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Abstract. We introduce a general class of causal dynamic discrete-time nonlinearities which
have certain monotonicity and Lipschitz continuity properties. In particular, the discretizations of
a large class of continuous-time hysteresis operators obtained by applying the standard sampling
and hold operations belong to this class. It is shown that closing the loop around a power-stable,
linear, infinite-dimensional, discrete-time, single-input, single-output system, subject to an input
nonlinearity from the class under consideration and compensated by a discrete-time integral con-
troller, guarantees asymptotic tracking of constant reference signals, provided that (a) the positive
integrator gain is sufficiently small and (b) the reference value is feasible in a very natural sense.
We apply this result in the development of sampled-data low-gain integral control for exponentially
stable, regular, linear, infinite-dimensional, continuous-time systems subject to input hysteresis.
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1. Introduction. The present paper extends the line of work on low-gain inte-
gral control of infinite-dimensional linear systems subject to input nonlinearities initi-
ated by the recent papers [9], [11], [14], [15]. Underpinning these contributions are gen-
eralizations of the well-known principle (see, for example, [4], [17], [18], and [22]) that
closing the loop around a stable, linear, continuous-time, single-input, single-output
plant, with transfer function Gc(s) compensated by a pure integral controller k/s, will
result in a stable closed-loop system that achieves asymptotic tracking of arbitrary
constant reference signals, provided that |k| is sufficiently small and Gc(0)k > 0.1 In
particular, Logemann and Mawby [11] have shown that the above principle remains
true for exponentially stable, regular, linear, infinite-dimensional, continuous-time,
single-input, single-output systems subject to input hysteresis belonging to a certain
class C(λ) of hysteresis operators, provided the reference value r is feasible in a natural
sense. The class C(λ) consists of hysteresis operators which, among other conditions,
satisfy a certain Lipschitz condition with Lipschitz constant λ > 0. We emphasize
that C(λ) encompasses a large number of hysteresis nonlinearities important in appli-
cations such as relay, backlash, elastic-plastic, and Prandtl hysteresis.

In this paper, we provide discrete-time and sampled-data analogues of the contin-
uous-time results in [11]. More precisely, the contribution of the present work is
twofold.
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1Therefore, under the above assumptions on the plant, the problem of tracking constant reference

signals reduces to that of tuning the gain parameter k. This so-called tuning regulator theory [4] has
been successfully applied in process control (see [3], [19]).
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Fig. 1. Low-gain control with input nonlinearity.
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Fig. 2. Sampled-data low-gain control.

(i) We introduce a class D(λ) of causal dynamic discrete-time nonlinearities which
have a number of properties, one of them being that a functional Lipschitz condition
with Lipschitz constant λ > 0 is satisfied. The class D(λ) contains a large number
of discrete-time hysteresis operators, in particular discretizations of continuous-time
hysteresis operators in C(λ) obtained by sampling/hold. We derive a discrete-time
version of the continuous-time tuning regulator result in [11] by showing that for
a power-stable, linear, infinite-dimensional, discrete-time, single-input, single-output
plant with transfer function G(z), subject to a dynamic input nonlinearity Φ ∈ D(λ),
the output y(n) of the closed-loop system, shown in Figure 1, converges to the refer-
ence value r as n → ∞, provided that G(1) > 0, r is feasible in some natural sense,
and k ∈ (0,K/λ), where K is the supremum of the set of all numbers k > 0 such that

1 + kRe
G(z)

z − 1
≥ 0 ∀ |z| > 1 .

(ii) We apply the discrete-time theory in the development of a sampled-data coun-
terpart to the continuous-time low-gain control result in [11]—see Figure 2—where
HO denotes a standard hold operation and SA denotes a sampling operation. In the
case of unbounded observation, the latter involves an averaging operation. Specifi-
cally, we show that for an exponentially stable, regular, linear, infinite-dimensional,
continuous-time, single-input, single-output plant with transfer function Gc(s), sub-
ject to a continuous-time dynamic input nonlinearity Φc ∈ C(λ), the output yc(t)
of the closed-loop system, shown in Figure 2, converges to the reference value r as
t → ∞, provided that Gc(0) > 0, r is feasible in some natural sense, and k > 0
is sufficiently small. The class of regular, linear, infinite-dimensional, continuous-
time systems, introduced by Weiss [25], [26], [27], [28], is rather general. It includes
most distributed parameter systems and all time-delay systems (retarded and neutral)
which are of interest in applications. With respect to (i), while the structure of the
discrete-time analysis parallels that of the continuous-time analysis in [11], there are
several points where these analyses differ in an essential manner. With reference to
(ii), the sampled-data results constitute the main contribution of the paper. In the
derivation of these results, the discrete-time theory plays a central role.
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We mention that there exists a substantial literature on the mathematical theory
of hysteresis phenomena; see, for example, Brokate [1], Brokate and Sprekels [2],
and Krasnosel’skĭı and Pokrovskĭı [8]. Of particular importance in a systems and
control context is the pioneering work [8]. Our treatment of continuous-time hysteresis
operators in section 4 has been strongly influenced by chapter 2 in [2].

The paper is organized as follows. In section 2, we introduce the class D(λ)
of dynamic discrete-time nonlinearities, while section 3 contains the low-gain tuning
regulator result for discrete-time systems subject to input nonlinearities belonging to
D(λ). In section 4, we introduce the class C(λ) of dynamic continuous-time nonlin-
earities and establish several important properties enjoyed by nonlinearities in this
class. At the end of this section, we discretize continuous-time hysteresis operators
and show that the resultant discrete-time operators are contained in the class D(λ).
In section 5, the low-gain tracking problem for exponentially stable, regular, linear,
infinite-dimensional, continuous-time, single-input, single-output systems with input
nonlinearity in C(λ) is solved using sampled-data integral control. In section 6, we
illustrate our results in the context of a simple linear diffusion process subject to in-
put hysteresis: relay as well as backlash nonlinearities are considered. Finally, several
technical details relating to the infinite-dimensional discrete-time positive-real lemma
have been relegated to the appendix.

Notation. We define

R+ := {x ∈ R |x ≥ 0} , Z+ = {x ∈ Z |x ≥ 0} .
For setsM and N , we denote the set of all functions f :M → N by F (M,N). If I ⊂ R

is a compact interval, then AC(I,R) denotes the space of absolutely continuous real-
valued functions defined on I; AC(R+,R) denotes the space of real-valued functions
defined on R+ which are absolutely continuous on any compact interval I ⊂ R+,
i.e., a function f ∈ F (R+,R) is in AC(R+,R) if and only if there exists a function
g ∈ L1

loc(R+,R) such that

f(t) = f(0) +

∫ t

0

g(τ) dτ ∀ t ≥ 0.

We say that a function f ∈ F (R+,R) is piecewise monotone if there exists a sequence
0 = t0 < t1 < t2 < · · · such that limi→∞ ti = ∞ and f is monotone on each of the
intervals (ti, ti+1). A function f ∈ F (R+,R) is called piecewise continuous if there
exists a sequence 0 = t0 < t1 < t2 < · · · such that limi→∞ ti = ∞, f is continuous on
each of the intervals (ti, ti+1), and the right and left limits of f exist and are finite
at each ti. We denote the space of all piecewise continuous functions f : R+ → R by
PC(R+,R). As usual, for f ∈ PC(R+,R), we define

f(t+) := lim
τ↓t

f(τ) (for t ≥ 0) and f(t−) := lim
τ↑t

f(τ) (for t > 0).

Let T = R+,Z+; a function f ∈ F (T,R) is called ultimately constant if there exists
T ∈ T such that f is constant on [T,∞) ∩ T. L(X,Y ) denotes the space of bounded
linear operators from a Banach space X to a Banach space Y , and we set L(X) :=
L(X,X). The Laplace transform is denoted by L.

2. A class of discrete-time nonlinear operators. For each n ∈ Z+, we define
a projection operator Qn : F (Z+,R) → F (Z+,R) by

(Qnu)(m) =

{
u(m) for m ∈ [0, n] ∩ Z+,
u(n) for m ∈ Z+ \ [0, n].
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Recall that an operator Φ : F (Z+,R) → F (Z+,R) is called causal if for all u, v ∈
F (Z+,R) and all n ∈ Z+ with u(m) = v(m) for all m ∈ [0, n] ∩ Z+ it follows that
(Φ(u))(m) = (Φ(v))(m) for all m ∈ [0, n] ∩ Z+.

Let u ∈ F (Z+,R). The function u is called ultimately nondecreasing if there exists
m ∈ Z+ such that u is nondecreasing on Z+ \ [0,m].

The numerical value set NVSΦ of an operator Φ : F (Z+,R) → F (Z+,R) is
defined by

NVSΦ := {(Φ(u))(n) |u ∈ F (Z+,R), n ∈ Z+}.
We introduce the following five assumptions on the operator Φ : F (Z+,R) →

F (Z+,R):
(D1) Φ is causal;
(D2) for all u ∈ F (Z+,R) and all n ∈ Z+

(Φ(Qnu))(k) = (Φ(Qnu))(n) ∀ k ∈ Z+ \ [0, n];
(D3) there exists λ > 0 such that for all u ∈ F (Z+,R) and all n ∈ Z+

u(n) �= u(n+ 1) =⇒ (Φ(u))(n+ 1)− (Φ(u))(n)

u(n+ 1)− u(n)
∈ [0, λ];

(D4) if u ∈ F (Z+,R) is ultimately nondecreasing and limn→∞ u(n) = ∞, then
(Φ(u))(n) and (Φ(−u))(n) converge to supNVSΦ and inf NVSΦ, respec-
tively, as n→ ∞;

(D5) if, for u ∈ F (Z+,R), L := limn→∞(Φ(u))(n) exists with L ∈ int (clos (NVSΦ)),
then u is bounded.

Remark 2.1. (1) We note that if (D1) and (D2) hold, then (D3) is implied by
the monotonicity condition

[(Φ(u))(n+ 1)− (Φ(u))(n)][u(n+ 1)− u(n)] ≥ 0 ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

together with the Lipschitz continuity condition

sup
n∈Z+

|(Φ(u))(n)− (Φ(v))(n)| ≤ λ sup
n∈Z+

|u(n)− v(n)| ∀u, v ∈ F (Z+,R).

(2) Assumption (D2) says that if the input u of the nonlinearity Φ is constant on
Z+\[0, n−1], then the output Φ(u) is constant and equal to (Φ(u))(n) on Z+\[0, n−1].

(3) If (D1)–(D3) hold, then

|(Φ(u))(n+ 1)− (Φ(u))(n)| ≤ λ |u(n+ 1)− u(n)| ∀u ∈ F (Z+,R), ∀n ∈ Z+.

Thus if (D4) also holds, clos (NVSΦ) is an interval. However, it can be shown that
NVSΦ is not necessarily an interval; see Mawby [21] for a counterexample.

(4) If (D1)–(D3) hold, then for all u ∈ F (Z+,R) there exists d : Z+ → [0, λ] such
that (Φ(u))(n+ 1)− (Φ(u))(n) = d(n)(u(n+ 1)− u(n)) for all n ∈ Z+.

If Φ : F (Z+,R) → F (Z+,R) satisfies (D3), then any number l > 0 such that
(D3) holds for λ = l is called a Lipschitz constant of Φ. We are now in a position
to define the class of nonlinear operators we will be considering in the context of the
discrete-time integral control problem in section 3.

Definition 2.2. Let λ > 0. The set of all operators Φ : F (Z+,R) → F (Z+,R)
satisfying (D1)–(D5) and having Lipschitz constant λ is denoted by D (λ).
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Fig. 3. Backlash hysteresis.

We now consider two examples of nonlinearities which satisfy (D1)–(D5).

Static nonlinearities. For a function f : R → R, define the corresponding static
nonlinearity by

Sf : F (Z+,R) → F (Z+,R) , u �→ f ◦ u.

It is clear that if f : R → R is nondecreasing and globally Lipschitz with Lipschitz
constant λ > 0, then Sf ∈ D(λ).

Backlash hysteresis. Let h ∈ R+ be arbitrary. Define the function bh : R
2 → R

by

bh(v, w) = max{v − h,min{v + h,w}}.(2.1)

We note that

bh(v, w) ∈ [v − h, v + h] ∀ v, w ∈ R,(2.2)

bh(v, w) = w ∀ (v, w) ∈ {(z1, z2) | z1 ∈ R, z2 ∈ [z1 − h, z1 + h]},(2.3)

(bh(v1, w)− bh(v2, w))(v1 − v2) ≥ 0 ∀ v1, v2, w ∈ R.(2.4)

For each ξ ∈ R, we introduce the discrete-time backlash operator Bd
h, ξ : F (Z+,R) →

F (Z+,R) by defining recursively

(Bd
h, ξ(u))(n) =

{
bh(u(0), ξ) for n = 0,
bh(u(n), (B

d
h, ξ(u))(n− 1)) for n ∈ Z+ \ {0}.

We remark that ξ plays the role of an “initial state.” The discrete-time backlash
operator Bd

h, ξ is illustrated in Figure 3.
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We show that Bd
h, ξ ∈ D (1). It is immediately clear from the definition that Bd

h, ξ

satisfies (D1). Using (2.2) and (2.3), we see that (D2) holds. Combining (2.1)–(2.4)
leads to

[(Bd
h, ξ(u))(n+ 1)− (Bd

h, ξ(u))(n)][u(n+ 1)− u(n)] ≥ 0 ∀u ∈ F (Z+,R) , ∀n ∈ Z+.

(2.5)

It is not difficult to show (see [2, p. 42]) that

|bh(v1, w1)− bh(v2, w2)| ≤ max(|v1 − v2|, |w1 − w2|) ∀ v1, v2, w1, w2 ∈ R.

Thus

|(Bd
h, ξ(u))(n+ 1)− (Bd

h, ξ(u))(n)| ≤ |u(n+ 1)− u(n)| ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

which, combined with (2.5), implies that (D3) holds for λ = 1. Note that NVSBd
h, ξ =

R. By (2.2), for all u ∈ F (Z+,R) and all n ∈ Z+, (B
d
h, ξ(u))(n) ∈ [u(n)− h, u(n)+ h],

showing that (D4) holds. Finally, it is clear that

v ∈ [bh(v, w)− h, bh(v, w) + h] ∀ v, w ∈ R,

and so

u(n) ∈ [(Bd
h, ξ(u))(n)− h, (Bd

h, ξ(u))(n) + h] ∀u ∈ F (Z+,R) , ∀n ∈ Z+,

showing that (D5) is satisfied. We have shown that (D1)–(D5) hold for Bd
h, ξ (with

λ = 1), and hence Bd
h, ξ ∈ D(1). We direct the reader to section 4 for a discussion of

the backlash operator in a continuous-time setting.

3. Discrete-time integral control. Consider a single-input, single-output, dis-
crete-time system

x(n+ 1) = Ax(n) +Bu(n), x(0) = x0 ∈ X,(3.1a)

y(n) = Cx(n) +Du(n),(3.1b)

evolving on a real Hilbert space X. Here A ∈ L(X), B ∈ L(R, X), C ∈ L(X,R), and
D ∈ R. A system of the form (3.1) is called power-stable if A is power-stable, i.e.,
there exist M ≥ 1 and θ ∈ (0, 1) such that

‖An‖ ≤Mθn ∀n ∈ Z+.

The transfer function G of (3.1) is given by

G(z) = C(zI −A)−1B +D.

Suppose that system (3.1) is subject to a causal input nonlinearity Φ : F (Z+,R) →
F (Z+,R), yielding the nonlinear system

x(n+ 1) = Ax(n) +B(Φ(u))(n), x(0) = x0 ∈ X,(3.2a)

y(n) = Cx(n) +D(Φ(u))(n).(3.2b)

Denoting the reference value by r, the control law

u(n+ 1) = u(n) + k(r − y(n)),
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where k is a real parameter, then leads to the following nonlinear system of difference
equations:

x(n+ 1) = Ax(n) +B(Φ(u))(n), x(0) = x0 ∈ X,(3.3a)

u(n+ 1) = u(n) + k(r − Cx(n)−D(Φ(u))(n)), u(0) = u0 ∈ R.(3.3b)

If G is holomorphic and bounded on {z ∈ C | |z| > α} for some α < 1 (which is
the case if (3.1) is power-stable) and G(1) > 0, then it can be shown that

1 + kRe
G(z)

z − 1
≥ 0 ∀ |z| > 1,(3.4)

for all sufficiently small k > 0; see [16]. We define

K := sup{k > 0 | (3.4) holds}.(3.5)

We can now state the main result of this section.
Theorem 3.1. Let λ > 0. Assume that Φ ∈ D (λ), (3.1) is power-stable, G(1) >

0, k ∈ (0,K/λ), and r ∈ R is such that r̃ := r/G(1) ∈ clos (NVSΦ). Then for all
(x0, u0) ∈ X × R, the solution (x, u) of (3.3) satisfies the following:

(1) limn→∞(Φ(u))(n) = r̃;
(2) limn→∞ x(n) = (I −A)−1Br̃;
(3) limn→∞ y(n) = r , where y(n) = Cx(n) +D(Φ(u))(n);
(4) if r̃ ∈ int (clos (NVSΦ)), then u is bounded.
Proof. Denote the solution of (3.3) by (x, u), and introduce new variables by

defining

z(n) := x(n)− (I −A)−1B(Φ(u))(n), v(n) := (Φ(u))(n)− r̃ ∀n ∈ Z+.

By Remark 2.1, part (4), there exists d : Z+ → [0, λ] such that (Φ(u))(n + 1) −
(Φ(u))(n) = d(n)(u(n + 1) − u(n)) for all n ∈ Z+. Using the identity A(I − A)−1 =
(I −A)−1 − I, a straightforward calculation yields

z(n+ 1) = Az(n)− (I −A)−1Bw(n), z(0) = z0,(3.6a)

v(n+ 1) = v(n) + w(n), v(0) = v0,(3.6b)

where

w(n) = −kd(n)(Cz(n) + G(1)v(n)),

and

z0 := x0 − (I −A)−1B(Φ(u))(0), v0 := (Φ(u))(0)− r̃.

Choose c ∈ (kλ,K), and define

H(z) = −C(zI −A)−1(I −A)−1B + J,

where J := 1/c− G(1)/2. Then

H(z) =
1

z − 1
(G(z)− G(1)) + J.
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Since c < K, there exists ε > 0 such that

1

c
+Re

G(z)

z − 1
≥ ε ∀ |z| > 1,

and hence, using the identity

Re

(
1

eiθ − 1

)
= −1

2
∀ θ ∈ (0, 2π),

we may conclude that

ReH(eiθ) ≥ ε ∀ θ ∈ [0, 2π).

An application of the discrete-time positive-real lemma (see the appendix) shows that
there exist P ∈ L(X), P = P ∗ ≥ 0, L ∈ L(R, X), and W ∈ R such that

A∗PA− P = −LL∗,(3.7a)

A∗P (I −A)−1B = LW − C∗,(3.7b)

W 2 = 2J −B∗(I −A∗)−1P (I −A)−1B.(3.7c)

For n ∈ Z+, define

V (n) = 〈z(n), P z(n)〉+ G(1)v(n)2.

Using (3.6) and (3.7), we obtain for all n ∈ Z+

V (n+ 1)− V (n) = 〈z(n+ 1), P z(n+ 1)〉 − 〈z(n), P z(n)〉+ G(1)(v(n+ 1)2 − v(n)2)

= −(L∗z(n))2 − 2(L∗z(n))Ww(n) + 2(Cz(n))w(n)

+ w(n)(2J −W 2)w(n) + G(1)(w(n)2 + 2w(n)v(n))

= −(L∗z(n))2 − (Ww(n))2 − 2(L∗z(n))Ww(n)

+ 2(Cz(n))w(n) +
2

c
w(n)2 + 2G(1)w(n)v(n)

= −(L∗z(n) +Ww(n))2 + 2(Cz(n))w(n)

+
2

c
w(n)2 − 2G(1)kd(n)[G(1)v(n)2 + (Cz(n))v(n)]

= −(L∗z(n) +Ww(n))2 +
2

c
w(n)2 − 2kd(n)(G(1)v(n) + Cz(n))2

= −(L∗z(n) +Ww(n))2 − 2

(
kd(n)− k2d(n)2

c

)
(G(1)v(n) + Cz(n))2.

Summing from n = 0 to n = ∞ then gives

2
∞∑

n=0

(
kd(n)− k2d(n)2

c

)
(G(1)v(n) + Cz(n))2 ≤ V (0) <∞.(3.8)

Now, since c > kλ and d(n) ∈ [0, λ], we have

kd(n)− k2d(n)2

c
= kd(n)

(
1− kd(n)

c

)
≥ kd(n)

(
1− kλ

c

)
≥ k

δ

λ
d(n)2 ∀n ∈ Z+,
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where δ := 1− kλ/c > 0. Therefore, (3.8) implies that

d(Cz + G(1)v) ∈ l2(Z+),(3.9)

and hence

w ∈ l2(Z+).(3.10)

Appealing to the fact that A is power-stable, we may conclude from (3.6a) and (3.10)
that

z ∈ l2(Z+).(3.11)

Consequently, Cz ∈ l2(Z+), and hence, by (3.9) and the boundedness of d,

dv ∈ l2(Z+).(3.12)

From (3.11) and (3.12) we obtain that

(Cz)dv ∈ l1(Z+).(3.13)

Using (3.8), (3.11)–(3.13), and the boundedness of d it follows that

dv2 ∈ l1(Z+).(3.14)

It follows from (3.6b) that, for all m ∈ Z+,

v(m+ 1)2 = v(0)2 +

m∑
n=0

w(n)2 + 2

m∑
n=0

v(n)w(n).(3.15)

Combining (3.15) with (3.10), (3.13), and (3.14) and recalling that w = −kd(Cz +
G(1)v), we see that there exists a number ν ∈ R+ such that

lim
n→∞ v(n)2 = ν.(3.16)

In order to prove statement (1), it is sufficient to show that ν = 0. Seeking a contra-
diction, suppose that ν > 0. By (3.10), limn→∞ w(n) = 0, and thus we may conclude
from (3.6b) that

lim
n→∞(v(n+ 1)− v(n)) = 0.(3.17)

Since ν > 0, (3.16) and (3.17) yield that v(n) does not change sign for sufficiently
large n, and so

lim
n→∞ v(n) =

√
ν or lim

n→∞ v(n) = −√
ν.

Assuming that limn→∞ v(n) = −√
ν (the case limn→∞ v(n) =

√
ν can be dealt with

in an entirely analogous fashion), we obtain that

Φ∞ := lim
n→∞(Φ(u))(n) < r̃,(3.18)

and thus

lim
n→∞x(n) = (I −A)−1BΦ∞.(3.19)
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It then follows from (3.3b), (3.18), and (3.19) that

lim
n→∞(u(n+ 1)− u(n)) = k(r − C(I −A)−1BΦ∞ −DΦ∞) = kG(1)(r̃ − Φ∞) > 0.

(3.20)

Therefore, limn→∞ u(n) = ∞, and u is ultimately nondecreasing, so by (D4) and the
assumption that r̃ ∈ clos (NVSΦ) we obtain

Φ∞ = lim
n→∞(Φ(u))(n) = sup(NVSΦ) ≥ r̃,

contradicting (3.18). Therefore, limn→∞ v(n) = 0, and, consequently, limn→∞(Φ(u))(n)
= r̃, which is statement (1).

Statement (2) follows immediately from statement (1). Statement (3) is an
easy consequence of statements (1) and (2). Finally, to prove statement (4), let
r̃ ∈ int (clos (NVSΦ)). Then the boundedness of u follows immediately from state-
ment (1) and (D5).

We see from the proof of Theorem 3.1 that (D5) is needed only for statement (4).
One of the conditions imposed in Theorem 3.1 is that r/G(1) ∈ clos (NVSΦ).

The following proposition shows that this condition is close to being necessary for
tracking insofar as, if tracking of r is achievable while maintaining the boundedness
of Φ(u), then r/G(1) ∈ clos (NVSΦ).

Proposition 3.2. Let λ > 0 and r ∈ R. Suppose that Φ ∈ D (λ), A is power-
stable, and G(1) > 0. If there exist an initial condition x0 ∈ X and a function
u ∈ F (Z+,R) such that Φ(u) is bounded and

lim
n→∞[Cx(n) +D(Φ(u))(n)] = r ,

where x ∈ F (Z+, X) is given by (3.2a), then r/G(1) ∈ clos (NVSΦ).
Proof. Since Φ(u) is bounded and A is power-stable, x is bounded. Let n ∈ Z+,

and define y : Z+ → R by (3.2b); then

y(n) = C(x(n)− (I −A)−1B(Φ(u))(n)) + G(1)(Φ(u))(n),

and therefore

C(A− I)−1(x(n+ 1)− x(n)) = y(n)− G(1)(Φ(u))(n).

For p,m ∈ Z+ with p > m, summing the above from m to p− 1 gives

C(A− I)−1(x(p)− x(m)) =

p−1∑
k=m

(y(k)− G(1)(Φ(u))(k)).(3.21)

Seeking a contradiction, let us suppose that r/G(1) /∈ clos (NVSΦ). Since limn→∞ y(n)
= r and clos (NVSΦ) is an interval (see Remark 2.1, part (3)), there exist ε > 0,
β ∈ {−1, 1}, and m ∈ Z+ such that

β(y(n)− G(1)(Φ(u))(n)) ≥ ε ∀n ≥ m.

Combining the above with (3.21), it follows that

βC(A− I)−1(x(n)− x(m)) =

n−1∑
k=m

β(y(k)− G(1)(Φ(u))(k)) ≥ ε(n−m) ∀n > m.

Therefore, limn→∞ βC(A−I)−1x(n) = ∞, contradicting the boundedness of x.
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4. A class of continuous-time hysteresis operators and their discretiza-
tions. We call a function f : R+ → R+ a time transformation if f is continuous
and nondecreasing and satisfies f(0) = 0 and limt→∞ f(t) = ∞, i.e., f is contin-
uous, nondecreasing, and surjective. We denote the set of all time transformations
f : R+ → R+ by T. For all τ ∈ R+, we define a (continuous-time) projection operator
Qc

τ : F (R+,R) → F (R+,R) by

(Qc
τv)(t) =

{
v(t) for 0 ≤ t ≤ τ ,
v(τ) for t > τ .

In the following, let F ⊂ F (R+,R), F �= ∅. We introduce the following two
assumptions on F:

(F1) v ◦ f ∈ F for all v ∈ F and all f ∈ T;
(F2) Qc

t(F) ⊂ F for all t ∈ R+.
We call an operator Φ : F → F (R+,R) causal if for all v, w ∈ F and all τ ∈ R+

with v(t) = w(t) for all t ∈ [0, τ ] it follows that (Φ(v))(t) = (Φ(w))(t) for all t ∈ [0, τ ].
An operator Φ : F → F (R+,R) is called rate independent if F satisfies (F1) and

(Φ(v ◦ f))(t) = (Φ(v))(f(t)) ∀ v ∈ F, ∀ f ∈ T, ∀ t ∈ R+.

A functional ϕ : F → R is called rate independent if F satisfies (F1) and

ϕ(u ◦ f) = ϕ(u) ∀u ∈ F, ∀ f ∈ T.

Definition 4.1. Let F ⊂ F (R+,R), F �= ∅. An operator Φ : F → F (R+,R) is
called a hysteresis operator if F satisfies (F1) and Φ is causal and rate independent.

For F ⊂ F (R+,R), F �= ∅, let Fuc denote the set of all ultimately constant u ∈ F,
i.e.,

Fuc = {u ∈ F |u is ultimately constant}.
Clearly, if F satisfies (F2), then Fuc �= ∅. Moreover, if F satisfies (F1), then so does
Fuc. The proof of the following proposition can be found in [10].

Proposition 4.2. Let F ⊂ F (R+,R), F �= ∅, and assume that (F1) and (F2) are
satisfied. If Φ : F → F (R+,R) is a hysteresis operator, then the following statements
hold:

(1) for all v ∈ F and all τ ∈ R+

(Φ(Qc
τ v))(t) = (Φ(v))(τ) ∀ t ≥ τ ;

(2) the functional

ϕ : Fuc → R, v �→ lim
t→∞(Φ(v))(t)(4.1)

is rate independent and satisfies

(Φ(v))(t) = ϕ(Qc
t v) ∀ v ∈ F, ∀ t ∈ R+.(4.2)

Conversely, if ϕ : Fuc → R is a rate independent functional, then Φ : F → F (R+,R)
given by (4.2) is a hysteresis operator and satisfies

lim
t→∞(Φ(v))(t) = ϕ(v) ∀ v ∈ Fuc.(4.3)
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For a hysteresis operator Φ : F → F (R+,R), we call the rate independent func-
tional ϕ defined by (4.1) the representing functional of Φ.

For any v ∈ F (R+,R) and any t ∈ R+, we define

M(v, t) := {τ ∈ (t,∞) | v is monotone on (t, τ)}.
If v is piecewise monotone, then M(v, t) �= ∅ for all t ∈ R+ and the standard mono-
tonicity partition t0 < t1 < t2 < · · · of v is defined recursively by setting t0 = 0 and
ti+1 = supM(v, ti) for all i ∈ Z+ such that M(v, ti) is bounded. If v is piecewise
monotone and ultimately constant, then the standard monotonicity partition of v is
finite.

The space of all piecewise monotone v ∈ C(R+,R) is denoted by Cpm(R+,R).
We define Cuc

pm(R+,R) to be the space of all ultimately constant v ∈ Cpm(R+,R).
Let F uc(Z+,R) denote the space of ultimately constant v : Z+ → R. We define the
restriction operator R : Cuc

pm(R+,R) → F uc(Z+,R) by

(R(v))(k) =

{
v(tk) for k ∈ [0,m] ∩ Z+,
limt→∞ v(t) for k ∈ Z+ \ [0,m],

where 0 = t0 < t1 < · · · < tm is the standard monotonicity partition of v.
In the following, we want to extend hysteresis operators defined on Cpm(R+,R) to

spaces of piecewise continuous functions. This requires some preparation. For τ > 0,
we define the prolongation operator Pτ : F (Z+,R) → Cpm(R+,R) by letting Pτu be
the linear interpolate for the values (Pτu)(iτ) = u(i). Let NPC(R+,R) ⊂ PC(R+,R)
denote the space of all normalized piecewise continuous functions v : R+ → R; that
is, v is piecewise continuous and is right-continuous or left-continuous at each point
t ∈ R+. The space of all piecewise monotone functions v ∈ NPC(R+,R) is denoted
by NPCpm(R+,R), while NPCuc

pm(R+,R) denotes the space of ultimately constant
v ∈ NPCpm(R+,R). We note that NPCpm(R+,R) and NPCuc

pm(R+,R) both satisfy
(F1) and (F2). For v ∈ NPCuc

pm(R+,R), we define v(∞) := limτ→∞ v(τ).
Let v ∈ NPCuc

pm(R+,R), and let 0 = t0 < t1 < · · · < tm be the standard
monotonicity partition of v. We define the operator ρ : NPCuc

pm(R+,R) → F uc(Z+,R)
by

ρ(v) = (v(t0), v(t1−), v(t1+), v(t2−), v(t2+), . . . , v(tm−), v(tm+), v(∞), v(∞), . . . ).

For τ > 0, define

Re : NPC
uc
pm(R+,R) → F uc(Z+,R) , v �→ R((Pτ ◦ ρ)(v)).

The operator Re is an extension of R, and the definition of Re is independent of τ (see
[10]). The function v, shown in Figure 4, is a normalized piecewise continuous function
which is piecewise monotone and ultimately constant, so v ∈ NPCuc

pm(R+,R). It has
standard monotonicity partition 0 = t0 < t1 < t2 < t3 < t4,

ρ(v) = (v0, v7, v6, v4, v4, v5, v3, v7, v2, v1, v1, v1, . . . ),

and

Re(v) = (v0, v7, v4, v5, v3, v7, v1, v1, v1, . . . ).

For any rate independent ϕ : Cuc
pm(R+,R) → R, we define

ϕe : NPC
uc
pm(R+,R) → R , v �→ ϕ((Pτ ◦Re)(v)),(4.4)
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Fig. 4. Example of a function in NPCucpm(R+,R).

where τ > 0. From [10] we know that ϕe does not depend on τ and that ϕe is a rate
independent extension of ϕ.

Let Φ : Cpm(R+,R) → C(R+,R) be a hysteresis operator, and let ϕ : Cuc
pm(R+,R) →

R be the representing functional of Φ. Define

Φe : NPCpm(R+,R) → F (R+,R)

by setting

(Φe(v))(t) = ϕe(Q
c
t v) ∀ t ∈ R+,(4.5)

where ϕe is the extension of ϕ to NPCuc
pm(R+,R) given by (4.4).

Define Sτ to be the set of all right-continuous step functions v : R+ → R of step
length τ > 0. The following result was proved in [10].

Proposition 4.3. Let Φ : Cpm(R+,R) → C(R+,R) be a hysteresis operator.
Then

(1) Φe is an extension of Φ;
(2) Φe is a hysteresis operator with representing functional ϕe;
(3) for v, w ∈ NPCpm(R+,R) and t ∈ R+

Re(Q
c
t v) = Re(Q

c
t w) =⇒ (Φe(v))(t) = (Φe(w))(t);

(4) Φe(NPCpm(R+,R)) ⊂ NPC(R+,R);
(5) Φe(Sτ ) ⊂ Sτ .
For given v ∈ Sτ we introduce continuous piecewise monotone “approximations”

vk ∈ Cpm(R+,R) (k = 1, 2, . . . ) as follows: let εk ∈ (0, τ) with limk→∞ εk = 0, and
define the following:

(i) if t ∈ [(i+ 1)τ − εk, (i+ 1)τ), i ∈ Z+,

vk(t) = v(iτ) +
v((i+ 1)τ)− v(iτ)

εk
(t− (i+ 1)τ + εk);

(ii) vk(t) = v(t) otherwise.
(See Figure 5 for an illustration.)

The following result shows that, for a given v ∈ Sτ , the functions Φ(vk) approxi-
mate Φe(v) pointwise.
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Fig. 5. Example of v ∈ Sτ and its approximation vk.

Proposition 4.4. Let Φ : Cpm(R+,R) → C(R+,R) be a hysteresis operator.
Then

(Φe(v))(t) = lim
k→∞

(Φ(vk))(t) ∀ v ∈ Sτ , ∀ t ∈ R+.

Proof. Let t ∈ R+, and let m ∈ Z+ and s ∈ [0, τ) be such that t = mτ + s.
Choose k sufficiently large so that

t−mτ = s < (1− εk)τ.(4.6)

Then, using Proposition 4.3, part (5), we have

(Φe(v))(t) = (Φe(v))(mτ) = ϕe(Q
c
mτ v) = ϕ((Pτ ◦Re)(Q

c
mτ v)).(4.7)

Now Re(Q
c
mτ v) = R(Qc

mτ vk) = Re(Q
c
mτ vk), and hence, using (4.6), (4.7), Proposi-

tion 4.2, part (1), and Proposition 4.3, we obtain for all sufficiently large k

(Φe(v))(t) = ϕ((Pτ ◦Re)(Q
c
mτ vk)) = ϕe(Q

c
mτ vk) = (Φe(vk))(mτ)

= (Φ(vk))(mτ) = (Φ(vk))(t).

A function v ∈ F (R+,R) is called ultimately nondecreasing if there exists T ∈ R+

such that v is nondecreasing on [T,∞). Let F ⊂ F (R+,R), F �= ∅. The numerical
value set NVSΦ of an operator Φ : F → F (R+,R) is defined by

NVSΦ := {(Φ(v))(t) | v ∈ F, t ∈ R+}.

For α ≥ 0, u ∈ Cpm([0, α],R), and δ1, δ2 > 0, we define Cpm(u; δ1, δ2) to be the set of
all v ∈ Cpm(R+,R) such that

v(t) = u(t) ∀ t ∈ [0, α] and |v(t)− u(α)| ≤ δ1 ∀ t ∈ [α, α+ δ2].

We introduce the following seven assumptions on the operator Φ : Cpm(R+,R) →
C(R+,R):

(C1) Φ is causal;
(C2) Φ is rate independent;
(C3) Φ(AC(R+,R) ∩ Cpm(R+,R)) ⊂ AC(R+,R);
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(C4) Φ is monotone in the sense that, for all v ∈ AC(R+,R) ∩ Cpm(R+,R) with
Φ(v) ∈ AC(R+,R),

d

dt
(Φ(v))(t) v̇(t) ≥ 0, a.e. t ∈ R+;

(C5) there exists λ > 0 such that for all α ∈ R+, u ∈ Cpm([0, α],R), there exist
numbers δ1, δ2 > 0 such that for all v, w ∈ Cpm(u; δ1, δ2)

sup
t∈[α,α+δ2]

|(Φ(v))(t)− (Φ(w))(t)| ≤ λ sup
t∈[α,α+δ2]

|v(t)− w(t)|;

(C6) if v ∈ Cpm(R+,R) is ultimately nondecreasing and limt→∞ v(t) = ∞, then
Φ(v)(t) and Φ(−v)(t) converge to supNVSΦ and inf NVSΦ, respectively, as
t→ ∞;

(C7) if, for v ∈ Cpm(R+,R), L := limt→∞(Φ(v))(t) exists with L ∈ intNVSΦ,
then v is bounded.

Remark 4.5. We note that if Φ satisfies (C1) and (C6), then NVSΦ is an
interval.

If Φ : Cpm(R+,R) → C(R+,R) satisfies (C5), then any number l > 0 such that
(C5) holds for λ = l is called a Lipschitz constant of Φ.

Definition 4.6. Let λ > 0. The set of all operators Φ : Cpm(R+,R) → C(R+,R)
satisfying (C1)–(C7) and having Lipschitz constant λ is denoted by C (λ).

We consider four examples of hysteresis operators which satisfy (C1)–(C7).
Static nonlinearities. For f ∈ F (R,R), the corresponding static nonlinearity

F (R+,R) → F (R+,R), u �→ f ◦ u

is in C(λ), provided that f is nondecreasing and globally Lipschitz with Lipschitz
constant λ.

Relay. Relay (also called passive or positive) hysteresis, has been discussed in
a mathematically rigorous context in a number of references; see, for example, [11]
and [20]. To give a formal definition of relay, let a1, a2 ∈ R with a1 < a2, and let
ρ1 : [a1,∞) → R and ρ2 : (−∞, a2] → R be nondecreasing and globally Lipschitz (both
with Lipschitz constant λ > 0) and such that ρ1(a1) = ρ2(a1) and ρ1(a2) = ρ2(a2).
For v ∈ Cpm(R+,R) and t ≥ 0 define

S(v, t) := v−1({a1, a2}) ∩ [0, t] , τ(v, t) :=

{
maxS(v, t) if S(v, t) �= ∅ ,
−1 if S(v, t) = ∅ .

Following Macki, Nistri, and Zecca [20], for each ξ ∈ R, we define an operator Rξ :
Cpm(R+,R) → C(R+,R) by

(Rξ(v))(t) =




ρ2(v(t)) if v(t) ≤ a1,
ρ1(v(t)) if v(t) ≥ a2,
ρ2(v(t)) if v(t) ∈ (a1, a2), τ(v, t) �= −1, and v(τ(v, t)) = a1,
ρ1(v(t)) if v(t) ∈ (a1, a2), τ(v, t) �= −1, and v(τ(v, t)) = a2,
ρ1(v(t)) if v(t) ∈ (a1, a2), τ(v, t) = −1, and ξ > 0,
ρ2(v(t)) if v(t) ∈ (a1, a2), τ(v, t) = −1, and ξ ≤ 0.

The number ξ plays the role of an “initial state” which determines the output value
(Rξ(v))(t) if v(s) ∈ (a1, a2) for all s ∈ [0, t]. The relay hysteresis operator Rξ is



128 H. LOGEMANN AND A. D. MAWBY

Rξ(v)

v

a1 a2

ρ1

ρ2

Fig. 6. Relay hysteresis.

illustrated in Figure 6. It is trivial that Rξ is causal and rate independent (i.e., (C1)
and (C2) hold). From [11] we know that Rξ satisfies (C3)–(C7) and that λ is a
Lipschitz constant of Rξ. It follows that Rξ ∈ C(λ).

Backlash. A discussion of the continuous-time backlash operator (also called the
play operator) can be found in a number of references; see, for example, [1], [2], [8],
and [11]. For all h ∈ R+ and all ξ ∈ R, we define the continuous-time backlash
operator Bh, ξ : Cpm(R+,R) → C(R+,R) by

(Bh, ξ(v))(t) =

{
bh(v(0), ξ) for t = 0 ,
bh(v(t), (Bh, ξ(v))(ti)) for ti < t ≤ ti+1, i ∈ Z+,

where the function bh : R
2 → R is given by (2.1) and 0 = t0 < t1 < t2 < · · · is such

that limn→∞ tn = ∞ and v is monotone on each interval (ti, ti+1). We remark that
ξ plays the role of an “initial state.” It is not difficult to show that the definition is
independent of the choice of the partition (ti); see [11]. The diagram illustrating how
Bh, ξ acts is the same as in the discrete-time case; see Figure 3. It is trivial that Bh, ξ

is causal (i.e., Bh, ξ satisfies (C1)). Furthermore, it is well known and easy to check
that Bh, ξ is rate independent (i.e., Bh, ξ satisfies (C2)). From [11] we know that Bh, ξ

satisfies (C3)–(C7) and that λ = 1 is a Lipschitz constant of Bh, ξ. Therefore, we may
conclude that Bh, ξ ∈ C (1).

Elastic-plastic. The elastic-plastic operator (also called the stop operator) has
been discussed in a mathematically rigorous context in a number of references; see,
for example, [1], [2], [8], and [11]. To give a formal definition of the elastic-plastic
operator, define for each h ∈ R+ the function eh : R → R by

eh(w) = min{h,max{−h,w}}.

For all h ∈ R+ and all ξ ∈ R, we define an operator Eh, ξ : Cpm(R+,R) → C(R+,R)
by

(Eh, ξ(v))(t) =

{
eh(v(0)− ξ) for t = 0,
eh(v(t)− v(ti) + (Eh, ξ(v))(ti)) for ti < t ≤ ti+1, i ∈ Z+,

where 0 = t0 < t1 < t2 < · · · is such that limn→∞ tn = ∞ and v is monotone on
each interval (ti, ti+1). Again, ξ plays the role of an “initial state.” The backlash and
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Fig. 7. Elastic-plastic hysteresis.

elastic-plastic operators are closely related:

Eh, ξ(v) + Bh, ξ(v) = v ∀ v ∈ Cpm(R+,R);(4.8)

see [2, p. 44]. The elastic-plastic operator Eh, ξ is illustrated in Figure 7. Since
Bh, ξ is causal and rate independent, it follows from (4.8) that Eh, ξ is causal and
rate independent; i.e., (C1) and (C2) hold. From [11] we know that Eh, ξ satisfies
(C3)–(C7) and that λ = 2 is a Lipschitz constant of Eh, ξ. Therefore, Eh, ξ ∈ C (2).

We remark that a large class of Prandtl and Preisach hysteresis operators satisfy
(C1)–(C7); see [11] for details.

The following lemma will be needed later in this section.
Lemma 4.7. Let Φ ∈ C (λ); then for every v ∈ Cpm(R+,R) ∩ AC(R+,R) and

t2 > t1 ≥ 0, there exists a constant η ∈ [0, λ] such that

v affine linear on [t1, t2] =⇒ (Φ(v))(t2)− (Φ(v))(t1) = η(v(t2)− v(t1)).

Proof. Let Φ ∈ C (λ), v ∈ Cpm(R+,R)∩AC(R+,R), and t2 > t1 ≥ 0, and assume
that v is affine linear on [t1, t2]. By Proposition 4.2, part (1) and [11, Lemma 3.2,
part (c)] there exists a measurable function d : R+ → [0, λ] such that

(Φ(v))(t2)− (Φ(v))(t1) =

∫ t2

t1

d(t)v̇(t) dt.(4.9)

Since v is affine linear on [t1, t2], v̇ ≡ (v(t2)− v(t1))/(t2 − t1) on (t1, t2). Combining
this with (4.9) gives

(Φ(v))(t2)− (Φ(v))(t1) =
v(t2)− v(t1)

t2 − t1

∫ t2

t1

d(t) dt = η(v(t2)− v(t1)),

where η = 1/(t2 − t1)
∫ t2
t1
d(t) dt ∈ [0, λ].

In the following section, we want to apply the discrete-time result of section 3 to
the sampled-data low-gain integral control problem. Therefore, we need to investigate
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the properties of the discretization of a given Φc ∈ C (λ) obtained by standard hold
and sampling operations. To this end, define the hold operator H : F (Z+,R) → Sτ

by

(Hu)(nτ + t) = u(n) ∀u ∈ F (Z+,R), ∀n ∈ Z+, ∀ t ∈ [0, τ),(4.10)

and the sampling operator S : PC(R+,R) → F (Z+,R) by

(Sv)(n) = v(nτ) ∀ v ∈ PC(R+,R), ∀n ∈ Z+,(4.11)

where τ > 0 denotes the sampling period.
Let Φc : Cpm(R+,R) → C(R+,R) be a continuous-time hysteresis operator. We

define a discrete-time operator Φ : F (Z+,R) → F (Z+,R) by

Φ := S Φc
eH,(4.12)

where Φc
e denotes the extension of Φc to NPCpm(R+,R) given by (4.5). We remark

that as a simple consequence of the rate independence of Φc
e (cf. Proposition 4.3) the

definition of Φ is independent of the choice of the sampling period τ . For v ∈ Sτ , we
have HSv = v, and so, by Proposition 4.3, part (5),

Φc
eH = H Φ.(4.13)

The proof of the following result can be found in [10].
Lemma 4.8. Let Φc : Cpm(R+,R) → C(R+,R) be a hysteresis operator, and

define the operator Φ : F (Z+,R) → F (Z+,R) by (4.12). Then

(Φ(u))(n) = (Φc(Pτu))(nτ) ∀u ∈ F (Z+,R), ∀n ∈ Z+,(4.14)

and NVSΦ = NVSΦc.
The following proposition is the main result of this section.
Proposition 4.9. Let Φc ∈ C (λ), and define Φ : F (Z+,R) → F (Z+,R) by

(4.12). Then Φ ∈ D (λ).
Proof. Note that (D1) (causality) follows from (4.14) and the causality of Φc, while

(D2) follows from Proposition 4.2, part (1) and (4.14). Furthermore, let u ∈ F (Z+,R),
n ∈ Z+, and suppose that u(n + 1) �= u(n). Then by (4.14) and Lemma 4.7 there
exists a constant η ∈ [0, λ] such that

(Φ(u))(n+ 1)− (Φ(u))(n) = (Φc(Pτ u))((n+ 1)τ)− (Φc(Pτ u))(nτ)
= η[(Pτ u)((n+ 1)τ)− (Pτ u)(nτ)]
= η[u(n+ 1)− u(n)],

and thus (D3) holds. Since NVSΦ = NVSΦc (by Lemma 4.8) and Φc satisfies (C6),
(D4) follows from an application of (4.14). Finally, to show that (D5) is satisfied, let
u ∈ F (Z+,R) be such that limn→∞(Φ(u))(n) exists and

L := lim
n→∞(Φ(u))(n) ∈ int (clos (NVSΦ)).(4.15)

By (4.14),

lim
n→∞(Φc(Pτ u))(nτ) = L.(4.16)
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Clearly Pτ u is monotone on [nτ, (n + 1)τ ] for each n ∈ Z+, and therefore, by the
fact that Φc satisfies (C4), Φc(Pτ u) is monotone on [nτ, (n + 1)τ ] for each n ∈ Z+.
Combining this with (4.16) shows that

lim
t→∞(Φc(Pτ u))(t) = L.

By Remark 4.5, NVSΦc is an interval; since, by Lemma 4.8, NVSΦ = NVSΦc, it
follows from (4.15) that L ∈ int (NVSΦc). Now Φc satisfies (C7), and so we may
conclude that Pτ u and thus u are bounded.

5. Sampled-data integral control in the presence of input hysteresis.
In the following, the underlying linear system is assumed to be a single-input, single-
output, continuous-time, regular system Σ (for details on regular systems see Weiss
[25], [26], [27], [28]) with state-space X (a real Hilbert space) and with generating
operators (Ac, Bc, Cc, Dc). This means, in particular, that Ac generates a strongly
continuous semigroup T = (Tt)t≥0, C

c ∈ L(X1,R) is an admissible observation
operator for T, and Bc ∈ L(R, X−1) is an admissible control operator for T. Here
X1 denotes the domain of Ac endowed with the graph norm, and X−1 denotes the
completion of X with respect to the norm ‖x‖−1 = ‖(s0I −Ac)−1x‖, where s0 is any
fixed element in the resolvent set of Ac. The norm on X is denoted by ‖·‖, while ‖·‖1

and ‖ · ‖−1 denote the norms on X1 and X−1, respectively. Then X1 ↪→ X ↪→ X−1,
and T restricts (respectively, extends) to a strongly continuous semigroup on X1

(respectively, X−1). The exponential growth constant

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

is the same on all three spaces. The generator of T on X−1 is an extension of Ac

to X (which is bounded as an operator from X to X−1). We shall use the same
symbol T (respectively, Ac) for the original semigroup (respectively, its generator)
and the associated restrictions and extensions. With this convention, we may write
Ac ∈ L(X,X−1). Considered as a generator on X−1, the domain of Ac is X.

We regard a regular system Σ as synonymous with its generating operators and
simply write Σ = (Ac, Bc, Cc, Dc). The regular system is said to be exponentially
stable if the semigroup T is exponentially stable, that is, ω(T) < 0. The control
operator Bc (respectively, observation operator Cc) is said to be bounded if Bc ∈
L(R, X) (respectively, Cc ∈ L(X,R)); otherwise, Bc (respectively, Cc) is said to
be unbounded. In terms of the generating operators (Ac, Bc, Cc, Dc), the transfer
function Gc(s) can be expressed as

Gc(s) = Cc
L(sI −Ac)−1Bc +Dc,

where Cc
L denotes the so-called Lebesgue extension of Cc. The transfer function Gc(s)

is bounded and holomorphic in any half-plane Re s > α with α > ω(T). Moreover,

lim
s→∞, s∈R

Gc(s) = Dc.

For any x0 ∈ X and uc ∈ L2
loc(R+,R), the state and output functions xc(·) and yc(·),

respectively, satisfy the equations

ẋc(t) = Acxc(t) +Bcuc(t), xc(0) = x0,(5.1a)

yc(t) = Cc
Lx

c(t) +Dcuc(t)(5.1b)
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for almost all t ≥ 0. The derivative on the left-hand side of (5.1a), of course, has
to be understood in X−1. In other words, if we consider the initial-value problem
(5.1a) in the space X−1, then for any x0 ∈ X and uc ∈ L2

loc(R+,R), (5.1a) has unique
strong solution (in the sense of Pazy [24, p. 109]) given by the variation of parameters
formula

xc(t) = Ttx0 +

∫ t

0

Tt−τB
cuc(τ) dτ.(5.2)

For future reference we state the following lemma, the proof of which can be found
in [15].

Lemma 5.1. Assume that T is exponentially stable and that Bc ∈ L(R, X−1) is an
admissible control operator for T. If uc ∈ L∞(R+,R) is such that limt→∞ uc(t) = u∞
exists, then for all x0 ∈ X the state trajectory xc given by (5.2) satisfies

lim
t→∞ ‖xc(t) + (Ac)−1Bcu∞‖ = 0.

The aim in this section is to show that for an exponentially stable, regular, linear,
infinite-dimensional, continuous-time, single-input, single-output plant with transfer
function Gc(s), subject to a continuous-time dynamic input nonlinearity Φc ∈ C(λ),
the output yc(t) of the sampled-data closed-loop system, shown in Figure 2, converges
to the reference value r as t → ∞, provided that Gc(0) > 0, r is feasible in some
natural sense, and k > 0 is sufficiently small.

Let u ∈ F (Z+,R), and apply the continuous-time signal

uc = Hu(5.3)

(where H is the standard hold operator defined in (4.10)) to the continuous-time
system given by (5.1). Then the state xc(nτ + t) satisfies

xc(nτ + t) = Ttx
c(nτ) + (Tt − I)(Ac)−1Bcu(n) ∀n ∈ Z+, ∀ t ∈ [0, τ).(5.4)

Accordingly, we define x : Z+ → X by

x(n) = xc(nτ).(5.5)

Clearly, Tτ ∈ L(X) and (Tτ − I)(Ac)−1Bc ∈ L(R, X) define appropriate state-space
operators for the state evolution of the discretization of (5.1a). However, in general,
regularity guarantees only that yc ∈ L2

loc(R+,R) so that, even with piecewise constant
input functions, standard sampling of the output is not defined. Moreover, even if the
output function is continuous (in which case standard sampling is defined), in general
the resulting discrete-time system will not have a bounded observation operator. We
therefore distinguish two cases: bounded and unbounded continuous-time observation.

Bounded observation. Assume that Cc = Cc
L ∈ L(X,R). If x0 ∈ X and uc

is given by (5.3), then the output yc given by (5.1b) is piecewise continuous, the
discontinuities being at nτ . It is clear that yc is right-continuous at nτ for all n ∈ Z+.
We define

y := Syc(5.6)

(where S is the standard sampling operator defined in (4.11)) and(
A B
C D

)
:=

(
Tτ (Tτ − I)(Ac)−1Bc

Cc Dc

)
.(5.7)
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The proof of the following proposition is an immediate consequence of Proposition
4.1 in [16].

Proposition 5.2. Suppose that Tt is exponentially stable and that the ob-
servation operator Cc is bounded. Let τ > 0 and u ∈ F (Z+,R). If uc given by
(5.3) is applied to (5.1), then x and y given by (5.5) and (5.6), respectively, satisfy
(3.1), where (A,B,C,D) is given by (5.7). Moreover, A is power-stable, and, setting
G(z) = C(zI −A)−1B +D, we have that

G(1) = C(I −A)−1B +D = Gc(0).(5.8)

Let Φc ∈ C (λ), and let Φc
e denote the extension of Φc to NPCpm(R+,R) given

by (4.5). Consider the continuous-time system (5.1) with continuous-time input non-
linearity Φc

e,

ẋc = Acxc +BcΦc
e(u

c), xc(0) = x0 ∈ X,(5.9a)

yc = Cc
Lx

c +DcΦc
e(u

c),(5.9b)

controlled by the sampled-data integrator

uc(t) = u(n) for t ∈ [nτ, (n+ 1)τ), n ∈ Z+,(5.10a)

y(n) = yc(nτ), n ∈ Z+,(5.10b)

u(n+ 1) = u(n) + k(r − y(n)), u(0) = u0 ∈ R, n ∈ Z+.(5.10c)

Theorem 5.3. Let λ > 0. Assume that Φc ∈ C (λ), Cc is bounded, Tt is expo-
nentially stable, Gc(0) > 0, and r ∈ R is such that r̃c := r/Gc(0) ∈ clos (NVSΦc).
Let K > 0 be defined by (3.5), where G(z) = C(zI − A)−1B +D, with (A,B,C,D)
given by (5.7). Then, for all k ∈ (0,K/λ) and all (x0, u0) ∈ X×R, the unique solution
(xc(·), uc(·)) of the closed-loop system given by (5.9) and (5.10) satisfies the following:

(1) limt→∞(Φc
e(u

c))(t) = r̃c;
(2) limt→∞ ‖xc(t) + (Ac)−1Bcr̃c‖ = 0;
(3) limt→∞ yc(t) = r;
(4) if r̃c ∈ int (NVSΦc), then uc is bounded.
Proof. Let (xc(·), uc(·)) be the unique solution of the closed-loop system given by

(5.9) and (5.10). Define Φ ∈ D (λ) by (4.12), and so

(Φc
e(u

c))(nτ) = (Φc
e(Hu))(nτ) = (Φ(u))(n) ∀n ∈ Z+.

Note that by Lemma 4.8

NVSΦ = NVSΦc.(5.11)

Defining x ∈ F (Z+,R) by (5.5), it follows from Proposition 5.2 that (x, u) satisfies
the closed-loop discrete-time equations (3.3), where (A,B,C,D) is given by (5.7).
Therefore, using Theorem 3.1, Propositions 4.9 and 5.2, and (5.11), we see that for
all k ∈ (0,K/λ)

lim
n→∞(Φ(u))(n) = r̃c.(5.12)

This implies that for all k ∈ (0,K/λ), limt→∞(H(Φ(u)))(t) = r̃c, and so by (4.13),
limt→∞(Φc

e(u
c))(t) = r̃c, which is statement (1). Statement (2) is a consequence

of statement (1) and Lemma 5.1. Statement (3) follows easily from statements (1)
and (2) and the boundedness of Cc. Finally, to prove statement (4), assume that
r̃c ∈ intNVSΦc. Then, by (5.11), r̃c ∈ intNVSΦ. Boundedness of u and thus
boundedness of uc now follow immediately from (5.12) and the fact that (D5) holds
for Φ (by Proposition 4.9).
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Unbounded observation. As mentioned earlier, in this case, we cannot define
a sampled output via (5.6). Instead, we introduce a generalized sampling operation.
In the following, let w ∈ L2([0, τ ],R) be a function satisfying the conditions

(i)

∫ τ

0

w(t) dt = 1 and (ii)

∫ τ

0

w(t)Tt x dt ∈ X1 ∀x ∈ X.(5.13)

While condition (5.13) (ii) is difficult to check for general w, it is easy to show (using
integration by parts) that (5.13) (ii) holds if there exists a partition 0 = t0 < t1 <
· · · < tm = τ such that w|(ti−1,ti) ∈W 1,1((ti−1, ti),R) for i = 1, 2, . . . ,m.

We define a generalized sampling operation by

y(n) =

∫ τ

0

w(t)yc(nτ + t) dt ∀n ∈ Z+.(5.14)

Introducing the linear operator

L : X → X1, x �→
∫ τ

0

w(t)Tt x dt,

we define (
A B
C D

)
:=

(
Tτ (Tτ − I)(Ac)−1Bc

CcL CcL(Ac)−1Bc + Gc(0)

)
.(5.15)

The following result is an immediate consequence of Proposition 3.4 in [12].
Proposition 5.4. Suppose that Tt is exponentially stable. Let τ > 0 and u ∈

F (Z+,R). If uc given by (5.3) is applied to (5.1), then x and y given by (5.5) and
(5.14), respectively, satisfy (3.1), where (A,B,C,D) is given by (5.15). Moreover,
A is power-stable, C ∈ L(X,R), and, setting G(z) = C(zI − A)−1B + D, (5.8) is
satisfied.

Consider the following sampled-data low-gain controller for (5.9):

uc(t) = u(n) for t ∈ [nτ, (n+ 1)τ), n ∈ Z+,(5.16a)

y(n) =

∫ τ

0

w(t)yc(nτ + t) dt, n ∈ Z+,(5.16b)

u(n+ 1) = u(n) + k(r − y(n)), u(0) = u0 ∈ R, n ∈ Z+.(5.16c)

Theorem 5.5. Let λ > 0. Assume that Φc ∈ C (λ), L−1(Gc) is a finite signed
Borel measure on R+, Tt is exponentially stable, Gc(0) > 0, and r ∈ R is such
that r̃c := r/Gc(0) ∈ clos (NVSΦc). Let K > 0 be defined by (3.5), where G(z) =
C(zI −A)−1B+D, with (A,B,C,D) given by (5.15). Then, for all k ∈ (0,K/λ) and
all (x0, u0) ∈ X × R, the unique solution (xc(·), uc(·)) of the closed-loop system given
by (5.9) and (5.16) satisfies the following:

(1) limt→∞(Φc
e(u

c))(t) = r̃c;
(2) limt→∞ ‖xc(t) + (Ac)−1Bcr̃c‖ = 0;
(3) limt→∞[r − yc(t) + Cc

LTtx0] = 0;
(4) if r̃c ∈ int (NVSΦc), then uc is bounded.
Remark 5.6. (1) Since Cc

LTtx0 converges exponentially to 0 as t → ∞ for all
x0 ∈ X1, it follows from statement (3) that the error ec(t) = r − yc(t) converges to 0
for all x0 ∈ X1. If C

c is bounded, then this statement is true for all x0 ∈ X. If Cc

is unbounded and x0 �∈ X1, then e
c(t) does not necessarily converge to 0 as t → ∞.
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However, it follows from the proof below that ec(t) is small for large t in the sense
that ec(t) = ec1(t)+ ec2(t), where the function e

c
1 is bounded with limt→∞ ec1(t) = 0 and

the function t �→ ec2(t) exp(αt) is in L
2(R+,R) for some α > 0.

(2) The assumption that L−1(Gc) is a finite signed Borel measure on R+ is not
very restrictive and seems to be satisfied in all practical examples of exponentially
stable regular systems. In particular, this assumption is satisfied if Bc or Cc is bounded
(see [13, Lemma 2.3]).

Proof of Theorem 5.5. By using Proposition 5.4 instead of Proposition 5.2, all
statements with the exception of (3) follow exactly as in the proof of Theorem 5.3.
Due to the unboundedness of Cc, we cannot use statement (2) in order to show that
yc(t) converges to r as t→ ∞. However, we have

yc(t) = Cc
LTtx0 + (L−1(Gc) A Φc

e(u
c))(t).(5.17)

By assumption, L−1(Gc) is a finite signed Borel measure, and since limt→∞(Φc
e(u

c))(t)
= r̃c (by statement (1)), it follows from [5, Theorem 6.1, part (ii), p. 96] that

lim
t→∞[L−1(Gc) A Φc

e(u
c)](t) = Gc(0)r̃c = r.

Combining this with (5.17) shows that statement (3) holds.

6. Example: Sampled-data control of a diffusion process with output
delay subject to input hysteresis. Consider a diffusion process (with diffusion
coefficient κ > 0 and with Dirichlet boundary conditions) on the one-dimensional
spatial domain [0, 1], with scalar nonlinear pointwise control action (applied at point
x1 ∈ (0, 1), via an operator Φc ∈ C (λ)) and delayed (delay T ≥ 0) scalar observation
generated by a spatial averaging of the delayed state over an ε-neighborhood of a
point x2 ∈ (0, 1) with x2 > x1.

We formally write this single-input, single-output system as

zt(t, x) = κzxx(t, x) + δ(x− x1)(Φ
c
e(u

c))(t) ,

yc(t) =
1

2ε

∫ x2+ε

x2−ε

z(t− T, x) dx,

with boundary conditions

z(t, 0) = 0 = z(t, 1) ∀ t > 0.

For simplicity, we assume zero initial conditions

z(t, x) = 0 ∀ (t, x) ∈ [−T, 0]× [0, 1].

With input (Φc
e(u

c))(·) and output yc(·), this example qualifies as a regular linear
system with bounded observation and with transfer function given by

Gc(s) =
e−sT sinh

(
x1

√
s/κ

) [
cosh

(
(1− x2 + ε)

√
s/κ

)
− cosh

(
(1− x2 − ε)

√
s/κ

)]
2εs sinh

√
s/κ

.

Since the observation is bounded, we may sample the output using the standard sam-
pling operation given by (5.6). Further analysis (invoking application of the maximum
principle for the heat equation, which, for brevity, we omit here) confirms the physi-
cal intuition that the impulse response L−1(Gc) is nonnegative-valued. Consequently,
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Fig. 8. Controlled output.

Fig. 9. Control input.

Fig. 10. Input of relay hysteresis nonlinearity.

the corresponding step-response is nondecreasing, and therefore we may apply a result
by Özdemir and Townley [23] (see Remark 3.7 in [23]) to obtain the following lower
bound for K:

K ≥ 1

|(Gc)′(0)|/τ + 3Gc(0)/2
=: KL.(6.1)

A simple calculation yields that

Gc(0) =
x1(1− x2)

κ
, (Gc)′(0) = −x1(1− x2)(6Tκ+ 1− ε2 − x2

1 − (1− x2)
2)

6κ2
,
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Fig. 11. Controlled output.

Fig. 12. Control input.

Fig. 13. Input of backlash hysteresis nonlinearity.

and therefore, using (6.1),

K ≥ KL =
6κ2τ

x1(1− x2)(6Tκ+ 1− ε2 − x2
1 − (1− x2)2 + 9κτ)

.

By Theorem 5.3, for all k ∈ (0,KL/λ) ⊂ (0,K/λ), the sampled-data control (5.10)
guarantees asymptotic tracking of all reference values r which are feasible in the sense
that r/Gc(0) ∈ clos (NVSΦc). For purposes of illustration, we adopt the following
values:

κ = 0.1, x1 =
1

3
, x2 =

2

3
, T = 1, τ = 0.5, ε = 0.01.

For these specific values we obtain KL ≈ 0.147.
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We consider relay and backlash hysteresis operators:
(a) Let Φc = R0 be a relay hysteresis operator, where a1 = −1, a2 = 1, ρ1(v) =√

v + 1.1, and ρ2(v) =
√
0.1 +

√
2.1 − √

1.1− v (see section 4 for the definition and
[11] for more details). Then Φc ∈ C (1.6), and NVSΦc = im ρ1 ∪ im ρ2 = R. For
reference value r = 1.54

r̃c =
r

Gc(0)
=

rκ

x1(1− x2)
= 1.386 ∈ int (NVSΦc).

In each of the following three cases of admissible controller gain,

(i) k = 0.08, (ii) k = 0.06, (iii) k = 0.04,

Figure 8 depicts the output behavior of the system under integral control, Figure 9
depicts the corresponding control input, and Figure 10 shows the input uc of the relay
nonlinearity. We see from Figure 10 that for (i), limt→∞ uc(t) = ρ−1

1 (Φc
r), and for (ii)

and (iii), limt→∞ uc(t) = ρ−1
2 (Φc

r).
(b) Let Φc = B0.5, 0 be a backlash hysteresis operator (see section 4 for the

definition and [11] for more details). Then Φc ∈ C (1), and NVSΦc = R. For reference
value r = 1

r̃c =
r

Gc(0)
=

rκ

x1(1− x2)
= 0.9 ∈ int (NVSΦc).

In each of the following three cases of admissible controller gain,

(i) k = 0.145 (solid line), (ii) k = 0.11 (dashdot line), (iii) k = 0.08 (dotted line),

Figure 11 depicts the output behavior of the system under sampled-data control,
Figure 12 depicts the corresponding control input, and Figure 13 shows the input uc

of the backlash nonlinearity. We remark that the convergence of uc(t) as t → ∞ is
not guaranteed by Theorem 5.5, and in fact it seems that uc does not converge in all
three cases.

Figures 8–13 were generated using SIMULINK Simulation Software within MAT-
LAB, wherein a truncated eigenfunction expansion, of order 10, was adopted to model
the diffusion process.

Appendix. The infinite-dimensional discrete-time positive-real lemma.
The following result is a version of the discrete-time infinite-dimensional positive-real
lemma.

Lemma A.1. For a real Hilbert space X, let A ∈ L(X), B ∈ L(R, X), C ∈
L(X,R), and D ∈ R, and set G(z) := C(zI −A)−1B +D. Assume that A is power-
stable and

ReG(eiθ) > 0 ∀ θ ∈ [0, 2π).

Then there exist P ∈ L(X), P = P ∗ ≥ 0, L ∈ L(R, X), and W ∈ R such that

A∗PA− P = −LL∗,
A∗PB = C∗ −WL,

W 2 = 2D −B∗PB.

Although Lemma A.1 should be well known, we were not able to locate it in the
literature. Lemma A.1 can be obtained from Lemma A.2 (an infinite-dimensional
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version of the continuous-time positive-real lemma stated below) combined with stan-
dard fractional transformation techniques (as used in [6] for the finite-dimensional
case). For the sake of brevity, we omit the lengthy but straightforward details, which
can be found in [21].

Lemma A.2. For a real Hilbert space X, let Ac ∈ L(X), Bc ∈ L(R, X), Cc ∈
L(X,R), and Dc ∈ R; let σ(Ac) denote the spectrum of Ac, and set Gc(s) := Cc(sI−
Ac)−1Bc +Dc. Assume that σ(Ac) ⊂ {s ∈ C |Re s < 0} and

ReGc(iω) > 0 ∀ω ∈ R ∪ {±∞}.(A.1)

Then there exist P c ∈ L(X), P c = (P c)∗ ≥ 0, Lc ∈ L(R, X), and W c > 0 such that

P cAc + (Ac)∗P c = −Lc(Lc)∗,(A.2a)

P cBc = (Cc)∗ −W cLc,(A.2b)

2Dc = (W c)2.(A.2c)

In a different form, Lemma A.2 is due to Yakubovich [30] (see also Wexler [29]).
For completeness, we include a proof which is based on the positive-real Riccati equa-
tion theory developed in van Keulen [7].

Proof of Lemma A.2. By (A.1) we have that Dc > 0; defining W c :=
√
2Dc

gives (A.2c). Furthermore, again by (A.1), it follows from [7] (see Theorem 3.10 and
Remark 3.14 in [7]) that there exists Qc ∈ L(X), Qc = (Qc)∗, such that

QcAc + (Ac)∗Qc = (1/W c)2((Bc)∗Qc + Cc)∗ ((Bc)∗Qc + Cc).

Setting

P c := −Qc, Lc := (1/W c)(Cc − (Bc)∗P c)∗

yields (A.2a) and (A.2b). Since σ(Ac) ⊂ {s ∈ C |Re s < 0}, it follows from (A.2a) by
a routine argument that P c ≥ 0.
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