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Abstract

Results pertaining to asymptotic behaviour of solutions of non-autonomous ordinary
differential equations with locally integrably bounded right-hand sides are presented.
Ramifications for weakly asymptotically autonomous systems and adaptively controlled
systems are highlighted.
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1. Introduction

The initial-value problem for a non-autonomous ordinary differential equations of
the form X = f(z,x), x(0) = &, is considered, where /" is of Carathéodory class (and
so the initial-value problem has a solution and every solution can be maximally
extended). Motivated by Teel [18], one of the basic questions addressed in the paper
is the following: if x is a global (forward-time) solution of the initial-value problem
and goxe L' for some function g, then what can one deduce about the asymptotic
behaviour of x? In the autonomous case x = f(x) with locally Lipschitz right-hand
side and denoting, by ¢, the generated flow, the following observation is a
consequence of results in [9]: let o: [0, c0)—[0, 00) be a continuous function with
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a(s) = 0<>s =0 and liminf,_, ., a(s)>0; if «(||@(-,&)||) eL!, then x(¢) = ¢(t,&) =0
as t— oo (and so, in particular, for 1 <p< oo, L trajectories of flows converge to
zero as t— oo0). By contrast, if x is a global solution of the non-autonomous initial-
value problem with Carathéodory right-hand side, then o(||x(-)||)e L' (for some «
with the above properties) is not a sufficient condition for convergence to zero of x: a
simple counterexample is provided by the scalar problem x(¢) = m(t), x(0) =0,
where m is a locally integrable function: clearly, there are many choices of m such
that its primitive [ym =: M (=x) is L', but M(r) = x(1)+0 as 1— o0; however,
note that, if m has primitive M e L' which is also uniformly continuous, then (by an
observation [5, Lemma, p. 269], frequently referred to as Barbalat’s lemma) M(¢) =
x(¢)—>0 as t— co. This simple example serves to illustrate that the class of locally
integrable functions with uniformly continuous primitives may play a role in
identifying a subclass of Carathéodory right-hand sides for which one can infer, from
convergence of certain integrals, asymptotic behaviour of solutions of the non-
autonomous initial-value problem. In turn, the issue of convergence of integrals is
intimately connected with the concept of meagreness of functions (introduced in [9]),
a concept which underpins the approach of the paper.

In the context of autonomous systems (and with the ubiquitous LaSalle principle
as exemplar), the invariance property of w-limit sets of bounded solutions has
been widely exploited in analyses of asymptotic behaviour (see, for example
[1,6,7,9,12—-14,17] and references therein). A second focus of the current paper is an
investigation of extensions of such results to systems that are weakly asymptotically
autonomous (with associated “limit” systems in the form of autonomous differential
inclusions). This notion of weak asymptotic autonomy will be made precise in due
course: loosely speaking, the concept emcompasses cases of non-autonomous right-
hand sides f/ with the property that, for some suitably regular set-valued map F and,
for all x, f(¢,x) approaches the set F(x) as t—oo. Some control theoretic
consequences for systems with inputs and outputs are highlighted.

2. Notation and terminology

Throughout, R, == [0, c0), || - || denotes the Euclidean norm on R" and u denotes
Lebesgue measure on R,. Let x: R, —»R"Y be a Lebesgue measurable function: if
1<p< oo and the function 7 ||x(¢)|]” is Lebesgue integrable (respectively, locally
Lebesgue integrable), then we write xeL” (respectively, xeLf ); if the function
t+—||x(2)|| is essentially bounded (respectively, locally essentially bounded), then we
write xe L* (respectively, xe LX)).

For a function g: X cRY ->R? and UcR?, g~'(U) denotes the preimage of U
under g, i.e. g7'(U) = {ze X|g(z)e U}; g is termed a Borel function if, for every
open set UcR? g~'(U) is a Borel set; we record that, if ¢ is a Borel function and
x: R, — X is Lebesgue measurable, then gox is Lebesgue measurable. For notational
simplicity, we write g~ (0) in place of the more cumbersome g~!({0}). # denotes the
class of Borel functions «: R, — R such that «~'(0) = {0} and infyc[; o) a(s)>0 for
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all A>0. # < ¢ denotes the subclass of those #-functions that are continuous and
strictly increasing. 4 % denotes the class of functions f: R, x R, — R, such that,
for each reR,, f(-,¢) is a A -function and, for each se R, (s, -) is decreasing with
P(s, 1)} 0 as t— o0.

For non-empty CcR", dc:RY >R, denotes its Euclidean distance function
given by dc(v) = inf{||v — ¢|| | ce C}. The function d¢ is globally Lipschitz of rank
1: |dc(v) — de(w)|<||v — w|| for all v,weRY (see, for example, [8, Proposition
2.4.1]). A function x: R, —R" is said to approach C<R" if d¢(x(1)) -0 as t— 0.
For non-empty C<R" and ¢>0, B,(C) = {z|dc(z)<e} (the e-neighbourhood of
O): for ce RV, we write B,(c) in place of the more cumbersome B, ({c}). The closure
of a set C<RY is denoted by C.

2.1. Meagre functions
The following concept was introduced in [9].

Definition 2.1. A Lebesgue measurable function x: R, —R" is said to be meagre if
u{teRy | ||x(0)||=A}) < oo for all 1>0.

The first proposition provides two characterizations of meagreness.

Proposition 2.1. Let x: R, — RY be Lebesque measurable. The following statements
are equivalent:

(1) x is meagre.
(i) There exists o€ ¢ such that o(||x(-)||)eL".
(i) There exists o.e A" such that o(||x(-)||)e L.

Proof. (i) = (iii): Assume that (i) holds. Let (4,),.,< (0, c0) be a bi-sequence with
An<Zny1 for all neZ and such that

Iim 4,=0, lim A,= c0.
n——o

Define the bi-sequence (4,)<[0, o) by
Ay = pu({teRy | ||x(O)]|=4}) (< oo by meagreness).

Let (1), < (0, c0) be any bi-sequence such that ", _, 4,1, < co: for example, the
bi-sequence given by

| min{1,4, "} /n* if na,#0,
" otherwise
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suffices. Define o : R, >R, by

OC(O):O, n+1 Z M Vnel,

m=—ao0

1 , y s
a(d) = m[(a(iMl) — () 4 Anr10(An) — 2not(Ani1)]  VAE[ A, Anyi]

and so « interpolates linearly on [4,, 4,41]. Evidently, o is a 2 -function.
For each meN, define T}, := {¢| ||x(?)|| € [Ams Am+1)}- Then,

o0 > Z An77n Z M1 {l| ||X ‘>)°n})

ne”Z ne”Z

o0 m
Z ”Z 'u Z “(Tm) Z My = Z m+1
neZ m=n meZ n=—oo meZ

/ a(|x(r |m—A%<wom

(iii) = (ii): Since A <= ¢, the claim is immediate.
(ii) = (i): Assume (ii) holds. Let A>0 be arbitrary. Since «e ?, ¢:=
inf{a(s) | s=1}>0. Therefore,

u({reRe | [1x(1)

meZ

= 2}) <u({reRy |a(||x(0)])) =¢})

<

S

™ | =

Awmwmmm<w

and so x is meagre. [

Remark 2.1. If xel” and 1<p< oo, then x is meagre. The converse statement
evidently fails to hold. Consider, for example, the unbounded function x:R; - R
defined by the properties: (i) for all neN, x(¢) = n for all tel, = [n,n+ (1/n?)); (ii)
x(¢) =0 for all ¢ U,en I,. Tt is readily seen that x is meagre, but x is not of class L?
for all pe(l, o).

2.2. Limit sets

A point /eRY is an w-limit point of x : R, — R" if there exists a sequence (z,) with
1ty — oo and x(z,) —> [ as n— oo; the set Q(x) of all such w-limit points is the w-limit set
of x. The w-limit set Q(x) is always closed; if x is bounded, then Q(x) is non-empty,
compact, is approached by x and is the smallest closed set so approached (moreover,
if x is continuous, then Q(x) is a connected set).

An easy consequence of the above is the following observation.
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Remark 2.2. If x: R, »R" is continuous and has non-empty bounded w-limit set
Q(x), then x is bounded and approaches Q(x).

3. Non-autonomous systems with uniformly locally integrably bounded right-hand sides

Consider the initial-value problem for a non-autonomous ordinary differential
equation

x(t) = f(t,x(1)),  x(0) = <. (1)

Throughout, /: R, x RN - R is a Carathéodory function. Precisely for all ze R",
f(-,z) is measurable; for all teR,, f(¢,-) is continuous; f is locally integrably
bounded on compact sets, specifically, for each compact set CcRY, there
exists meL] . such that ||f(z,z)||<m(z) for all teR, and all zeC. For each
¢eRY, (1) has a solution (a locally absolutely continuous function x : [0, w) — X
with x(0) = ¢ and satisfying the differential equation in (1) for almost all 7€ [0, w))
and every solution can be maximally extended to a maximal interval [0,w,);
moreover, if x is maximal and w, < oo, then x is unbounded. A maximal solution
x is called global if w, = oo. As before, we denote, by Q(x), the w-limit set (possibly
empty) of a global solution x and record that, if x is a bounded maximal
solution, then w, = o0 and Q(x) is a non-empty, compact, connected set and is
approached by x.

A function m: R, — R is said to be uniformly locally integrable if m is locally
integrable and, for all ¢>0, there exists 7>0 such that

t+t
/ |m(s)|ds<e VieR,.
t

Clearly, a locally integrable function m: R — R is uniformly locally integrable if,
and only if, the function ¢+— f(; |m(s)| ds is uniformly continuous. It is a routine

exercise to show that, if me L? for some p (1<p< o), then m is uniformly locally
integrable.

Definition 3.1. For non-empty CcR", let #(C) be the class of Carathéodory
functions f: R, x RY - R" with the property that there exists a uniformly locally
integrable function m such that ||f(z, z)|| <m(¢) for all te R, and all ze C.

We state and prove a convenient artifact used in the proof of Theorem 3.1 below.

Proposition 3.1. Let A, BcR" be non-empty sets with Bs(B) = A for some 6>0. Let
feF(A). Then there exists 1> 0 such that, for every global solution x of (1) and for all
teRy,

x(t)eB = x(s)eBs(B) Vselt,t+1].
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Proof. Since f'€.7 (A4), there exists a uniformly locally integrable function m such
that ||[f(¢,z)||<m(f) for all teR; and all zeA. Choose >0 such that

f:ﬂ m(s)ds<d/2 for all teR,. Assume that x is a global solution of (1). Let
teR, and assume that x(¢) e B. Seeking a contradiction, suppose that x(s) ¢ Bs(B)

for some se[t, ¢ + 1]. Define
s* = inf{se(t,1 + 1] | x(s) ¢ Bs(B)} > 0.
Then x(s) e Bs(B) = 4 for all set,s*] and dp(x(s*)) = J, whence the contradiction

0<d =dp(x(s")) = dp(x(s")) — dp(x(1))

s* t+1
< [lx(s*) — x(0)| < / 1f s, x())]] ds< / m(s)ds</2. O

t

Theorem 3.1. Let ScRY be non-empty and closed. Let g: S — R be a Borel function
with the properties: (i) C = Sng~'(0) is closed; (i) inf__g||g(z)||> 0 for every closed
set K< S with K C = . Assume that x is a global solution of (1) with trajectory in S
and gox is meagre. Then C£0. If f € Z (B,(C)) for some r>0, then x approaches C
and Q(x) = C. If, in addition, C is compact, then x is bounded and Q(x)#0.

Proof. We first prove that C#. Seeking a contradiction, suppose that C = . Then,
by closedness of .S, it follows from property (ii) of g that inf..s ||g(z)|| >0 and hence
t+— ||lg(x(2))|| is bounded away from 0, contradicting meagreness of gox.

To prove the remaining assertions, it is sufficient to show that x approaches C
(since, by the closedness of C it then follows immediately that Q(x) < C; moreover, if
C is compact, then boundedness of x follows, which in turn implies non-emptiness of
Q(x)). Since, by assumption, the trajectory of x is contained in S, it is immediate that
x approaches C if C = S. Consider the remaining case wherein C ¢ S. By closedness
of C, there exists ne (0,7/3) such that S\B,(C)#0. For 0e(0,7), define

1(0) = inf{]lg(2)|| | z€ S\Bo(C)} >0,

wherein positivity is a consequence of the closedness of S and of property (ii) of g.
Seeking a contradiction, suppose that lim,_, o, dc(x(#)) #0. Then there exist de (0, n)
and a sequence (f,) with t,—> o0 as n— oo and d¢(x(t,)) =30 for all neN. By
meagreness of gox, there exists a sequence (s,) with s,—> o0 as n—oo and
[lg(x(sn))||<1(6) for all neN and so dc(x(s,))<d for all neN. Extracting
subsequences of (#,) and (s,) (which we do not relabel), we may assume that
Sn€ (ty, ty1) for all neN. We now have

de(x(12)) 230, dc(x(sn)) <0, $2€(tw 1) YneN

and so, by continuity, for each neN there exists g, € (¢,,s,) such that x(g,)eB =
{yveS|dc(y) = 20}. Extracting a subsequence (which, again, we do not relabel), we
may assume that ¢,+; — 0,>1 for all ne N. Noting that Bs(B) < B,(C) and invoking
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Proposition 3.1 (with 4 = B,(C)), we may conclude the existence of 7€ (0,1) such
that, for all neN,

de(x(t))=0 Vtelon,on + 1]

Therefore, {teR, | ||g(x(?))||=1(0)} D Unen|on, 0n + 1], which (on noting that the
intervals [o,,0, + 7], neN, are each of length 7>0 and form a mutually disjoint
family) contradicts meagreness of gox. Therefore, x approaches C. [

An immediate consequence of the above theorem is the following result in [18]
(which posits a priori boundedness of a solution of (1)).

Theorem 3.2. Assume feZ (C) for every compact set C<R"Y. Let g:RY >R be
continuous. If x is a bounded global solution of (1) and goxe L', then g(x(¢)) =0 as
t— 0.

Proof. Let S := x(R,) (the closure of the trajectory of x). Then the hypotheses of
Theorem 3.1 hold and the result follows. [

Theorem 3.2 is also a consequence of part (ii) of Theorem 18 in [9].

The next result infers asymptotic behaviour without positing a priori boundedness
of solutions and, in particular, implies that, for (1) and under the relatively weak
condition that f be of class 7 (C) for some (arbitrarily small) open neighbourhood C
of {0}, global meagre solutions (and so, a fortiori, global solutions of class L?,
1<p< o) of (1) are necessarily bounded and, moreover, approach zero.

Theorem 3.3. Assume that, for some ¢>0, f'€ 7 (B,;(0)). If x is a global solution of (1)
and x is meagre, then x(t)—0 as t— o0.

Proof. Defining g: RV - R by g(z) == ||z||, the hypotheses of Theorem 3.1 hold with
S = RY. Therefore, ||x(¢)|| >0 as t»o00. O

4. Weakly asymptotically autonomous systems

Let % denote the class of set-valued maps x> F(x) =R, defined on R", that are
upper semicontinuous' at each xe RY and take non-empty convex compact values.

In this section, we study the asymptotic behaviour of non-autonomous differential
equations of the form (1), where the Carathéodory function f: R, x RY ->R" is
assumed to be weakly asymptotically autonomous in the sense that there exists F e %
such that the following property holds:

'F is upper (respectively, lower) semicontinuous at xeR" if, for all £>0, there exists >0 such that
F(y) = B,(F(x)) (respectively, F(x) = B,(F(p)) for all yeBs(x); F is continuous at xeRY if it is both upper
and lower semicontinuous at x.
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(AA) For all compact C<R" and all £>0, there exists 7>0 such that

ess sup dp(f(t,x))<e, VxeC.

t>T

If (AA) holds with F singleton-valued (that is, with F:x— {f*(x)} for some
continuous function f*: RY —RY), then we say that f is asymptotically autonomous.

Remark 4.1. (i) Property (AA) says that, as t— oo, f(z,x) essentially approaches
F(x) locally uniformly with respect to x.

(ii) Noting that, by properties of F, the set U c¢ F(x) is compact whenever C is
compact (see, for example [4, Chap. 1, Sect. 1, Proposition 3]), the following is
readily deduced: if f is of Carathéodory class and (AA) holds for some Fe%, then
feZ(C) for every compact C.

4.1. The limit system

Let f: R, x RY - R" be of Carathéodory class and such that (AA) holds for some
Fea. Intuitively, one would expect some relationship between the asymptotic
behaviour of the solution of the non-autonomous initial-value problem (1) and
behaviour of solutions of the differential inclusion (which we loosely refer to as the
limit system)

xeF(x), (2)

where, by a solution of (2), we mean a locally absolutely continuous function
x:[0,w) - RY satisfying (2) almost everywhere.

Remark 4.2. Artstein [2,3] has introduced a different concept of asymptotically
autonomous systems with ordinary differential equations as limit systems. For
purposes of comparison, if we restrict our approach to the case wherein F is
singleton-valued, then Artstein’s approach is based on a notion of convergence
which is weaker than that used in (AA). However, it is difficult to compare the two
approaches in a useful manner, given the greater generality of our class of limit
systems (differential inclusions vis a vis differential equations).

We record some well known facts in Lemmas 4.1 and 4.2 which form a distillation
of results in, for example [4,11,16].

Lemma 4.1. Let Fe. For each E*eRY, (2) has a solution with x(0) = & and every
such solution can be extended to a maximal interval [0, wy). If wy< oo, then x is
unbounded.

With respect to (2), a non-empty set ScR" is said to be weakly invariant if, for

each &€ S, (2) has at least one maximal solution x : [0, w,) — RY, with x(0) = &* and
x(t)eS for all te[0, wy).
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Lemma 4.2. Let Fe. If x:[0,w,) »R" is a bounded maximal solution of (2), then
oy = oo and Q(x) is non-empty, compact, connected, is approached by x (and is the
smallest closed set so approached), and is weakly invariant with respect to (2).

The essence of the ensuing proposition is the assertion that, if (AA) holds and x is
a bounded global solution of (1), then the w-limit set Q(x) is weakly invariant with
respect to the associated autonomous inclusion (2).

Proposition 4.1. Let f: R, x RN > RY be of Carathéodory class and such that (AA)
holds for some Fe. Let £€RY and assume that x is a global solution of (1). If x is
bounded, then the w-limit set Q(x) of x is non-empty, compact and connected, is
approached by x and is weakly invariant with respect to (2).

Proof. That Q(x) is non-empty, compact, connected and approached by x is
standard. We focus on establishing the weak invariance property. Let /€ Q(x) and so
there exists a sequence (#,) such that 7, > co and x(z,) >/ as n— co. For each ne N,

define continuous x, : Ry > RY and £, : R, > R, by
xp(t) = x(t+1,) Vi=0,
Ju(t) = dp,()(f (£ + ty, x,(2)) + 1/n ¥V =0.

We claim that f, is measurable. To this end note that, for each n,
upper semicontinuity of the map ¢+ F(x,(¢)), together with compactness of its
values, ensures that, for each zeR", the map t—dp(x, (1) (z) is measurable; the
function ¢+ f(¢ + t,, x,(2)) is measurable and so is the pointwise limit of a sequence
of simple functions (i.e. measurable functions with finite images); it follows that f,, is
the pointwise limit of a sequence of measurable functions and so is itself measurable.

By (AA), together with boundedness of x, it follows that, for each ¢>0, there
exists 7, €N such that

ess sup fp(1)<e Vn>n,.
=0

Observe that x,(0)—/ as n— oo and
Xu(1) € By () (F(x4(2))) a.a. 120.

For meN, let I, denote the interval [m — 1,m]. By Clarke [8, Theorem 3.1.7], the
sequence of restricted functions (x,|;) has a subsequence (x, (;l;,) converging

uniformly to an absolutely continuous function x¥: 1 —RY, satisfying (2) almost
everywhere and with x7(0) =/. By the same argument, the sequence (X, (u[; )
contains a subsequence (xo'z(n)‘[l,z]) converging uniformly to an absolutely

continuous function x% : I, —» RY, satisfying (2) almost everywhere and with X5(1) =
x}(1). By induction, there exists a nested sequence ((X,,s))),,cr Of subsequences of
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(xx) such that, for each m, (x,,(») converges uniformly on I, = [m — 1,m| to an
absolutely continuous function x* : I, —R" that satisfies (2) almost everywhere and
with x* (m — 1) = x* _(m — 1) (x¥(0) = ). Define x*: R, —R" by the property that

tel, = x*(1)=xk(r).

Then x* is a solution of (2) with initial data x*(0) = /. Moreover, the “diagonal”
sequence (X,, (k) =(x,) converges uniformly on each interval [0,m] to x*. That
x*(t)eQ(x) for all reR, is now an immediate consequence of the observation that
the sequence (Z,,()) is such that #, 4)— 0 and x(f + 24, (k) = Xg (k) (1) = X*(2) as
k—oo. O

We record a corollary that specializes Proposition 4.1 to the case wherein the limit
system (2) coincides with an autonomous ordinary differential equation with locally
Lipschitz right-hand side (in which case, the limit system generates a flow).

Corollary 4.1. Let f: R, x RN >R is of Carathéodory class and such that (AA)
holds with F : z +— {f*(z)} for some locally Lipschitz function f*: RY - RN. Let e RN
and assume that x is a global solution of (1). If x is bounded, then the w-limit set Q(x)
of x is non-empty, compact and connected, is approached by x and is invariant under the
flow generated by f*.

We remark that Corollary 4.1 can also be obtained from Artstein’s results [2,3].
4.2. Weak invariance principles

The following theorem and corollary are now easy consequences of Theorem 3.1,
in conjunction with Remark 4.1, Proposition 4.1 and Corollary 4.1.

Theorem 4.1. Let ScRY be non-empty and closed. Let g:RN -RP be a Borel
Sunction with the properties: (i) C = Sng~(0) is compact; (ii) inf,_g ||g(z)|| >0 for
every closed set KcS with KnC=0. Assume that f:R, x RY RN is of
Carathéodory class and such that (AA) holds for some FeU. If x is a global solution
of (1) with trajectory in S and gox is meagre, then C#0, x is bounded and x approaches
the largest subset of C that is weakly invariant with respect to (2).

Proof. It follows from Theorem 3.1 that C#(. Moreover, in view of Remark 4.1
and compactness of C, feZ (B,(C)) for every r>0. By Theorem 3.1, x is bounded
with non-empty w-limit set Q(x) < C. By Proposition 4.1, Q(x) is weakly invariant
with respect to (2) and is approached by x. [

Corollary 4.2. Let ScRY, C and g be as in Theorem 4.1. Assume that f: R, x
RY - R is of Carathéodory class and such that (AA) holds with F : z— {f*(z)} for
some locally Lipschitz function f*:RY ->RN. If x is a global solution of (1) with
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trajectory in S and gox is meagre, then C#0, x is bounded and x approaches the largest
subset of C that is invariant under the flow generated by f*.

Example 4.1. Consider the two-dimensional non-autonomous inhomogeneous linear
system

fi1) ﬁm] 5)

£(0) = [4(0) + B(0) x(0) + h(z), Am[qm)ﬁw

where the functions f;, B and /& are of class Llloc. We assume: (i) f1,/2,/3 approach
compact intervals I}, I, I3, respectively, that is, for i = 1,2,3, dr.(fi(¢)) >0 as t— oo;
(i) fiell; (ii) Lc(—,0); (iv) 0¢1; (v) heL' with h(t)—0 as t— co; (vi)
||B(-)|| e L' with ||B()|| =0 as t — oo. We will show that, for each ¢ e R?, the (unique)
maximal solution x of (3), with initial value x(0) = &, is such that x(¢) >0 as t— 0.

Clearly the function (¢,z)+> [A(f) + B(¢)]z + h(?) is Carathéodory and such that
(AA) holds with Fe given by

F(Z) = F(Z],Zz) = {u121 “+ U3zy |u1 el,u; 613}
X {—u321 + Uxzy | usels,uy 612}.

Let £€R? be arbitrary and let x denote the unique maximal solution of (3)

with x(0) = ¢. We first prove boundedness of x. Define 7+ V' (¢) = ||x(¢)||* and
note that
V(1) =2<x (1), [A(1) + B(1)]x(1) + (1)
< 210X (1) + 26(0x5(1) + 2| B()]| [1x(1)]
+ @ IPIAE] -+ A(0)]] - a.a. 120, (4)

By compactness of I, and properties (i) and (iii) of f,, there exist constants ¢y, 7> 0
such that 2f5(f) < — ¢o <0 for almost all 1= T. By (4),

V) <fa@)V(e) + A0 aa. =0, (5)

where fa(2) = [|[A(D)|| + 2(1/ (O] + [2(D)lxpo, ) (1) + [|B(1)]]) for almost all 20 (xo,7)
being the characteristic function of [0, 7) taking value 1 on [0,7) and value 0
elsewhere). Therefore,

V(z)gexp</0'ﬁ1> (V(O)+/Otexp(/Oxﬁ;)||h(s)||ds> Vi=0.

Since fi, h, ||B(")|| are of class L' and foeL| , it follows that fye L'. Therefore
V' (and hence x) is bounded. By boundedness of x, (4) and recalling that
2f2(1) < — ¢y <0 for almost all 1> T, there exists a positive constant ¢; such that
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V(1)< — () + a1 [lfi (0 + |1B)]| + 1h(2)][] for almost all 7> T, whence
/ eo(s) ds< V(T) — V(1) + e / W)+ IBO) + k) ds V=T,

By boundedness of V', and recalling that f1, # and ||B(-)|| are of class L', we may
conclude that x, is in L? and so, a fortiori, is meagre. On setting S = m and
g:y = (y1,y2)—~»3, Theorem 4.1 implies that x approaches the largest subset .# of
Sng'(0) that is weakly invariant with respect to the limit differential inclusion
zeF(z). Let ées and so &= (51,0). By weak invariance, there exists a solution
z = (z1,2;) of the differential inclusion with z(0) = & and zy(¢) = 0 for all 7>0.
Therefore, 0 = z,(¢) e {—uz(¢) |ue 3} for all £=0. By assumption (v), 0¢ /3 and so

z1(¢) = 0 for all 1>0. Therefore, £ =0, # = {0} and x(¢) >0 as t— 0.

Next, we present two variants of the LaSalle principle. For a locally Lipschitz
function z— V' (z) € R, let V°(z;v) denote its Clarke directional derivative at ze RY in
direction ve R":

Ve(z;v) = lir}"lj}—lp o+ hl;z) — V(y).
710

We record that: (a) (z,v)— V°(z;v) is upper semicontinuous; (b) for all z, V°(z; ) is
subadditive; (c) V°(z;-) is globally Lipschitz, uniformly with respect to z in compact
sets (see [8, Proposition 2.1.1]).

Theorem 4.2. Let f: R, x RN RN be of Carathéodory class and such that (AA)
holds for some Fel. Assume that x is a bounded global solution of (1) and write

S =x(Ry). If there exist locally Lipschitz V:B,(S)->R (for some ¢>0),
upper semicontinuous g:S—R and ye L' such that

Ve(z;f(t,2)) —p(t)<g(z)<0 for all teR, and all ze S, (6)

then C=Sng ' (0)£0 and x approaches the largest subset of C that is weakly
invariant with respect to (2).

Proof. As the composition of locally Lipschitz V' and locally absolutely continuous
x, Vox is locally absolutely continuous. Let /"< R. be a set of measure zero with the
property that x(7) and (Vox)'(¢) both exist for all re R;\.4". Let L>0 be a Lipschitz
constant for ¥ on B,(S). Note that, if teR\A", then V(x(t+h))—
V(x(t)<V(x(t) + hx(t)) — V(x(¢)) + L||x(t + h) — x(¢) — hx(¢)|| for all sufficiently
small 2> 0. Invoking (6), it follows that

(Veox)' (1) = p() SV (x(0):f (1, (1)) = 2(1) <g(x(1)) <O a.a. reR,
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whence [ |g(x(s))| ds<V(x(0)) — V(x(2)) + [; |7(s)| ds for all reR.. Therefore, by
boundedness of Vox and since ye L', we may conclude that goxe L'. Hence, gox is
meagre. In view of Theorem 4.1, to complete the proof it now suffices to show that C
is closed and inf..k|g(z)| >0 for every closed set K<S with KnC = 0. The latter
follows immediately from the fact that |g| = —g, being a lower semicontinuous
function, achieves its infimum on compact sets. To show closedness of C, let (z,) = C
be a convergent sequence with limit z. Clearly, ze .S and, by upper semicontinuity of
g at z, 0 =limsup,_, ., 9(z,) <g(z) <0. Therefore, g(z) =0 and so ze C, showing
that C is closed. O

Corollary 4.3. Let f: R, x RN 5 R" be of Carathéodory class and such that (AA)
holds for some Fedl. Assume that x is a bounded global solution of (1) and write

S = x(R,). If there exist de L' and locally Lipschitz V : B,(S)— R (for some &¢>0)
such that

max driy (£(1,2)) <d(1) ¥ 1eR,,
' (7)

g(z) = max V°(z;v)<0 VzeS,

veF(z)

then x approaches the largest subset of S ng~'(0) that is weakly invariant with respect
to (2).

Proof. The following two facts are consequences of assumption (AA) and properties
of Fe and V°: (a) g is upper semicontinuous (see proof of Theorem 2.11 in [17]);
(b) for all rteR; and all ze S, there exists ve F(z) such that f(z,z) = v + w(z), where
[[w(t)|] = dpe)(f(2,2)) <d(t). Therefore, invoking (7) together with subadditivity and
the global Lipschitz property of V°(z;-) (the latter being uniform with respect to z in
compact sets), we may infer that there exists ¢>0 such that

Ve(z;f(t,2))<g(z) + cd(t) for all teR, and all z€S.

Writing y = ¢d, Theorem 4.2 now applies to conclude the result. [
4.3. Limit systems with asymptotically stable compacta

Here, we investigate the behaviour of weakly asymptotically autonomous systems
in the case wherein the limit system has a uniformly globally asymptotically stable
compactum in the following sense. A non-empty compact set C<R” is said to be
uniformly globally asymptotically stable with respect to (2) if there exists a class 4%
function x such that, for all e RY,

de(x(2))<x(dc(&),t) Vt=0
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for every maximal solution x of (2) with initial data x(0) = £ (here, the terminology
“uniform” refers to uniformity with respect to multiple solutions of the initial-
value problem). The following theorem is a counterpart, in the present context
of weakly asymptotically autonomous systems, of a result by Artstein [2,
Theorem 8.3].

Theorem 4.3. Assume that f: R, x RY > RY is of Carathéodory class and such that
(AA) holds with Fel continuous. Assume further that C<RY is compact and
uniformly globally asymptotically stable with respect to the limit system (2). If x is a
global solution of (1) with Q(x)#0, then x approaches C.

Proof. Note initially that, by continuity of F together with convexity and
compactness of its values, there exists a continuous map f': RY x RV - RY such
that F(-) = f(-, B), where B := B, (0) is the closed unit ball centred at 0e RY (see, for
example, [4, Chapter 1, Section 7] Theorem 2). By Filippov’s lemma [10], x is a
solution of the differential inclusion x e F(x) if, and only if, there exists measurable
t+—d(f)e B such that x(¢) = f{x(1),d(t)). Since C is uniformly globally asymptoti-
cally stable with respect to the limit system (2), it follows that C is uniformly globally
asymptotically stable (in the sense of [15]) with respect to the non-autonomous
system x(¢) = f{x(¢),d(t)). Therefore, by Theorem 2.8 in [15], there exist smooth
V : RY > R, unbounded functions oy, x> € # and a continuous function o3 : R, — R,
with 31(0) = {0}, such that

i (de(z)) < V(z)<on(dc(z))

(VV(2),0) < —a3(de(z)) }VUEF(2)7 VzeRY.

In view of Remark 2.2, in order to prove the theorem it suffices to show that
Q(x)=C. Let [eQ(x) and, seeking a contradiction, suppose that /¢ C. By
compactness of C and properties of V', we have V' (/)>0. For r>1, define the
(compact) “annulus”

A1) = {zeRY | ' V(H<V(2)<rV (D)}

Note that <7 (r)nC = 0. Since, for any r>1, /e Q(x)nint o/ (r), there exists (z,),
such that

ty—>o0 asn— oo and x(f,)eo/(2) VneN. (8)

Define f :== min. . ,3) %3(dc(2)) >0 and y == max.. ,3) [|[VV(2)[|>0. By (AA), there
exists N eN such that

ess sup dp) (f(t + tn,2)) <P/ (2y) Vzed(3).

=0
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Define 7 = {teR,; | x(¢ + ty)€/(3)} and observe that, for almost all 1€ 7, there
exists ve F(x(t + t,)) such that

dp(x(irn) (4 ty, X(E+ 1)) = [If (0 + v, x(2+ 2v) = ol |[<B/(27).

Therefore, we may conclude that, for almost all 1€ 7, there exists ve F(x(t+ ty))
such that

(Vox)' (t+tn) = {VV(x(t+tn)),f(t+ ty, x(t + 1x)) >
< VV(x(t+ 1)), 0) > + 7B/ (29),
whence
(Vox) (1 + ty) < — o(de(x(1 + tv))) + B/2< = B+ B/2=—/2

for a.a. te 7.

It follows that, for some >0, x(t + ty) €./ (3)\Z(2) and x(¢+ ty)¢.o/(2) for all
t>1, contradicting (8). Therefore, Q(x)=C. O

4.4. Systems with input and output

Consider the system with input u of class L

(1) = k(x(r),u(r),  x(0) = EeRY, u(r)eRY, }
y(1) = c(x(1)) e R?.

for some 1<p< oo and output y:
9)

We assume that ¢ : RY —R” is continuous with ¢(0) = 0, k: RY x RM —»R" is locally
Lipschitz with k(0,0) = 0 and

(AA1) VY compact CcRY 3p>0 such that
|k(z,v) — k(z,0)]|<p||v]] V(z,v)eC x RM.

For each ¢eRY and uell | the initial-value problem (9) has a unique maximally
defined solution which we denote by t+—x(f) = ¢, (¢, &).

Remark 4.3. Consider system (9) with input ue L} for some 1<p< oo and such that
(AA1) holds. The function f: R, x RY -RY defined by f(t,z) == k(z,u(t)), is of
Carathéodory class: moreover, if u(f)—>0 as t— oo, then f satisfies (AA) with
F:z—{k(z,0)}.

Writing k*() == k(-,0), the system with zero input u = 0, that is, the autonomous
system

#(1) = K(x(1)),  x(0) = éeRN»} (10)
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will play a role in the sequel: we denote, by ¢, the (local) flow generated by k* and so
the unique maximally defined solution of the autonomous initial-value problem in
(10) is given by t+— (1, &) = @y(t, £). System (10) is said to be zero-state observable
if, for each £eRY, the following holds

() =cle(-,¢) =0 = ¢=0. (11)

Zero-state observability of (10) is equivalent to the condition that {0} is the only
subset of ¢~'(0) that is invariant under the flow ¢.

Theorem 4.4. Let k be such that (AA1) holds, let e RN and let u be of class L7 for
some p, | <p< o0. Assume that the maximal solution x(-) = ¢, (-, &) of (9) has interval
of existence R,

(i) If x is meagre, then x(t) >0 as t— 0.

(i) Assume that {0} is a globally asymptotically stable equilibrium of the
autonomous system z = k*(z). If ue L' and x is bounded, then x(t)—0 as t— 0.

(iii) Let c¢:RY >R” be continuous with ¢(0) =0. Let ScR"Y be non-empty and
closed. Define C = Snc '(0). Assume that inf.ck ||c(z)||>0 for every closed set
Kc S with KnC = (. If the trajectory of x is contained in S and cox is meagre, then
C#Q, y(t) = c(x(t)) >0 as t— oo and x approaches C. If C is compact and, in
addition, u(t)—0 as t— oo and system (10) is zero-state observable, then x(t)—0 as
t— 00.

Proof. Define /: R, x RY - RY by f(t,z) = k(z,u(t)). Invoking (AA1), we may
infer that, for each compact set C<R", there exists a constant p such that

1 (&, 2)II<p[l + [[u(t)]]] =: m(z) for all zeC and all teR,.

Since functions of class L7, 1 <p< oo, are a fortiori uniformly locally integrable, we
may conclude that m is uniformly locally integrable and so feZ(C) for every
compact CcRV.

(1) Assertion (i) is an immediate consequence of Theorem 3.3.

(i1) By converse Lyapunov theory (for example, [15, Theorem 2.8]), there exists a
smooth function ¥ : RY — R, and continuous &: R, —R,, with ¢7'(0) = {0}, such
that { VV(2),k*(z)> < — d(]|z||) for all ze RY. Let s* >0 be such that ||x(#)|| <s* for
all teR,. Define a:R; >R, by wa(s) =d(s) for s€[0,s*] and a(s) = d(s*) for
se(s*, 00). Note that o is a #-function and a(x(#)) = d(x(¢)) for all e R;.. By (AA1)
and boundedness of x, there exist constants p,, p; >0 such that

(Vox) (1) = <V V(x(0)), k(x(2), u(1)
< (VP (x(0)), K5(x(0)) ) + polVV (x())]] [u(D)]]

< —alllxOI) + pillu()l] aa. reRy.
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Since ue L', it now follows that [;* «(||x(7)||)di< oo and so, by Proposition 2.1, x is
meagre. Assertion (ii) now follows by assertion (i).

(iii) By continuity of ¢ and closedness of S, C = Sn¢~!(0) is closed. By Theorem
3.1, we conclude that C#0 and x approaches C.

Now assume that C is compact and impose the additional hypotheses that u(z) —0
as t— oo, and that system (10) is zero-state observable. Then, by Remark 4.3 and
Corollary 4.2, x approaches the largest subset .# < C that is invariant under the flow ¢
generated by k*. By zero-state observability, {0} is the only subset of ¢~!(0) > C that
is invariant under the flow ¢. Therefore, .# = {0} and the proof is complete. [

Remark 4.4. If, in part (iii) of Theorem 4.4, the set S is compact, then “inf”
assumption on c is redundant (insofar as the requisite property is a consequence of
compactness of S). This situation is of interest if x is known to be bounded in which
case S can be taken to be the closure of the trajectory of x.

5. Non-autonomous second-order systems

In this section, we study asymptotic behaviour of (non-autonomous) ordinary
differential equations, of second order, of a type that occurs naturally in the study of
mechanical systems with M degrees of freedom:

() = k(1,y(1), 9(1),  p()eRM, (1(0),2(0)) = (°,0"). (12)

Writing N := 2M, the function k: R x RY > RM | (t,d,v)—k(t,d,v), is assumed to
be of Carathéodory class with the property that there exists an upper semicontinuous

map (d,v)— K(d,v) = RY from R" to the non-empty convex compact subsets of RY
such that

di(a v (k(t,d,v)) >0 as t— oo uniformly with respect to

(d,v) in compact sets. (13)

By a solution of (12) we mean a solution x (= (y,y)) of (1) with
iR, x RYSRY, (t,d,v)— (v,k(t,d,v)) and &= (3°,"). (14)

The essence of the next result is an assertion that, if the “position” component y of a
global solution x = (y,p) of the non-autonomous initial-value problem (12) is
bounded and the “velocity”” component y is meagre, then the solution x is bounded
and approaches the set of equilibria of the autonomous system xe F(x), where

F:(d,v)—{v} x K(d,v). (15)

Note that xeF(x) is simply the canonical first-order representation of the
autonomous second order inclusion ye K (y, y).
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Theorem 5.1. Let k: R, x RM x RM > RM pe of Carathéodory class and such that
(13) holds for some upper semicontinuous map (d,v)— K(d,v) from RM x RM to the
non-empty convex compact subsets of R™. Let (°,1°)eRM x R™. Assume that x =
(7, 79): Ry > RM x RM is a solution of the initial-value problem (12). If y is bounded
and y is meagre, then the set

& ={z]|0eK(z,0)} x {0}
is non-empty and is approached by (y,y).

Proof. With f and ¢ given by (14), (12) is equivalent to (1). Moreover, f is of
Carathéodory class and satisfies (AA) with Fe% given by (15). Define g: RY - R,
(d,v)—||v||]. By hypothesis, gox is meagre. By boundedness of y, there exists a
compact set DcRM such that the trajectory of x = (y,y) is contained in S =
D x RM. Therefore, C == Sng~'(0) = D x {0} is compact and so property (i) of
Theorem 4.1 holds; clearly, property (ii) also holds. It now follows from Theorem 4.1
that x approaches the largest subset .# — C that is weakly invariant with respect to

the autonomous system ze F(z). Let & = (6,0) €.# 5 Q(x) #0. By weak invariance of
7, there exists a solution z = (d,v): R, »RY of the inclusion (d,0) = zeF(z) =
{v} x K(d,v) with z(0) = & and v(r) = 0 for all reR,. Therefore, z(r) = (d(t),0) =
(0,0)=¢ for all reR, and so 0€K(6,0). Hence, {€& and the proof is
complete. [

Remark 5.1. The hypothesis of boundedness of y in Theorem 5.1 may be removed at
the expense of imposing a stronger hypothesis on p, namely, yeL' (of which
boundedness of y is a consequence).

5.1. Stabilization by adaptive “velocity” feedback

For continuous n: R, - R, with 771(0) = {0}, let ¥ (=) denote the class of
systems, with control u(¢)e R of the form

F(0) + p(r(0), 7(1)) + q(v(1)) = b(u(t)), }

(#(0),5(0)) = (0°, ") eRM x RM (16)

with the following properties:
(i) b: RM™ - RM is continuous, 5(0) = 0 and there exists >0 such that
Chw),ud = pllull” VueRM,
(i) p : RM x RM - RM is continuous and such that, for some y>0,

Ip(d, v)l[<yn(loll)  ¥(d,v)eRY x RY,
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(iii) ¢ : R - RM is such that ¢ = VQ for some C! function Q : RY - R with
Wll=0 = Q0)— .

Note that (iii) above implies that ¢~!(0) #0.

We assume that the velocity p(¢) is available for feedback purposes and that the
only other system data available to the control designer is knowledge of the function
7. Define the continuous function 7 : R? — R by #(0) = 0 and #(v) = =(||o||)v/||v|
for all v#0. Consider the adaptive feedback strategy

u(t) = =0(0)R((1), 0(r) = |lOl=(p(OIl), 6(0) = 6°€eR. (17)

The essence of our final result is that, if 7 : R, — R, is continuous with 7~'(0) = {0},
then, for every system in % (r), the adaptive control (17) renders the set ¢~ (0) x {0}
globally attractive.

Theorem 5.2. Let n: R, — R, be continuous with n='(0) = {0}. Let (b,p,q) be such
that (16) is in & (n). Let (3°,1°,0°) e R*M*!. Let (y,7,0) : [0, ) > R*M be a maximal
solution of the (feedback-controlled) initial-value problem (16)—(17). Then

(i) o = oo and (y,y,0) is bounded,
(i) lim,, » 0(¢) exists;
(iii) (y,y) approaches the set ¢~'(0) x {0}.

Proof. Define V':[0,w) >R by V() .= Q(y(t)) + {»(¢),y(¢) > /2 and note that V is
bounded from below. Then,

V(1) = — {pW(0), 3(0)), () > + <b(=0(0)7(7(2)), 3 (1) >
< (v = BO@)= (DIl
= (y— pO(2))6(z) for a.a. 1[0, w),
which, on integration, yields
constant < V(1) < V(0) + y(0(z) — 0°) — B0 (1) — (6°)%)/2 Vie[0,w). (18)

By (18), 0 is bounded, implying the boundedness of V. It follows from the definition
of V' that y and Q(y) are bounded. Invoking the radial unboundedness property of
0, we see that y is bounded. Boundedness of (y, y, f) implies that @ = oo (assertion
(1) of the Theorem). Assertion (ii) follows by boundedness and monotonicity of 6. It
remains to establish assertion (iii).

Let s* be such that ||p(z)|| <s* for all re R,. Define o : R, - R, by a(s) := n(s)s for
s€|0,s5% and a(s) = n(s*)s* for se(s* o0). Then « is a #-function and «(||y(¢)|]) =
a([[p(@D)Ip(0)]| for all reR.. By boundedness of 0, [° =(|[y(0)|)||y(1)|dr =
Jo” a(||y(2)|])dt< oo and so (by equivalence of (i) and (iii) in Proposition 2.1) j is
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meagre. Define k: R, x RM x RY > RY by
k(t,d,v) = —p(d,v) — q(d) + b(=0(1)7(v))

for which (13) holds with K:(d,v)—{—p(d,v) — q(d) + b(—0"#(v))}, where
0* = lim,_, ,, 0(t). Moreover, (y,7) is a solution of the equation J(¢)=
k(t,y(t),(t)) with y bounded and y meagre. By Theorem 5.1, it follows that (y,y)
approaches the set {z]|0e€K(z,0)} x {0} = ¢~ '(0) x {0}. This completes the
proof. [

Corollary 5.1. Let n: R, — R, be continuous with n~1(0) = {0}. Let ¥(r) denote the
subclass of & (m) systems with the additional condition that ¢~'(0) = {0}. For every
system in ¥ y(n), the feedback control (17) renders {0,0} globally attractive.
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