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Time-Varying and Adaptive Discrete-Time Low-Gain
Control of Infinite-Dimensional Linear Systems with
Input Nonlinearities™®

H. Logemann' and E. P. Ryan’

Abstract. Discrete-time low-gain control strategies are presented for tracking
constant reference signals for infinite-dimensional, discrete-time, power-stable,
linear systems subject to input nonlinearities. Both non-adaptive (but time-
varying) and adaptive controls are considered. The discrete-time results are
applied in the development of sampled-data integral control for infinite-
dimensional, continuous-time, exponentially stable, regular, linear systems with
input nonlinearities.
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1. Introduction

The paper extends a sequence [LR], [LRT1], [LRT2] of recent results pertaining
to integral control of infinite-dimensional systems subject to input nonlinearities.
Underpinning these results are generalizations of the well-known principle (see,
for example, [D], [L2] and [M]) that closing the loop around a stable, linear,
finite-dimensional, continuous-time, single-input single-output plant, with transfer
function G, compensated by a pure integral controller k/s, will result in a stable
closed-loop system that achieves asymptotic tracking of arbitrary constant refer-
ence signals, provided that |k| is sufficiently small and G.(0)k > 0. (Therefore,
under the above assumptions on the plant, the problem of tracking constant
reference signals reduces to that of tuning the gain parameter k. This so-called
“tuning regulator theory” [D] has been successfully applied in process control
(see [CSW] and [L1]).) If we denote by %, the class of single-input (u(f)), single-
output (y(¢)), continuous-time, infinite-dimensional, regular, exponentially stable,
linear systems, and by ./~ the set of globally Lipschitz non-decreasing functions
¢ : R — IR, then in [LRTI] it is shown that the above principle remains valid if
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the plant to be controlled is a class %, system (with transfer function G,) subject
to an input nonlinearity ¢ of class .4#": more precisely, if G.(0) > 0 and if the con-
stant reference signal r is feasible (in the sense that [G.(0)]'r is in the closure of
the image of @), then there exists k* > 0 such that, for all k € (0,k*), the output
y(t) of the closed-loop system converges to r as t — oo. Let k™ denote the
supremum of all such £*. In [LRT1], it is shown that k** > k*/A, where 1 > 0 is a
Lipschitz constant for ¢ and x* denotes the supremum of all numbers x > 0 such

that
G. .
1+KR€¥ZO, for all s with Re s > 0.

Lower bounds and formulae for x* in terms of plant data are provided in
[LRT2]. In general, £** is a function of the plant data and so, in the presence of
uncertainty, may fail to be computable. In such circumstances, it is natural to
consider integral controllers with time-varying gain k(-) such that k(¢) | 0 as
t — oo as well as adaptive gain strategies. Such considerations form the focus of
[LR] wherein, in particular, the efficacy of the simple adaptive integral control
strategy

13
u(t) = up + J k(z)[r — y(7)] dr, k(1) = L,

0 (1) (1)
() =lr—=y@l,  1(0)=1l >0,

is established. In different contexts, the problem of tuning the integrator gain
adaptively has been widely addressed elsewhere: see, for example, [C2], [MDI1]
and [MD2] for the finite-dimensional case (with input constraints treated in
[MD2)), and [LT1]-[LT3] for the linear infinite-dimensional case.

The contribution of the present paper is twofold:

(i) a treatment of discrete-time low-gain control of infinite-dimensional,
discrete-time, power-stable, linear systems subject to input nonlinearities of
class ./, providing the discrete-time analogues of the results in [LR] on
continuous-time systems;

(i) application of the discrete-time results in the development of a sampled-
data counterpart of the strategy (1) for adaptive control of continuous-time
systems of class .#, subject to input nonlinearities of class ./

With respect to (i), whilst the structure of the discrete-time analysis parallels that
of the continuous-time analysis in [LR], there are several points where these anal-
yses differ in an essential manner. With reference to (ii), the sampled-data results
constitute the main contribution of the paper. In the derivation of these results,
the discrete-time theory plays a central rdle.

2. Discrete-Time Low-Gain Control

The problem of tracking constant reference signals » € IR is first addressed in a
context of single-input (u, € R), single-output (y, € R), discrete-time (time domain
Ny := N u {0}), linear systems having a nonlinearity ¢ in the input channel and
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(un) — @ G (n)

Fig. 1. The generic discrete-time system.

evolving on a real Banach space X (with norm || - ||):
Xpp1 = Axy + Bo(uy,), xp € X, (2a)
Vn = Cxn+ Do(uy). (2b)

Here Ae #(X,X)=:%4(X), Be ZR,X), Ce#(X,R) and DeR, where
#(Y,Z) denotes the space of linear bounded operators from a Banach space Y
to a Banach space Z. By tracking r € R for a system of form (2), we mean the
construction of an input sequence (u,) such that (¢(u,)) is bounded and y, — r
as n — oo. A system of the form (2) is called power-stable if A is power-stable,
that is, there exist M > 1 and 0 € (0, 1) such that

A" < MO",  Vne N,

where || - || denotes the operator norm on #(X) induced by the norm || - || on X.
Henceforth, we assume A is power-stable.

The generic system to be controlled is depicted schematically in Fig. 1, wherein
the transfer function G is given by

G()=C(I—A)'B+D

and is assumed to satisfy G(1) > 0. In summary, the class of underlying quad-
ruples (A4, B, C, D) is denoted

% :={(4, B, C, D)|A power-stable, G(1) = C(I — A) 'B+D >0}. (3)

The input nonlinearities to be considered are those functions ¢ of class .4/ defined
below.

Definition 2.1. Let 4" be the class of functions ¢ : R — R with the properties: (a)
@ is monotone non-decreasing; (b) ¢ satisfies a global Lipschitz condition (with
Lipschitz constant 1), that is, for some 4 >0, |p(u) — ¢(v)| < Alu — v| for all u,
velR.

As an example of ¢ € ./, consider the input nonlinearity in Fig. 2.

o(u)

| u
|

Fig. 2. Nonlinearity with saturation and dead zone.
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The Clarke [C1] directional derivative ¢°(u;v) of ¢ € A" at u in direction v is
given by

o(w + hv) — p(w) .

w—u h

Define ¢~ (-) := —¢°(-; —1) (if ¢ is C' with derivative ¢’, then ¢~ = ¢'). A point
u e R is said to be a critical point (and ¢(u) is said to be a critical value) of ¢
if 9~ (u) = 0.

We record the following technicality for later use.

Proposition 2.2. Let g9 € A", with Lipschitz constant 1 > 0. Let (u,) < R and
define (9,) = [0, 4] by
@(un+1) — p(un)
Op = Upy1 — Uy
A lf Uptl = Up.

If (u,) is convergent and its limit is not a critical point of ¢, then there exist con-
stants N € N and p > 0 such that

if Ups1 7 Uy,

on > I, Vn> N.

Proof. Let (u,) be convergent with limit # a non-critical point of ¢ (and so
¢~ (u) > 0). Seeking a contradiction, suppose that (J,) is not bounded away from
zero. Then, extracting a subsequence if necessary, we may assume that J, — 0
as n — oo. Write h, = u,1 — u,. Clearly, the sequence (/,) must contain a sub-
sequence (hy, ) with either (i) /, > 0 for all ke N, or (ii) /4, <O for all ke N.
We will show that each case leads to a contradiction.

Case (i): Assume h,, > 0 for all k. Then we have the contradiction:
(ﬂ(unk + hﬂk) — (0(”ﬂk)

0= lim 6, = lim

G T,
R U D e 0 B U R U )
M;;TE)M w—u h
h|0
—h) —
- —limsupw — _¢0(u; _1) _ (p,(u) > 0.
o

Case (ii): Assume hy,, < 0 for all k. Then we have the contradiction:
(0<unk + hm») — (p(”nk>

0= lim g, = lim

k— o0 hnk
— _ lim (0(”7&» — |hnk‘) — (p(unk)
k— o0 |hnk‘
> — limsupw =—¢°(u;—1) = ¢~ (u) > 0. |

w—u h
)
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Denote by r € R the value of the constant reference signal to be tracked by
the output y,. The following condition plays a central role: [G(1)] ' r € clos(im ).
Reference values r satisfying this condition are referred to as feasible. The next
proposition demonstrates that feasibility of r is a necessary condition for solvabil-
ity of the tracking problem.

Proposition 2.3. Let (4,B,C,D) e ¥, p € N and r € R. If there exists a sequence
(uy) such that (¢p(u,)) is bounded and the solution n — x,, of (2) has the property

lim [Cx, + D)) = 7.
then g, := [G(1)]"'r e clos(im ¢).
Proof. Using the identity (I — A)'4 = (I — A)~" — I it follows, from (2), that
C(I—A) Xy =CI = A) X, — Cx + CUI — A) "' Bp(uy,)
= C(I = A) "% =y, + G(1)op(un)

and hence

—_

n—

CI = A)" %y = CU = A) " x0+G(1) Y _(0(w) = [G()] ' yy). (4)

.
Il
(=}

The function ¢ is continuous, and so clos(im ¢) is a closed interval (which may be
unbounded). Seeking a contradiction, suppose that [G(1)]”'r ¢ clos(im ¢). Then

d := dist([G(1)] "', clos(im(p)) > 0

and, since lim;_., y; = r, it follows that for all sufficiently large j, the term ¢(u;) —
[G(l)]f1 »; has constant sign and is bounded away from zero. Consequently, the
right-hand side of (4) is unbounded as » — co. However, by the power-stability
of A4 and boundedness of (p(u,)), the left-hand side of (4) remains bounded as
n — oo, yielding a contradiction. |

2.1. Time-Varying Gain

With a view to tracking feasible reference values r € R, we investigate control
action of the form
Upt] = Uy + kn(r - Cx,, — Dgo(un))7

where (k,) = R is a suitably chosen sequence of gain parameters, which leads to
the following nonlinear system of difference equations:

Xnt1 = Axy + Bo(uy,), xo€e X, (5a)
Up+1 = Uy + kn(r - an - D(D(un))v Uy € R. (Sb)
The main result of this section is contained in Theorem 2.6. The essence of this

theorem is the assertion that if r is feasible and (k,) decreases monotonically to
zero and approaches zero sufficiently slowly, then both (x,) and (¢(u,)) converge.
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In particular, the limit of (¢(u,)) is [G(1)]'r, thereby ensuring asymptotic track-
ing of r.

Lemma 24. Let (4,B,C,D)e %, pe AN with Lipschitz constant A >0 and
reR. Let (k,) =R, be a monotone sequence with k, | 0 as n — co. For all
(x0,up) € X x R, the solution n — (x,,u,) of (5) satisfies

(a) lim,_, o, p(u,) exists and is finite,
(b) lim,_o x, = (I — A)71B¢*, where ¢* 1= lim,_ o, ¢(u,).
Proof. Introduce new variables
Zpi=x, — (I — A)le(p(un), vy = @(Uy) — @y
where ¢, := [G(1)]"'r. Define the sequence (5,) = [0, 4] (as in Proposition 2.2) by
P(Uns1) — ()

Op = Up1 — Uy
A if w1 = uy.

it # uy,

Using the identity A(I —A)™' = (I —A)"' —1I, a straightforward calculation
yields
Znp1 = Azy + kndp(I — A) 7' B(G(1)v, + Czp), )
a
zo=x0— (I — A)71B¢(u0),
Unt1 = Un — kn0n(G(1)v, + Czp), vy = @(up) — @, (6b)
By the power-stability of 4 there exist constants M > 1 and 0 € (0, 1) such that
(4" < M0O", Vn € Np.
Defining y, := M /(1 — 0), we have

[o0]

yO:MiO”zM > oo, (7)

n=0 n=0

Combining (6a), (7) and the fact that (6,) < [0, 4] with a routine estimate based
on elementary properties of the convolution product of sequences we obtain, for
allm, N € N,

m+N 5 1/2 m+N 5 1/2
(Z [EA| ) < ollznll + 7071 G(1) (Z kf(snv,f)
n=N n=N
m+N 1/2
2
+ 7071 Cll <Z SCH EA )
n=N
m+N 1/2
<l i (55 o
n=N

n=N

m+N 1/2
+ knyor Al Cll <Z ||zn||2> : 8)



Discrete-Time Low-Gain Control of Infinite-Dimensional Linear Systems 299

where y, := ||(I — A) ' B||. Choosing N sufficiently large so that
o =1 —knpon 4] Cl| > 0,
it follows from (8) that

N 1/2 N 1/2
(Z ||zn|2> < ollzn]| + oc2<z k,%dnuﬁ) , Vm e N, 9)
n=N

n=N

where
oy = 70/ %; o =y VAG(1) /.

Asa consequence

m+N m+N s m+N 1/2
S lodwl 2] < (Z ko 2) (Z Izl )
n=N n=N
m+N 1/2 m+N
< (ZSHZNH (Z k}zérlv,%) + o4 Z k 6 vnv (10)

n=N

where o3 := o vko/ and oy := arv/2. It follows from (6b) that, for all m € N,

m+N m+N
iy =08 =2 ) kdutu(G(L)v, + Cz) + > kZ02(G(1)v, + Cz)%  (11)
n=N n=N
whence
m+N m+N

U;%7+1+N = UN —2G(1 Z knbnv, +2||C|| Z |knOnnl ||z

m+N m+N

122 Z k2002 + 20322 CIIP > Nzl (12)
n=N

Combining (9), (10) and (12), there exist constants f3;, f,, f3 > 0 such that, for all
me N,

) m+N 1/2
2 2 2
Crin < 0%+ Bl 4+ Ballzwl | D kb2

n=N
m+N

+ ) {Bskn — 2G(1) Yendyv- (13)
n=N
Since k, | 0 as n — o0,
Pakn —2G(1) < —G(1) <0 for all n sufficiently large.
Consequently, by (13),

> knbnvy < 0. (14)
n=0
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Using (9) and (10) it follows that

0 o0
Z 21> < oo, Z |knOnvn| ||z < o0. (15)
n=0

n=0
Combining (11), (14) and (15) we see that there exists a number v € [0, c0) such
that
lim v2 = . (16)

m— o0 m

If v=0, then lim,_, v, =0 and so lim,_.. ¢(u,) = ¢* = ¢,. Now consider the
remaining case v > 0. Since k, | 0 as n — oo, we may conclude from (6b) that

lim |v,41 — vy = 0. (17)
n— oo

Since v # 0, (16) and (17) imply that v, is of constant sign for all » sufficiently
large. Thus, lim,_,, v, exists and takes one of the values +./v. We have now
shown that the sequence (v,) converges, whence assertion (a) of the theorem.
Assertion (b) then follows by the power-stability of 4. |

Lemma 2.5. Let (4,B,C,D)e ¥ and ¢ € A" with Lipschitz constant 1 > 0.
Let re R be such that ¢, := [G(1)]"'r € clos(im ¢). Let (k,) = R, be a bounded
sequence and such that

n
Kn::E ki — © as n— oo.
j=0

For (xo,up) € X X R, let n — (x,,u,) be the solution of (5). If lim,,_,, p(u,) exists
and is finite, then the following statements hold.

) im0 @(un) = 0,

) lim,_., x, = (I — A)"'Bg,,

) lim, ., y, =r, where (y,) = (Cx, + Do(u,)),
) if ¢, € im @, then

lim dist(un, w_l ((pr)) = Oa

n—oo

(e) if g, € int(im @), then (uy) is bounded.

Proof. By hypothesis, there exists ¢* € R such that lim,_ ., ¢(u,) = ¢*. The
essence of the proof of assertions (a)—(e) is to show that ¢* = ¢, = [G(1)]'r.

Seeking a contradiction, suppose that ¢* # ¢,. By the power-stability of 4, we
have

lim y, = lim (Cx, + Dp(u,)) = C(I — A)"'Bp* + Dp* = G(1)p*.
Let N € N be such that

vy = G| < 3G(Dlp, —¢*|,  ¥n=N.
Noting that r — y, = G(1)(¢, — ¢*) — (y, — G(1)¢*), it follows from (5b) that

— 1k, G(1) g, — 97| < thys1 — tt — kuG(1) (9, — 9*) < kG (1) g, —0*|,  Vn=N.



Discrete-Time Low-Gain Control of Infinite-Dimensional Linear Systems 301

If . > ¢*, then

whence

m+N
umiren = uy +3G() (9, — 9*) > kj =00+ 1 Kpy,  YmeN,
j=N

for some constants ay, o; with a; > 0. Since K,, — o0 as n — oo, we conclude that
u, — oo as n — oo, whence the contradiction:

¢, < supp = lim p(u,) = 9" < @,.
n—oo
If p, < ¢*, then
Unpl — Uy < *%knG(l)Wr*(P*L Vn >N,

and so
Um+1+N < — OC3](m+Na Vme Na

for some constants op, o3 with a3z > 0. Therefore, u, — —oo as n — oo which
yields the contradiction:
¢, > info = lim p(u,) = 9" > ¢,
n—oo

We may now conclude that ¢* = ¢,, which is assertion (a) of the lemma. By the
power-stability of 4, assertions (b) and (c) follow immediately.

To prove assertion (d), let ¢, € im ¢ and suppose that the claim is false. Then
there exists a subsequence of (u,), which we do not relabel, and ¢ > 0 such that

dist(u 07\ (9,) =6, n. (18)

If the sequence (u,) is bounded, then we may assume without loss of generality
that it converges to a finite limit #*. By the continuity of ¢ and assertion (a),
p(u*) = ¢, and so u* € p~'(p,) which contradicts (18). Now consider the case of
unbounded (u,). Since ¢, € im ¢, there exists u € R such that ¢(u) = ¢,. By the
unboundedness of (u,) and extracting a subsequence if necessary, we may assume
that either (i) u, — +o0 as n — oo, or (ii) u, — —oo as n — co. By the monoto-
nicity of ¢ and assertion (a), in case (i) we have sup ¢ = ¢, = ¢p(u) = ¢(u,) for all
n sufficiently large and so u, € 9~ '(¢p,) for all n sufficiently large, contradicting
(18), whilst in case (ii) we have inf ¢ = ¢, = p(u) = ¢(u,) for all n sufficiently large
and so u, € p~'(p,) for all n sufficiently large, again contradicting (18). This estab-
lishes assertion (d).

Now assume ¢, € int(im¢) and, for contradiction, suppose that assertion (e) is

false. Then either limsup,_, #, = +o0 or liminf,_, u, = —oo. The former case
implies that sup ¢ = ¢, (= lim,_ ., ¢(u,)) whilst the latter case implies that inf ¢ =
o,. Both cases contradict the hypothesis ¢, € int(im ¢). |

Theorem 2.6. Let (4,B,C,D) e & and ¢ € N with Lipschitz constant 2 > 0. Let
reR be such that ¢, = [G(1)]"'reclos(imp). Let (k,) = R, be a monotone
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sequence with the properties that k, | 0 as n — oo and

n
K,,::E kj — oo as n— oo.
7=0

For all (xo,up) € X x R, the solution n— (x,,u,) of (5) satisfies

a) lim, (0(un> =0
b) lim, o x, = (I — A)le(p,,,

) limy,— y, =1, where (y,) = (Cx, + Do(uy)),

) if 9, € im @, then

lim dist(u,, 9™ (p,)) = 0.

(e) if ¢, € int(im @), then (u,) is bounded,
(f) if 9, eimg is not a critical value of ¢, then the convergence in (a) and (b)
(and hence in (c)) is of order p~% for some p > 1 (in the sense that the
sequences (p*+[p(u,) = p,]), (p*+[xy = (I — 4)7'By,]) and (p**(r — y,)) are
bounded).

Proof. Assertions (a)—(e) follow immediately from Lemmas 2.4 and 2.5. It
remains only to establish assertion (f).
Introduce new variables

Zn = pK” (xn — (1 — A)71B¢(un))7 Un = pK"((p(un) —0).
It suffices to prove the boundedness of the sequences (z,) and (v,). As in the proof

of Lemma 2.4, define the sequence (J,) < [0, 4] by

(tni1) — ¢(un)
611 = Upy1 — Uy
y) i Ups1 = ty.

if Upt1 7 Up,

Since ¢, € im ¢ is not a critical value, ¢~ (p,) is a singleton {u,}, with ¢~ (u,) > 0
and, in view of assertion (d), u, — u, as n — oo. By Proposition 2.2, there exists
1 > 0 such that

0 < pu<oy, Vn.

A straightforward calculation yields
Zurt = Auzy + knou(I — A) 7' B(G(1)v, + Cz,),
20 = pM(x0 = (I = 4)”' Bp(wo)),
Onit = P10y = knon(G()vn + Cz,), w0 = p*(p(wo) —9,),  (19b)

(19a)

where
op = pk1s, and A, = phid, Vn.

Clearly,
0<u<d, <o, <v:=phj.
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y (19a), for all N > 0,
m+N—1

Zm+N = < H An) ZN
n=N

m+N—1 (m+N—1
+ Z < H Ai>kno'n(1_A)_IB(G(I)UH+CZn)7 VmeN, (20)

n=N i=n+1

wherein we adopt the notational convention Hl'";]i VA =1
By the power-stability of A4, there exist M > 1 and 0 € (0, 1) such that ||4"| <
MO" for all n € Ny. Observe that, for p € N with p > n,

P
Jj=n+1

Choose p > 1 sufficiently close to 1 such that

= b A < M(pRoY . (21)

Jj= n+1

(a) pP0 <1 and (b) 41np < uG(1). (22)
Then, by (22a),
Yo 1= kog Z kOH >M Z kg 2” (23)
=0 n=0

Set y, := ||(I — 4) "' B|| and choose N sufficiently large so that

2k,
(a) %0 =1 —kypol|C > 0 and (b)

n

<4np, Vn>N. (24)

(Note that, since k, | 0 as n — o, we have lim,_,..(p** — 1)/k, = 21n p and so
there exists N € N such that (24b) holds.)
Using (20), (21), (23) and (24a), a calculation similar to that leading to (9)

yields
m+N 1/2 m+N 1/2
(Z |zn||2> <oyllzy| + o2 (Z k,fvf,) ., VmeN, (25)

n=N n=N

where o := y,/ap and oy := y,y;vG(1) /0. It follows that

m+N m+N 172 m+N
> Vewtul l|zall < o1 v/kol |z | (Z knv5> + o Z kX2 ¥YmeN. (26)
n=N n=N

By (19),

2 = vl = (pHr = 1)o? — 2p" ky0,0,(G(1)0, + Cz,)

+ k262(G(1), + Cz,)?, (27)

v

2Uenr 1
it == (P = 206k} + 20l ] ]
n+1

+ 277 [G() kv + 2k V| C)P 1zl

n-n
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By (22b), (24b), (25) and (26), there exist constants f5;, f,, f; > 0 such that, for all
me N,

m+N 1/2 m+N
§? k> + S ks - Gl
n=N n=N

2 2 2
Unitan < Uy T 812w ]| Jr/))2||ZN|<

(28)
Since k, | 0 as n — o0,
P3kn — 1uG(1) < —uG(1)/2 <0 for all n sufficiently large.
Consequently, by (28),
(a) anv,f <o and (b) (v,) is bounded. (29)
n=0

By (25) and (29a), >_.°, llzal|* < o0 and so z, — 0 as n — co. This completes the
proof. |

2.2. Adaptive Gain

Whilst Theorem 2.6 identifies conditions under which the tracking objective is
achieved through the use of a monotone gain sequence, the resulting control strat-
egy is somewhat unsatisfactory insofar as the gain sequence is selected a priori:
no use is made of the output information from the plant to update the gain. We
now consider the possibility of exploiting this output information to generate, by
feedback, an appropriate gain sequence. In particular, let the gain sequence (k)
be generated by the law

1
kn:l_7 Int :ln+|r_yn|ﬂ Iy >0, (30)
which yields the feedback system
Xnt+l = Axy + Bgo(u,,), X0 € X, (318)
Upy1 = Uy + ln_l(r - Cx; — D(ﬂ(un)), up € R, (31b)
g1 = by + |r — Cxy — Dop(u)|, lp > 0. (31c)

We arrive at the main adaptive control result.

Theorem 2.7. Let (A,B,C,D) e & and ¢ € N with Lipschitz constant 1 > 0. Let
r e R be such that ¢, := [G(1)]"'r € clos(im ).

For all (xo,up,ly) € X x R x (0,00), the solution nv (x,,uy,1l,) of the initial-
value problem (31) is such that assertions (a)—(e) of Theorem 2.6 hold. Moreover, if
@, € iIm @ is not a critical value of ¢, then the non-increasing gain sequence (k) =
(I71) converges to a positive value.

Proof. Since (/,) is monotone increasing, either /, — oo as n — oo (Case (i)), or
I, — 1* € (0,00) as n — oo (Case (ii)). We consider these two cases separately.
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Case (1). In this case, k, | 0 as n — oo and the hypotheses of Lemma 2.4 are
satisfied. Therefore, (x,) and (p(u,)) converge. In particular, the sequences (x;,)
and (¢(uy)) are bounded and so there exists a constant o > 0 such that

1 1

ky=— >
ln lo+an’

Therefore, assertions (a)—(e) of Theorem 2.6 hold.

VneN. (32)

Case (ii). In this case, [, — [* € (0,00) as n — o0. Using (31c), we may conclude
that the sequence (r — Cx, — Dg(u,)) is summable. This, together with (31b),
implies that (u,) is convergent to a finite limit, and hence (¢(u,)) converges to a
finite limit. By Lemma 2.5 it follows that assertions (a)—(e) of Theorem 2.6 hold.

Finally, assume that ¢, € im ¢ is not a critical value. Seeking a contradiction,
suppose that the monotone sequence (/,) is unbounded (equivalently, k, | 0 as
n — o0). Then the hypotheses of Lemma 2.4 are satisfied and so (32) holds. By
Theorem 2.6, ¢(u,) converges to ¢, and y, = Cx, + Dp(u,) converges to r as
n — oo; moreover, the convergence is of order p% for some p > 1, where K, =
>j—o kj. Thus there exists constant L; > 0 such that

Ir—y, <Lip™,  VneN. (33)
Choose f > o such that (In p)/f < 1. By (32)

1
n= T, N.
k, > I fn Vn e
Hence
n—1 n—1 1 n 1/
1 I 1 lo-i—ﬂn)
K, > > dt =1n . (34
2+ ,_OJ e e < 10 (34
By (33),

ln+l < ln + LlpiKna Vn e Na
and so, using (34),
n—1 N —) n—1
I, < 10+L1Z exp(ln[(lo_;—ﬁ]> }) <lh+L Z(lo +Bj)7, VneNN,
J=0 0 =0

where y := (In p)/f € (0,1) and L, := L,/]. Therefore,

n—1 rj
L <lh+ L, 1”+ZJ 10+ﬁz)7dz]
j=1 21

n—1
:lO+L2{10V+J (lo + po)™7 dt], VneN,
0

and we see that, for some suitable constant L3 > 0,

L < Ly(lo+pn— 1)) < Ly(lh+ pn)™7,  VneN.
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From this we may conclude that

n n—1
Ko< LS U+ ) < LS (o + )
=0

Jj=0

[T
(I + pr)" dt,

and thus
K, < —L3" J (lo + )" dt = —a(ly + pn)” + b
0

with @ := 1/(Lsfy) > 0 and b := al] > 0. Therefore,

p~ K < pPexp(—a(in p)(lo + fn)") = p” exp(—=0(lo + pn)"), (35)

where 6 := aln p > 0. Using a change of variables it is readily verified that the
non-increasing positive-valued function f* defined by

f(t)=pPexp(=d(ly+p1)"),  Vt=0,

is in L'(R,,R). By the integral test for the convergence of an infinite series, it
follows that the sequence ( f(n)) is summable. By (35) we may now conclude that
the sequence (p~%) is summable. Combining this with (33) shows that (/,) is
bounded, contradicting the supposition of unboundedness of (/,). |

3. Adaptive Sampled-Data Low-Gain Control of Continuous-Time Systems

The next objective is to invoke Theorem 2.7 in the derivation of results on adap-
tive sampled-data integral control of continuous-time infinite-dimensional systems
with input nonlinearities.

The generic system to be controlled is depicted schematically in Fig. 3, wherein
¢ € A and G, is the transfer function of a single-input, single-output, continuous-
time, regular linear system X with state space X (a Hilbert space) and with gen-
erating operators (A, B., C., D). This means in particular that 4, generates a
strongly continuous semigroup T = (T,),.,, C.€ #(X;,R) is an admissible
observation operator for T and B. € #(IR,X_;) is an admissible control opera-
tor for T. Here X denotes the space dom(A4,) (the domain of A4.) endowed with
the graph norm and X_; denotes the completion of X with respect to the norm
x|l = [|(so — A.)~"x||, where sy is any fixed element in the resolvent set of
A,. The norm on X is denoted by || - ||, whilst || - ||, and || - ||_, denote the norms
on X; and X_i, respectively. Then X; < X < X_| and T restricts (respectively,

u() » » Ge - ()

Fig. 3. The generic continuous-time system.
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extends) to a strongly continuous semigroup on X; (respectively, X_;). The expo-
nential growth constant
o(T) := lim ! In ||T/||
t—oo t

is the same on all three spaces. The generator of T on X_; is an extension of A4, to
X (which is bounded as an operator from X to X_;). We use the same symbol T
(respectively, A.) for the original semigroup (respectively, its generator) and the
associated restrictions and extensions. With this convention, we may write
A, € B(X,X_1). Considered as a generator on X_j, the domain of 4, is X.

We regard a regular system X as synonomous with its generating operators and
simply write ¥ = (4., B., C., D.). The regular system is said to be exponentially
stable if the semigroup T is exponentially stable, that is, w(T) < 0. The control
operator B, (respectively, observation operator C,) is said to be bounded if B, €
B(R, X) (respectively, C. e #(X,R)), otherwise, B. (respectively, C.) is said to
be unbounded. In terms of the generating operators (4., B., C., D.), the transfer
function G.(s) can be expressed as

G.(s) = CL(s] — A.)'B. + D.,

where Cp denotes the so-called Lebesgue extension of C.. The transfer function
G,(s) is bounded and holomorphic in any half-plane Re s > a with o > o(T).
Moreover,

lim G.(s) = D..

s—o0,se R

For any xp € X and u € L], (IR;,IR), the state and output functions x(-) and y(-),

respectively, satisfy the equations
x(t) = Aex(t) + Bou(t), x(0) = xo, (36a)
(1) = CLx(t) + D.u(z) (36b)

for almost all 7 > 0 (in particular x(¢) € dom(Cy) for almost all 7 > 0). The deriv-
ative on the left-hand side of (36a) has, of course, to be understood in X_;. In
other words, if we consider the initial-value problem (36a) in the space X_;, then
for any xo € X and u e L2 (R, R), (36a) has unique strong solution (in the sense
of Pazy [P, p. 109]) given by the variation of parameters formula

t
x(t) = Tixo + J T,_.B.u(t) dz. (37)
0
For more details on regular systems see [W1]-[W4]. For details on regular sys-
tems in the context of low-gain control the reader is referred to [LR], [LRT1] and
[LT2).
For future reference we state the following lemma, the proof of which can be
found in [LRT1].

Lemma 3.1.  Assume that T is exponentially stable and that B. € Z(IR, X_}) is an
admissible control operator for T. If u e L™ (IR, R) is such that lim,_,., u(t) = u
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T E() €n Un '“'() y()
S LG >~ H Y > G

Fig. 4. Sampled-data low-gain control.

exists, then for all xo € X the state x(-) given by (37) satisfies

lim ||x(¢) + A; ' B | = 0.

—o0

Let #. denote the class of all continuous-time, single-input, single-output, expo-
nentially stable, regular systems:

R, :={X = (4., B., C., D.)|Z regular and exponentially stable}.
Let %, = %, denote those systems of class %, for which G.(0) is positive:
S:={(A¢, Be, C, D) € R:|G.(0) = —CLA.'B. + D, > 0}.

For systems of class 7., our goal is to establish the efficacy of the control struc-
ture (a sampled-data analogue of (1)) depicted in Fig. 4, wherein S and H denote
sampling and hold operations, respectively, and LG represents the (adaptive dis-
crete-time) low-gain control law given by

-1
Upy] = Uy + Zn €n, Uy € ]R7
ln+l = ln + |en|; ZO > 0.

With this in mind, we first construct a discretization of the continuous-time plant
to which the results of the previous section may be applied. To this end, given a
sequence (u#,) = IR, we define a continuous-time signal u(-) by the standard hold
operation

u(t) = up, for te(nt,(n+1)r), neN, (38)

where 7 > 0 denotes the sampling period. If this signal is applied to the continuous-
time system
X = A.x+ Beop(u), x(0) =xp € X, (39a)

y = Cix + D.o(u), (39b)
then, for all n € Ny, the state x(nt + ¢) satisfies
x(nt + 1) = Tix(ne) + (T, — 1A, Bep(uy), Ve e [0,1). (40)
Accordingly, we define (x,) < X by
Xp = x(nt), Vn € Ny. (41)

Clearly, T, € #(X) and (T, — I)A;'B. € #(R, X) define appropriate state-space
operators for the state evolution of the discretization. However, in general, regu-
larity only guarantees that y(-) € L2 (R4, R) so that, even with piecewise con-
stant input functions, standard sampling of the output is not defined. Moreover,
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even if the output function is continuous (in which case standard sampling is
defined), in general the resulting discrete-time system will not have a bounded
observation operator. We therefore distinguish two cases: bounded and unbounded
observation.

3.1. Bounded Observation

Assume that C, = Cp € 4(X,R). If xp € X and u(-) is given by (38), then the
output y(-) given by (39b) is piecewise continuous, the discontinuities being at nt.
It is clear that y(-) is right-continuous at nt for all n € Ny. We define

Y, = y(nt), Vn € Ny, (42)
and
A B T. (T.—1)4;'B.
= ¢ . 43
( C D) ( C. D. *3)

The proof of the following proposition is an immediate consequence of Proposi-
tion 4.1 in [LT1].

Proposition 3.2. Let (4., B.,C.,D.) € Z&. with bounded observation operator C.,.
Let © > 0 and (u,) < R. If u(-) given by (38) is applied to (39), then (x,) and (y,)
given by (41) and (42), respectively, satisfy

Xpi1 = Ax, + Bo(uy), (44a)
Yn = Cx, + D(p(un)v (44b)

where (A, B, C, D) is given by (43). Moreover, A is power-stable and, setting G(-) =
C(-I — A)"' B+ D, we have that

G(1)=C(I—A)"'B+D=—-C.A.'B. + D, = G.(0). (45)

Consider the following adaptive sampled-data low-gain controller for (39)

u(t) = uy, for te[nt,(n+ 1)1), ne Ny, (46a)

Yo =y(nt),  neNo, (46b)
Uit = Uy + 1, (1= 2,),  woeRR, (46¢)
iy =b+lr=yl >0 (46d)

Theorem 3.3. Let (A., B, C.,D.) € ., p € N with Lipschitz constant . > 0 and
©>0. Assume that C. is bounded. Let re R be such that ¢, = [G.(0)] 're
clos(im ¢). For all (xo,up,lp) € X x R x (0, 00), the solution (x(-),u(-),(l,)) of the
closed-loop system given by (39) and (46) is such that the following assertions hold:

<a> limfﬂoc (p(l’t(t)) = Pers

(b) tim, .. [[x(1) + 4; Bep,,| = 0,

(c) lim,_ o, y(t) = r, where y(-) is the output given by (39b) corresponding to the
input function p(u(-)) with u(-) defined by (46a),
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(d) if ¢, € im o, then
lim dist(u(1), p~' (p,,)) = 0,

(e) if ¢, € int(im @), then u(-) is bounded.

Moreover, if ¢, € im ¢ is not a critical value of ¢, then the monotone gain sequence
(kn) = (I;Y) converges to a positive value.

Remark. Statement (d) asserts that u(¢) converges as t — oo if the set ¢~ !(gp,,) is
a singleton, which, in turn, will be true if ¢, € im ¢ is not a critical value of ¢.

Proof of Theorem 3.3. It follows from Proposition 3.2 that x, (given by (41)),
u, and y, satisty (44) with (4, B, C, D) given by (43). By the same proposition, 4
is power-stable and G(1) = C(I — 4)"'B+ D = G.(0) > 0. Therefore, using The-
orem 2.7, we see that

lim p(u,) = ¢, = [G(1)]™'r = [Ge(0)] ' = ¢,

n—oo

and assertion (a) follows since the continuous-time signal u(?) is given by (46a).
Assertions (d) and (e) and the positivity of lim,_, k, if ¢, € im ¢ is not a critical
value of ¢ follow in the same way. Assertion (b) is a consequence of (a) and
Lemma 3.1. Finally, assertion (c) follows from (a) and (b) and the boundedness
of C.. |

3.2. Unbounded Observation

As mentioned earlier, in this case we cannot define a sampled output via (42). To
overcome this difficulty we introduce a sampling operation which is a generaliza-
tion of the simple averaging prototype

1 T
Y :—J y(nt + 1) dt.
TJo

In the following, let w e L?([0, 7], R) be a function satisfying the conditions
(a) J w(t)dr=1 and (b) J w(t)Tx dt € X1, Vx e X. (47)
0 0
Whilst condition (47b) is difficult to check for general w, it is easy to show (using
integration by parts) that (47b) holds if there exists a partition 0 = #p < #; < -+ <
tw = v such that w|, e Wh((t0,4),R) fori=1,2,...,m.
We define a generalized sampling operation by

V= J w(t)y(nt + 1) dt, Vn € N. (48)
0

Introducing the linear operator

L:X — X, X J w(t)Tx dt,
0
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we define
(A B)._ T, (T, —I)A;'B.
C D) \CL CLA;'B.+G0))

By a routine application of the closed-graph theorem it follows that L € Z(X, X;),
and hence C = C.L € #(X,R).

(49)

Proposition 3.4. Let (A.,B.,C.,D.) € R.. Let ©>0, let we L*([0,7],R) be a
Sfunction satisfying (47) and let (u,) = R. If u(-) given by (38) is applied to (39),
then (x,) and (y,) given by (41) and (48), respectively, satisfy

Xp+1 = Axy + Bo(uy), (50a)

Vu = Cxu + Do(u), (50b)

where (A,B,C,D) is given by (49). Moreover, A is power-stable and setting
G(:) = C(-I — A)"'B + D we have that

G(1)=C(I—A)'B+D=—-CLA.'B. + D. = G.(0). (51)

Proof. It is clear from (40) and (41) that (50a) holds. To derive (50b), we pro-
ceed as follows. For notational convenience, write (v,) = (¢(uy,)). Let n € Ny. A
straightforward computation shows that, for almost all 7 € [0, 7),

t

y(mr+1t) = CLTx, + CLJ T,B.v, ds + D.v,
0

= CLT,x, + CL(T, — I)A;'B.v, + Dv,.
Therefore, using (47a) and (48), we obtain

Yy = J w(t)CLT,x, dt + J w(t) CLT,ALTlBCvn dt + G.(0)v,. (52)
0 0

Choosing (x});.x = X1 and (b)), < X such that

lim x, —xJ =0, lim B, — b, =0, (53)
j=o J—oo

we define (3));cn = R by

T T
y! ::J w(t)CLT,x/ dt+J w(t)CLT, A b} dt + G.(0)v,, VieN. (54)
0 0

Since x/ € X; and b/ € X, this can be re-written as

yi = CCJ w(t)T,x/ dt + CCJ w()T,A.'b) dt + G.(0)v,,  VjeN,
0 0

and thus _ _ ‘
y/ = Cx) 4+ CA'b) + G (0)v,,  VjeN. (55)

Using (53) and the fact that C, is an admissible output operator for the semigroup
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T we have
T T
lim J |CLT,(x] — x,)|* dt = 0, lim J |CLT(4;'b) — 4" Bu,)|* dt = 0,
J=® Jo J=® Jo

and, therefore, (52) and (54) yield
— 1 J
Yn = jll)n; yn .
Combining this with (55) and the boundedness of C, we obtain
V,=Cx,+ CACTle,, + G.(0)v, = Cx,, + Dy,

which is (50b). Moreover, since T is exponentially stable, it is clear that 4 = T, is
power-stable. Finally, to derive (51), note that

G(1) = ij W), (I = T (T, = 1)A-' B, di + CA-' B, + G (0)
0

= —CA;'B, + CA;'B. + G.(0)
=G,.(0). [

Consider the following adaptive sampled-data low-gain controller for (39):

u(t) = uy, for te[nt,(n+1)1), ne Ny, (56a)
Vo= J w(t)y(nt + 1) dt, n € Ny, (56b)

0
U1 =ty + 17— p,), up € R, (56¢)
ln+1 =1, + |r — yn‘? Iy > 0. (56d)

We emphasize that (56) is a causal control strategy: y, is available at a time
T € (nt, (n + 1)7] determined by the support of the function w.

Let .4 denote the space of finite signed Borel measures on IR, and let £ denote
the Laplace transform. We now arrive at the main adaptive sampled-data control
result in the unbounded observation case.

Theorem 3.5. Let (A.,B.,C.,D.) € %, and ¢ € N with Lipschitz constant 1 > 0.
Assume that € (G.) e M. Let re R be such that ¢, = [G.(0)]'r € clos(im p).
Let © > 0 and suppose that w € L*(]0, 7], R) satisfies conditions (47).

For all (xo,up,lp) € X x R x (0, 00), the solution (x(-),u(-),(l,)) of the closed-
loop system given by (39) and (56) is such that the following assertions hold:

<a> limtﬁoo €”(“(t)) = ¢L’1‘>

<b> lithOO ||X(t) + Alec(per = Or

(€) limy_ o |r — y(t) + CLT x0| = 0, where y(-) is the output given by (39b) cor-
responding to the input function ¢(u(-)) with u(-) defined by (56a),

(d) if o, € im g, then

lim dist(u(r), ¢~ (¢,) = 0,

(e) if ., € int(im @), then u(-) is bounded.
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Moreover, if ¢, € im ¢ is not a critical value of ¢, then the monotone gain sequence
(kn) = (1) converges to a positive value.

Remarks. The assumption that £7'(G,) € . is not very restrictive and seems to
be satisfied in all practical examples of exponentially stable systems. In particular,
this assumption is satisfied if B, or C, is bounded. It follows from (c) that the
error e(t) = r — y(t) converges to 0 for all xy € dom(A4,) since CLT,xy converges
exponentially to 0 as ¢t — oo for all xo € dom(A4). If C, is bounded, then this
statement is true for all xo € X. If C, is unbounded and xy ¢ dom(4,), then e(f)
does not necessarily converge to 0 as 1 — co. However, as the proof below
shows, e(7) is small for large 7 in the sense that e(f) = e|(¢) + ex(¢), where the
function e; is bounded with lim, ., e;(f) =0 and e(-) exp(a-) € L>(R, R) for
some o > 0.

Proof of Theorem 3.5. Using Proposition 3.4 instead of Proposition 3.2, all
assertions, with the exception of (c), follow exactly as in the proof of Theorem 3.3
(which invokes Theorem 2.7). Due to the unboundeness of C, we cannot use (b)
in order to show that y(¢) converges to r as t — co. However, we have

y(0) = CLToxo + (£71(Ge) % p(u))(1). (57)
By assumption € '(G,) € .# and since lim,_... p(u(t)) = ¢, (by assertion (a)), it
follows from Theorem 6.1, part (ii), p. 96 of [GLS] that

lim (€7(G.) % p(u))(1) = Gc(0)p, = 1.

t— o0

Combining this with (57) shows that assertion (c) holds. |

4. Example: Sampled-Data Control of a Diffusion Process with
Output Delay

Consider a diffusion process (with diffusion coefficient ¢ > 0 and with Dirichlet
boundary conditions) on the one-dimensional spatial domain [0, 1], with scalar
nonlinear pointwise control action applied at a point x; € (0, 1), via a nonlinearity
@ € A" with Lipschitz constant 4 > 0:

zi(t,x) = azy (8, x) +0(x — xp)p(u(2)), z(1,0) =0 =z(z,1), vt > 0.

Furthermore, we assume a nonlinearity ¢ of saturation type, defined as follows:

1, u>1,
ur— ou) =< u, ue(0,1),
0, u<0.

Cases of bounded and unbounded observation (with delay / > 0) will be treated
separately. For simplicity, in each case we assume zero initial conditions:

2(,x) =0, V(t,x)e[~h,0] x [0,1].
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4.1. Bounded Observation

First, consider delayed scalar observation generated by a spatial averaging of the
delayed state over an e-neighbourhood of a point x. € (0,1) with x,. > x:

1 Xe+é
y(1) = 2—8J z(t — h,x) dx.

Xe—&

With input ¢(u(-)) and output y(-), the process qualifies as a regular linear system
with bounded observation and with the transfer function given by

Gels) = e~ sinh(xp+/s/a)[cosh((1 — x. +&)~/s/a) — cosh((1 — x. — &)\/s/a)]
‘ 2es sinh \/s/a
Therefore, by Theorem 3.3, for each (uy,/) € R x (0, c0), the adaptive sampled-

data control (with sampling at times nz, 7 > 0, and hold on intervals [nz, (n + 1)7))
given by

u(t) = uy, tent,(n+1)1),
Upt1 = Up +kn[r - J’(nf)L kn = 1/1”’
ln+1 = ln + |V - y(l’lf)|,

guarantees asymptotic tracking of every constant reference signal r satisfying

G.(0) xp(1—x,)

€ clos(im ).

For purposes of illustration, we adopt the following values:
a=01, x=%, x.=3% h=2 t=1, £=00L
For reference signal r = 0.75, we have

~r  075a
Per = Go(0) ~ x(1— x)
In each of the following two cases,

(i) b =2,
(i) /o = 4,

= 0.675 e int(im ¢) = (0, 1).

Figure 5 depicts the behaviour of the system under adaptive sampled-data con-
trol. This figure (and Fig. 6 below) was generated using SIMULINK Simulation
Software within MATLAB wherein a truncated eigenfunction expansion, of order
10, was adopted to model the diffusion process.

4.2. Unbounded Observation

Next, we consider delayed pointwise scalar observation (output at point x. e
(0, 1)):
y(t) = z(t = h,x.).

With input ¢(u(-)) and output y(-), the process now qualifies as a regular linear
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1 .
r controlled output y(-)
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I control input ¢(u(-)) ]
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o X
(li)oooéééé66555666555555®a®555au
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Fig. 5. Bounded observation: controlled output, control input and adapting gain.

system with unbounded observation and with the transfer function given by

Gls) = e~ sinh(xp\/s/a) sinh((1 — x.)\/s/a)
a a\/s/asinh \/s/a '

As mentioned earlier, in this unbounded case we cannot define a sampled output
via (42). Instead, we adopt the generalized sampling operation given by (48) with

w()=1/w

1(°
yn:_J y(n‘[+t) dt.
TJo

Therefore, by Theorem 3.5, for each (ug,/) € R x (0, c0), the adaptive sampled-
data control (with sampling at times nz, 7 > 0, and hold on intervals [nt, (n + 1)7))
given by
u(t) = uy, tent,(n+ 1)1),
TJo
Up+1 :un+kn[r_yn]7 kn: 1/1”17
ln+1 =1l + |r - yn|7

guarantees asymptotic tracking of every constant reference signal r satisfying
ro ar
Ge(0)  xp(1—x)

Again, for purposes of illustration, we adopt the following values:

€ clos(im ¢).

a=0.1, xb:%, x(,:%, h=2, 7=1.
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Fig. 6. Unbounded observation: controlled output, control input and adapting gain.

For reference signal r = 0.75, Fig. 6 depicts the behaviour of the system under
adaptive sampled-data control in each of the two cases: (i) /o = 2, and (ii) /, = 4.
Observe that, whilst the quantitative features differ, the qualitative features of the
behaviour are akin to those of Fig. 5.
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