
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb23
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb23
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb24
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb25
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb26
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb26
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb26
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb27
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb27
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb27
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb28
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb28
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb28
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb29
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb29
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb29
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb30
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb30
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb30
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb31
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb31
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb31
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb32
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb32
http://refhub.elsevier.com/S0167-6911(20)30168-7/sb32

	Some spectral properties of operator-valued positive-real functions
	Introduction
	Preliminaries
	Spectral properties of positive-real functions: the case of finite-dimensional U
	Spectral properties of positive-real functions: the case of infinite-dimensional U
	Strict positive realness through feedback
	Declaration of competing interest
	Acknowledgement
	Appendix
	References


