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STABILITY OF INFINITE-DIMENSIONAL
SAMPLED-DATA SYSTEMS

HARTMUT LOGEMANN, RICHARD REBARBER, AND STUART TOWNLEY

Abstract. Suppose that a static-state feedback stabilizes a continuous-time
linear infinite-dimensional control system. We consider the following question:
if we construct a sampled-data controller by applying an idealized sample-and-
hold process to a continuous-time stabilizing feedback, will this sampled-data
controller stabilize the system for all sufficiently small sampling times? Here
the state space X and the control space U are Hilbert spaces, the system
is of the form ẋ(t) = Ax(t) + Bu(t), where A is the generator of a strongly
continuous semigroup on X, and the continuous time feedback is u(t) = Fx(t).
The answer to the above question is known to be “yes” if X and U are finite-
dimensional spaces. In the infinite-dimensional case, if F is not compact, then
it is easy to find counterexamples. Therefore, we restrict attention to compact
feedback. We show that the answer to the above question is “yes”, if B is a
bounded operator from U into X. Moreover, if B is unbounded, we show that
the answer “yes” remains correct, provided that the semigroup generated by
A is analytic. We use the theory developed for static-state feedback to obtain
analogous results for dynamic-output feedback control.

1. Introduction

Consider the following system with state space X and input space U (both
Hilbert spaces):

(1.1) ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 ∈ X,
where A is the generator of a strongly continuous semigroup T (t) on X and B is
a bounded linear operator from U into X−1, where X−1 is a certain extrapolation
space with X ↪→ X−1. If the input (or control) operator B maps boundedly into
the state space X , then B is called bounded; otherwise B is called “unbounded”
(with respect to the state space X). We give precise details of the set-up in Section
2.

We consider the following fundamental problem: Suppose that the feedback
control u(t) = Fx(t), where F is a bounded linear operator from X into U , is an
exponentially stabilizing state feedback control for (1.1) in the sense that A+BF
generates an exponentially stable strongly continuous semigroup on X . A natural
implementation of this continuous-time control u(t) = Fx(t) is to use sample and

Received by the editors December 21, 2000 and, in revised form, February 21, 2002.
2000 Mathematics Subject Classification. Primary 34G10, 47A55, 47D06, 93C25, 93C57,

93D15.
This work was supported by NATO (Grant CRG 950179) and by the National Science

Foundation (Grant DMS-9623392).

c©2003 American Mathematical Society

3301



3302 H. LOGEMANN, R. REBARBER, AND S. TOWNLEY

hold, so that u is given instead by

(1.2) u(t) = Fx(kτ) , t ∈ [kτ, (k + 1)τ) .

Here τ > 0 is the sampling period and t = nτ , n = 0, 1, . . . , are the sampling times.
The control (1.2) is called a sampled-data feedback control and the overall system
given by (1.1) and (1.2) is called a sampled-data feedback system. Intuitively, we
would expect that for all sufficiently small sampling periods τ > 0, (1.2) produces
a stabilizing control for (1.1) in the sense that there exist N ≥ 1 and ν > 0 so that

(1.3) ‖x(t)‖ ≤ Ne−νt‖x0‖ , ∀x0 ∈ X, ∀ t ≥ 0 .

Integrating (1.1) and (1.2) over one sampling interval [kτ, (k + 1)τ) and setting
xk := x(kτ) yields the following discrete-time system:

xk+1 = ∆τxk , where ∆τ := T (τ) +
∫ τ

0

T (s)BF ds .

It is straightforward to show that ∆τ is a bounded operator from X to X and that
(1.3) holds if, and only if, ∆τ is power stable, i.e., ‖∆k

τ‖ → 0 as k →∞ (see Section
2). Then the fundamental problem described above becomes that of determining
whether or not ∆τ is power stable for all sufficiently small τ > 0.

By way of motivation, let us briefly discuss the finite-dimensional case. Then
X = Rn, U = Rm, A, B and F are real matrices of compatible formats and
T (t) = eAt. It is instructive to sketch a simple argument showing in this case that
the sampled-data feedback (1.2) is indeed stabilizing for (1.1), provided that τ is
sufficiently small. Since u(t) = Fx(t) is an exponentially stabilizing static state
feedback control for (1.1), the eigenvalues of A+ BF have negative real parts, or,
equivalently, there exists a positive definite symmetric matrix P satisfying

(1.4) (A+BF )TP + P (A+BF ) = −I.
Next we observe, using the power series expansion of the matrix exponential eAt,
that there exists M1 ≥ 0 so that

‖∆τ − I − τ(A +BF )‖ ≤M1τ
2 , ∀ τ ∈ (0, 1] .

Then, invoking (1.4), it is easy to see that there exist M2 > 0 and τ∗ > 0 such that

xT∆T
τ P∆τx− xTPx ≤ 2τxT (A+BF )Px+M2τ

2‖x‖2 ≤ − 1
2τ‖x‖

2 , ∀ τ ∈ (0, τ∗) .

Therefore, for every τ ∈ (0, τ∗), ∆T
τ P∆τ − P < 0, or, equivalently, ∆τ is power

stable, showing that the sampled-data feedback (1.2) is stabilizing for all sufficiently
small τ > 0. A different proof of this result can be found in Chen and Francis
[1], where, using the power series expansion of the matrix exponential and the
continuous dependence of the eigenvalues of ∆τ on τ , it is shown that the spectral
radius of ∆τ is less than one for all sufficiently small τ > 0 (which implies power-
stability of ∆τ for all suffciently small τ > 0).

Whilst this simple observation is easy to prove and well known in the finite-
dimensional control literature, it serves to indicate that extending the above re-
sult to infinite-dimensional situations is far from trivial. Indeed, neither the proof
sketched above nor the proof given in [1] have meaningful generalisations to the
infinite-dimensional case, because they both rely on the convergence of the Tay-
lor series of eAt in the operator-norm topology, which extends to the infinite-
dimensional case only if the generator of the semigroup is bounded, or, equivalently,



STABILITY OF INFINITE-DIMENSIONAL SAMPLED-DATA SYSTEMS 3303

if the semigroup is uniformly continuous. Systems described by uniformly continu-
ous semigroups are not general enough to encompass most interesting examples.

It might appear that the case considered above of sampling a static state or
output feedback control, whilst mathematically significant and simple to describe,
is too restrictive for meaningful applications. However, results for the more practi-
cally relevant case of sampling a dynamic output feedback control can be obtained
from the state feedback case quite easily, as we show in Section 5 (in an infinite-
dimensional context). Such sampling of dynamic continuous-time controllers forms
the basis for a so-called indirect sampled-data design methodology (see Chen and
Francis [2] and Franklin, Powell and Workman [6] for a fuller description of this
methodology in the finite-dimensional case).

Recently there has been increasing interest in sampled-data control of infinite-
dimensional systems; see Rebarber and Townley [15], [16], Rosen and Wang [18] and
Tarn et al. [20]. From these papers a trend emerges: if the underlying semigroup
system is analytic, or the input operator is bounded, then typically the finite-
dimensional sampled-data result generalises to the infinite-dimensional case; if the
input operator is unbounded and the underlying semigroup is not analytic, then the
generalisation fails. It is not surprising that analyticity plays such a key role. In
some sense, analyticity constrains the spectrum of the generator of the underlying
semigroup so as to avoid any losses of high-frequency information when sampling.

We give a brief description of the results contained in this paper. In Section 2
we introduce the class of infinite-dimensional systems to which our results apply
and we present some preliminary basic technical results to be used in the rest of
the paper. In Section 3 we consider the case in which the input operator B is
bounded, but the semigroup generated by A is not assumed to be analytic. We
show that if the feedback operator F is compact and the semigroup generated by
A+BF is exponentially stable, then, for sufficiently small τ > 0, the sampled-data
feedback (1.2) is stabilizing. A key element of the proof is the introduction of a
new, equivalent norm on the state space with respect to which the operator ∆τ

is a strict contraction, provided that τ is sufficiently small. We also give a simple
example which shows that the result is not true if the compactness assumption on
F is removed. In Section 4 we consider the case in which the input operator B
is unbounded and the semigroup generated by A is analytic. We show that for
any compact feedback operator F , the operator A + BF (with suitable domain)
generates an analytic semigroup on the state space X , and if this semigroup is
exponentially stable, then the sampled-data feedback (1.2) is stabilizing for all
sufficiently small τ > 0. The proof of this result is quite involved and differs
considerably from the argument leading to the result for bounded B. Instead of
trying to estimate the spectral radius of ∆τ directly, we invoke frequency-domain
stability criteria for the power stability of ∆τ , making repeated use of the analyticity
of the underlying semigroup. Finally, in Section 5 we show how to use the static
state feedback results of Sections 3 and 4 in the practically more relevant situation
of sampling a dynamic output feedback controller.

Notation: For α ∈ R, r > 0 and z ∈ C, we define

Cα := {s ∈ C |Re s > α} , B(z, r) := {s ∈ C | |s− z| < r} .
The exterior of the unit disc is denoted by E, i.e.,

E := {s ∈ C | |s| > 1} .
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Let X and Y be Banach spaces. The space of all bounded linear operators from X
to Y is denoted by B(X,Y ); we set B(X) := B(X,X). Let A be an operator with
domain and range in X . Then D(A) denotes the domain of A and %(A) denotes
the resolvent set of A, i.e., the set of all s ∈ C such that sI − A : D(A) → X is
bijective and (sI −A)−1 ∈ B(X). The spectrum of A, which is the complement of
%(A), is denoted by σ(A). Let σp(A) ⊂ σ(A) denote the point spectrum (i.e., the
set of all eigenvalues) of A. If S ⊂ X and A : D(A) ⊂ X → Y is an operator, then
A|S denotes the restriction of A to S, i.e., the operator defined by A|S x = Ax for
all x ∈ D(A|S) := D(A) ∩ S. For an open set Ω ⊂ C, H∞(Ω,B(X,Y )) denotes
the set of all bounded analytic B(X,Y )-valued functions f defined on an open set
Ωf ⊂ Ω (depending on f) such that Ω \Ωf is a discrete set.1 Clearly, each function
f ∈ H∞(Ω,B(X,Y )) admits an extension f̃ ∈ H∞(Ω,B(X,Y )) defined on Ω. For
an arbitrary set Λ ⊂ C, we define

H∞(Λ,B(X,Y )) :=
⋃

Ω⊃Λ, Ω open

H∞(Ω,B(X,Y )) .

2. The sampled-data system

We start with a simple lemma which will be useful in the subsequent develop-
ments.

Lemma 2.1. Let X, Y and Z be Hilbert spaces and let L : [0, 1] → B(X,Y ) be
given. If limt→0 L(t)x = 0 for all x ∈ X and if K ∈ B(Z,X) is compact, then

(2.1) lim
t→0
‖L(t)K‖B(Z,Y ) = 0 .

Moreover, if limt→0 L
∗(t)y = 0 for all y ∈ Y , and if H ∈ B(Y, Z) is compact, then

(2.2) lim
t→0
‖HL(t)‖B(X,Z) = 0 .

Proof. Assume that limt→0 L(t)x = 0 for all x ∈ X . If K ∈ B(Z,X) has finite rank,
then it is easy to prove that (2.1) holds. In a Hilbert space a compact operator
can be uniformly approximated by finite rank operators, and a standard argument
shows that (2.1) is true for compact K ∈ B(Z,X).

Assuming that limt→0 L
∗(t)x = 0 for all x ∈ X and that H ∈ B(Y, Z) is compact,

(2.2) can be obtained by an application of (2.1) to L∗(t) and H∗. �

Throughout the paper, X and U denote Hilbert spaces. Let us consider the
following sampled-data system with state space X and input space U :

ẋ(t) = Ax(t) +Bu(t), t ≥ 0 ; x(0) = x0 ∈ X ,(2.3a)
u(t) = Fx(kτ), kτ ≤ t < (k + 1)τ, k ∈ N0 ,(2.3b)

where x(t) ∈ X , u(t) ∈ U , τ > 0 is the sampling time, A is the generator of a
strongly continuous semigroup T (t) on X , F ∈ B(X,U) and B ∈ B(U,X−1), where
X−1 denotes the closure of X in the norm ‖x‖−1 = ‖(λI − A)−1x‖ (here ‖ · ‖
denotes the norm of X and λ is any element in %(A)). Clearly, X ↪→ X−1, and
hence B(U,X) ⊂ B(U,X−1). We say that B is bounded if B ∈ B(U,X); otherwise
we say that B is unbounded. The semigroup T (t) extends to a strongly continuous
semigroup on X−1. The generator of T (t) on X−1 is an extension of A to X

1 This means that either Ωf = Ω or, if Ωf 6= Ω, then for each z ∈ Ω \ Ωf there exists ε > 0

such that B(z, ε) ∩ (Ω \ Ωf ) = {z}.
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(which is bounded as an operator from X to X−1). We shall use the same symbol
T (t) (respectively, A) for the original semigroup (respectively, its generator) and
the associated extensions. With this convention, we may write A ∈ B(X,X−1).
Considered as a generator on X−1, the domain of A is X . The spectrum of A
considered as an operator on X coincides with the spectrum of A considered as
an operator on X−1; moreover, the point spectra of A and its extension coincide,
including algebraic multiplicities of isolated eigenvalues, We refer the reader to p.
123 in the book [5] by Engel and Nagel for more details on the extrapolation space
X−1.

The derivative on the left-hand side of (2.3a) has to be interpreted in the space
X−1. To solve the initial-value problem (2.3), we define a function x recursively by

x(0) = x0 ,(2.4a)

x(kτ + t) = T (t)x(kτ) +
∫ t

0

T (s)BFx(kτ) ds , ∀ t ∈ (0, τ ], ∀ k ∈ N0.(2.4b)

It follows from standard results in the theory of strongly continuous semigroups
(applied to T (t) considered as a semigroup on X−1) that

x ∈ C(R+, X) and x|[kτ,(k+1)τ ] ∈ C1([kτ, (k + 1)τ ], X−1) , ∀ k ∈ N0 .

Moreover, x satisfies the following differential equations in X−1:

ẋ(t) = Ax(t) +BFx(kτ) , ∀ t ∈ (kτ, (k + 1)τ), ∀ k ∈ N0 .

It is also clear that x given by (2.4) is the only function with these properties. In
this sense, the function x defined by (2.4) is the unique solution of (2.3).

We say that (2.3) is exponentially stable if there exist N ≥ 1 and ν > 0 such
that ‖x(t)‖ ≤ Ne−νt‖x0‖ for all initial values x0 ∈ X and all t ≥ 0. To study the
stability properties of the sampled-data system (2.3) we consider a related discrete
time system. Let x be the solution of (2.3) given by (2.4) and set

xk := x(kτ).

Then, by (2.4b),

(2.5) xk+1 = T (τ)xk +
∫ τ

0

T (s)BFxk ds = (T (τ) + SτF )xk, ∀ k ∈ N0 ,

where Sτ is an operator defined on U and given by

(2.6) Sτu :=
∫ τ

0

T (s)Buds , ∀u ∈ U .

Lemma 2.2. For any τ ≥ 0, Sτ ∈ B(U,X), and for any θ > 0,

(2.7) sup
0≤τ≤θ

‖Sτ‖B(U,X) <∞.

Moreover, if F ∈ B(X,U) is compact, then

(2.8) lim
τ→0
‖SτF‖B(X) = 0 .

Proof. By standard results from semigroup theory applied to T (t) considered as a
semigroup on X−1, we know that SτU ⊂ X and

ASτu = (T (τ)− I)Bu , ∀u ∈ U, ∀ τ ∈ (0,∞) .
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Hence, for λ ∈ %(A), we obtain

Sτu = (I − T (τ))(λI −A)−1Bu

+ λ

∫ τ

0

T (s)(λI −A)−1Buds , ∀u ∈ U, ∀ τ ∈ [0,∞) ,
(2.9)

showing that Sτ ∈ B(U,X) and that (2.7) holds. Moreover, let F ∈ B(X,U) be
compact. We see from (2.9) that limτ→0 ‖Sτu‖ = 0 for all u ∈ U , and thus (2.8)
follows from an application of Lemma 2.1. �

Introducing the operator

(2.10) ∆τ := T (τ) + SτF ,

(2.5) can be written in the form

(2.11) xk+1 = ∆τxk, ∀ k ∈ N .
Note that by Lemma 2.2, ∆τ ∈ B(X). Recall that an operator L ∈ B(X) is said
to be power stable if ‖Lk‖ → 0 as k →∞.

The following simple result can be obtained by a slight modification of the proof
of Proposition 2.1 in Rebarber and Townley [16].

Lemma 2.3. For any τ > 0, (2.3) is exponentially stable if and only if ∆τ is power
stable.

Hence, for the remainder of this paper, we study the power stability of ∆τ in
order to study the exponential stability of (2.3).

3. Bounded control

In this section we assume that the control operator B is bounded. We show that
if the feedback operator F is compact, then exponential stability of the continuous-
time semigroup generated by A+BF implies exponential stability of the sampled-
data system (2.3) provided the sampling time τ is small enough. More precisely,
we prove the following result.

Theorem 3.1. Assume that A generates a strongly continuous semigroup T (t) on
X, B ∈ B(U,X), F ∈ B(X,U) is compact and the semigroup generated by A+BF is
exponentially stable. Then there exists τ∗ > 0 such that for every τ ∈ (0, τ∗), there
exist N ≥ 1 and ν > 0 such that all solutions of (2.3) satisfy ‖x(t)‖ ≤ Ne−νt‖x0‖
for all x0 ∈ X and all t ≥ 0.

Proof. Denote the semigroup generated by A+BF by TBF (t). We start by writing
∆τ as a perturbation of TBF (τ). By the variation of parameters formula from the
perturbation theory of semigroups (see, for example, [14], p. 79), we have

TBF (τ)x = T (τ)x+
∫ τ

0

T (τ − s)BFTBF (s)xds , ∀x ∈ X .

Using (2.10) and defining Pτ ∈ B(X) by

Pτx :=
∫ τ

0

T (τ − s)BF (I − TBF (s))xds , ∀x ∈ X ,

we see that

(3.1) ∆τ = TBF (τ) + Pτ .
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By the hypothesis that TBF is exponentially stable, there exist M ≥ 1 and ω > 0
such that

‖TBF (t)x‖ ≤Me−ωt‖x‖ , ∀x ∈ X, ∀ t ∈ R+.

Adopting a standard technique from semigroup theory (see, for example, the proof
of Theorem 5.2 on p. 19 in Pazy [14]), we introduce a new norm | · | on X by setting

|x| := sup
t≥0
‖eωtTBF (t)x‖ , ∀x ∈ X .

Clearly,

(3.2) ‖x‖ ≤ |x| ≤M‖x‖ , ∀x ∈ X ,

and, moreover,

|TBF (t)x| = sup
s≥0
‖eωsTBF (s)TBF (t)x‖ ≤ e−ωt sup

s≥0
‖eωsTBF (s)x‖

= e−ωt|x| , ∀x ∈ X, ∀ t ≥ 0 .(3.3)

Since F is compact and lims→0(I − TBF (s))x = 0 for all x ∈ X , an application of
Lemma 2.1 yields

(3.4) lim
s→0
‖F (I − TBF (s))‖B(X,U) = 0.

For L ∈ B(X) we denote the operator norm supx∈X(|Lx|/|x|) by |L|. Using (3.1)-
(3.3) and invoking the inequality

e−ωτ ≤ 1− ωτe−ωτ , ∀ τ ∈ R+ ,

we obtain

|∆τ | ≤ e−ωτ + |Pτ | ≤ e−ωτ +M‖Pτ‖
≤ 1− ωτ + [ω(1− e−ωτ ) + h(τ)]τ , ∀ τ ∈ R+,(3.5)

where
h(τ) := M sup

0≤s≤τ
‖T (τ − s)BF (I − TBF (s))‖B(X).

By (3.4),
lim
τ→0+

h(τ) = 0,

and hence it follows from (3.5) that for fixed but arbitrary ε ∈ (0, ω) there exists
τε > 0 such that

(3.6) |∆τ | < 1− (ω − ε)τ < 1 , ∀ τ ∈ (0, τε).

Applying (3.2), we see that for any τ ∈ (0, τε),

‖∆k
τx‖ ≤ |∆k

τx| ≤ |∆k
τ ||x| ≤M |∆τ |k‖x‖ , ∀x ∈ X, ∀ k ∈ N .

Combining this with (3.6) shows that ∆τ is power stable for all τ ∈ (0, τε). �

Remark 3.2. (1) Examining the proof of Theorem 3.1, we see that for every ε ∈
(0, ω), there exists τε > 0 such that

‖∆k
τ‖ ≤M(1− (ω − ε)τ)k, ∀ k ∈ N, ∀ τ ∈ (0, τε) .

(2) A key element in the proof of Theorem 3.1 is that limτ→0+ h(τ) = 0, which
implies that

lim
τ→0+

‖Pτ‖
τ

= 0 .
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In the case of unbounded B, this does not seem to be true, even if B is an admissible
control operator for T (t) (in the sense of Weiss [21]). 3

The next remark shows that the compactness assumption on F imposed in The-
orem 3.1 cannot be relaxed.

Remark 3.3. It is easy to find counterexamples which show that, in general, The-
orem 3.1 is not true for non-compact feedback operators F . Indeed, consider the
case where X = l2(Z), A = diagk∈Z (1 + ki), B = I and F = −2I. Then F is
a continuous-time exponentially stabilizing feedback, since A + BF generates the
exponentially stable semigroup

TBF (t) = diagk∈Z(e(−1+ki)t).

However, applying the sampled-data feedback given by (2.3b) results in the discrete-
time operator

∆τ = diagk∈Z(e(1+ki)τ )− 2diagk∈Z

(
e(1+ki)τ − 1

1 + ki

)
.

Since ∣∣∣∣e(1+ki)τ − 2
(
e(1+ki)τ − 1

1 + ki

)∣∣∣∣ ≥ eτ − 2
|1 + ik|(e

τ + 1),

we see that for any τ > 0, the eigenvalues λτk of ∆τ satisfy

lim inf
|k|→∞

|λτk| ≥ eτ > 1 ,

showing that ∆τ is not power stable for any τ > 0.
Furthermore, it is possible to find counterexamples which show that, in general,

Theorem 3.1 is not true when B is not bounded. In particular, in [17] an example
is given for which U is one-dimensional, F is bounded, B is not bounded, A+BF
generates an exponentially stable semigroup, A−εB ∈ B(U,X) for any ε > 0 (so B
is “barely unbounded” by a common measure of unboundedness), and there exists
a sequence of positive sampling times (τn) such that τn → 0 and ∆τn is not power
stable. 3

Remark 3.4. It is important to realise that Theorem 3.1 is completely general
in the sense that it applies to any generator A, any bounded control operator
B and, in particular, any compact stabilizing feedback F . Obviously, in specific
cases, the result could be proved using different, possibly simpler arguments. As an
obvious example, consider the case of a system with a finite-dimensional unstable
part (typically arising from a parabolic PDE) and a feedback that stabilizes the
unstable part and is zero on the stable invariant subspace. More precisely, in this
case there exists a projection operator Π on X such that X1 := ΠX (the unstable
subspace) and X2 := (I − Π)(X) (the stable subspace) are invariant with respect
to the underlying semigroup, X1 is finite-dimensional and X1 ⊂ D(A); moreover,

A =
(
A1 0
0 A2

)
, B =

(
B1

B2

)
,

where A1 := A|X1 , A2 := A|X2 , B1 := ΠB, B2 := (I − Π)B and the operator A2

generates an exponentially stable semigroup on X2 (see, for example, Lemma 2.5.7
in Curtain and Zwart [3] for more details). If F1 : X1 → U is an exponentially
stabilizing feedback for the (finite-dimensional) system (A1, B1), then F := (F1, 0)
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is an exponentially stabilizing feedback for (A,B). It is obvious from the well-
known finite-dimensional version of Theorem 3.1 that for this particular feedback
the corresponding sampled-data feedback system (2.3) is exponentially stable for all
suffciently small τ > 0. Clearly, one could imagine proofs tailored to other situations
with specific feedbacks, say for example hyperbolic PDEs, retarded and neutral
functional equations or mixed parabolic/hyperbolic systems. However, in many
significant applications there is little scope for actually choosing the feedback. For
example, in static output feedback, the basic structure of the feedback is inherited
from the given observation and the feedback design is limited to choosing feedback
gains. In such cases it is difficult to see the merits of specifically tailored proofs
or indeed how they would be developed. It is therefore an important aspect of
Theorem 3.1 that it does not make any assumptions on the specific structure of the
underlying system (A,B) and the stabilizing feedback F . 3

In the next section we show that Theorem 3.1 generalises to the case with un-
bounded B in the special, but important, case where A generates an analytic semi-
group.

4. Unbounded control and analytic semigroup

In order to formulate and prove the main result of this section a number of
preparations are required. Throughout this section, we assume that A generates
a strongly continuous semigroup T (t) on X , B ∈ B(U,X−1) and F ∈ B(X,U).
Further assumptions on (A,B, F ) will be introduced when needed. We define an
operator ABF on X by setting

(4.1) ABFx = (A+BF )x , ∀x ∈ D(ABF ) := {x ∈ X | (A+BF )x ∈ X} .
It is easy to show that ABF is closed. We carefully distinguish between the operators
ABF and A + BF , the latter being an unbounded operator on X−1 with domain
D(A + BF ) = X . Clearly, A + BF ∈ B(X,X−1). Note that ABF is the part
of A + BF in X . The transfer function of the continuous-time system given by
(A,B, F ) is defined as follows:

(4.2) G : %(A)→ B(U), s 7→ F (sI −A)−1B .

We introduce the space X∗ := D(A∗), endowed with the norm

‖x‖∗ := ‖(λ̄I −A∗)x‖ ,
where λ is any element of %(A). Clearly, X1 ↪→ X = X∗. It is well known that X−1

and (X∗)∗ are isometrically isomorphic. Therefore, the triple X∗ ↪→ X = X∗ ↪→
X−1 is a so-called Gelfand triple. Moreover, if B ∈ B(U,X−1), then B∗ ∈ B(X∗, U).

Lemma 4.1. Under the above assumptions on A, B and F , the following state-
ments hold:

(1) %(A+BF ) ∩ %(A) = {s ∈ %(A) | 1 ∈ %(G(s))};
(2) if %(A+BF ) 6= ∅, then %(ABF ) = %(A+BF ) and

(sI −ABF )−1 = (sI −A−BF )−1|X , ∀ s ∈ %(ABF ) = %(A+BF ) ;

(3) if F is compact, then

%(ABF ) ∩ %(A) ⊂ %(A+BF ) ;

(4) if F is compact, then A∗BF = A∗ + F ∗B∗ with D(A∗BF ) = D(A∗) = X∗.
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Proof. To prove statements (1) and (3), let s ∈ %(A), and write

(4.3) sI −A−BF = (sI −A)[I − (sI −A)−1BF ] .

It follows that

s ∈ %(A+BF ) ⇔ 1 ∈ %((sI −A)−1BF ) ⇔ 1 ∈ %(F (sI −A)−1B) ,

yielding statement (1). Assume that F is compact. Then, by (4.3),

s ∈ σ(A+BF ) ⇔ 1 ∈ σp((sI −A)−1BF ) .

Therefore, if s ∈ σ(A+BF ), there exists x ∈ X , x 6= 0, such that (sI−A)−1BFx =
x. Hence, (A + BF )x = sx, showing that s ∈ σp(ABF ). We may conclude that
σ(A+BF ) ∩ %(A) ⊂ σ(ABF ), proving statement (3).

To prove statement (2), let λ ∈ %(A + BF ) and note that, by Proposition 2.17
on p. 261 in [5], we only need to show that the topology on X given by the norm

x 7→ |x| = ‖(λI −A−BF )x‖−1 ,

is stronger than the original norm topology. But this follows immediately, since
with

k := ‖(λI −A−BF )−1‖B(X−1,X) , l := ‖λI −A−BF‖B(X,X−1) .

we have

‖x‖ ≤ k‖(λI −A−BF )x‖−1 = k|x| , |x| ≤ l‖x‖ ; ∀x ∈ X ,

i.e., the two norms are even equivalent.
To prove statement (4), consider the operator A∗+F ∗B∗ with D(A∗+F ∗B∗) =

D(A∗) = X∗. The compactness of F together with the fact that B∗ ∈ B(X∗, U)
yields that F ∗B∗ is relatively compact with respect to A∗. Therefore, since A∗ is
closed, A∗ + F ∗B∗ is closed (see Theorem 1.1 on p. 194 in [8]) and so

(A∗ + F ∗B∗)∗∗ = A∗ + F ∗B∗

(see Theorem 5.29 on p. 168 in [8]). As a consequence, statement (4) will follow if
we can show that

(A∗ + F ∗B∗)∗ = ABF .

To this end assume that x ∈ D((A∗+F ∗B∗)∗). Setting x′ := (A∗+F ∗B∗)∗x ∈ X ,
we have that

(4.4) 〈x, (A∗ + F ∗B∗)z〉 = 〈x′, z〉 , ∀ z ∈ X∗ ,
where 〈·, ·〉 denotes the inner product in X . The duality pairing on X−1 × X∗,
denoted by [·, ·], is given by

[y, z] := 〈(λI −A)−1y, (λ̄I −A∗)z〉 , ∀ (y, z) ∈ X−1 ×X∗ ,
where λ ∈ %(A). It is straightforward to show that
(4.5)
[y, z] = 〈y, z〉 , [Ay, z] = 〈y,A∗z〉 , [BFy, z] = 〈y, F ∗B∗z〉 ; ∀ (y, z) ∈ X ×X∗ .
Thus, by (4.4),

[x′ − (A+BF )x, z] = 0 , ∀z ∈ X∗ ,
and so (A+BF )x = x′ ∈ X , proving that x ∈ D(ABF ) and ABFx = (A∗+F ∗B∗)∗x.
This shows that ABF is an extension of (A∗ + F ∗B∗)∗. It remains to prove that
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D(ABF ) ⊂ D((A∗ + F ∗B∗)∗). Let x ∈ D(ABF ). Invoking (4.5), we obtain for all
z ∈ X∗,

〈x, (A∗ + F ∗B∗)z〉 = [(A+BF )x, z] = 〈ABFx, z〉 ,
showing that x ∈ D((A∗ + F ∗B∗)∗). �

Remark 4.2. Statements (2) and (3) of Lemma 4.1 are wrong if the operator ABF
is replaced by a proper restriction of ABF . More precisely, consider an operator
ÃBF on X given by

ÃBFx = (A+BF )x , ∀x ∈ D(ÃBF ) ⊂ D(ABF ) .

If D(ÃBF ) 6= D(ABF ), then

(4.6) %(ÃBF ) ⊂ σp(ABF ) ⊂ σp(A+BF ) .

The second inclusion holds trivially. To prove the first inclusion, let λ ∈ %(ÃBF ).
Then, λI − ÃBF : D(ÃBF )→ X is bijective and hence, for y ∈ D(ABF ) \D(ÃBF ),
there exists x ∈ D(ÃBF ) such that (λI − ÃBF )x = (λI − ABF )y. It follows that
(λI −ABF )(y − x) = 0, and since y − x 6= 0, we see that λ ∈ σp(ABF ).

Moreover, combining statement (1) of Lemma 4.1 and (4.6), we see that if ÃBF
is a proper restriction of ABF , then I−G(s) is not invertible for any s ∈ %(ÃBF )∩
%(A). 3

Lemma 4.3. Assume that F ∈ B(X,U) is compact and that the following two
spectral assumptions hold:

(S1) C̄0 ⊂ %(ABF );
(S2) there exists ε > 0 such that σ(A) ∩ C−ε is bounded.

Then there exists α < 0 such that σ(A) ∩ Cα consists of finitely many eigenvalues
of A with finite algebraic multiplicities.

Proof. Since F is compact, it follows from statement (3) of Lemma 4.1 and as-
sumption (S1) that %(A + BF ) 6= ∅. Hence, combining statement (2) of Lemma
4.1, assumption (S1) and the fact that %(ABF ) is open shows that there exists an
open set Ω such that

(4.7) %(A+BF ) = %(ABF ) ⊃ Ω ⊃ C̄0 .

Recall that the spectrum of A considered as an operator on X coincides with the
spectrum of A considered as an operator on X−1 (see [5], p. 261, Proposition 2.17).
Moreover, the point spectra of A and its extension are identical, including algebraic
multiplicities of isolated eigenvalues, For the rest of this proof we will consider A
as an operator on X−1 with domain X . Clearly,

(4.8) sI −A = [I +BF (sI −A−BF )−1](sI −A−BF ) , ∀ s ∈ Ω ,

and therefore, by the compactness of F ,

(4.9) s ∈ σ(A) ⇔ −1 ∈ σp(BF (sI −A−BF )−1) , ∀ s ∈ Ω .

Let s ∈ σ(A) ∩Ω. Then, by (4.8) and (4.9), there exists x ∈ X−1, x 6= 0, such that

(sI −A)(sI −A−BF )−1x = 0 ,

showing that s is an eigenvalue of A, and so

(4.10) σ(A) ∩ Ω = σp(A) ∩ Ω .
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Combining (4.9), (4.10) and the compactness of F with Theorem 1.9 on p. 370 in
Kato [8] shows that for any compact set K ⊂ Ω, the intersection σp(A)∩K is finite.
It now follows from assumption (S2) that there exists α < 0 such that σp(A) ∩ Cα
is finite and σp(A) ∩Cα ⊂ Ω. It remains to show that each element in σp(A) ∩ Cα
has finite algebraic multiplicity. Seeking a contradiction, let λ ∈ σp(A) ∩ Cα ⊂ Ω
and suppose that λ has infinite algebraic multiplicity. Then, by Theorem 5.28 on p.
239 in [8], λ belongs to the essential spectrum of A (as defined on p. 243 in [8]). As
an unbounded perturbation on X−1, the operator BF is relatively compact with
respect to A (considered on X−1), due to the compactness of F . By Theorem 5.35
on p. 244 in [8], the essential spectrum of an operator remains fixed under relatively
compact perturbations, and thus, λ ∈ σ(A+BF ) ∩ Ω, contradicting (4.7). �

Assume that F ∈ B(X,U) is compact and the assumptions (S1) and (S2) hold.
Then, by Lemma 4.3, there exists α < 0 such that σ(A) ∩ Cα consists of finitely
many eigenvalues of A with finite algebraic multiplicities. Hence, there exists a
simple closed curve γ in the half-plane Cα not intersecting σ(A) and enclosing
σ(A) ∩ C̄0 in its interior. The operator

(4.11) Π :=
1

2πi

∫
γ

(sI −A)−1 ds

is a projection operator, and we have

(4.12) X = X1 ⊕X2 , where X1 := ΠX , X2 := (I −Π)X .

By a standard result (see, for example, Lemma 2.5.7 in Curtain and Zwart [3]), the
above decomposition has the following properties:
(D1) dim X1 <∞ and X1 ⊂ D(A);
(D2) X1 and X2 are T (t)-invariant for all t ≥ 0;
(D3) σ(A|X1 ) = σ(A) ∩ C̄0 and σ(A|X2 ) = σ(A) ∩ (C \ C̄0).

It is useful to introduce the following notation:

(4.13) Aj := A|Xj , Tj(t) := T (t)|Xj j = 1, 2 .

Clearly, by (D1) and (D2), T1(t) is a semigroup on the finite-dimensional space X1

with generator A1, i.e., T1(t) = eA1t, and T2(t) is a strongly continuous semigroup
on X2 with generator A2. Since the spectrum of A considered as an operator on X
coincides with the spectrum of A considered as an operator on X−1, the projection
operator Π on X defined in (4.11) extends to a projection on X−1. We will use
the same symbol Π for the original projection and its associated extension. The
decomposition (4.12) induces decompositions of the control operatorB ∈ B(U,X−1)
and the feedback operator F ∈ B(X,U):

(4.14) B1 := ΠB , B2 := (I −Π)B , F1 := F |X1 , F2 := F |X2 .

Lemma 4.4. Assume that F ∈ B(X,U) is compact and that assumptions (S1) and
(S2) hold. Then the pair (A1, B1) is controllable and the pair (A1, F1) is observable.

Proof. Seeking a contradiction, suppose that (A1, B1) is not controllable. Then, by
the Kalman controllability decomposition lemma, we may assume, without loss of
generality, that A1 and B1 can be written in the form

(4.15) A1 =
(
A11 ∗
0 A12

)
, B1 =

(
B11

0

)
.
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A straightforward calculation combined with an application of statement (2) of
Lemma 4.1 shows that

(4.16) (sI−ABF )−1 = (sI−A)−1+(sI−A)−1BF (sI−ABF )−1 , ∀ s ∈ %(A)∩C̄0 .

Using the decomposition of A and B and (4.15), we see that (sI − A)−1BF may
be written in the form
(4.17)

(sI −A)−1BF =

 (sI −A11)−1 ∗ 0
0 (sI −A12)−1 0
0 0 (sI −A2)−1

 ∗ ∗ ∗
0 0 0
∗ ∗ ∗

 .

Let λ ∈ σ(A12) and let y be a corresponding eigenvector of A12. Note that, by
(D3), λ ∈ C̄0. Setting x := col (0, y, 0) ∈ X , we may conclude from (4.16) and
(4.17) that

(sI −ABF )−1x =

 ∗
(sI −A12)−1y

0

+

 ∗0
∗

 =

 ∗
(s− λ)−1y

∗

 .

This shows that ‖(sI − ABF )−1x‖ → ∞ as s → λ in %(A) ∩ C̄0, leading to a
contradiction, since by (S1), λ ∈ %(ABF ).

To show the observability of (A1, F1), note that
(4.18)
(sI −ABF )−1 = (sI −A)−1 + (sI −A−BF )−1BF (sI −A)−1 , ∀ s ∈ %(A) ∩ C̄0 ,

which can be obtained from a straightforward calculation combined with an appli-
cation of statement (2) of Lemma 4.1. Based on the Kalman observability decom-
position lemma and (4.18), an argument similar to that establishing controllability
of (A1, B1) can be used to prove observability of (A1, F1). We omit the details for
the sake of brevity. �

The next result shows that if A generates an analytic semigroup and if F is
compact, then ABF generates an analytic semigroup.

Proposition 4.5. Assume that A generates an analytic semigroup T (t) on X,
B ∈ B(U,X−1), and F ∈ B(X,U) is compact. Then ABF generates an analytic
semigroup TBF (t) on X. Moreover, if TBF (t) is exponentially stable, then (I −
G)−1 ∈ H∞(C0,B(U)), where G is given by (4.2).

Proof. By statement (4) of Lemma 4.1, A∗BF = A∗ + F ∗B∗ with D(A∗BF ) =
D(A∗) = X1. Clearly, since A generates an analytic semigroup, so does A∗. More-
over, by the assumptions on B and F , B∗ ∈ B(X1, U) and F ∗ is compact, and so
F ∗B∗ is relatively compact with respect to A∗. By a well-known result from the
perturbation theory of analytic semigroups (see Corollary 2.17 on p. 180 in [5] or
Proposition 1 in Zabczyk [23]), it follows that A∗BF = A∗ + F ∗B∗ generates an an-
alytic semigroup, and hence, so does A∗∗BF . By the closedness of ABF , we have that
A∗∗BF = ABF , and thus we may conclude that ABF generates an analytic semigroup
TBF (t).

Assume that TBF (t) is exponentially stable. Then, by Lemma 4.1,

%(ABF ) = %(A+BF ) ⊃ C̄0 ,

and for all s ∈ C̄0 and for all x ∈ X−1 we have that

(sI −A−BF )−1x = (A+BF )(sI −A−BF )−1(A+BF )−1x .
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Since (A + BF )−1x ∈ X , we may conclude, using Lemma 4.1, that for all s ∈ C̄0

and all x ∈ X−1,

(sI − A−BF )−1x = ABF (sI −ABF )−1(A+BF )−1x

= (s(sI −ABF )−1 − I)(A+BF )−1x .(4.19)

A straightforward calculation shows that

(I −G(s))−1 = (I −G(s))−1G(s) + I = F (sI −A−BF )−1B + I ,

and so, by (4.19),

(4.20) (I −G(s))−1 = F (s(sI −ABF )−1 − I)(A+BF )−1B + I .

Since TBF (t) is an exponentially stable analytic semigroup and since (A+BF )−1B ∈
B(U,X), the right-hand side of (4.20) is uniformly bounded for s ∈ C0. Therefore,
(I −G)−1 ∈ H∞(C0,B(U)). �
Corollary 4.6. Assume that A generates an analytic semigroup T (t) on X, B ∈
B(U,X−1), and F ∈ B(X,U) is compact. If the semigroup generated by ABF is
exponentially stable, then there exists a decomposition X = X1 ⊕ X2 such that
(D1)–(D3) are satisfied and, moreover, the following property holds:
(D4) T2(t) is an exponentially stable analytic semigroup on X2 with generator

A2, where T2(t) and A2 are given by (4.13).

Proof. By the exponential stability of the semigroup generated by ABF , assumption
(S1) in Lemma 4.3 holds. Since A generates an analytic semigroup, for any β ∈ R,
the intersection σ(A) ∩ Cβ is bounded, and so assumption (S2) in Lemma 4.3
is satisfied. Therefore, by Lemma 4.3, properties (D1)–(D3) hold. Moreover, it
is clear that the semigroup T2(t) is analytic, and therefore satisfies the spectrum
determined growth assumption. By (D3) and Lemma 4.3, the generator A2 of T2(t)
satisfies σ(A2) ⊂ C \C−ε for some ε > 0. Therefore, we may conclude that T2(t) is
exponentially stable. �

Consider the discrete-time system (T (τ), Sτ , F ), where Sτ is given by (2.6), and
denote the transfer function of this system by Hτ , i.e.,

(4.21) Hτ (z) = F (zI − T (τ))−1Sτ .

Then, under the assumptions of Lemma 4.3 (i.e., F is compact and (S1) and (S2)
hold), we may write

(4.22) Hτ = H1
τ + H2

τ ,

where, using the notation of (4.13) and (4.14),

(4.23) Hj
τ (z) := Fj(zI − Tj(τ))−1

∫ τ

0

Tj(s)Bj ds , j = 1, 2.

In light of Lemma 2.3, in order to prove that the sampled-data system (2.3) is
exponentially stable for a given sampling time τ > 0, we need to show that ∆τ

given by (2.10) is power stable. The following lemma provides a sufficient condition
for the power stability of ∆τ in terms of τ and Hτ .

Lemma 4.7. Assume that A generates an analytic semigroup T (t) on X, B ∈
B(U,X−1), F ∈ B(X,U) is compact and the semigroup generated by ABF is expo-
nentially stable. If τ > 0 is such that

(4.24) τ(λ2 − λ1) 6= 2kπi , ∀ k ∈ Z \ {0}, ∀λ1, λ2 ∈ σ(A) ∩ C̄0 ,
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and if (I −Hτ )−1 ∈ H∞(E,B(U)), then ∆τ is power stable.

Note that under the assumptions of the above lemma, (4.24) is satisfied for all
sufficiently small τ > 0.

Proof of Lemma 4.7. By Corollary 4.6, there exists a decomposition X = X1 ⊕X2

such that (D1)–(D4) hold. In particular, using the notation of (4.13) and (4.14),
we have σ(A1) = σ(A) ∩ C̄0, and, moreover, setting Sjτ :=

∫ τ
0 Tj(s)Bj ds, j = 1, 2,

we may write

(4.25) T (τ) =
(
T1(τ) 0

0 T2(τ)

)
, Sτ =

(
S1
τ

S2
τ

)
, F = (F1, F2) .

Assume that τ satisfies (4.24). By Lemma 4.4, the finite-dimensional controlled
system (A1, B1) is controllable, and so, by a well-known result (see [7] or Theorem 4
on p. 102 in Sontag [19]), the discrete-time system (T1(τ), S1

τ ) is controllable as well.
This implies, in particular, that there exists K1 ∈ B(X1, U) such that the matrix
T1(τ)+S1

τK1 is power stable. Now T2(τ) is power stable (since the semigroup T2(t)
is exponentially stable by (D4)) and, setting K := (K1, 0) ∈ B(X,U), it follows
from (4.25) that T (τ) + SτK is power stable, showing that the controlled discrete-
time system (T (τ), Sτ ) is stabilizable. A similar argument shows that the observed
discrete-time system (T (τ), F ) is detectable. Hence, if (I−Hτ )−1 ∈ H∞(E,B(U)),
we may conclude that ∆τ is power stable (see Theorem 2 in Logemann [9]). �

The following theorem is the main result of this section.

Theorem 4.8. Assume that A generates an analytic semigroup T (t) on X, B ∈
B(U,X−1), and F ∈ B(X,U) is compact. If the semigroup generated by ABF is
exponentially stable, then there exists τ∗ > 0 such that for every τ ∈ (0, τ∗), there
exist N ≥ 1 and ν > 0 such that all solutions of (2.3) satisfy ‖x(t)‖ ≤ Ne−νt‖x0‖
for all x0 ∈ X and all t ≥ 0.

We see that the above result is of the same form as Theorem 3.1. In particular,
no assumptions are made on the specific structure of the stabilizing continuous-time
feedback F . It is therefore clear that Remark 3.4 also applies to Theorem 4.8.

The following lemma is the key tool for the proof of Theorem 4.8.

Lemma 4.9. For η > 0, define W (η) := {z = es | s ∈ C0, |s| < η}. Under the
assumptions of Theorem 4.8, there exist η > 0 and θ > 0 such that

(4.26) (I −Hτ )−1 ∈ H∞(W (η),B(U)) ∀ τ ∈ (0, θ) ,

where Hτ is given by (4.21).

We defer the long and technical proof of Lemma 4.9 to the end of this section.

Proof of Theorem 4.8. By Lemma 2.3 and Lemma 4.7, it is sufficient to show that
there exists τ∗ > 0 such that

(4.27) (I −Hτ )−1 ∈ H∞(E,B(U)) , ∀ τ ∈ (0, τ∗) .

To this end, let M ≥ 1 and µ ∈ R be such that

(4.28) ‖T (t)‖ ≤Meµt , ∀ t ∈ R+ .

We split E into three disjoint parts:

(4.29) E = E1(δ) ∪E2(δ) ∪ E3 ,
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where, for δ ∈ (0, 1),

E1(δ) := {z ∈ C | 1 < |z| < 4M, |z − 1| ≤ δ} ,
E2(δ) := {z ∈ C | 1 < |z| < 4M, |z − 1| > δ} ,

and E3 := {z ∈ C | |z| ≥ 4M}. We proceed in several steps.
Step 1: We claim that there exist δ > 0 and τ1 > 0 such that

(4.30) (I −Hτ )−1 ∈ H∞(E1(δ),B(U)) , ∀ τ ∈ (0, τ1) .

By Lemma 4.9 there exist η > 0 and θ > 0 such that (4.26) holds. Choosing
δ ∈ (0, 1) such that E1(δ) ⊂W (η), we see that (4.30) follows with τ1 = θ.

Step 2: Let δ ∈ (0, 1) be as in Step 1. We claim that there exists τ2 > 0 such
that

(4.31) (I −Hτ )−1 ∈ H∞(E2(δ),B(U)) , ∀ τ ∈ (0, τ2) .

To this end, first note that by (4.23)

H1
τ (z) = F1((z − 1)I − (T1(τ) − I))−1

∫ τ

0

T1(s)B1 ds .

Since T1(t) is a semigroup on the finite-dimensional space X1, we have

lim
τ→0
‖T1(τ)− I‖ = 0.

Moreover,

lim
τ→0
‖
∫ τ

0

T1(s)B1 ds‖ = 0 .

Since |z−1| > δ > 0 for all z ∈ E2(δ), a routine argument involving the application
of the Neumann series shows that there there exists θ∗ > 0 such that

(4.32) ‖H1
τ (z))‖ ≤ 1/4 , ∀ z ∈ E2(δ), ∀ τ ∈ (0, θ∗) .

Now we analyze H2
τ (z) on Ecl2 (δ), the closure of E2(δ). Using analyticity and

boundedness of the semigroup T2(t) (guaranteed by (D4)), an application of Theo-
rem 5.6 (b) on p. 66 in Pazy [14] shows that for each λ ∈ Ecl2 (δ) there exist θλ > 0
and kλ > 0 such that

(4.33) ‖(λI − T2(τ))−1‖ ≤ kλ , ∀ τ ∈ (0, θλ) .

For z, λ ∈ Ecl2 (δ) we have

‖(zI − T2(τ))−1‖ ≤ ‖(T2(τ) − λI)−1‖‖(I − (z − λ)(T2(τ) − λI)−1)−1‖ .
Combining this with (4.33), an application of the Neumann series yields that for
each λ ∈ Ecl2 (δ),

‖(zI − T2(τ))−1‖ ≤ 2kλ , ∀ z ∈ B(λ, 1/(2kλ)), ∀ τ ∈ (0, θλ) .

Since Ecl2 (δ) is compact, we may conclude from a standard compactness argument
that there exist k > 0 and θ̃ > 0 such that

(4.34) ‖(zI − T2(τ))−1‖ ≤ k , ∀ z ∈ Ecl2 (δ), τ ∈ (0, θ̃) .

By (4.23),
H2
τ (z) = F2(T2(τ) − I)(zI − T2(τ))−1A−1

2 B2 ,

and since F2 is compact, it follows from Lemma 2.1 and (4.34) that there exists
θ̂ ∈ (0, θ̃) such that

‖H2
τ(z)‖ ≤ 1/4 , ∀ z ∈ E2(δ), τ ∈ (0, θ̂) .
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Combining this with (4.32) and (4.22) shows that

‖Hτ (z)‖ ≤ 1/2 , ∀ z ∈ E2(δ), τ ∈ (0, τ2) ,

where τ2 := min(θ∗, θ̂). Yet another application of the Neumann series yields (4.31).
Step 3: We claim that there exists τ3 > 0 such that

(4.35) (I −Hτ )−1 ∈ H∞(E3,B(U)) , ∀ τ ∈ (0, τ3) .

By (2.10) and (4.28), together with Lemma 2.2, there exists τ3 > 0 such that

‖∆τ‖ ≤ 2M , ∀ τ ∈ (0, τ3) .

Defining the open set

Ẽ3 := {z ∈ C | |z| > 3M} ⊃ E3 ,

a routine argument involving the Neumann series then shows that

(4.36) ‖(zI −∆τ )−1‖ = |z−1|‖(I − z−1∆τ )−1‖ ≤ 1/M , ∀ z ∈ Ẽ3, ∀ τ ∈ (0, τ3) .

Now

(4.37) (I −Hτ (z))−1 = I + F (zI −∆τ )−1Sτ ,

and so (4.35) follows from (4.36), (4.37) and Lemma 2.2.
Step 4: Finally, setting τ∗ = min(τ1, τ2, τ3), a combination of (4.29)–(4.31) and

(4.35) yields (4.27). �
It remains to prove the crucial Lemma 4.9.

Proof of Lemma 4.9. Recall the definition of G in (4.2). Appealing to (D1)–(D4),
(4.13) and (4.14), we may write

(4.38) G = G1 + G2 , where Gj(s) = Fj(sI −Aj)−1Bj , j = 1, 2 .

It is convenient to set

C∗0 := C0 \ σ(A) = C0 \ σ(A1) .

For η > 0 and θ > 0, we define

V (θ, η) := {(τ, s) ∈ (0,∞)× C0 | τ ∈ (0, θ), τ |s| < η} ,
V ∗(θ, η) := {(τ, s) ∈ (0,∞)× C∗0 | τ ∈ (0, θ), τ |s| < η} .

The idea of the proof is to compare Hτ (eτs) to G(s) for all (τ, s) ∈ V ∗(θ, η), where
η > 0 and θ > 0 are sufficiently small. We proceed in several steps.

Step 1: In this step we analyze the term H1
τ (eτs)−G1(s). We claim that

(4.39) G1(s)−H1
τ (eτs) = F1(sI −A1)−1Q(τ, s)B1 , ∀ (τ, s) ∈ (0,∞)× C∗0 ,

where Q is a matrix-valued function defined on (0,∞)× C∗0 such that

(4.40) lim
(θ,η)→0

(sup{‖Q(τ, s)‖ | (τ, s) ∈ V ∗(θ, η)}) = 0 .

Using the finite-dimensionality of X1, we obtain using Taylor expansions
(4.41)∫ τ

0

T1(t)B1 dt = τ(I +Q1(τ))B1 , I − e−τsT1(τ) = τ(I +Q2(τ, s))(sI −A1) ,

where

Q1(τ) :=
∞∑
k=2

τk−1

k!
Ak−1

1 , Q2(τ, s) :=
∞∑
k=2

τk−1

k!
(A1 − sI)k−1 .
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Note that Q1 and Q2 satisfy

(4.42) lim
τ→0

Q1(τ) = 0 , lim
(τ,τs)→0

Q2(τ, s) = 0 .

The first limit follows immediately from the definition of Q1, whilst the second limit
follows from the inequality

‖Q2(τ, s)‖ ≤ eτ(|s|+‖A1‖) − 1 ,

which is the result of a routine estimate. Using (4.41), a straightforward calculation
shows that (4.39) holds with

(4.43) Q(τ, s) := τ [(1−e−τs)I−e−τsQ1(τ)+Q2(τ, s)](sI−A1)(I−e−τsT1(τ))−1 .

Note that, by the spectral mapping theorem, I − e−τsT1(τ) is invertible for all
(τ, s) ∈ (0,∞)×C∗0, and so, Q(τ, s) is well-defined for all (τ, s) ∈ (0,∞)×C∗0. From
(4.41) we obtain

Q(τ, s) = [(1 − e−τs)I − e−τsQ1(τ) +Q2(τ, s)](I +Q2(τ, s))−1 ,

and it follows from (4.42) that Q satisfies (4.40).
Step 2: We show that

(4.44) lim
(θ,η)→0

(sup{‖H2
τ(eτs)−G2(s)‖ | (τ, s) ∈ V (θ, η)}) = 0 .

In order to estimate the difference H2
τ (eτs)−G2(s), note that

H2
τ (eτs)−G2(s) = F2

[
(eτsI − T2(τ))−1(T2(τ) − I)A−1

2 − (sI − A2)−1
]
B2

= F2

[
(T2(τ) − I)A−1

2 (sI −A2)− (eτsI − T2(τ))
]

× (eτsI − T2(τ))−1(sI −A2)−1B2 .

Setting R2(s) := (sI −A2)−1, routine algebraic manipulations show that

(4.45) H2
τ (eτs)−G2(s) = P1(τ, s)P2(τ, s) ,

where

P1(τ, s) := F2

(
e−τs

T2(τ) − I
τ

A−1
2 −

1− e−τs
τs

I

)
,

P2(τ, s) :=
(
I − e−τsT2(τ)

τs

)−1

R2(s)B2 .

We first analyze P1(τ, s). Since the term

e−τs
T2(τ) − I

τ
A−1

2 −
1− e−τs

τs
I

converges strongly to 0 as (τ, τs)→ 0, the compactness of F2 together with Lemma
2.1 shows that

(4.46) lim
(τ,τs)→0

‖P1(τ, s)‖ = 0 .

Estimating P2(τ, s) is considerably more difficult. In view of (4.45) and (4.46), to
establish (4.44), it is sufficient to prove the following claim.

Claim: For any p ∈ (0, π) there exist δ > 0 and k > 0 such that

(4.47) ‖P2(τ, s)‖ ≤ k <∞ , ∀ (τ, s) ∈ V (δ, p) .
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Proof. Since the semigroup T2(t) is exponentially stable, for fixed s ∈ C0 and τ > 0
the spectral radius of e−τsT2(τ) is smaller than 1, and the Neumann series gives

(4.48) (I − e−τsT2(τ))−1 =
∞∑
k=0

e−kτsT2(kτ) .

Since T2(t) is an exponentially stable analytic semigroup, there exist β ∈ (0, π/2),
ω > 0 and M > 0 such that

%(A2) ⊃ Ξ := {ξ ∈ C | |arg(ξ + ω)| < π/2 + β}

and

(4.49) ‖R2(ξ)‖ ≤M/|ξ| , ∀ ξ ∈ Ξ \ {0}.

If we note that R2(ξ)B2 = (ξR2(ξ) − I)A−1
2 B2, (4.49) shows that for any ε > 0

there exists N > 0 such that

(4.50) ‖R2(ξ)B2‖B(U,X) ≤ N , ∀ ξ ∈ Ξ .

Let ψ ∈ (π/2, π/2 + β) and r0 ∈ (0, ω). Define the contour

Γ = {re−iψ | r > r0} ∪ {r0e
iφ | φ ∈ [ψ, 2π − ψ]} ∪ {reiψ | r > r0} ,

oriented bottom to top. Note that by construction Γ ⊂ Ξ and σ(A2) is to the left
of Γ; see Figure 4.1.

σ(A2)

Γ

Figure 4.1. The contour Γ with σ(A2) to the left of Γ

Invoking (4.48) and using a standard relationship between T2(t) and R2(s) (see
[14], Theorem 7.7, p. 30), we have

(4.51) (I − e−τsT2(τ))−1 = I +
1

2πi

∞∑
k=1

∫
Γ

e−kτsekτλR2(λ) dλ.

By (4.49),

‖e−kτsekτλR2(λ)‖ ≤ M

|λ| |e
kτ(λ−s)| , ∀λ ∈ Γ, ∀ s ∈ C0, ∀ τ > 0 .
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Hence we can use Lebesgue’s dominated convergence theorem to interchange the
order of summation and integration in (4.51). Evaluating the resulting infinite sum,
we obtain

(4.52) P2(τ, s) = τsR2(s)B2 +
1

2πi

∫
Γ

τseτ(λ−s)

1− eτ(λ−s)R2(λ)R2(s)B2 dλ.

Setting

(4.53) f(τ, λ, s) :=
τseτ(λ−s)

1− eτ(λ−s) +
s

λ− s =
τs

eτ(s−λ) − 1
− s

s− λ ,

and letting p ∈ (0, π) be fixed, but arbitrary, an elementary analysis (see the Ap-
pendix) shows that
(4.54)

sup
{
|f(τ, λ, s)
τ(s− λ)

| | (τ, λ, s) ∈ (0,∞)× Γ× C0 s. t. τ |λ| ≤ p, τ |s| ≤ p
}
<∞.

Define δ := p/r0 and for τ ∈ (0, δ) introduce

Γτ := {λ ∈ Γ | τ |λ| ≤ p} .
Clearly, Γτ 6= ∅ for all τ ∈ (0, δ). We decompose the integral on the right-hand side
of (4.52) as follows:

(4.55) I(τ, s) :=
∫

Γ

τseτ(λ−s)

1− eτ(λ−s)R2(λ)R2(s)B2 dλ = I1(τ, s) + I2(τ, s)R2(s)B2 ,

where

I1(τ, s) :=
∫

Γτ

τseτ(λ−s)

1−eτ(λ−s)R2(λ)R2(s)B2 dλ , I2(τ, s) :=
∫

Γ\Γτ

τseτ(λ−s)

1−eτ(λ−s)R2(λ) dλ .

We first analyze I1(τ, s). Using the resolvent identity

(s− λ)R2(λ)R2(s) = R2(λ) −R2(s) ,

and invoking (4.53), we obtain

(4.56) I1(τ, s) =
∫

Γτ

f(τ, λ, s)
R2(λ) −R2(s)

s− λ B2 dλ+
∫

Γτ

s

s− λR2(λ)R2(s)B2 dλ .

Setting

I11(τ, s) :=
∫

Γτ

f(τ, λ, s)
R2(λ)− R2(s)

s− λ B2 dλ , I12(τ, s) :=
∫

Γτ

s

s− λR2(λ) dλ ,

we have

(4.57) I1(τ, s) = I11(τ, s) + I12R2(s)B2 .

Invoking (4.50) and (4.54) shows that there exists k1 > 0 such that for all (τ, s) ∈
V (δ, p),

‖I11(τ, s)‖ ≤
∫

Γτ

|f(τ, λ, s)|
|λ− s| (‖R2(λ)B2‖+ ‖R2(s)B2‖) d|λ|

≤ k1τ length (Γτ ) .

Combining this with
length (Γτ ) ≤ 2(π + 1)p/τ

and setting k2 := 2k1(π + 1)p yields

(4.58) ‖I11(τ, s)‖ ≤ k2 , ∀ (τ, s) ∈ V (δ, p) .
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To estimate I12(τ, s), we define

κ(τ) := 2p/τ ,

and for each τ ∈ (0, δ) we embed Γτ into a closed contour

Cτ := {re−iψ | r ∈ [r0, κ(τ)]} ∪ {r0e
iφ | φ ∈ [ψ, 2π − ψ]}

∪{reiψ | r ∈ [r0, κ(τ)]} ∪ {κ(τ)eiφ | φ ∈ [−ψ, ψ]},

oriented clockwise (see Figure 4.2). Then

I12(τ, s) =
∫
Cτ

s

(s− λ)
R2(λ) dλ −

∫ κ(τ)

p/τ

s

s− reiψR2(reiψ)eiψ dr

+
∫ κ(τ)

p/τ

s

s− re−iψR2(re−iψ)e−iψ dr +
∫ ψ

−ψ

isκ(τ)eiφ

s− κ(τ)eiφ
R2(κ(τ)eiφ)dφ.(4.59)

By construction, for a given τ ∈ (0, δ), any s ∈ C0 ∩ B(0, p/τ) is inside the contour
Cτ and so Cauchy’s integral formula combined with (4.49) shows that there exists
k3 > 0 such that

(4.60)
∥∥∥∥∫

Cτ

s

(s− λ)
R2(λ) dλ

∥∥∥∥ = 2π‖sR2(s)‖ ≤ k3 , ∀ (τ, s) ∈ V (δ, p) .

Moreover, since |s − reiψ | > r| cosψ| for s ∈ C0, it follows from (4.49) that there
exists k4 > 0 such that∥∥∥∥∥

∫ κ(τ)

p/τ

s

s− reiψR2(reiψ)eiψdr

∥∥∥∥∥ ≤ k4|s|
| cosψ|

∫ ∞
p/τ

dr

r2

=
k4

p| cosψ|τ |s| , ∀ (τ, s) ∈ V (δ, p) .

As an immediate consequence we see that

(4.61)

∥∥∥∥∥
∫ κ(τ)

p/τ

s

s− reiψR2(reiψ)eiψ dr

∥∥∥∥∥ ≤ k5 , ∀ (τ, s) ∈ V (δ, p) ,

Cτ

Γτ
κ(τ)

Figure 4.2. The contour Γτ embedded in a closed contour Cτ
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for some suitable k5 > 0. Similarly, there exists k6 > 0 such that

(4.62)

∥∥∥∥∥
∫ κ(τ)

p/τ

s

s− re−iψR2(re−iψ)e−iψ dr

∥∥∥∥∥ ≤ k6 , ∀ (τ, s) ∈ V (δ, p) .

Trivially, since κ(τ) = 2p/τ ,

|s− κ(τ)eiφ| ≥ p/τ , ∀ (τ, s) ∈ V (δ, p), ∀φ ∈ [−ψ, ψ] ,

and hence, using (4.49), we see that there exists k7 > 0 such that∥∥∥∥∥
∫ ψ

−ψ

isκ(τ)eiφ

s− κ(τ)eiφ
R2(κ(τ)eiφ)dφ

∥∥∥∥∥ ≤ k7τ |s|
p

∫ ψ

−ψ
dφ =

2k7ψτ |s|
p

≤ 2k7ψ , ∀ (τ, s) ∈ V (δ, p) .(4.63)

Combining (4.59)–(4.63) shows that there exists k8 > 0 such that

(4.64) ‖I12(τ, s))‖ ≤ k8 , ∀ (τ, s) ∈ V (δ, p) .

By (4.50) we may conclude that I12(τ, s)R2(s)B2 is uniformly bounded on V (δ, p),
and therefore, by (4.57) and (4.58), we obtain that there exists k9 > 0 such that

(4.65) ‖I1(τ, s))‖ ≤ k9 , ∀ (τ, s) ∈ V (δ, p) .

To estimate I2(τ, s), first note that there exists k10 > 0 such that

|1− eτ(λ−s)| ≥ k10 > 0 , ∀ (τ, λ, s) ∈ (0,∞)× Γ× C0 s. t. λ ∈ Γ \ Γτ .

Combining this with an application of (4.49), we obtain

(4.66) ‖I2(τ, s)‖ ≤ 2k11p

k10

∫ ∞
p/τ

eτr cosψ

r
dr , ∀ (τ, s) ∈ V (δ, p) ,

for some suitable constant k11 > 0. Since cosψ < 0,∫ ∞
p/τ

eτr cosψ

r
dr ≤ τ

pτ | cosψ|e
p cosψ ≤ ep cosψ

p| cosψ| <∞ .

Together with (4.66) this shows that there exists k12 > 0 such that

(4.67) ‖I2(τ, s)‖ ≤ k12 , ∀ (τ, s) ∈ V (δ, p) .

Combining (4.52), (4.55), (4.65) and (4.67) and invoking (4.50) shows that (4.47)
holds, completing the proof of the claim. �

Step 3: By assumption, the analytic semigroup generated by ABF is exponen-
tially stable. Therefore, by Proposition 4.5,

(4.68) (I −G)−1 ∈ H∞(C0,B(U)) ,

which, in particular, implies that I −G(s) is invertible for all s ∈ C∗0. Setting

(4.69) D(τ, s) := G2(s)−H2
τ (esτ ) , ∀ (τ, s) ∈ (0,∞)× C0 ,

and

(4.70) Q̃(τ, s) :=
(
Q(τ, s) 0

0 0

)
∈ B(X−1, X) , ∀ (τ, s) ∈ (0,∞)× C∗0 ,
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with Q given by (4.43), we obtain from (4.38) and (4.39) for all (τ, s) ∈ (0,∞)×C∗0
that

I −Hτ (eτs)) = I −G1(s)−G2(s) + F1(sI −A1)−1Q(τ, s)B1 +D(τ, s)

= (I −G(s))[I + (I −G(s))−1F (sI −A)−1Q̃(s, τ)B
+ (I −G(s))−1D(τ, s)].(4.71)

A straightforward calculation combined with an application of statements (2) and
(3) of Lemma 4.1 shows that

(I −G(s))−1F (sI −A)−1x = F (sI −A−BF )−1x

= F (sI −ABF )−1x , ∀ s ∈ C∗0, ∀x ∈ X .(4.72)

Moreover, by (4.70),

(4.73) (Q̃(τ, s)B)U ⊂ X , ∀ (τ, s) ∈ (0,∞)× C∗0 .
Combining (4.71)–(4.73) shows that for all (τ, s) ∈ (0,∞)× C∗0,

(4.74) I−Hτ (eτs) = (I−G(s))[I+F (sI−ABF )−1Q̃(τ, s)B+(I−G(s))−1D(τ, s)] .

By assumption, the analytic semigroup generated by ABF is exponentially stable.
Consequently, the function s 7→ (sI − ABF )−1 is in H∞(C0,B(X)), and thus we
may conclude from (4.40) and (4.70) that

(4.75) lim
(θ,η)→0

(sup{‖F (sI −ABF )−1Q̃(τ, s)B‖ | (τ, s) ∈ V ∗(θ, η)}) = 0 .

From (4.44) and (4.69) combined with (4.68), we obtain

(4.76) lim
(θ,η)→0

(sup{‖(I −G(s))−1D(τ, s)]‖ | (τ, s) ∈ V (θ, η)}) = 0 .

Finally, combining (4.74)–(4.76) shows that that there exist θ > 0 and η > 0 such
that (4.26) holds. �

5. Examples

In this section we give examples which illustrate Theorem 4.8. We consider
a general parabolic partial differential equation with Dirichlet control. For two
different types of stabilizing feedbacks u = Fx found in the literature on control of
partial differential equations, we show that the associated sampled-data feedback
(1.2) stabilizes the system for small enough τ > 0.

Let Ω be a convex bounded open set in Rn, n ≥ 2, with C∞ boundary Γ. Let

L(ξ, ∂) =
∑
|α|≤2

aα(ξ)∂α

with smooth real coefficients aα, where ∂ is the spatial derivative operator. We
consider the following parabolic system:

(5.1)
∂x

∂t
(t, ξ) = −L(ξ, ∂)x(t, ξ) in (0,∞)× Ω, x(t, ζ) = u(t, ζ) in (0,∞)× Γ.

An example of such a system is a heat equation in a disk.
Let X = L2(Ω), U = L2(Γ), and let A be the operator −L(ξ, ∂) with domain

D(A) = {x ∈ H2(Ω) | x|Γ = 0}. It is well known that A is the generator of an
analytic semigroup; see for instance [4]. Define the Dirichlet map D by

x = Dy if L(ξ, ∂)x = 0 in Ω and x = y on Γ.
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Feedback stabilization of (5.1) is studied in Lasiecka and Triggiani [10], [11], [12]. In
[11] it is shown that (5.1) can be written in the form ẋ = Ax+Bu with B = −AD.
From standard elliptic theory, D ∈ B(L2(Γ), H1/2(Ω)) (see for instance [13]); so we
see that B ∈ B(U,X−1).

We now describe two examples of compact feedbacks that exponentially stabilize
(5.1).

Example 1. We first consider the rank m feedback from [10] of the form

Fx(t, ·) =
m∑
j=1

〈x(t, ·), wj(·)〉L2(Ω)gj(·),

where wj ∈ L2(Ω) and gj ∈ L2(Γ). Theorem 1.2 from [10] gives conditions on wj
and gj that guarantee that A + BF generates an exponentially stable semigroup.
Since F is obviously compact, we can apply Theorem 4.8 to conclude that (1.2)
exponentially stabilizes (5.1) for small enough τ > 0.

Example 2. Here the stabilizing feedback arises from the solution of a linear
quadratic optimal control problem. Consider the cost functional

J(u, x) =
∫ ∞

0

(‖u(t)‖2L2(Γ) + ‖x(t)‖2L2(Ω))dt ,

where x is the solution of (5.1) corresponding to the control function u. It is shown
in [11] that the optimal control is given by the feedback

(5.2) u =
∂

∂νA∗
Px ,

where ∂/∂νA∗ is the co-normal derivative with respect to A∗ and P ∈ B(L2(Ω))
is a nonnegative selfadjoint operator which is the unique solution of the algebraic
Riccati equation

〈x, y〉L2(Ω) + 〈Px,Ay〉L2(Ω) + 〈Ax, Py〉L2(Ω) =
〈

∂

∂νA∗
Px,

∂

∂νA∗
Py

〉
L2(Γ)

.

It is shown in Theorem 2.8 in [11] that the control (5.2) can be written as u = Fx,
where F ∈ B(X,U). Furthermore, it is shown in the proof of Theorem 2.10 in [11]
that BF can be written in the form AK, where K ∈ B(X) is compact. Hence
we can apply Theorem 4.8 to ẋ = Ax + Av with feedback v = Kx, to conclude
that (1.2) exponentially stabilizes (5.1) for small enough τ > 0. In [12], Galerkin
approximations of the feedback (5.2) were developed and shown to be exponentially
stabilizing for sufficiently small mesh parameters. These Galerkin approximations
produce finite-rank feedback, and therefore Theorem 4.8 can again be applied.

6. Dynamic sampled-data feedback

In this section we apply the results of the previous sections to dynamic sampled-
data feedback. For simplicity and the sake of brevity, we restrict ourselves here
to systems with bounded control and bounded observation. The system to be
controlled, the plant, is formally given by

ẋ(t) = Ax(t) +Bu(t), t ≥ 0 ; x(0) = x0 ∈ X ,(6.1a)
y(t) = Cx(t) ,(6.1b)
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where A : D(A) ⊂ X → X generates a strongly continuous semigroup T (t), B ∈
B(U,X), C ∈ B(X,Y ), and X , U and Y are Hilbert spaces.

Consider a continuous-time controller of the form

ż(t) = Acz(t) +Bcv(t), t ≥ 0 ; z(0) = z0 ∈ Xc ,(6.2a)
w(t) = Ccz(t) +Dcv(t) ,(6.2b)

where Ac : D(Ac) ⊂ Xc → Xc generates a strongly continuous semigroup Tc(t),
Bc ∈ B(Y,Xc), Cc ∈ B(Xc, U), Dc ∈ B(Y, U) and Xc is a Hilbert space. Using the
output (6.1b) of (6.1) as the input for (6.2) and the output (6.2b) of (6.2) as the
input for (6.1), i.e.,

(6.3) v = y and u = w ,

we obtain the feedback interconnection of (6.1) and (6.2). It is convenient to define

Ã :=
(
A 0
0 Ac

)
, B̃ :=

(
B 0
0 Bc

)
, C̃ :=

(
C 0
0 Cc

)
, K̃ :=

(
Dc IU
IY 0

)
.

Clearly, Ã generates the strongly continuous semigroup

T̃ (t) :=
(
T (t) 0

0 Tc(t)

)
.

We say that the continuous-time feedback system given by (6.1)–(6.3) is exponen-
tially stable if the strongly continuous semigroup generated by

Ã+ B̃K̃C̃ =
(
A+BDcC BCc

BcC Ac

)
is exponentially stable.

Let τ > 0 and consider the following discretization of (6.2), which is obtained
by applying the standard hold and sampling operations to (6.2):

zk+1 = Tc(τ)zk +
∫ τ

0

Tc(s)Bcvk ds , k ∈ N0 ; z0 = z0 ∈ Xc ,(6.4a)

wk = Cczk +Dcvk .(6.4b)

We use the discrete-time system (6.4) to control the continuous-time system (6.1)
by sampled-data feedback, i.e., we consider the feedback interconnection of (6.1)
and (6.4) given by

vk = y(kτ) and u(kτ + t) = wk , t ∈ [0, τ); k ∈ N0 .

Via an application of the variation of parameters formula to (6.1a), this leads to
the following sampled-data feedback equations:

x(kτ + t) = T (t)x(kτ) +
∫ t

0

T (s)B(DcCx(kτ) + Cczk) ds , t ∈ [0, τ) ; x(0) = x0,

(6.5a)

zk+1 = Tc(τ)zk +
∫ τ

0

Tc(s)BcCx(kτ) ds, k ∈ N0 ; z0 = z0.

(6.5b)

The sampled-data feedback system (6.5) is called exponentially stable if there exist
N ≥ 1 and ν > 0 such that for all initial conditions (x0, z0) ∈ X ×Xc,

‖(x(kτ + t), zk)‖ ≤ Ne−ν(kτ+t)‖(x0, z0)‖ , ∀ t ∈ [0, τ), ∀ k ∈ N0 .
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By a straightforward calculation it follows from (6.4a) that(
x((k + 1)τ)

zk+1

)
= ∆̃τ

(
x(kτ)
zk

)
, k ∈ N0 ,

where

∆̃τ : X ×Xc → X ×Xc , x̃ 7→ T̃ (τ)x̃ +
∫ τ

0

T̃ (s)B̃K̃C̃x̃ ds .

The proof of the following lemma is a routine exercise and is therefore left to the
reader.

Lemma 6.1. For any τ > 0, the sampled-data feedback system (6.5) is exponen-
tially stable if and only if ∆̃τ is power stable.

We are now in position to formulate the main result of this section.

Theorem 6.2. Assume that the operator K̃C̃ is compact. If the continuous-time
feedback system (6.1)–(6.3) is exponentially stable (i.e., the strongly continuous
semigroup generated by Ã+ B̃K̃C̃ is exponentially stable), then there exists τ∗ > 0
such that for every τ ∈ (0, τ∗) the sampled-data feedback system (6.5) is exponen-
tially stable.

Proof. Introducing the operator

S̃τ : U × Y → X ×Xc , ũ 7→
∫ τ

0

T̃ (s)B̃ũ ds ,

we may write ∆̃τ = T̃ (τ) + S̃τ K̃C̃, and we see that ∆̃ is of the form (2.10). By
the compactness of K̃C̃ and the exponential stability of the semigroup generated
by Ã+ B̃K̃C̃, it follows from Theorem 3.1 and Lemma 2.3 that there exists τ∗ > 0
such that for every τ ∈ (0, τ∗) the operator ∆̃τ is power stable. An application of
Lemma 6.1 yields the claim. �

Trivially, the compactness assumption on K̃C̃ is satisfied if the observation op-
erators C and Cc are compact. In particular, compactness of K̃C̃ is guaranteed if
U and Y are finite-dimensional.

Under suitable assumptions, Theorem 4.8 can be used to extend Theorem 6.2 to
systems and controllers with unbounded control operators B and Bc, respectively,
provided the semigroups T (t) and Tc(t) are analytic. For the sake of brevity we
omit the details.

Appendix: Derivation of (4.54)

Let p ∈ (0, π) and consider the meromorphic function g defined on C by

g(ξ) :=
1 + ξ − eξ
ξ(eξ − 1)

.

Clearly, for any ε ∈ (0, 2p), the function g is bounded on B(0, 2p) \ B(0, ε). More-
over, invoking the Taylor expansion of eξ or using L’Hôpital’s rule, we have

lim
ξ→0

g(ξ) = −1/2 .

Therefore, we may conclude that

(A.1) sup{|g(ξ)| | ξ ∈ B(0, 2p), ξ 6= 0} <∞ .
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By a straightforward calculation it follows from (4.53) that

|f(τ, λ, s)|
|τ(s− λ)| =

|s|
|s− λ| |g(τ(s − λ))| .

Noting that
sup{|s|/|s− λ| | (λ, s) ∈ Γ× C0} <∞ ,

we see from (A.1) that

sup
{
|f(τ, λ, s)
τ(s− λ)

| | (τ, λ, s) ∈ (0,∞)× Γ× C0 s. t. τ |λ| ≤ p, τ |s| ≤ p
}
<∞ ,

which is (4.54).
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