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Abstract. Closing the loop around an exponentially stable, single-input, single-output, regular
linear system—subject to a globally Lipschitz, nondecreasing actuator nonlinearity and compensated
by an integral controller with time-dependent gain k(t)—is shown to ensure asymptotic tracking of
a constant reference signal r, provided that (a) the steady-state gain of the linear part of the system
is positive, (b) the reference value r is feasible in an entirely natural sense, and (c) the function
t �→ k(t) monotonically decreases to zero at a sufficiently slow rate. This result forms the basis of a
simple adaptive control strategy that ensures asymptotic tracking under conditions (a) and (b).
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1. Introduction. The paper has, as a precursor, the article [9] which contains
an extension, to infinite-dimensional systems with input nonlinearities, of the well-
known principle (see, for example, [5], [13], and [17]) that closing the loop around a
stable, linear, finite-dimensional, continuous-time, single-input, single-output plant,
with transfer function G(s) compensated by a pure integral controller C(s) = k/s,
will result in a stable closed-loop system that achieves asymptotic tracking of arbitrary
constant reference signals, provided that |k| is sufficiently small and G(0)k > 0. In
particular, in [9] it is shown that the above principle may remain valid if the plant to
be controlled is a single-input, single-output, continuous-time, infinite-dimensional,
regular (as defined in section 2 below) linear system subject to an input nonlinearity
φ. More precisely, if φ is globally Lipschitz and nondecreasing, if G(0) > 0, and if the
constant reference signal r is feasible (in the sense that [G(0)]−1r is in the closure of
the image of φ), then there exists k∗ > 0 such that, ∀k ∈ (0, k∗), the output y(t) of
the closed-loop system (shown in Figure 1) converges to r as t → ∞. Therefore, if a
(regular) plant is known to be stable, if the input nonlinearity is of the above class, if
G(0) �= 0, and if the sign of G(0) is known (in principle, the latter information can be
obtained from plant step response data), then the problem of tracking feasible signals
r by low-gain integral control reduces to that of tuning the gain parameter k. In a
nonadaptive, linear, finite-dimensional context, one such controller design approach
(“tuning regulator theory”[5]) has been successfully applied in process control (see,
for example, [4] and [14]). Furthermore, the problem of tuning the integrator gain
adaptively has been addressed recently in a number of papers: see, for example, [3]
and [15], [16] for the finite-dimensional case (with input constraints treated in [15]),
and [10], [11], [12] for the linear infinite-dimensional case.

The present paper addresses aspects of adaptive tuning of the integrator gain
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Fig. 1. Low-gain control with input nonlinearity.

for infinite-dimensional regular linear systems (with transfer function G), subject to
input nonlinearities φ of the same class as considered in its precursor [9]. In [9], the
constant-gain case is treated; there, the existence of a value k∗ > 0, with the property
that asymptotic tracking of feasible reference signals r is ensured for every fixed gain
k ∈ (0, k∗), is established. Let k∗∗ denote the supremum of all such k∗. In [9], it is
shown that k∗∗ ≥ κ∗/λ, where λ > 0 is a Lipschitz constant for φ and κ∗ denotes the
supremum of all numbers κ > 0 such that

1 + κRe
G(s)

s
≥ 0 ∀ s withRe s > 0.

For lower bounds and formulae for κ∗ in terms of plant data, we refer to [8]. In
general, k∗∗ is a function of the plant data and so, in the presence of uncertainty, may
fail to be computable. In such cases, it is natural to consider time-dependent gain
strategies t �→ k(t) > 0 capable of attaining sufficiently small values. Theorem 3.8 has
the following flavor: if k(·) monotonically decreases to zero sufficiently slowly, then
asymptotic tracking of feasible reference signals is achieved. The practical utility of
this result is limited insofar as the gain function is selected a priori: no use is made of
the instantaneous output information y(t) from the plant to update the gain. Utilizing
the available output information, Theorem 3.13 establishes the efficacy of the simple
adaptive gain strategy

k(t) =
1

l(t)
, where l̇(t) = |r − y(t)|, l(0) = l0 > 0,

and shows that, if the reference signal r is such that [G(0)]−1r ∈ imφ is not a critical
value of φ, then the monotone function t �→ k(t) > 0 converges to a positive limit as
t → ∞.

2. Preliminaries on regular linear systems. We assemble some fundamen-
tal facts pertaining to regular linear systems and tailored to later requirements; the
reader is referred to [20], [21], [22], [23], [24], and [9] for full details. This section is
prefaced with the remark that the class of regular linear infinite-dimensional systems
is rather general: it includes most distributed parameter systems and all time-delay
systems (retarded and neutral) which are of interest in applications. Although there
exist abstract examples of well-posed, infinite-dimensional systems that fail to be reg-
ular, the authors are of the opinion that any physically motivated, well-posed, linear,
continuous-time, autonomous control system is regular.

First, some notation: for a Hilbert space H and any τ ≥ 0, Rτ denotes the
operator of right-shift by τ on Lp

loc(R+, H), where R+ := [0,∞); the truncation
operator Pτ : Lp

loc(R+, H) → Lp(R+, H) is given by (Pτu)(t) = u(t) if t ∈ [0, τ ] and
(Pτu)(t) = 0 otherwise; for α ∈ R, we define the exponentially weighted Lp-space
Lp
α(R+, H) := {f ∈ Lp

loc(R+, H)| f(·) exp(−α ·) ∈ Lp(R+, H)}; B(H1, H2) denotes
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the space of bounded linear operators from a Hilbert space H1 to a Hilbert space H2;
for α ∈ R, Cα := {s ∈ C |Re s > α}; the Laplace transform is denoted by L.

Well-posed systems. The concept of a well-posed linear system was introduced
by Weiss [24]. An equivalent definition can be found in [19].

Definition 2.1. Let U , X, and Y be real Hilbert spaces. A well-posed linear
system with state space X, input space U , and output space Y is a quadruple Σ =
(T,Φ,Ψ,F), where T = (Tt)t≥0 is a C0-semigroup of bounded linear operators on
X; Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X such
that, ∀ τ, t ≥ 0,

Φτ+t(Pτu+Rτv) = TtΦτu+Φtv ∀ u, v ∈ L2(R+, U) ;

Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y ) such that
Ψ0 = 0 and, ∀ τ, t ≥ 0,

Ψτ+tx0 = PτΨτx0 +RτΨtTτx0 ∀ x0 ∈ X;

and F = (Ft)t≥0 is a family of bounded linear operators from L2(R+, U) to L2(R+, Y )
such that F0 = 0 and, ∀ τ, t ≥ 0,

Fτ+t(Pτu+Rτv) = PτFτu+Rτ (ΨtΦτu+ Ftv) ∀ u, v ∈ L2(R+, U).

For an input u ∈ L2
loc(R+, U) and initial state x0 ∈ X, the associated state

function x ∈ C(R+, X) and output function y ∈ L2
loc(R+, Y ) of Σ are given by

x(t) = Ttx0 +ΦtPtu,(1a)

Pty = Ψtx0 + FtPtu.(1b)

Σ is said to be exponentially stable if the semigroup T is exponentially stable:

ω(T) := lim
t→∞

1

t
ln ‖Tt‖ < 0.

Ψ∞ and F∞ will denote the unique operators X → L2
loc(R+, Y ) and L2

loc(R+, U) →
L2

loc(R+, Y ), respectively, satisfying

Ψτ = PτΨ∞, Fτ = PτF∞ ∀ τ ≥ 0.(2)

IfΣ is exponentially stable, then the operatorsΦt andΨt are uniformly bounded;Ψ∞
is a bounded operator from X into L2(R+, Y ), and F∞ maps L2(R+, U) boundedly
into L2(R+, Y ). Since PτF∞ = PτF∞Pτ ∀ τ ≥ 0, F∞ is a causal operator.

Regularity. Weiss [20] has established that, if α > ω(T) and u ∈ L2
α(R+, U),

then F∞u ∈ L2
α(R+, Y ) and there exists a unique holomorphic G : Cω(T) → B(U, Y )

such that

G(s)(Lu)(s) = [L(F∞u)](s) ∀ s ∈ Cα,

where L denotes Laplace transform. In particular, G is bounded on Cα ∀ α > ω(T).
The function G is called the transfer function of Σ.

Σ and its transfer functionG are said to be regular if there exists a linear operator
D such that

lim
s→∞, s∈R

G(s)u = Du ∀ u ∈ U,
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in which case, by the principle of uniform boundedness, it follows that D ∈ B(U, Y ).
The operator D is called the feedthrough operator of Σ.

Generating operators. The generator of T is denoted by A with domain
dom(A). Let X1 be the space dom(A) endowed with the graph norm. The norm
on X is denoted by ‖ · ‖, whilst ‖ · ‖1 denotes the graph norm. Let X−1 be the
completion of X with respect to the norm ‖x‖−1 = ‖(λI − A)−1x‖, where λ ∈  (A)
is any fixed element of the resolvent set  (A) of A. Then X1 ⊂ X ⊂ X−1 and
the canonical injections are bounded and dense. The semigroup T can be restricted
to a C0-semigroup on X1 and extended to a C0-semigroup on X−1. The exponential
growth constant is the same on all three spaces. The generator on X−1 is an extension
of A to X (which is bounded as an operator from X to X−1). We shall use the same
symbol T (respectively, A) for the original semigroup (respectively, its generator)
and the associated restrictions and extensions. With this convention, we may write
A ∈ B(X,X−1). Considered as a generator on X−1, the domain of A is X.

By a representation theorem due to Salamon [19] (see also Weiss [22, 23]), there
exist unique operators B ∈ B(U,X−1) and C ∈ B(X1, Y ) (the control operator and
the observation operator of Σ, respectively) such that, ∀ t ≥ 0, u ∈ L2

loc(R+, U) and
x0 ∈ X1,

ΦtPtu =

∫ t

0

Tt−τBu(τ) dτ and (Ψ∞x0)(t) = CTtx0.

B is said to be bounded if it is so as a map from the input space U to the state space
X; otherwise, B is said to be unbounded. C is said to be bounded if it can be extended
continuously to X; otherwise, C is said to be unbounded. If T is exponentially stable,
then there exist constants β, γ > 0 such that, ∀ t ≥ 0, u ∈ L2(R+, U), and x0 ∈ X1,

‖ΦtPtu‖ =

∥∥∥∥
∫ t

0

Tt−τBu(τ) dτ

∥∥∥∥ ≤ β‖u‖L2(0,t;U),(3)

‖Ψ∞x0‖L2(0,t;Y ) =

(∫ t

0

‖CTτx0‖2dτ

)1/2

≤ γ‖x0‖,(4)

wherein, with slight abuse of notation, we write ‖u‖L2(0,t;U) and ‖Ψ∞x0‖L2(0,t;Y ) to
denote ‖Ptu‖L2(R +;U) and ‖PtΨ∞x0‖L2(R +;U), respectively. The Lebesgue extension
of C was adopted in [23] and is defined by

CLx0 = lim
t→0

C
1

t

∫ t

0

Tτx0 dτ,

where dom(CL) is the set of all those x0 ∈ X for which the above limit exists. Clearly
X1 ⊂ dom(CL)⊂ X. Furthermore, for any x0 ∈ X, we have that Ttx0 ∈ dom(CL)
for almost all (a.a.) t ≥ 0 and

(Ψ∞x0)(t) = CLTtx0 a.a. t ≥ 0.(5)

If Σ is regular, then for any x0 ∈ X and u ∈ L2
loc(R+, U), the functions x(·) and y(·),

defined by (1a), satisfy the equations

ẋ(t) = Ax(t) +Bu(t), x(0) = x0,(6a)

y(t) = CLx(t) +Du(t)(6b)
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for a.a. t ≥ 0 (in particular x(t) ∈ dom(CL) for a.a. t ≥ 0). The derivative on the
left-hand side of (6a) has, of course, to be understood in X−1. In other words, if we
consider the initial-value problem (6a) in the space X−1, then for any x0 ∈ X and
u ∈ L2

loc(R+, U), (6a) has unique strong solution (in the sense of Pazy [18, p. 109])
given by the variation of parameters formula

t �→ x(t) = Ttx0 +

∫ t

0

Tt−τBu(τ) dτ.(7)

It has been demonstrated in [20] that if Σ is regular, then (sI −A)−1BU ⊂ dom(CL)
∀ s ∈  (A), and the transfer function G can be expressed as

G(s) = CL(sI −A)−1B +D ∀ s ∈ Cω(T),

which is familiar from finite-dimensional systems theory. The operators A, B, C, and
D are called the generating operators of Σ.

Two technical lemmas. In essence, part (a) of the following lemma provides an
estimate, in the L2(R+, X) topology, for the solution of the initial-value problem (6a)
with initial data x0 ∈ X and input u ∈ L2(R+, U), part (b) asserts that the solution
is in L∞(R+, X) whenever x0 ∈ X and u ∈ L∞(R+, U), whilst part (c) establishes
that the initial-value problem, again with initial data x0 ∈ X, has a convergent-input,
convergent-state property. Parts (a) and (c) constitute Lemma 2.2 of [9]; proof of part
(b) is implicit in the argument establishing Lemma 2.2 of [9].

Lemma 2.2. Let (A,B,C,D) be the generating operators of an exponentially
stable regular system Σ = (T,Φ,Ψ,F).

(a) There exist constants α0, α1 > 0 such that ∀ (x0, u) ∈ X × L2(R+, U), the
solution x(·) of the initial-value problem (6a) satisfies

‖x‖L2(R +,X) ≤ α0‖x0‖+ α1‖u‖L2(R +,U).

(b) ∀ (x0, u) ∈ X×L∞(R+, U), the solution x(·) of the initial-value problem (6a)
satisfies

x ∈ L∞(R+, X).

(c) If u ∈ L∞(R+, U) and limt→∞ u(t) = u∞ exists, then, ∀x0 ∈ X, the solution
x(·) of the initial-value problem (6a) satisfies

lim
t→∞ ‖x(t) +A−1Bu∞‖ = 0.

The next lemma shows that, for finite-dimensional U and Y , the impulse response
of an exponentially stable regular system with bounded B (or bounded C) is the sum
of a weighted L1-function and a point mass at 0.

Lemma 2.3. Let (A,B,C,D) be the generating operators of an exponentially
stable regular system Σ = (T,Φ,Ψ,F). Assume that either B or C is bounded.

(a) There exists α < 0 such that, ∀u ∈ U ,

L−1(G(·)u−Du) ∈ L1
α(R+, Y ).

(b) If U = R
m and Y = R

p, then

L−1(G) ∈ L1
α(R+,R

p×m) + (Rp×m) δ0,

where δ0 denotes the unit point mass at 0.
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Proof. Suppose that B is bounded, and set G0(s) := G(s)−D = C(sI −A)−1B.
Fix u ∈ U and choose (bn) ⊂ X1 such that limn→∞ ‖Bu − bn‖ = 0 (such a sequence
exists by denseness of X1 in X). Consequently, Ψ∞Bu, Ψ∞bn ∈ L2(R+, Y ), and

lim
n→∞ ‖Ψ∞Bu−Ψ∞bn‖L2(R +,Y ) = 0.

Hence, ∀ s ∈ C0,

G0(s)u = lim
n→∞C(sI −A)−1bn = lim

n→∞

∫ ∞

0

(Ψ∞bn)(t)e
−st dt = [L(Ψ∞Bu)](s).

Note that, by exponential stability, Ψ∞Bu ∈ L2
β(R+, Y ) for some β < 0, and hence

Ψ∞Bu ∈ L1
α(R+, Y ) ∀ α ∈ (β, 0), which yields part (a) in the case of bounded

B. This result together with the duality between admissible control and observation
operators (see [23]) yields part (a) in the case of bounded C. Part (b) is an immediate
consequence of part (a).

3. Integral control of regular systems with input nonlinearities. The
problem of tracking constant reference signals r will be addressed in a context of
uncertain single-input (u(t) ∈ R), single-output (y(t) ∈ R) linear systems, having a
nonlinearity φ in the input channel:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,

y(t) = CLx(t) +Dφ(u(t)).
(8)

We consider quadruples (A,B,C,D), with C having Lebesgue extension CL, of class
R defined below.

Definition 3.1. Let R denote the class of quadruples (A,B,C,D) which are the
generating operators of a regular linear system Σ, with state space X, input space R,
output space R, and transfer function G, satisfying

(a) Σ is exponentially stable; (b) G(0) > 0.

The following property of R is readily verified.
Proposition 3.2. If (A,B,C,D) ∈ R, then (A + εI,B,C,D) ∈ R ∀ ε > 0

sufficiently small.
Admissible input nonlinearities are those functions φ of class N defined below.
Definition 3.3. Let N be the class of functions φ : R → R with the properties

(a) φ is monotone nondecreasing; (b) φ satisfies a global Lipschitz condition (with
Lipschitz constant λ), that is, for some λ, |φ(u)− φ(v)| ≤ λ|u− v| ∀u, v ∈ R.

As an example of φ ∈ N , consider the input nonlinearity in Figure 2 below.
Let (εn) ⊂ (0,∞) be a sequence with εn ↓ 0 as n → ∞. For each φ ∈ N , define

φ	 : R → R by

φ	(ξ) = lim sup
n→∞

φ(ξ + εn)− φ(ξ)

εn
.

Note that 0 ≤ φ	(ξ) ≤ λ ∀ ξ ∈ R, where λ is a Lipschitz constant for φ. Moreover,
as the (pointwise) upper limit of a sequence of continuous functions, φ	 is Borel
measurable, and so its composition φ	 ◦ u with a Lebesgue measurable function u is
Lebesgue measurable; furthermore, by the same argument as used in proving Lemma
3.5 of [9], a chain rule applies to such compositions, which we now record.
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Fig. 2. Nonlinearity with saturation and dead zone.

Proposition 3.4. Let φ ∈ N and let u : R+ → R be absolutely continuous.
Then, φ ◦ u is absolutely continuous and

(φ ◦ u)′(t) = φ	(u(t))u̇(t) for a.a. t ∈ R+.

The Clarke [2] directional derivative φo(u; v) of φ ∈ N at u in direction v is given by

lim sup
w→u
h↓0

φ(w + hv)− φ(w)

h
.

Define φ−(·) := −φo(·;−1). By upper semicontinuity of φo, φ− is lower semicontinu-
ous. By definition of φ	 and monotonicity of φ ∈ N (with Lipschitz constant λ), we
have

0 ≤ φ−(u) ≤ φ	(u) ≤ λ ∀ u.(9)

u ∈ R is said to be a critical point (and φ(u) is said to be a critical value) of φ if
φ−(u) = 0.

3.1. Integral control with time-varying gain. Let (A,B,C,D) ∈ R, φ ∈ N ,
and k ∈ L∞(R+,R). We denote, by r ∈ R, the value of the constant reference signal to
be tracked by the output y(t). In Proposition 3.6 of [9], it is shown that the following
condition is necessary for solvability of the tracking problem: [G(0)]−1r ∈ clos(imφ).
Reference values r satisfying this condition are referred to as feasible.

We will investigate integral control action

u(t) = u0 +

∫ t

0

k(τ)[r − CLx(τ)−Dφ(u(τ))] dτ,

with time-varying gain k(·), leading to the following nonlinear system of differential
equations:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(10a)

u̇(t) = k(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R.(10b)

For a ∈ (0,∞], a continuous function

[0, a) → X × R, t �→ (x(t), u(t))

is a solution of (10) if (x(·), u(·)) is absolutely continuous as a (X−1 × R)-valued
function, x(t) ∈ dom(CL) for a.a. t ∈ [0, a), (x(0), u(0)) = (x0, u0), and the differential
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equations in (10) are satisfied almost everywhere (a.e.) on [0, a), where the derivative
in (10a) should be interpreted in the space X−1.

1

An application of a well-known result on abstract Cauchy problems (see Pazy [18,
Theorem 2.4, p. 107]) shows that a continuous (X × R)-valued function (x(·), u(·)) is
a solution of (10) if and only if it satisfies the following integrated version of (10):

x(t) = Ttx0 +

∫ t

0

Tt−τBφ(u(τ)) dτ,(11a)

u(t) = u0 +

∫ t

0

k(τ)[r − CLx(τ)−Dφ(u(τ))] dτ.(11b)

The next result asserts that (10) has a unique solution: the proof is contained in the
appendix.

Lemma 3.5. Let (A,B,C,D) ∈ R, φ ∈ N , k ∈ L∞(R+), and r ∈ R. For each
(x0, u0) ∈ X × R, there exists a unique solution (x(·), u(·)) of (10) defined on R+.

In [9], the constant-gain case is considered in the context of systems (A,B,C,D) ∈
R with input nonlinearities φ ∈ N : there, the existence of a value k∗ > 0, with the
property that asymptotic tracking of feasible reference signals r is ensured for all fixed
gains k ∈ (0, k∗), is established. However, k∗ is, in general, a function of the plant data
and so, in the presence of plant uncertainty, may fail to be computable in practice.
In such circumstances, one might be led näıvely to consider a time-dependent gain
strategy t �→ k(t) > 0 with k(t) approaching zero as t tends to infinity.

The main result of this section is contained in the following two theorems which
confirm the validity of the above näıvety provided that the gain approaches zero
sufficiently slowly. In particular, Theorem 3.6 proves that if t �→ k(t) > 0 is chosen to
be bounded and monotone decreasing to zero, then the unique solution of (10) is such
that both x(·) and φ(u(·)) converge. The essence of Theorem 3.8 is the assertion that
if, in addition, r is feasible and k(·) approaches zero sufficiently slowly, then φ(u(·))
converges to the value φr := [G(0)]−1r, thereby ensuring asymptotic tracking of r.

Theorem 3.6. Let (A,B,C,D) ∈ R, φ ∈ N , and r ∈ R. Let k : R+ → (0,∞)
be a bounded, monotone function with k(t) ↓ 0 as t → ∞. ∀ (x0, u0) ∈ X × R, the
unique solution (x(·), u(·)) of (10) satisfies

(a) limt→∞ φ(u(t)) exists and is finite, and
(b) limt→∞ ‖x(t) +A−1Bφ∗‖ = 0, where φ∗ := limt→∞ φ(u(t)).

Proof. Let (x0, u0) ∈ X×R be arbitrary. Let λ be a Lipschitz constant for φ ∈ N
(and so 0 ≤ φ	(u) ≤ λ ∀ u ∈ R). By Lemma 3.5, there exists a unique solution of
(10) on R+. We denote this solution by (x(·), u(·)) and introduce new variables by
writing φr = [G(0)]−1r and defining

z(t) := x(t) +A−1Bφ(u(t)), v(t) := φ(u(t))− φr ∀ t ∈ R+.(12)

By regularity, it follows that z(t) ∈ dom(CL) for a.a. t ∈ R+. Moreover, by Proposi-
tion 3.4, v̇(t) = φ	(u(t))u̇(t) for a.a. t ∈ R+. Since (z, v) is absolutely continuous as

1Being a Hilbert space, X−1 × R is reflexive, and hence any absolutely continuous (X−1 × R)-
valued function is a.e. differentiable and can be recovered from its derivative by integration; see [1,
Theorem 3.1, p. 10].
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an (X−1 × R)-valued function, we obtain by direct calculation

ż = Az − kφ	(u)A−1B(CLz +G(0)v),(13a)

z(0) = x0 +A−1Bφ(u0),

v̇ = −kφ	(u)(CLz +G(0)v),(13b)

v(0) = φ(u0)− φr.

We claim that there exist positive constants γ1, γ2, and σ1 such that, ∀ t, s with
σ1 ≤ s ≤ t,

∫ t

s

|CLz| |kφ	(u)v| ≤ γ1‖z(s)‖
(∫ t

s

k2φ	(u)v2

)1/2

+ γ2

∫ t

s

k2φ	(u)v2.(14)

In order to prove (14), let us first estimate
∫ t
s
|CLz|2. For notational convenience,

write w = φ	(u) [CLz +G(0)v]. As a solution of (13a), z(·) satisfies

z(τ) = Tτ−sz(s)−A−1

∫ τ

s

Tτ−ξBk(ξ)w(ξ) dξ

∀ s with 0 ≤ s ≤ τ . Invoking (4) and (5) and noting that CLA
−1 maps X boundedly

into R, there exist constants α0, α1 > 0 such that∫ t

s

|CLz(τ)|2dτ ≤ α0‖z(s)‖2 + α1

∫ t

s

∥∥∥∥
∫ τ

s

Tτ−ξBk(ξ)w(ξ)dξ

∥∥∥∥
2

dτ(15)

∀ 0 ≤ s ≤ t. By Lemma 2.2 (part (a)), interpreted in the context of the initial-value
problem

ζ̇ = Aζ +Bkw, ζ(s) = 0,

we have (∫ t

s

∥∥∥∥
∫ τ

s

Tτ−ξBk(ξ)w(ξ)dξ

∥∥∥∥
2

dτ

)1/2

≤ α2

(∫ t

s

|kw|2
)1/2

for some constant α2. Therefore, by (15) and monotonicity of k, it follows that, for
some constants α3, α4 > 0,(∫ t

s

|CLz|2
)1/2

≤ α3‖z(s)‖+ k(s)α4

(∫ t

s

|φ	(u)|2|CLz|2
)1/2

+ α4G(0)

(∫ t

s

|kφ	(u)v|2
)1/2

∀ 0 ≤ s ≤ t.(16)

Fix σ1 > 0 such that δ := k(σ1)α4λ < 1. Then,

k(s)α4

(∫ t

s

|φ	(u)|2|CLz|2
)1/2

≤ δ

(∫ t

s

|CLz|2
)1/2

∀ σ1 ≤ s ≤ t,

and so, by (16),

(∫ t

s

|CLz|2
)1/2

≤ β1‖z(s)‖+ β2

(∫ t

s

k2φ	(u)v2

)1/2

∀ σ1 ≤ s ≤ t,(17)
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with β1 = α3/(1− δ) and β2 = α4G(0)
√
λ/(1− δ). We may now deduce that, ∀ t, s

with σ1 ≤ s ≤ t,

∫ t

s

|CLz| |kφ	(u)v| ≤
(∫ t

s

|CLz|2
)1/2(∫ t

s

|kφ	(u)v|2
)1/2

≤ β1

√
λ‖z(s)‖

(∫ t

s

k2φ	(u)v2

)1/2

+ β2

√
λ

∫ t

s

k2φ	(u)v2,

which is (14) with γ1 = β1

√
λ and γ2 = β2

√
λ. By (13b), for a.a. t ≥ 0,

v(t)v̇(t) = −k(t)G(0)φ	(u(t))v2(t)− k(t)φ	(u(t))v(t)CLz(t),(18)

and hence

v(t)v̇(t) ≤ −k(t)G(0)φ	(u(t))v2(t) + |CLz(t)| |k(t)φ	(u(t))v(t)|.
Integrating this inequality and using (14) and monotonicity of k yields, ∀ t, s with
σ1 ≤ s ≤ t,

v2(t) ≤ v2(s) + 2γ1

√
k(s)‖z(s)‖

(∫ t

s

kφ	(u)v2

)1/2

+ 2

∫ t

s

(kγ2 −G(0))kφ	(u)v2.(19)

By positivity ofG(0) and monotonicity of k(·), there exists σ ≥ σ1 such that, ∀ τ ≥ σ,
(k(τ)γ2 −G(0)) ≤ − 1

2G(0) < 0. Therefore, it follows from (19) that

0 ≤ v2(σ) + 2γ1

√
k(σ)‖z(σ)‖

(∫ t

σ

kφ	(u)v2

)1/2

−G(0)

∫ t

σ

kφ	(u)v2 ∀ t ≥ σ,

and so ∫ ∞

σ

kφ	(u)v2 < ∞.(20)

Moreover, by (14) we deduce that∫ ∞

σ

|CLz| |kφ	(u)v| < ∞.(21)

Combining (18), (20), and (21) shows that there exists a number ν ∈ R+ such that

lim
t→∞ v2(t) = v2(σ) + 2 lim

t→∞

∫ t

σ

vv̇ = ν,

whence assertion (a) of the theorem. Assertion (b) now follows by Lemma 2.2 (part
(c)).

Let M denote the space of finite signed Borel measures on R+.
Lemma 3.7. Let (A,B,C,D) ∈ R, φ ∈ N , and (x0, u0) ∈ X × R. Assume that

L−1(G) ∈ M. Let k : R+ → (0,∞) be bounded and such that
∫ t
0
k =: K(t) → ∞ as

t → ∞. Let r ∈ R be feasible, that is, φr := [G(0)]−1r ∈ clos(imφ). Let (x(·), u(·)) :
R+ → X × R be the unique solution of (10).

If limt→∞ φ(u(t)) exists and is finite, then the following statements hold:
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(a) limt→∞ φ(u(t)) = φr,
(b) limt→∞ ‖x(t) +A−1Bφr‖ = 0,
(c) limt→∞[r − y(t) + (Ψ∞x0)(t)] = 0, where y(t) = CLx(t) +Dφ(u(t)),
(d) if φr ∈ imφ, then limt→∞ dist (u(t), φ−1(φr)) = 0, and
(e) if φr ∈ int(imφ), then u(·) is bounded.
Proof. By hypothesis, there exists φ∗ ∈ R such that limt→∞ φ(u(t)) = φ∗. The

essence of the proof is to show that φ∗ = φr. Setting

y0(t) = (Ψ∞)(x0)(t), y1(t) = (L−1(G) 2 φ(u))(t),

we have

u̇(t) = k(t)[G(0)(φr − φ∗)− y0(t)− (y1(t)−G(0)φ∗)].

Seeking a contradiction, suppose that |φr − φ∗| �= 0. Since limt→∞ φ(u(t)) = φ∗ and
L−1(G) ∈ M, it follows that limt→∞ y1(t) = G(0)φ∗ (see [7, Theorem 6.1, part (ii),
p. 96]). Let s > 0 be such that

|y1(t)−G(0)φ∗| ≤ 1
2G(0)|φr − φ∗| ∀ t ≥ s.

As a consequence we obtain

− 1
2k(t)G(0)|φr − φ∗| − k(t)|y0(t)| ≤ u̇(t)− k(t)G(0)(φr − φ∗)

≤ 1
2k(t)G(0)|φr − φ∗|+ k(t)|y0(t)| ∀ t ≥ s.(22)

Since φr �= φ∗, either φr > φ∗ or φr < φ∗. If φr > φ∗, then

1
2k(t)G(0)(φr − φ∗)− k(t)|y0(t)| ≤ u̇(t) ∀ t ≥ s,

which, on integration, yields

1
2G(0)(K(t)−K(s))(φr − φ∗)−

∫ t

s

k(τ)|y0(τ)|dτ ≤ u(t)− u(s) ∀ t ≥ s.

By exponential stability, y0 ∈ L2
α(R+,R) for some α < 0, and thus y0 ∈ L1(R+,R),

which in turn implies that ky0 ∈ L1(R+,R). Since K(t) → ∞ as t → ∞, we conclude
that u(t) → ∞ as t → ∞, whence the contradiction

φr ≤ sup φ = lim
t→∞φ(u(t)) = φ∗ < φr.

If φr < φ∗, then

u̇(t) ≤ k(t)|y0(t)| − 1
2k(t)G(0)|φr − φ∗| ∀ t ≥ s,

which, on integration, yields u(t) → −∞ as t → ∞ and the contradiction

φr < φ∗ = lim
t→∞φ(u(t)) = inf φ ≤ φr.

Therefore, we may conclude that limt→∞ φ(u(t)) = φr, which is assertion (a). Asser-
tion (b) follows from Lemma 2.2, part (c); assertion (c) is a consequence of assertion
(a), together with the identity

r − y(t) + (Ψ∞x0)(t) = G(0)φr − (L−1(G) 2 φ(u))(t),
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and the fact that limt→∞(L−1(G) 2 φ(u))(t) = G(0)φr.
To prove assertion (d), let φr ∈ imφ and suppose that the claim is false. Then

there exists a sequence (tn) ⊂ R+ with limn→∞ tn = ∞ and ε > 0 such that

dist (u(tn), φ
−1(φr)) ≥ ε ∀ n.(23)

If the sequence (u(tn)) is bounded, we may assume without loss of generality that it
converges to a finite limit u∞. By continuity of φ and assertion (a), we have that
φ(u∞) = φr, and thus u∞ ∈ φ−1(φr). This contradicts (23). So, suppose that (u(tn))
is unbounded. Without loss of generality, we may then assume that limn→∞ u(tn) =
∞. By monotonicity and assertion (a), it follows that φr = supφ. Since φr ∈ imφ,
there exists ξ∗ such that φ(ξ∗) = φr = supφ = maxφ. By monotonicity of φ, φ(ξ) =
φr = maxφ ∀ ξ ≥ ξ∗. In particular, we see that u(tn) ∈ φ−1(φr) for all sufficiently
large n, which contradicts (23).

Now, assume that φr ∈ int(imφ) and, for contradiction, suppose that assertion
(e) is false. Then there exists a sequence (tn) ⊂ (0,∞) with tn → ∞ and |u(tn)| → ∞
as n → ∞. Without loss of generality, we may assume that limn→∞ u(tn) = ∞. By
monotonicity, it then follows that φr = limn→∞ φ(u(tn)) = supφ, contradicting the
assumption that φr ∈ int(imφ).

For α ∈ R, we define the exponentially weighted space Mα as the set of all
locally finite signed Borel measures µ on R+ (see, e.g., [6]) with the property that the
weighted measure E �→ ∫

E
e−αtµ(dt) belongs to M.

Theorem 3.8. Let (A,B,C,D) ∈ R, φ ∈ N , and (x0, u0) ∈ X×R. Assume that
L−1(G) ∈ M. Let k : R+ → (0,∞) be bounded, monotone, and such that k(t) ↓ 0

and
∫ t
0
k =: K(t) → ∞ as t → ∞. Let r ∈ R be feasible, that is, φr := [G(0)]−1r ∈

clos(imφ).
The unique solution (x(·), u(·)) : R+ → X × R of (10) satisfies
(a) limt→∞ φ(u(t)) = φr,
(b) limt→∞ ‖x(t) +A−1Bφr‖ = 0,
(c) limt→∞[r − y(t) + (Ψ∞x0)(t)] = 0, where y(t) = CLx(t) +Dφ(u(t)),
(d) if φr ∈ imφ, then limt→∞ dist (u(t), φ−1(φr)) = 0,
(e) if φr ∈ int(imφ), then u(·) is bounded, and
(f) if φr ∈ imφ is not a critical value of φ, then the convergence in (a) and (b)

is of order exp(−ρK(t)) for some ρ > 0; moreover, the convergence in (c) is
of the same order, provided that L−1(G) ∈ Mα for some α < 0.

Remark 3.9. (i) The assumption that L−1(G) ∈ M (or that L−1(G) ∈ Mα for
some α < 0) is not very restrictive and seems to be satisfied in all practical examples
of exponentially stable systems. In particular, this assumption is satisfied if B or C
is bounded (see Lemma 2.3).

(ii) Since (Ψ∞x0)(t) converges exponentially to 0 as t → ∞ ∀ x0 ∈ X1 = dom(A),
it follows from (c) that the error e(t) = r − y(t) converges to 0 ∀ x0 ∈ dom(A).
(Moreover, the convergence is of order exp(−ρK(t)) if the extra assumptions in (f)
are satisfied.) If C is bounded, then this statement is true ∀ x0 ∈ X. If C is unbounded
and x0 �∈ dom(A), then e(t) does not necessarily converge to 0 as t → ∞. However,
e(t) is small for large t in the sense that e(t) = e1(t) + e2(t), where the function e1 is
bounded with limt→∞ e1(t) = 0 and e2 ∈ L2

α(R+,R) for some α < 0.
(iii) In particular, (d) asserts that u(t) converges as t → ∞ if the set φ−1(φr) is

a singleton, which, in turn, will be true if φr ∈ imφ is not a critical value of φ.
Proof. Assertions (a)–(e) follow immediately from Theorem 3.6 combined with

Lemma 3.7. It remains only to establish assertion (f). By hypothesis, φr ∈ imφ is
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not a critical value of φ, and so, by monotonicity, its preimage φ−1(φr) is a singleton
{ur} and

φ	(ur) ≥ φ−(ur) =: φ−
r > 0.

Therefore, by assertion (d), u(t) → ur as t → ∞. By lower semicontinuity of φ−,
there exists σ1 > 0 such that

φ	(u(t)) ≥ φ−(u(t)) ≥ 1
2φ

−
r > 0 ∀ t ≥ σ1.(24)

Define ρ := 1
4G(0)φ−

r > 0, and introduce exponentially weighted variables given by

ze(t) := exp(ρK(t))[x(t) +A−1Bφ(u(t))],(25a)

ve(t) := exp(ρK(t))[φ(u(t))− φr](25b)

∀ t ∈ R+. Since (ze, ve) is absolutely continuous as an (X−1 × R)-valued function,
and using Proposition 3.4, we obtain by direct calculation

że = (A+ ρkI)ze − kφ	(u)A−1B(CLze +G(0)ve),(26a)

ze(0) = x0 +A−1Bφ(u0),

v̇e = −kφ	(u)(CLze +G(0)ve) + ρkve,(26b)

ve(0) = φ(u0)− φr.

For each (t, s) with 0 ≤ s ≤ t, define

U(t, s) := exp(ρ[K(t)−K(s)])Tt−s.(27)

We briefly digress to prove a technicality.
Lemma 3.10. Let s ∈ R+, u ∈ L2

loc(R+), and, on [s,∞), define a function p by

p(t) :=

∫ t

s

U(t, ξ)Bu(ξ)dξ.

Then, ∀ t, p(t) ∈ X and, as an X−1-valued function, p is absolutely continuous with

ṗ(t) = (A+ ρk(t)I)p(t) +Bu(t) a.e.

Proof. On [s,∞), define a function q by

q(t) := e−ρK(t)p(t) =

∫ t

s

Tt−ξBe−ρK(ξ)u(ξ) dξ.

Clearly, q(t) ∈ X ∀ t and so p(t) ∈ X ∀ t. Moreover, q is absolutely continuous as an
X−1-valued function and, by Pazy [18, Theorem 2.9, p. 109], for a.a. t ≥ s,

q̇(t) = Aq(t) + e−ρK(t)Bu(t).

Thus, as an X−1-valued function, p is absolutely continuous with

ṗ(t) = ρk(t)eρK(t)q(t) + eρK(t)q̇(t) = (A+ ρk(t)I)p(t) +Bu(t)

for a.a. t ≥ s.
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Returning to the proof of the theorem, for notational convenience write

we := φ	(u) [CLze +G(0)ve] .

Let s ∈ R+ and, on [s,∞), define f := f1 −A−1f2 with

f1(t) := U(t, s)ze(s), f2(t) :=

∫ t

s

U(t, ξ)Bk(ξ)we(ξ)dξ.

Clearly, f1(t) ∈ X ∀ t and, as an X−1-valued function, f1 is absolutely continuous
with

ḟ1(t) = (A+ ρk(t)I)f1(t) a.e.

By Lemma 3.10, it now follows that f(t) ∈ X ∀ t and, as an X−1-valued function, f
is absolutely continuous with

ḟ(t) = (A+ ρk(t)I)f1(t)−A−1 ((A+ ρk(t)I)f2(t) +Bwe(t))

= (A+ ρk(t)I)f(t)−A−1Bwe(t) a.e.

In view of (26a) (together with uniqueness of solutions), we may now conclude that

ze(t) = U(t, s)ze(s)−A−1

∫ t

s

U(t, ξ)Bk(ξ)we(ξ) dξ ∀ t, s with 0 ≤ s ≤ t.(28)

By exponential stability of the semigroup T, there exist constants N , ν > 0 such
that ‖Tt‖ ≤ N exp(−νt) ∀ t ∈ R+. Let ε ∈ (0, ν) be sufficiently small such that
(A+ εI,B,C,D) ∈ R (recall Proposition 3.2). Fix σ2 > σ1 such that

k(σ2) < min{ε/ρ, ν/(ρN)}.(29)

Again, we digress to prove a technicality.
Lemma 3.11. There exists constant γ > 0 such that, ∀ u ∈ L2

loc(R+),

(∫ t

s

∥∥∥∥
∫ τ

s

U(τ, ξ)Bu(ξ)dξ

∥∥∥∥
2

dτ

) 1
2

≤ γ

(∫ t

s

u2(ξ)dξ

) 1
2

∀ s, t ≥ σ2 with s ≤ t.

Proof. Let s ≥ σ2 and let u ∈ L2
loc(R+) be arbitrary. On [s,∞) define (as before)

the function p : t �→ ∫ t
s
U(t, ξ)Bu(ξ)dξ . By Lemma 3.10, for a.a. t ≥ s, we have

ṗ(t) = Ap(t) + ρk(t)p(t) +Bu(t). Therefore,

p(t) =

∫ t

s

Tt−ξρk(ξ)p(ξ) dξ +
∫ t

s

Tt−ξBu(ξ) dξ ∀ t ≥ s.

Using exponential stability of the semigroup T, monotonicity of k, and Lemma 2.2
(part (a)), we may conclude

(∫ t

s

‖p(ξ)‖2dξ

) 1
2

≤ ρNν−1k(σ2)

(∫ t

s

‖p(ξ)‖2dξ

) 1
2

+ α1

(∫ t

s

u2(ξ) dξ

) 1
2

∀ t ≥ s.

By (29), 1− ρNν−1k(σ2) > 0, and the result follows.
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Once more, we return to the proof of the theorem. By monotonicity of k, K(t)−
K(s) ≤ k(s)(t− s)∀ t, s with 0 ≤ s ≤ t. Since k(σ2) ≤ ε/ρ, it follows that

exp(ρ[K(t)−K(s)]) ≤ exp(ε[t− s]) ∀ t, s with σ2 ≤ s ≤ t.(30)

Observe that, ∀ t, s with σ2 ≤ s ≤ t,

|CLU(t, s)ze(s)| = |CLTt−sze(s)| exp(ρ[K(t)−K(s)])

≤ |CLTt−s exp(ε[t− s])ze(s)|.
Invoking (4), (5) (in the context of the regular system (A + εI,B,C,D)), (28), and
Lemma 3.11, and recalling that CLA

−1 maps X boundedly into R, there exist con-
stants α2, α3 > 0 such that

(∫ t

s

|CLze|2
)1/2

≤ α2‖ze(s)‖+ k(s)α3

(∫ t

s

|φ	(u)|2|CLze|2
)1/2

+ α3G(0)

(∫ t

s

|kφ	(u)ve|2
)1/2

(31)

∀ t, s with σ2 ≤ s ≤ t.
Inequality (31) is the exponentially weighted version of (16). Following the ar-

gument in the proof of Theorem 3.6, (31) may be used to derive an exponentially
weighted version of (14), i.e., there exist positive constants γ1, γ2 > 0 and σ3 ≥ σ2

such that∫ t

s

|CLze| |kφ	(u)ve| ≤ γ1‖ze(s)‖
(∫ t

s

k2φ	(u)v2
e

)1/2

+ γ2

∫ t

s

k2φ	(u)v2
e(32)

∀ t, s with σ3 ≤ s ≤ t.
By (26b), for a.a. t ≥ 0,

ve(t)v̇e(t) = −k(t)G(0)φ	(u(t))v2
e + ρk(t)v2

e(t)− k(t)φ	(u(t))ve(t)CLze(t).(33)

By (24), G(0)φ	(u(t))− ρ ≥ 1
2G(0)φ−

r − ρ = ρ > 0 ∀ t ≥ σ3. Hence, we have

ve(t)v̇e(t) ≤ − 1
2ρk(t)v

2
e(t) + |CLze(t)| |k(t)φ	(u(t))ve(t)| for a.a. t ≥ σ3.

Integrating this inequality and using (32) and monotonicity of k yields, ∀ t, s with
t ≥ s ≥ σ3,

v2
e(t) ≤ v2

e(s) + 2γ1

√
λk(s)‖ze(s)‖

(∫ t

s

kv2
e

)1/2

−
∫ t

s

(ρ− 2kγ2λ)kv
2
e .(34)

Fix σ ≥ σ3 such that ρ− 2k(t)γ2λ > 1
2ρ ∀ t ≥ σ. From (34) and (32), we deduce∫ ∞

σ

kv2
e < ∞.

Hence, by (34), ve(·) = exp(ρK(·))[φ(u(·)) − φr] is bounded and so the convergence
in (a) is of order exp(−ρK(t)). We proceed to prove that the convergence in (b) is of
the same order. Define xr := −A−1Bφr, and introduce a new variable given by

xe(t) = exp(ρK(t))[x(t)− xr] ∀ t ≥ 0.
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It suffices to show that xe(·) is bounded. By (8) and (25), we have

ẋe = (A+ ρkI)xe +Bve, xe(0) = x0 − xr,

and so, ∀ t ≥ σ,

xe(t) = Tt−σxe(σ) +
∫ t

σ

Tt−ξBve(ξ) dξ +

∫ t

σ

Tt−ξρk(ξ)xe(ξ) dξ.

Therefore, by boundedness of ve together with Lemma 2.2 (part (b)) and exponential
stability of T, there exists a constant β > 0 such that

sup
s∈[σ,t]

‖xe(s)‖ ≤ β + ρNν−1k(σ) sup
s∈[σ,t]

‖xe(s)‖ ∀ t ≥ σ.

Since σ ≥ σ2, we have, by (29), ρNν−1k(σ) < 1, and hence we may conclude bound-
edness of xe. Therefore, the convergence in part (b) is of order exp(−ρK(t)).

It remains only to prove that the convergence in (c) is also of order exp(−ρK(t)),
provided that µ := L−1(G) ∈ Mα for some α < 0. Denoting the unit-step function
by θ, we have ∀ t ≥ 0

|r − y(t) + (Ψ∞x0)(t)| ≤ |[µ 2 (φ(u)− φrθ)(t)]|+ |φr[(µ 2 θ)(t)−G(0)]|.(35)

For convenience we set w(t) = exp(ρK(t)) ∀ t ≥ 0. We have already shown that the
function t �→ w(t)|φ(u(t)) − φr| remains bounded as t → ∞. If we extend w to a
function defined on R by setting w(t) = 1 ∀ t < 0, then it is easy to show that w is a
submultiplicative weight function in the sense of [7, p. 118]. Moreover, since µ ∈ Mα,
the measure µw : E �→ ∫

E
w(t)µ(dt) belongs to M. Hence, by [7, Theorem 3.5, part

(i), p. 119], we may conclude that the function t �→ w(t)[µ2(φ(u)−φrθ)](t) is bounded
on R+.

Since µw ∈ M (a space of finite measures),
∫∞
0

w(t)|µ|(dt), where |µ| denotes the
total variation of µ. Hence

|w(t)[(µ 2 θ)(t)−G(0)]| = w(t)

∣∣∣∣
∫ ∞

t

µ(dτ)

∣∣∣∣ ≤
∫ ∞

0

w(τ)|µ|(dτ) < ∞,

showing that the function t �→ w(t)[(µ2θ)(t)−G(0)] is bounded on R+. Consequently,
appealing to (35), we deduce that the function

R+ → R, t �→ exp(ρK(t))|r − y(t) + (Ψ∞x0)(t)|

is bounded.

3.2. Adaptive gain. Whilst Theorem 3.8 identifies conditions under which the
tracking objective is achieved through the use of a monotone gain function, the result-
ing control strategy is somewhat unsatisfactory insofar as the gain function is selected
a priori: no use is made of the output information from the plant to update the gain.
We now consider the possibility of exploiting this output information to generate, by
feedback, an appropriate gain function. In particular, let the gain k(·) be generated
by the law:

k(t) =
1

l(t)
, l̇(t) = |r − y(t)|, l(0) = l0 > 0,(36)
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which yields the feedback system

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(37a)

u̇(t) = (1/l(t))[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(37b)

l̇(t) = |r − CLx(t)−Dφ(u(t))|, l(0) = l0 ∈ (0,∞).(37c)

The concept of a solution of this feedback system is the obvious modification of the
solution concept defined in subsection 3.1. The proof of the following existence and
uniqueness result can be found in the appendix.

Lemma 3.12. Let (A,B,C,D) ∈ R, φ ∈ N , and r ∈ R. For each (x0, u0, l0) ∈
X × R × (0,∞), the initial-value problem given by (37) has a unique solution defined
on R+.

We now arrive at the main adaptive control result.
Theorem 3.13. Let (A,B,C,D) ∈ R, φ ∈ N , and let r ∈ R be such that

φr := [G(0)]−1r ∈ clos(imφ). Assume that L−1(G) ∈ M.
∀ (x0, u0, l0) ∈ X × R × (0,∞), the unique solution of the initial-value problem

given by (37) is such that assertions (a) to (e) of Theorem 3.8 hold. Moreover, if
φr ∈ imφ is not a critical value and L−1(G) ∈ Mα for some α < 0, then the
monotone gain k converges to a positive value.

Proof. Set k(t) = 1/l(t). Since l(·) is monotone increasing, either l(t) → ∞ as
t → ∞ (Case 1), or l(t) → l∗ ∈ (0,∞) as t → ∞ (Case 2). We consider these two
cases separately.

Case 1. In this case, k(t) ↓ 0 as t → ∞ and the hypotheses of Theorem 3.6 are
satisfied. Therefore, (φ(u))(·) converges. It follows that limt→∞(L−1(G) 2 φ(u))(t)
converges (and so, in particular, is a bounded function). Moreover, by exponential
stability, Ψ∞x0 ∈ L1(R+,R), and it follows from

l̇(t) = |r − y(t)| ≤ |r − (L−1(G) 2 φ(u))(t)|+ |(Ψ∞x0)(t)|,

via integration that

k(t) =
1

l(t)
≥ 1

α+ βt
∀ t ≥ 0,(38)

where

α := l0 +

∫ ∞

0

|Ψ∞x0(τ)| dτ, β ≥ sup
t≥0

|r − (L−1(G) 2 φ(u))(t)|.

Therefore, assertions (a) to (e) of Theorem 3.8 hold.
Case 2. In this case, k(t) → k∗ := 1/l∗ > 0 as t → ∞. By boundedness of l(·)

and (36), we may conclude that e(·) := r − CLx(·) −Dφ(u(·)) ∈ L1(R+) and so (by
(10b)) u(t) converges to a finite limit as t → ∞. Consequently, φ(u(t)) converges to a
finite limit as t → ∞, and hence, by Lemma 3.7, assertions (a) to (e) of Theorem 3.8
hold.

Finally, assume that φr ∈ imφ is not a critical value and that L−1(G) ∈ Mα

for some α < 0. We will show that the monotone gain k converges to a positive
value. Seeking a contradiction, suppose that the monotone function l is unbounded
(equivalently, k(t) ↓ 0 as t → ∞). Then the hypotheses of Theorem 3.6 are satisfied
and so (38) holds. By Theorem 3.8, φ(u(·)) converges to φr, and y(·) − (Ψ∞x0)(·)
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converges to r; moreover, the convergence is of order exp(−ρK(t)) for some ρ > 0;
that is, there exists constant L > 0 such that

|r − y(t) + (Ψ∞x0)(t)| ≤ L exp(−ρK(t)) ∀ t ∈ R+.(39)

Choose γ ≥ β such that ρ/γ < 1. By (38), k(t) = 1/l(t) ≥ (α + γt)−1 ∀ t ∈ R+.
Therefore,

K(t) =

∫ t

0

k ≥ ln[((α+ γt)/α)1/γ ] ∀ t ≥ 0.

Consequently for a.a. t ≥ 0,

l̇(t) = |r − y(t)| ≤ L exp(−ρK(t)) + |(Ψ∞x0)(t)| ≤ M(α+ γt)−η + |(Ψ∞x0)(t)|,

where η = ρ/γ ∈ (0, 1) and M = Lαη. Since, by exponential stability, Ψ∞x0 ∈
L1(R+,R), integration gives

l(t) ≤ N(α+ γt)1−η ∀ t ≥ 0,

for some suitable constant N > 0. It follows that

−K(t) = −
∫ t

0

k ≤ −(Nγη)−1 [(α+ γt)η − αη] ∀ t ≥ 0.

Therefore, exp(−ρK(·)) is of class L1(R+,R), and, by (39), it follows that |r− y(·) +
(Ψ∞x0)(·)| is also of class L1(R+,R). Since Ψ∞x0 ∈ L1(R+,R), we have |r− y(·)| ∈
L1(R+,R). This contradicts the supposition of unboundedness of l(·). Therefore, l(·)
is bounded.

4. Example: Controlled diffusion process with output delay. Consider
a diffusion process (with diffusion coefficient a > 0 and with Dirichlet boundary
conditions), on the one-dimensional spatial domain I = [0, 1], with scalar nonlinear
pointwise control action (applied at point xb ∈ I, via a nonlinearity φ with Lips-
chitz constant λ > 0) and delayed (delay h ≥ 0) pointwise scalar observation (output
at point xc ∈ I). We formally write this single-input, single-output system (previ-
ously considered, in a nonadaptive control context, in the precursor [9] to the present
paper) as

zt(t, x) = azxx(t, x) + δ(x− xb)φ(u(t)), y(t) = z(t− h, xc),

z(t, 0) = 0 = z(t, 1) ∀ t > 0.

For simplicity, we assume zero initial conditions:

z(t, x) = 0 ∀ (t, x) ∈ [−h, 0]× [0, 1].

With input φ(u(·)) and output y(·), this example qualifies as a regular linear system
with transfer function given by

G(s) =
e−sh/a sinh(xb

√
s ) sinh((1− xc)

√
s )

a
√
s sinh

√
s

.
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controlled output y(·)

control input φ(u(·))

gain k(·)

(i)

(i)

(i)

(ii)

(ii)

(iii)

(iii)

(iii)

15

300

1

15

30

1

0 15

30

1
2

1

0

Fig. 3. Controlled output, control input, and adapting gain.

Therefore, by Theorem 3.8, the adaptive integral control

u(t) =

∫ t

0

k(t)[r − y(t)] dt, k(t) =
1

l(t)
,

where the evolution of l(t) is given by the adaptation law

l̇(t) = |r − y(t)|, l(0) = l0 > 0,

guarantees asymptotic tracking of every constant reference signal r satisfying

r

G(0)
=

ar

xb(1− xc)
∈ clos(imφ).

For purposes of illustration, we adopt the following values:

a = 0.1, xb =
1

3
, xc =

2

3
, h = 0.1.

We consider a nonlinearity φ of saturation type, defined as follows

u �→ φ(u) :=



1, u ≥ 1,

u, u ∈ (0, 1),

0, u ≤ 0,

in which case λ = 1. For unit reference signal r = 1, we have

r

G(0)
=

a

xb(1− xc)
= 0.9 ∈ int(imφ).
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Figure 3 depicts the behavior of the system (with reference r = 1) under adaptive
integral control in each of the following three cases:

(i) l0 = 1, (ii) l0 = 2, (iii) l0 = 4.

This figure was generated using SIMULINK simulation software within MATLAB
wherein a truncated eigenfunction expansion, of order 10, was adopted to model the
diffusion process.

5. Appendix: Proof of Lemmas 3.5 and 3.12. In proving Lemmas 3.5 and
3.12, we will first study an abstract Volterra integrodifferential equation. Let α ≥ 0,
and let wα ∈ C([0, α],Rn). Consider the initial-value problem

ẇ(t) = (V w)(t), t ≥ α,(40a)

w(t) = wα(t), t ∈ [0, α],(40b)

where the operator V : C(R+,R
n) → L1

loc(R+,R
n) is causal and weakly Lipschitz in

the following sense.
∀ α ≥ 0, δ > 0, ρ > 0, and θ ∈ C([0, α],Rn), there exists a continuous function

f : [0, δ] → R+, with f(0) = 0, such that∫ α+ε

α

‖(V v)(t)− (V w)(t)‖ dt ≤ f(ε) sup
α≤t≤α+ε

‖v(t)− w(t)‖

∀ ε ∈ [0, δ] and ∀ v, w ∈ C(α, δ, ρ, θ), where

C(α, δ, ρ, θ) := {w ∈ C([0, α+ δ],Rn)| w(t) = θ(t) ∀ t ∈ [0, α],

‖w(t)− θ(α)‖ ≤ ρ ∀ t ∈ [α, α+ δ]}.
A solution of the initial-value problem (40) on an interval [0, β), where β > α, is a
function w ∈ C([0, β),Rn), with w(t) = wα(t) ∀ t ∈ [0, α], such that w is absolutely
continuous on [α, β) and (40a) is satisfied for a.a. t ∈ [α, β).

Strictly speaking, to make sense of (40), we have to give a meaning to (V w)(t),
t ∈ [0, β), when w is a continuous function defined on a finite interval [0, β) (recall
that V operates on the space of continuous functions defined on the infinite interval
R+). This can be done easily using causality of V : ∀ t ∈ [0, β), (V w)(t) := (V w∗)(t),
where w∗ : R+ → R

n is any continuous function with w∗(s) = w(s) ∀ s ∈ [0, t].
Proposition 5.1. For every α ≥ 0 and every wα ∈ C([0, α],Rn), there exists a

unique solution w(·) of (40) defined on a maximal interval [0, tmax), with tmax > α.
Moreover, if tmax < ∞, then

lim sup
t→tmax

|w(t)| = ∞.(41)

Proof. Fix α ≥ 0, wα ∈ C([0, α],Rn) arbitrarily. Define a continuous extension
w∗
α : R+ → R

n of wα by setting w∗
α(t) = wα(α) ∀ t > α. For later convenience, we

introduce the continuous function

ε �→ g(ε) :=

∫ α+ε

α

‖(V w∗
α)(t)‖ dt.

We proceed in three steps.
Step 1. Existence and uniqueness on a small interval.
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For each ε ∈ (0, 1), define

Cε := C(α, ε, 1, wα),

which, endowed with the metric

(v, w) �→ sup
α≤t≤α+ε

‖v(t)− w(t)‖,

is a complete metric space.
Existence and uniqueness of a solution on a small interval is proved by showing

that

(Γw)(t) :=



wα(t), 0 ≤ t ≤ α,

wα(α) +

∫ t

α

(V w)(τ) dτ, α ≤ t ≤ α+ ε

defines a contraction on Cε for sufficiently small ε > 0.
By the weak Lipschitz property of V , there exists a continuous function f : [0, 1] →

R+ with f(0) = 0, such that, ∀ ε ∈ (0, 1), v, w ∈ Cε, and t ∈ [α, α+ ε],

‖(Γw)(t)− wα(α)‖ ≤
∫ α+ε

α

‖(V w)(τ)‖ dτ

≤ g(ε) +

∫ α+ε

α

‖(V w)(τ)− (V w∗
α)(τ)‖ dτ

≤ g(ε) + f(ε)

≤ 1 for all sufficiently small ε > 0(42)

and

‖(Γv)(t)− (Γw)(t)‖ ≤
∫ α+ε

α

‖(V v)(τ)− (V w)(τ)‖ dτ
≤ f(ε) sup

α≤τ≤α+ε
‖v(τ)− w(τ)‖

≤ 1
2 sup
α≤τ≤α+ε

‖v(τ)− w(τ)‖ for all sufficiently small ε > 0.(43)

By (42), Γ(Cε) ⊂ Cε for all sufficiently small ε > 0. Consequently, we obtain from
(43) that Γ is a contraction on Cε for all sufficiently small ε > 0.

Step 2. Extended uniqueness.
Let v : [0, β1) → R

n and w : [0, β2) → R
n, β1, β2 > α, be solutions of (40)

(existence of v and w is ensured by Step 1).
We claim that v(t) = w(t) ∀ t ∈ [0, β), where β = min{β1, β2}. Seeking a

contradiction, suppose that there exists t ∈ (0, β) such that v(t) �= w(t). Defining

t∗ = inf{t ∈ (0, β) | v(t) �= w(t)},

it follows that t∗ > α (by Step 1), t∗ < β (by supposition), and v(t∗) = w(t∗) (by
continuity of v and w). Clearly, the initial-value problem

ż(t) = (V z)(t), t ≥ t∗ ; z(t) = v(t), t ∈ [0, t∗]
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is solved by v and w. This implies (by the argument in Step 1) that there exists an
ε > 0 such that v(t) = w(t) ∀ t ∈ [0, t∗ + ε), which contradicts the definition of t∗.

Step 3. Continuation of solutions.
Let α ≥ 0 and wα ∈ C([0, α],Rn) be arbitrary and, as before, let w∗

α be the
continuous extension of wα with w∗

α(t) = wα(α) ∀ t > α.
Let w be a solution of (40) on the interval [0, β), α < β < ∞. In order to prove

that w can be extended to a maximal solution (which satisfies (41) if tmax < ∞), it is
sufficient to show that w can be continued to the right (beyond β) if w is bounded on
[0, β). Suppose that w is bounded. Set δ := β−α and ρ =: sup{‖w(τ)−wα(α)‖ |α <
τ < β}. By the weak Lipschitz property of V , there exists continuous f : [0, δ] → R+,
with f(0) = 0, such that ∀ ε ∈ (0, δ)∫ α+ε

α

‖(V w)(τ)‖ dτ ≤ g(ε) + ρf(ε),

implying, by boundedness of g and f on [0, δ], that V w ∈ L1([0, β],Rn) and so the
following limit exists:

lim
t↑β

∫ t

α

(V w)(τ) dτ =: L ∈ R
n,

whence

L+ wα(α) = lim
t↑β

(Γw)(t).

Now w(t) = (Γw)(t) ∀ t ∈ [0, β). Therefore, defining w(β) = L + wα(α) we can
extend w into a continuous function on [0, β]. Finally, by the argument in Step 1, the
initial-value problem

ż(t) = (V z)(t), t ≥ β ; z(t) = w(t), t ∈ [0, β]

has a unique solution w∗ on [0, β + ε) for some ε > 0. By causality of V , the
function w∗ is a solution of (40) on [0, β+ε), and so w∗ is a proper right continuation
of w.

Remark 5.2. In what follows, we shall invoke Proposition 5.1 only in the special
case α = 0. Note, however, that Steps 2 and 3 in the above proof of the proposition
required the local existence and uniqueness result in the more general context of α ≥ 0.

In the following, Proposition 5.1 will be used to prove Lemmas 3.5 and 3.12.
First note that, by setting k(t) = 1/l(t), the adaptive feedback system (37) (with
(A,B,C,D) ∈ R) can be written in the following form which will be more convenient
for our purposes:

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X,(44a)

u̇(t) = k(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(44b)

k̇(t) = −k2(t)|r − CLx(t)−Dφ(u(t))|, k(0) = k0 ∈ (0,∞).(44c)

The feedback systems (10) and (44) are both of the form

ẋ(t) = Ax(t) +Bφ(u(t)), x(0) = x0 ∈ X(45a)

u̇(t) = κ(t)θ(t)[r − CLx(t)−Dφ(u(t))], u(0) = u0 ∈ R,(45b)

θ̇(t) = h(θ(t))|r − CLx(t)−Dφ(u(t))|, θ(0) = θ0 ∈ R,(45c)
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where κ ∈ L∞(R+,R) and h : R → R is locally Lipschitz. To recover (10) from (45),
set h(θ) ≡ 0 and θ0 = 1 (in this case κ(·) plays the role of the gain function k(·)).
Considering the special case κ(t) ≡ 1 and h(θ) = −θ2 gives the adaptive feedback
equations (44) (with k(·) = θ(·)).

For a ∈ (0,∞], a continuous function

[0, a) → X × R × R, t �→ (x(t), u(t), θ(t))

is a solution of (45) if (x(·), u(·), θ(·)) is absolutely continuous as a (X−1 × R × R)-
valued function, x(t) ∈ dom(CL) for a.a. t ∈ [0, a), (x(0), u(0), θ(0)) = (x0, u0, θ0),
and the differential equations in (45) are satisfied almost everywhere on [0, a), where
the derivative in (45a) should be interpreted in the space X−1.

On noting that CLx(t)+Dφ(u(t)) = (Ψ∞x0)(t)+(F∞φ(u))(t) (withΨ∞ and F∞
defined by (2)), the variable x(t) can be eliminated from (45b) and (45c) to obtain

u̇(t) = κ(t)θ(t)[r − (Ψ∞x0)(t)− (F∞φ(u))(t)], u(0) = u0,(46a)

θ̇(t) = h(θ(t))|r − (Ψ∞x0)(t)− (F∞φ(u))(t)|, θ(0) = θ0.(46b)

In order to proceed we need the following lemma.
Lemma 5.3. ∀ α ≥ 0, v ∈ C([0, α],R), δ > 0, and ρ > 0, there exist γ1, γ2 > 0

such that ∀ ε ∈ [0, δ] and u,w ∈ C(α, δ, ρ, v)
∫ α+ε

α

|(F∞φ(u))(τ)− (F∞φ(w))(τ)| dτ ≤ εγ1 sup
α≤τ≤α+ε

|u(τ)− w(τ)|,(47)

∫ α+ε

α

|(F∞φ(u))(τ)| dτ ≤ εγ1ρ+
√
εγ2.(48)

Proof. Let α ≥ 0, v ∈ C([0, α],R), δ > 0, ρ > 0, and u,w ∈ C(α, δ, ρ, v). Let λ
be a Lipschitz constant for φ ∈ N . Then, using the Cauchy–Schwarz inequality and
the boundedness of F∞ as an operator from L2(R+,R) into L2(R+,R), we obtain ∀
ε ∈ [0, δ],

∫ α+ε

α

|F∞φ(u)− F∞φ(w)| ≤ √
ε

(∫ α+ε

α

|F∞φ(u)− F∞φ(w)|2
)1/2

≤ √
ελ‖F∞‖

(∫ α+ε

α

|u− w|2
)1/2

≤ ελ‖F∞‖ sup
α≤τ≤α+ε

|u(τ)− w(τ)|,

which is (47) with γ1 = λ‖F∞‖.
To establish (48), define a continuous extension v∗ : R+ → R of v by setting

v∗(t) = v(α) ∀ t > α. Applying (47), it follows ∀ ε ∈ [0, δ] that

∫ α+ε

α

|(F∞φ(u))(τ)| dτ ≤
∫ α+ε

α

|(F∞φ(v∗))(τ)| dτ + εγ1 sup
α≤τ≤α+ε

|u(τ)− v∗(τ)|

≤ √
ε

(∫ α+δ

α

|(F∞φ(v∗))(τ)|2
)1/2

dτ + εγ1ρ,
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which yields (48) with γ2 := (
∫ α+δ

α
|(F∞φ(v∗))(τ)|2 dτ)1/2.

Lemmas 3.5 and 3.12 are special cases of the following corollary.
Corollary 5.4. Let (A,B,C,D) ∈ R, φ ∈ N , r ∈ R, κ ∈ L∞(R+,R), and

let h : R → R be locally Lipschitz. If h(θ) ≤ 0 ∀ θ ∈ R and h(0) = 0, then ∀
(x0, u0, θ0) ∈ X × R × (0,∞), the initial-value problem given by (45) has a unique
solution defined on R+.

Proof. Let (x0, u0, θ0) ∈ X×R×(0,∞). It is clear that the map V : C(R+,R
2) →

L1
loc(R+,R

2) given by

V

(
u

θ

)
(t) =


κ(t)θ(t)[r − (Ψ∞x0)(t)− (F∞φ(u))(t)]

h(θ(t))|r − (Ψ∞x0)(t)− (F∞φ(u))(t)|




is causal, and it follows from Lemma 5.3 via a routine argument that it is also weakly
Lipschitz. Hence it follows from Proposition 5.1 that the initial-value problem (46)
has a unique solution (u, θ) on a maximal interval of existence [0, tmax). To prove
that tmax = ∞, we first show that θ is bounded on [0, tmax). Note that since h ≤ 0,
θ(·) is nonincreasing, and combining this with the assumption that θ0 > 0, we see
that boundeness of θ(·) follows if we can show that θ(t) > 0 ∀ t ∈ [0, tmax). Seeking a
contradiction, suppose that there exists a t∗ ∈ (0, tmax) such that θ(t∗) = 0. Consider
the following initial-value problem on [0, tmax):

ζ̇(t) = h(ζ(t))|e(t)|, ζ(t∗) = 0,(49)

where e(t) = r − (Ψ∞x0)(t) − (F∞φ(u))(t). Then θ(·) is a solution of (49). Since
h(0) = 0, the function ζ ≡ 0 is also a solution of (49). By uniqueness it follows that
θ ≡ 0, which is in contradiction to θ0 > 0. Therefore, the function θ(·) is bounded on
[0, tmax) and hence there exists a constant γ > 0 such that

|κ(t)θ(t)| ≤ γ ∀ t ∈ [0, tmax).

Let [0, T ) be an arbitrary interval with [0, T ) ⊂ [0, tmax) and T < ∞. Multiplying
(46a) by u and estimating we obtain that, ∀ τ ∈ [0, T ),

u(τ)u̇(τ) ≤ γ[r2 + (Ψ∞x0)
2(τ) + u2(τ) + |(F∞φ(u))(τ)u(τ)| ].(50)

Integrating (50) from 0 to t and combining the estimate∫ t

0

|(F∞φ(u))u| ≤
∫ t

0

|F∞(φ(u)− φ(0))| |u| + 1

2

(∫ t

0

(F∞φ(0))2 +

∫ t

0

u2

)
,

the Cauchy–Schwarz inequality, and the global Lipschitz property of φ, we can show
readily that there exist positive constants α and β such that, ∀ t ∈ [0, T ),

u2(t) ≤ α+ β

∫ t

0

u2(τ) dτ.

An application of Gronwall’s lemma then shows that u2(t) ≤ αeβt ∀ t ∈ [0, T ). Hence
u is bounded on [0, T ). Since this holds ∀ T with T ≤ tmax and T < ∞, it follows by
Proposition 5.1 that tmax = ∞.

Finally, to obtain a solution of (45), define

x(t) = Ttx0 +

∫ t

0

Tt−τBφ(u(τ)) dτ.(51)
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By well-posedness, x is a continuous X-valued function, and moreover, since A, con-
sidered as a generator on X−1, is in B(X,X−1), the function t �→ Ax(t) is a continuous
X−1-valued function. Consequently, by Pazy [18, Theorem 2.4, p. 107], we have that
in X−1

ẋ(t) = Ax(t) +Bφ(u(t)) ∀ t ∈ R+.

It follows that (x, u, θ) is the unique solution of (45) defined on R+.
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