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Abstract

Results pertaining to asymptotic behaviour of solutions of non-autonomous ordinary

differential equations with locally integrably bounded right-hand sides are presented.

Ramifications for weakly asymptotically autonomous systems and adaptively controlled

systems are highlighted.
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1. Introduction

The initial-value problem for a non-autonomous ordinary differential equations of
the form ’x ¼ f ðt; xÞ; xð0Þ ¼ x; is considered, where f is of Carathéodory class (and
so the initial-value problem has a solution and every solution can be maximally
extended). Motivated by Teel [18], one of the basic questions addressed in the paper
is the following: if x is a global (forward-time) solution of the initial-value problem

and g3xAL1 for some function g; then what can one deduce about the asymptotic
behaviour of x ? In the autonomous case ’x ¼ f ðxÞ with locally Lipschitz right-hand
side and denoting, by j; the generated flow, the following observation is a
consequence of results in [9]: let a : ½0;NÞ-½0;NÞ be a continuous function with
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aðsÞ ¼ 03s ¼ 0 and lim inf s-N aðsÞ40; if aðjjjð�; xÞjjÞAL1; then xðtÞ ¼ jðt; xÞ-0
as t-N (and so, in particular, for 1ppoN; Lp trajectories of flows converge to
zero as t-N). By contrast, if x is a global solution of the non-autonomous initial-

value problem with Carathéodory right-hand side, then aðjjxð�ÞjjÞAL1 (for some a
with the above properties) is not a sufficient condition for convergence to zero of x: a
simple counterexample is provided by the scalar problem ’xðtÞ ¼ mðtÞ; xð0Þ ¼ 0;
where m is a locally integrable function: clearly, there are many choices of m such

that its primitive
R �

0 m ¼: M ð¼ xÞ is L1; but MðtÞ ¼ xðtÞQ0 as t-N; however,

note that, if m has primitive MAL1 which is also uniformly continuous, then (by an
observation [5, Lemma, p. 269], frequently referred to as Barbălat’s lemma) MðtÞ ¼
xðtÞ-0 as t-N: This simple example serves to illustrate that the class of locally
integrable functions with uniformly continuous primitives may play a rôle in
identifying a subclass of Carathéodory right-hand sides for which one can infer, from
convergence of certain integrals, asymptotic behaviour of solutions of the non-
autonomous initial-value problem. In turn, the issue of convergence of integrals is
intimately connected with the concept of meagreness of functions (introduced in [9]),
a concept which underpins the approach of the paper.

In the context of autonomous systems (and with the ubiquitous LaSalle principle
as exemplar), the invariance property of o-limit sets of bounded solutions has
been widely exploited in analyses of asymptotic behaviour (see, for example
[1,6,7,9,12–14,17] and references therein). A second focus of the current paper is an
investigation of extensions of such results to systems that are weakly asymptotically
autonomous (with associated ‘‘limit’’ systems in the form of autonomous differential
inclusions). This notion of weak asymptotic autonomy will be made precise in due
course: loosely speaking, the concept emcompasses cases of non-autonomous right-
hand sides f with the property that, for some suitably regular set-valued map F and,
for all x; f ðt; xÞ approaches the set FðxÞ as t-N: Some control theoretic
consequences for systems with inputs and outputs are highlighted.

2. Notation and terminology

Throughout, Rþ :¼ ½0;NÞ; jj � jj denotes the Euclidean norm on RN and m denotes

Lebesgue measure on Rþ: Let x : Rþ-RN be a Lebesgue measurable function: if

1ppoN and the function t/jjxðtÞjjp is Lebesgue integrable (respectively, locally

Lebesgue integrable), then we write xALp (respectively, xAL
p
loc); if the function

t/jjxðtÞjj is essentially bounded (respectively, locally essentially bounded), then we
write xALN (respectively, xALN

loc).

For a function g : XCRN-RP and UCRP; g�1ðUÞ denotes the preimage of U

under g; i.e. g�1ðUÞ :¼ fzAX jgðzÞAUg; g is termed a Borel function if, for every

open set UCRP; g�1ðUÞ is a Borel set; we record that, if g is a Borel function and
x : Rþ-X is Lebesgue measurable, then g3x is Lebesgue measurable. For notational

simplicity, we write g�1ð0Þ in place of the more cumbersome g�1ðf0gÞ: J denotes the

class of Borel functions a : Rþ-R such that a�1ð0Þ ¼ f0g and inf sA½l;NÞ aðsÞ40 for

H. Logemann, E.P. Ryan / J. Differential Equations 189 (2003) 440–460 441



all l40: KCJ denotes the subclass of those J-functions that are continuous and
strictly increasing. KL denotes the class of functions b : Rþ � Rþ-Rþ such that,
for each tARþ; bð�; tÞ is a K-function and, for each sARþ; bðs; �Þ is decreasing with
bðs; tÞk0 as t-N:

For non-empty CCRN ; dC : RN-Rþ denotes its Euclidean distance function
given by dCðvÞ :¼ inffjjv � cjj j cACg: The function dC is globally Lipschitz of rank

1: jdCðvÞ � dCðwÞjpjjv � wjj for all v;wARN (see, for example, [8, Proposition

2.4.1]). A function x : Rþ-RN is said to approach CCRN if dCðxðtÞÞ-0 as t-N:

For non-empty CCRN and e40; BeðCÞ :¼ fz j dCðzÞoeg (the e-neighbourhood of

C): for cARN ; we write BeðcÞ in place of the more cumbersome Beðfcg). The closure

of a set CCRN is denoted by %C:

2.1. Meagre functions

The following concept was introduced in [9].

Definition 2.1. A Lebesgue measurable function x : Rþ-RN is said to be meagre if
mðftARþ j jjxðtÞjjXlgÞoN for all l40:

The first proposition provides two characterizations of meagreness.

Proposition 2.1. Let x : Rþ-RN be Lebesgue measurable. The following statements

are equivalent:

(i) x is meagre.
(ii) There exists aAJ such that aðjjxð�ÞjjÞAL1:

(iii) There exists aAK such that aðjjxð�ÞjjÞAL1:

Proof. ðiÞ ) ðiiiÞ: Assume that (i) holds. Let ðlnÞnAZCð0;NÞ be a bi-sequence with

lnolnþ1 for all nAZ and such that

lim
n-�N

ln ¼ 0; lim
n-N

ln ¼ N:

Define the bi-sequence ðLnÞC½0;NÞ by

Ln :¼ mðftARþ j jjxðtÞjjXlngÞ ðoN by meagrenessÞ:

Let ðZnÞnAZCð0;NÞ be any bi-sequence such that
P

nAZ LnZnoN: for example, the

bi-sequence given by

Zn :¼
minf1;L�1

n g=n2 if nLna0;

1 otherwise

(
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suffices. Define a : Rþ-Rþ by

að0Þ ¼ 0; aðlnþ1Þ ¼
Xn

m¼�N

Zm 8nAZ;

aðlÞ ¼ 1

lnþ1 � ln

½ðaðlnþ1Þ � aðlnÞÞlþ lnþ1aðlnÞ � lnaðlnþ1Þ� 8lA½ln; lnþ1�

and so a interpolates linearly on ½ln; lnþ1�: Evidently, a is a K-function.
For each mAN; define Tm :¼ ft j jjxðtÞjjA½lm; lmþ1Þg: Then,

N4
X
nAZ

LnZn ¼
X
nAZ

Znmðft j jjxðtÞjjXlngÞ

¼
X
nAZ

Zn

XN
m¼n

mðTmÞ ¼
X
mAZ

mðTmÞ
Xm

n¼�N

Zn ¼
X
mAZ

mðTmÞaðlmþ1Þ

X

X
mAZ

Z
Tm

aðjjxðtÞjjÞ dt ¼
Z

N

0

aðjjxðtÞjjÞ dt:

ðiiiÞ ) ðiiÞ: Since KCJ; the claim is immediate.
ðiiÞ ) ðiÞ: Assume (ii) holds. Let l40 be arbitrary. Since aAJ; e :¼

inffaðsÞ j sXlg40: Therefore,

mðftARþ j jjxðtÞjjX lgÞpmðftARþ j aðjjxðtÞjjÞXegÞ

p
1

e

Z
N

0

aðjjxðtÞjjÞ dtoN

and so x is meagre. &

Remark 2.1. If xALp and 1ppoN; then x is meagre. The converse statement
evidently fails to hold. Consider, for example, the unbounded function x : Rþ-R

defined by the properties: (i) for all nAN; xðtÞ ¼ n for all tAIn :¼ ½n; n þ ð1=n2ÞÞ; (ii)
xðtÞ ¼ 0 for all te,nAN In: It is readily seen that x is meagre, but x is not of class Lp

for all pA½1;NÞ:

2.2. Limit sets

A point lARN is an o-limit point of x : Rþ-RN if there exists a sequence ðtnÞ with
tn-N and xðtnÞ-l as n-N; the set OðxÞ of all such o-limit points is the o-limit set
of x: The o-limit set OðxÞ is always closed; if x is bounded, then OðxÞ is non-empty,
compact, is approached by x and is the smallest closed set so approached (moreover,
if x is continuous, then OðxÞ is a connected set).

An easy consequence of the above is the following observation.
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Remark 2.2. If x : Rþ-RN is continuous and has non-empty bounded o-limit set
OðxÞ; then x is bounded and approaches OðxÞ:

3. Non-autonomous systems with uniformly locally integrably bounded right-hand sides

Consider the initial-value problem for a non-autonomous ordinary differential
equation

’xðtÞ ¼ f ðt; xðtÞÞ; xð0Þ ¼ x: ð1Þ

Throughout, f : Rþ � RN-RN is a Carathéodory function. Precisely for all zARN ;
f ð�; zÞ is measurable; for all tARþ; f ðt; �Þ is continuous; f is locally integrably

bounded on compact sets, specifically, for each compact set CCRN ; there

exists mAL1
loc such that jjf ðt; zÞjjpmðtÞ for all tARþ and all zAC: For each

xARN ; (1) has a solution (a locally absolutely continuous function x : ½0;oÞ-X

with xð0Þ ¼ x and satisfying the differential equation in (1) for almost all tA½0;oÞ)
and every solution can be maximally extended to a maximal interval ½0;oxÞ;
moreover, if x is maximal and oxoN; then x is unbounded. A maximal solution
x is called global if ox ¼ N: As before, we denote, by OðxÞ; the o-limit set (possibly
empty) of a global solution x and record that, if x is a bounded maximal
solution, then ox ¼ N and OðxÞ is a non-empty, compact, connected set and is
approached by x:

A function m : Rþ-R is said to be uniformly locally integrable if m is locally
integrable and, for all e40; there exists t40 such thatZ tþt

t

jmðsÞj dsoe 8tARþ:

Clearly, a locally integrable function m : Rþ-R is uniformly locally integrable if,

and only if, the function t/
R t

0 jmðsÞj ds is uniformly continuous. It is a routine

exercise to show that, if mALp for some p ð1pppNÞ; then m is uniformly locally
integrable.

Definition 3.1. For non-empty CCRN ; let FðCÞ be the class of Carathéodory

functions f : Rþ � RN-RN with the property that there exists a uniformly locally
integrable function m such that jjf ðt; zÞjjpmðtÞ for all tARþ and all zAC:

We state and prove a convenient artifact used in the proof of Theorem 3.1 below.

Proposition 3.1. Let A;BCRN be non-empty sets with BdðBÞCA for some d40: Let

fAFðAÞ: Then there exists t40 such that, for every global solution x of (1) and for all

tARþ;

xðtÞAB ) xðsÞABdðBÞ 8sA½t; t þ t�:
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Proof. Since fAFðAÞ; there exists a uniformly locally integrable function m such
that jjf ðt; zÞjjpmðtÞ for all tARþ and all zAA: Choose t40 such thatR tþt

t
mðsÞ dsod=2 for all tARþ: Assume that x is a global solution of (1). Let

tARþ and assume that xðtÞAB: Seeking a contradiction, suppose that xðsÞeBdðBÞ
for some sA½t; t þ t�: Define

sn :¼ inffsA½t; t þ t� j xðsÞeBdðBÞg40:

Then xðsÞABdðBÞCA for all sA½t; sn� and dBðxðsnÞÞ ¼ d; whence the contradiction

0od ¼ dBðxðsnÞÞ ¼ dBðxðsnÞÞ � dBðxðtÞÞ

p jjxðsnÞ � xðtÞjjp
Z sn

t

jjf ðs; xðsÞÞjj dsp
Z tþt

t

mðsÞ dspd=2: &

Theorem 3.1. Let SCRN be non-empty and closed. Let g : S-RP be a Borel function

with the properties: ðiÞ C :¼ S-g�1ð0Þ is closed; ðiiÞ infzAK jjgðzÞjj40 for every closed

set KCS with K-C ¼ |: Assume that x is a global solution of (1) with trajectory in S

and g3x is meagre. Then Ca|: If fAFðBrðCÞÞ for some r40; then x approaches C

and OðxÞCC: If, in addition, C is compact, then x is bounded and OðxÞa|:

Proof. We first prove that Ca|: Seeking a contradiction, suppose that C ¼ |: Then,
by closedness of S; it follows from property (ii) of g that infzAS jjgðzÞjj40 and hence
t/jjgðxðtÞÞjj is bounded away from 0; contradicting meagreness of g3x:

To prove the remaining assertions, it is sufficient to show that x approaches C

(since, by the closedness of C it then follows immediately that OðxÞCC; moreover, if
C is compact, then boundedness of x follows, which in turn implies non-emptiness of
OðxÞ). Since, by assumption, the trajectory of x is contained in S; it is immediate that
x approaches C if C ¼ S: Consider the remaining case wherein CiS: By closedness

of C; there exists ZAð0; r=3Þ such that S\BZðCÞa|: For yAð0; ZÞ; define

iðyÞ :¼ inffjjgðzÞjj j zAS\ByðCÞg40;

wherein positivity is a consequence of the closedness of S and of property (ii) of g:
Seeking a contradiction, suppose that limt-N dCðxðtÞÞa0: Then there exist dAð0; ZÞ
and a sequence ðtnÞ with tn-N as n-N and dCðxðtnÞÞX3d for all nAN: By
meagreness of g3x; there exists a sequence ðsnÞ with sn-N as n-N and
jjgðxðsnÞÞjjoiðdÞ for all nAN and so dCðxðsnÞÞpd for all nAN: Extracting
subsequences of ðtnÞ and ðsnÞ (which we do not relabel), we may assume that
snAðtn; tnþ1Þ for all nAN: We now have

dCðxðtnÞÞX3d; dCðxðsnÞÞpd; snAðtn; tnþ1Þ 8nAN

and so, by continuity, for each nAN there exists snAðtn; snÞ such that xðsnÞAB :¼
fyAS j dCðyÞ ¼ 2dg: Extracting a subsequence (which, again, we do not relabel), we
may assume that snþ1 � snX1 for all nAN: Noting that BdðBÞCBrðCÞ and invoking
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Proposition 3.1 (with A ¼ BrðCÞ), we may conclude the existence of tAð0; 1Þ such
that, for all nAN;

dCðxðtÞÞXd 8tA½sn;sn þ t�:

Therefore, ftARþ j jjgðxðtÞÞjjXiðdÞg*,nAN½sn; sn þ t�; which (on noting that the
intervals ½sn; sn þ t�; nAN; are each of length t40 and form a mutually disjoint
family) contradicts meagreness of g3x: Therefore, x approaches C: &

An immediate consequence of the above theorem is the following result in [18]
(which posits a priori boundedness of a solution of (1)).

Theorem 3.2. Assume fAFðCÞ for every compact set CCRN : Let g : RN-R be

continuous. If x is a bounded global solution of (1) and g3xAL1; then gðxðtÞÞ-0 as

t-N:

Proof. Let S :¼ xðRþÞ (the closure of the trajectory of x). Then the hypotheses of
Theorem 3.1 hold and the result follows. &

Theorem 3.2 is also a consequence of part (ii) of Theorem 18 in [9].
The next result infers asymptotic behaviour without positing a priori boundedness

of solutions and, in particular, implies that, for (1) and under the relatively weak
condition that f be of class FðCÞ for some (arbitrarily small) open neighbourhood C

of f0g; global meagre solutions (and so, a fortiori, global solutions of class Lp;
1ppoN) of (1) are necessarily bounded and, moreover, approach zero.

Theorem 3.3. Assume that, for some e40; fAFðBeð0ÞÞ: If x is a global solution of (1)
and x is meagre, then xðtÞ-0 as t-N:

Proof. Defining g : RN-R by gðzÞ :¼ jjzjj; the hypotheses of Theorem 3.1 hold with

S ¼ RN : Therefore, jjxðtÞjj-0 as t-N: &

4. Weakly asymptotically autonomous systems

Let U denote the class of set-valued maps x/FðxÞCRN ; defined on RN ; that are

upper semicontinuous1 at each xARN and take non-empty convex compact values.
In this section, we study the asymptotic behaviour of non-autonomous differential

equations of the form (1), where the Carathéodory function f : Rþ � RN-RN is
assumed to be weakly asymptotically autonomous in the sense that there exists FAU
such that the following property holds:

1 F is upper (respectively, lower) semicontinuous at xARN if, for all e40; there exists d40 such that

FðyÞCBeðFðxÞÞ (respectively, FðxÞCBeðFðyÞÞ for all yABdðxÞ; F is continuous at xARN if it is both upper

and lower semicontinuous at x:
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(AA) For all compact CCRN and all e40; there exists TX0 such that

ess sup
tXT

dFðxÞðf ðt; xÞÞoe; 8 xAC:

If (AA) holds with F singleton-valued (that is, with F : x/ff nðxÞg for some

continuous function f n : RN-RN), then we say that f is asymptotically autonomous.

Remark 4.1. (i) Property (AA) says that, as t-N; f ðt; xÞ essentially approaches
FðxÞ locally uniformly with respect to x:

(ii) Noting that, by properties of F ; the set ,xAC FðxÞ is compact whenever C is
compact (see, for example [4, Chap. 1, Sect. 1, Proposition 3]), the following is
readily deduced: if f is of Carathéodory class and (AA) holds for some FAU; then
fAFðCÞ for every compact C:

4.1. The limit system

Let f : Rþ � RN-RN be of Carathéodory class and such that (AA) holds for some
FAU: Intuitively, one would expect some relationship between the asymptotic
behaviour of the solution of the non-autonomous initial-value problem (1) and
behaviour of solutions of the differential inclusion (which we loosely refer to as the
limit system)

’xAFðxÞ; ð2Þ

where, by a solution of (2), we mean a locally absolutely continuous function

x : ½0;oÞ-RN satisfying (2) almost everywhere.

Remark 4.2. Artstein [2,3] has introduced a different concept of asymptotically
autonomous systems with ordinary differential equations as limit systems. For
purposes of comparison, if we restrict our approach to the case wherein F is
singleton-valued, then Artstein’s approach is based on a notion of convergence
which is weaker than that used in (AA). However, it is difficult to compare the two
approaches in a useful manner, given the greater generality of our class of limit
systems (differential inclusions vis à vis differential equations).

We record some well known facts in Lemmas 4.1 and 4.2 which form a distillation
of results in, for example [4,11,16].

Lemma 4.1. Let FAU: For each xnARN ; (2) has a solution with xð0Þ ¼ xn and every

such solution can be extended to a maximal interval ½0;oxÞ: If oxoN; then x is

unbounded.

With respect to (2), a non-empty set SCRN is said to be weakly invariant if, for

each xnAS; (2) has at least one maximal solution x : ½0;oxÞ-RN ; with xð0Þ ¼ xn and
xðtÞAS for all tA½0;oxÞ:
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Lemma 4.2. Let FAU: If x : ½0;oxÞ-RN is a bounded maximal solution of (2), then

ox ¼ N and OðxÞ is non-empty, compact, connected, is approached by x (and is the

smallest closed set so approached), and is weakly invariant with respect to (2).

The essence of the ensuing proposition is the assertion that, if (AA) holds and x is
a bounded global solution of (1), then the o-limit set OðxÞ is weakly invariant with
respect to the associated autonomous inclusion (2).

Proposition 4.1. Let f : Rþ � RN-RN be of Carathéodory class and such that (AA)

holds for some FAU: Let xARN and assume that x is a global solution of (1). If x is

bounded, then the o-limit set OðxÞ of x is non-empty, compact and connected, is

approached by x and is weakly invariant with respect to (2).

Proof. That OðxÞ is non-empty, compact, connected and approached by x is
standard. We focus on establishing the weak invariance property. Let lAOðxÞ and so
there exists a sequence ðtnÞ such that tn-N and xðtnÞ-l as n-N: For each nAN;

define continuous xn : Rþ-RN and fn : Rþ-Rþ by

xnðtÞ :¼ xðt þ tnÞ 8tX0;

fnðtÞ :¼ dFðxnðtÞÞðf ðt þ tn;xnðtÞÞ þ 1=n 8 tX0:

We claim that fn is measurable. To this end note that, for each n;
upper semicontinuity of the map t/FðxnðtÞÞ; together with compactness of its

values, ensures that, for each zARN ; the map t/dFðxnðtÞÞðzÞ is measurable; the

function t/f ðt þ tn; xnðtÞÞ is measurable and so is the pointwise limit of a sequence
of simple functions (i.e. measurable functions with finite images); it follows that fn is
the pointwise limit of a sequence of measurable functions and so is itself measurable.

By (AA), together with boundedness of x; it follows that, for each e40; there
exists neAN such that

ess sup
tX0

fnðtÞoe 8n4ne:

Observe that xnð0Þ-l as n-N and

’xnðtÞABfnðtÞðFðxnðtÞÞÞ a:a: tX0:

For mAN; let Im denote the interval ½m � 1;m�: By Clarke [8, Theorem 3.1.7], the
sequence of restricted functions ðxnjI1

Þ has a subsequence ðxs1ðnÞjI1
Þ converging

uniformly to an absolutely continuous function xn
1 : I1-RN ; satisfying (2) almost

everywhere and with xn
1ð0Þ ¼ l: By the same argument, the sequence ðxs1ðnÞj½1;2�Þ

contains a subsequence ðxs2ðnÞj½1;2�Þ converging uniformly to an absolutely

continuous function xn
2 : I2-RN ; satisfying (2) almost everywhere and with xn

2ð1Þ ¼
xn

1ð1Þ: By induction, there exists a nested sequence ððxsmðnÞÞÞmAN of subsequences of
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ðxnÞ such that, for each m; ðxsmðnÞÞ converges uniformly on Im ¼ ½m � 1;m� to an

absolutely continuous function xn
m : Im-RN that satisfies (2) almost everywhere and

with xn
mðm � 1Þ ¼ xn

m�1ðm � 1Þ ðxn
1ð0Þ ¼ lÞ: Define xn : Rþ-RN by the property that

tAIm ) xnðtÞ ¼ xn

mðtÞ:

Then xn is a solution of (2) with initial data xnð0Þ ¼ l: Moreover, the ‘‘diagonal’’

sequence ðxskðkÞÞCðxnÞ converges uniformly on each interval ½0;m� to xn: That

xnðtÞAOðxÞ for all tARþ is now an immediate consequence of the observation that

the sequence ðtskðkÞÞ is such that tskðkÞ-N and xðt þ tskðkÞÞ ¼ xskðkÞðtÞ-xnðtÞ as

k-N: &

We record a corollary that specializes Proposition 4.1 to the case wherein the limit
system (2) coincides with an autonomous ordinary differential equation with locally
Lipschitz right-hand side (in which case, the limit system generates a flow).

Corollary 4.1. Let f : Rþ � RN-RN is of Carathéodory class and such that (AA)

holds with F : z /ff nðzÞg for some locally Lipschitz function f n : RN-RN : Let xARN

and assume that x is a global solution of (1). If x is bounded, then the o-limit set OðxÞ
of x is non-empty, compact and connected, is approached by x and is invariant under the

flow generated by f n:

We remark that Corollary 4.1 can also be obtained from Artstein’s results [2,3].

4.2. Weak invariance principles

The following theorem and corollary are now easy consequences of Theorem 3.1,
in conjunction with Remark 4.1, Proposition 4.1 and Corollary 4.1.

Theorem 4.1. Let SCRN be non-empty and closed. Let g : RN-RP be a Borel

function with the properties: ðiÞ C :¼ S-g�1ð0Þ is compact; ðiiÞ infzAK jjgðzÞjj40 for

every closed set KCS with K-C ¼ |: Assume that f : Rþ � RN-RN is of

Carathéodory class and such that ðAAÞ holds for some FAU: If x is a global solution

of (1) with trajectory in S and g3x is meagre, then Ca|; x is bounded and x approaches

the largest subset of C that is weakly invariant with respect to (2).

Proof. It follows from Theorem 3.1 that Ca|: Moreover, in view of Remark 4.1
and compactness of C; fAFðBrðCÞÞ for every r40: By Theorem 3.1, x is bounded
with non-empty o-limit set OðxÞCC: By Proposition 4.1, OðxÞ is weakly invariant
with respect to (2) and is approached by x: &

Corollary 4.2. Let SCRN ; C and g be as in Theorem 4.1. Assume that f : Rþ �
RN-RN is of Carathéodory class and such that ðAAÞ holds with F : z/ff nðzÞg for

some locally Lipschitz function f n : RN-RN : If x is a global solution of (1) with
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trajectory in S and g3x is meagre, then Ca|; x is bounded and x approaches the largest

subset of C that is invariant under the flow generated by f n:

Example 4.1. Consider the two-dimensional non-autonomous inhomogeneous linear
system

’xðtÞ ¼ ½AðtÞ þ BðtÞ�xðtÞ þ hðtÞ; AðtÞ ¼
f1ðtÞ f3ðtÞ
�f3ðtÞ f2ðtÞ

" #
; ð3Þ

where the functions fi; B and h are of class L1
loc: We assume: (i) f1; f2; f3 approach

compact intervals I1; I2; I3; respectively, that is, for i ¼ 1; 2; 3; dIi
ðfiðtÞÞ-0 as t-N;

(ii) f1AL1; (iii) I2Cð�N; 0Þ; (iv) 0eI3; (v) hAL1 with hðtÞ-0 as t-N; (vi)

jjBð�ÞjjAL1 with jjBðtÞjj-0 as t-N: We will show that, for each xAR2; the (unique)
maximal solution x of (3), with initial value xð0Þ ¼ x; is such that xðtÞ-0 as t-N:

Clearly the function ðt; zÞ/½AðtÞ þ BðtÞ�z þ hðtÞ is Carathéodory and such that
(AA) holds with FAU given by

FðzÞ ¼ Fðz1; z2Þ :¼ fu1z1 þ u3z2 j u1AI1; u3AI3g

� f�u3z1 þ u2z2 j u3AI3; u2AI2g:

Let xAR2 be arbitrary and let x denote the unique maximal solution of (3)

with xð0Þ ¼ x: We first prove boundedness of x: Define t/VðtÞ :¼ jjxðtÞjj2 and
note that

’VðtÞ ¼ 2/xðtÞ; ½AðtÞ þ BðtÞ�xðtÞ þ hðtÞS

p 2jf1ðtÞjx2
1ðtÞ þ 2f2ðtÞx2

2ðtÞ þ 2jjBðtÞjj jjxðtÞjj2

þ jjxðtÞjj2jjhðtjj þ jjhðtÞjj a:a: tX0: ð4Þ

By compactness of I2 and properties (i) and (iii) of f2; there exist constants c0;T40
such that 2f2ðtÞp� c0o0 for almost all tXT : By (4),

’VðtÞpf4ðtÞVðtÞ þ jjhðtÞjj a:a: tX0; ð5Þ

where f4ðtÞ :¼ jjhðtÞjj þ 2ðjf1ðtÞj þ jf2ðtÞjw½0;TÞðtÞ þ jjBðtÞjjÞ for almost all tX0 ðw½0;TÞ
being the characteristic function of ½0;TÞ taking value 1 on ½0;TÞ and value 0
elsewhere). Therefore,

VðtÞpexp

Z t

0

f4

� 	
Vð0Þ þ

Z t

0

exp �
Z s

0

f4

� 	
jjhðsÞjj ds

� 	
8tX0:

Since f1; h; jjBð�Þjj are of class L1 and f2AL1
loc; it follows that f4AL1: Therefore

V (and hence x) is bounded. By boundedness of x; (4) and recalling that
2f2ðtÞp� c0o0 for almost all tXT ; there exists a positive constant c1 such that
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’VðtÞp� c0x2
2ðtÞ þ c1½jf1ðtÞj þ jjBðtÞjj þ jjhðtÞjj� for almost all tXT ; whence

Z t

T

c0x2
2ðsÞ dspVðTÞ � VðtÞ þ c1

Z t

T

ðjf1ðsÞj þ jjBðsÞjj þ jjhðsÞjj� ds 8tXT :

By boundedness of V ; and recalling that f1; h and jjBð�Þjj are of class L1; we may

conclude that x2 is in L2 and so, a fortiori, is meagre. On setting S ¼ xðRþÞ and

g : y ¼ ðy1; y2Þ/y2
2; Theorem 4.1 implies that x approaches the largest subset I of

S-g�1ð0Þ that is weakly invariant with respect to the limit differential inclusion

’zAFðzÞ: Let #xAI and so #x ¼ ð#x1; 0Þ: By weak invariance, there exists a solution

z ¼ ðz1; z2Þ of the differential inclusion with zð0Þ ¼ #x and z2ðtÞ ¼ 0 for all tX0:
Therefore, 0 ¼ ’z2ðtÞAf�uz1ðtÞ j uAI3g for all tX0: By assumption (v), 0eI3 and so

z1ðtÞ ¼ 0 for all tX0: Therefore, #x ¼ 0; I ¼ f0g and xðtÞ-0 as t-N:

Next, we present two variants of the LaSalle principle. For a locally Lipschitz

function z/VðzÞAR; let V1ðz; vÞ denote its Clarke directional derivative at zARN in

direction vARN :

V1ðz; vÞ :¼ lim sup
y-z
hk0

Vðy þ hvÞ � VðyÞ
h

:

We record that: (a) ðz; vÞ/V1ðz; vÞ is upper semicontinuous; (b) for all z; V1ðz; �Þ is
subadditive; (c) V1ðz; �Þ is globally Lipschitz, uniformly with respect to z in compact
sets (see [8, Proposition 2.1.1]).

Theorem 4.2. Let f : Rþ � RN-RN be of Carathéodory class and such that ðAAÞ
holds for some FAU: Assume that x is a bounded global solution of (1) and write

S :¼ xðRþÞ: If there exist locally Lipschitz V : BeðSÞ-R (for some e40),

upper semicontinuous g : S-R and gAL1 such that

V1ðz; f ðt; zÞÞ � gðtÞpgðzÞp0 for all tARþ and all zAS; ð6Þ

then C ¼ S-g�1ð0Þa| and x approaches the largest subset of C that is weakly

invariant with respect to (2).

Proof. As the composition of locally Lipschitz V and locally absolutely continuous
x; V3x is locally absolutely continuous. Let NCRþ be a set of measure zero with the

property that ’xðtÞ and ðV3xÞ0ðtÞ both exist for all tARþ\N: Let L40 be a Lipschitz
constant for V on Be=2ðSÞ: Note that, if tARþ\N; then Vðxðt þ hÞÞ �
VðxðtÞÞpVðxðtÞ þ h ’xðtÞÞ � VðxðtÞÞ þ Ljjxðt þ hÞ � xðtÞ � h ’xðtÞjj for all sufficiently
small h40: Invoking (6), it follows that

ðV3xÞ0ðtÞ � gðtÞpV oðxðtÞ; f ðt; xðtÞÞ � gðtÞpgðxðtÞÞp0 a:a: tARþ
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whence
R t

0 jgðxðsÞÞj dspVðxð0ÞÞ � VðxðtÞÞ þ
R t

0 jgðsÞj ds for all tARþ: Therefore, by

boundedness of V3x and since gAL1; we may conclude that g3xAL1: Hence, g3x is
meagre. In view of Theorem 4.1, to complete the proof it now suffices to show that C

is closed and infzAK jgðzÞj40 for every closed set KCS with K-C ¼ |: The latter
follows immediately from the fact that jgj ¼ �g; being a lower semicontinuous
function, achieves its infimum on compact sets. To show closedness of C; let ðznÞCC

be a convergent sequence with limit z: Clearly, zAS and, by upper semicontinuity of
g at z; 0 ¼ lim supn-N

gðznÞpgðzÞp0: Therefore, gðzÞ ¼ 0 and so zAC; showing
that C is closed. &

Corollary 4.3. Let f : Rþ � RN-RN be of Carathéodory class and such that ðAAÞ
holds for some FAU: Assume that x is a bounded global solution of (1) and write

S :¼ xðRþÞ: If there exist dAL1 and locally Lipschitz V : BeðSÞ-R (for some e40)
such that

max
zAS

dFðzÞðf ðt; zÞÞpdðtÞ 8 tARþ;

gðzÞ :¼ max
vAFðzÞ

V1ðz; vÞp0 8zAS;

9>=
>; ð7Þ

then x approaches the largest subset of S-g�1ð0Þ that is weakly invariant with respect

to (2).

Proof. The following two facts are consequences of assumption (AA) and properties
of FAU and V1: (a) g is upper semicontinuous (see proof of Theorem 2.11 in [17]);
(b) for all tARþ and all zAS; there exists vAFðzÞ such that f ðt; zÞ ¼ v þ wðtÞ; where
jjwðtÞjj ¼ dFðzÞðf ðt; zÞÞpdðtÞ: Therefore, invoking (7) together with subadditivity and

the global Lipschitz property of V1ðz; �Þ (the latter being uniform with respect to z in
compact sets), we may infer that there exists c40 such that

V1ðz; f ðt; zÞÞpgðzÞ þ cdðtÞ for all tARþ and all zAS:

Writing g ¼ cd; Theorem 4.2 now applies to conclude the result. &

4.3. Limit systems with asymptotically stable compacta

Here, we investigate the behaviour of weakly asymptotically autonomous systems
in the case wherein the limit system has a uniformly globally asymptotically stable

compactum in the following sense. A non-empty compact set CCRN is said to be
uniformly globally asymptotically stable with respect to (2) if there exists a class KL

function k such that, for all xARN ;

dCðxðtÞÞpkðdCðxÞ; tÞ 8tX0
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for every maximal solution x of (2) with initial data xð0Þ ¼ x (here, the terminology
‘‘uniform’’ refers to uniformity with respect to multiple solutions of the initial-
value problem). The following theorem is a counterpart, in the present context
of weakly asymptotically autonomous systems, of a result by Artstein [2,
Theorem 8.3].

Theorem 4.3. Assume that f : Rþ � RN-RN is of Carathéodory class and such that

ðAAÞ holds with FAU continuous. Assume further that CCRN is compact and

uniformly globally asymptotically stable with respect to the limit system (2). If x is a

global solution of (1) with OðxÞa|; then x approaches C.

Proof. Note initially that, by continuity of F together with convexity and

compactness of its values, there exists a continuous map f̂ : RN � RN-RN such

that Fð�Þ ¼ f̂ð�;BÞ; where B :¼ B1ð0Þ is the closed unit ball centred at 0ARN (see, for
example, [4, Chapter 1, Section 7] Theorem 2). By Filippov’s lemma [10], x is a
solution of the differential inclusion ’xAFðxÞ if, and only if, there exists measurable

t/dðtÞAB such that ’xðtÞ ¼ f̂ðxðtÞ; dðtÞÞ: Since C is uniformly globally asymptoti-
cally stable with respect to the limit system (2), it follows that C is uniformly globally
asymptotically stable (in the sense of [15]) with respect to the non-autonomous

system ’xðtÞ ¼ f̂ðxðtÞ; dðtÞÞ: Therefore, by Theorem 2.8 in [15], there exist smooth

V : RN-R; unbounded functions a1; a2AK and a continuous function a3 : Rþ-Rþ;

with a�1
3 ð0Þ ¼ f0g; such that

a1ðdCðzÞÞpVðzÞpa2ðdCðzÞÞ
/rVðzÞ; vSp� a3ðdCðzÞÞ

)
8vAFðzÞ; 8zARN :

In view of Remark 2.2, in order to prove the theorem it suffices to show that
OðxÞCC: Let lAOðxÞ and, seeking a contradiction, suppose that leC: By
compactness of C and properties of V ; we have VðlÞ40: For r41; define the
(compact) ‘‘annulus’’

AðrÞ :¼ fzARN j r�1VðlÞpVðzÞprVðlÞg:

Note that AðrÞ-C ¼ |: Since, for any r41; lAOðxÞ-int AðrÞ; there exists ðtnÞ;
such that

tn-N as n-N and xðtnÞAAð2Þ 8nAN: ð8Þ

Define b :¼ minzAAð3Þ a3ðdCðzÞÞ40 and g :¼ maxzAAð3Þ jjrVðzÞjj40: By (AA), there

exists NAN such that

ess sup
tX0

dFðzÞðf ðt þ tN ; zÞÞob=ð2gÞ 8zAAð3Þ:
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Define T :¼ ftARþ j xðt þ tNÞAAð3Þg and observe that, for almost all tAT; there
exists vAFðxðt þ tnÞÞ such that

dFðxðtþtnÞÞðf ðt þ tN ; xðt þ tNÞÞÞ ¼ jjf ðt þ tN ; xðt þ tNÞÞ � vjjob=ð2gÞ:

Therefore, we may conclude that, for almost all tAT; there exists vAFðxðt þ tNÞÞ
such that

ðV3xÞ0ðt þ tNÞ ¼/rVðxðt þ tNÞÞ; f ðt þ tN ; xðt þ tNÞÞS

p/rVðxðt þ tNÞÞ; vÞSþ gb=ð2gÞ;

whence

ðV3xÞ0ðt þ tNÞp� a3ðdCðxðt þ tNÞÞÞ þ b=2p � bþ b=2 ¼ �b=2

for a:a: tAT:

It follows that, for some t40; xðtþ tNÞAAð3Þ\Að2Þ and xðt þ tNÞeAð2Þ for all
tXt; contradicting (8). Therefore, OðxÞCC: &

4.4. Systems with input and output

Consider the system with input u of class L
p
loc for some 1pppN and output y:

’xðtÞ ¼ kðxðtÞ; uðtÞÞ; xð0Þ ¼ xARN ; uðtÞARM ;

yðtÞ ¼ cðxðtÞÞARP:

)
ð9Þ

We assume that c : RN-RP is continuous with cð0Þ ¼ 0; k : RN � RM-RN is locally
Lipschitz with kð0; 0Þ ¼ 0 and

ðAA1Þ 8 compact CCRN (r40 such that

jjkðz; vÞ � kðz; 0Þjjprjjvjj 8ðz; vÞAC � RM :

For each xARN and uAL
p
loc; the initial-value problem (9) has a unique maximally

defined solution which we denote by t/xðtÞ ¼ juðt; xÞ:

Remark 4.3. Consider system (9) with input uAL
p
loc for some 1pppN and such that

(AA1) holds. The function f : Rþ � RN-RN ; defined by f ðt; zÞ :¼ kðz; uðtÞÞ; is of
Carathéodory class: moreover, if uðtÞ-0 as t-N; then f satisfies (AA) with
F : z/fkðz; 0Þg:

Writing knð�Þ :¼ kð�; 0Þ; the system with zero input u ¼ 0; that is, the autonomous
system

’xðtÞ ¼ knðxðtÞÞ; xð0Þ ¼ xARN ;

yðtÞ ¼ cðxðtÞÞARP

)
ð10Þ
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will play a rôle in the sequel: we denote, by j; the (local) flow generated by kn and so
the unique maximally defined solution of the autonomous initial-value problem in
(10) is given by t/jðt; xÞ � j0ðt; xÞ: System (10) is said to be zero-state observable

if, for each xARN ; the following holds

yð�Þ ¼ cðjð�; xÞÞ ¼ 0 ) x ¼ 0: ð11Þ

Zero-state observability of (10) is equivalent to the condition that f0g is the only

subset of c�1ð0Þ that is invariant under the flow j:

Theorem 4.4. Let k be such that ðAA1Þ holds, let xARN and let u be of class Lp for

some p; 1pppN: Assume that the maximal solution xð�Þ ¼ juð�; xÞ of (9) has interval

of existence Rþ:
(i) If x is meagre, then xðtÞ-0 as t-N:
(ii) Assume that f0g is a globally asymptotically stable equilibrium of the

autonomous system ’z ¼ knðzÞ: If uAL1 and x is bounded, then xðtÞ-0 as t-N:

(iii) Let c : RN-RP be continuous with cð0Þ ¼ 0: Let SCRN be non-empty and

closed. Define C :¼ S-c�1ð0Þ: Assume that infzAK jjcðzÞjj40 for every closed set

KCS with K-C ¼ |: If the trajectory of x is contained in S and c3x is meagre, then

Ca|; yðtÞ ¼ cðxðtÞÞ-0 as t-N and x approaches C. If C is compact and, in

addition, uðtÞ-0 as t-N and system (10) is zero-state observable, then xðtÞ-0 as

t-N:

Proof. Define f : Rþ � RN-RN by f ðt; zÞ :¼ kðz; uðtÞÞ: Invoking (AA1), we may

infer that, for each compact set CCRN ; there exists a constant r such that

jjf ðt; zÞjjpr½1 þ jjuðtÞjj� ¼: mðtÞ for all zAC and all tARþ:

Since functions of class Lp; 1pppN; are a fortiori uniformly locally integrable, we
may conclude that m is uniformly locally integrable and so fAFðCÞ for every

compact CCRN :
(i) Assertion (i) is an immediate consequence of Theorem 3.3.
(ii) By converse Lyapunov theory (for example, [15, Theorem 2.8]), there exists a

smooth function V : RN-Rþ and continuous #a : Rþ-Rþ; with #a�1ð0Þ ¼ f0g; such

that /rVðzÞ; knðzÞSp� #aðjjzjjÞ for all zARN : Let sn40 be such that jjxðtÞjjpsn for

all tARþ: Define a : Rþ-Rþ by aðsÞ :¼ #aðsÞ for sA½0; sn� and aðsÞ :¼ #aðsnÞ for

sAðsn;NÞ: Note that a is a J-function and aðxðtÞÞ ¼ #aðxðtÞÞ for all tARþ: By (AA1)
and boundedness of x; there exist constants r0; r140 such that

ðV3xÞ0ðtÞ ¼/rVðxðtÞÞ; kðxðtÞ; uðtÞÞS

p/rVðxðtÞÞ; knðxðtÞÞSþ r0jjrVðxðtÞÞjj jjuðtÞjj

p � aðjjxðtÞjjÞ þ r1jjuðtÞjj a:a: tARþ:
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Since uAL1; it now follows that
R
N

0 aðjjxðtÞjjÞdtoN and so, by Proposition 2.1, x is

meagre. Assertion (ii) now follows by assertion (i).

(iii) By continuity of c and closedness of S; C ¼ S-c�1ð0Þ is closed. By Theorem

3.1, we conclude that Ca| and x approaches C:
Now assume that C is compact and impose the additional hypotheses that uðtÞ-0

as t-N; and that system (10) is zero-state observable. Then, by Remark 4.3 and
Corollary 4.2, x approaches the largest subset ICC that is invariant under the flow j
generated by kn: By zero-state observability, f0g is the only subset of c�1ð0Þ*C that
is invariant under the flow j: Therefore, I ¼ f0g and the proof is complete. &

Remark 4.4. If, in part (iii) of Theorem 4.4, the set S is compact, then ‘‘inf’’
assumption on c is redundant (insofar as the requisite property is a consequence of
compactness of S). This situation is of interest if x is known to be bounded in which
case S can be taken to be the closure of the trajectory of x:

5. Non-autonomous second-order systems

In this section, we study asymptotic behaviour of (non-autonomous) ordinary
differential equations, of second order, of a type that occurs naturally in the study of
mechanical systems with M degrees of freedom:

ÿðtÞ ¼ kðt; yðtÞ; ’yðtÞÞ; yðtÞARM ; ðyð0Þ; ’yð0ÞÞ ¼ ðy0; v0Þ: ð12Þ

Writing N :¼ 2M; the function k : Rþ � RN-RM ; ðt; d; vÞ/kðt; d; vÞ; is assumed to
be of Carathéodory class with the property that there exists an upper semicontinuous

map ðd; vÞ/Kðd; vÞCRM from RN to the non-empty convex compact subsets of RM

such that

dKðd;vÞðkðt; d; vÞÞ-0 as t-N uniformly with respect to

ðd; vÞ in compact sets: ð13Þ

By a solution of (12) we mean a solution x ð¼ ðy; ’yÞÞ of (1) with

f : Rþ � RN-RN ; ðt; d; vÞ/ðv; kðt; d; vÞÞ and x ¼ ðy0; v0Þ: ð14Þ

The essence of the next result is an assertion that, if the ‘‘position’’ component y of a
global solution x ¼ ðy; ’yÞ of the non-autonomous initial-value problem (12) is
bounded and the ‘‘velocity’’ component ’y is meagre, then the solution x is bounded
and approaches the set of equilibria of the autonomous system ’xAFðxÞ; where

F : ðd; vÞ/fvg � Kðd; vÞ: ð15Þ

Note that ’xAFðxÞ is simply the canonical first-order representation of the
autonomous second order inclusion ÿAKðy; ’yÞ:
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Theorem 5.1. Let k : Rþ � RM � RM-RM be of Carathéodory class and such that

(13) holds for some upper semicontinuous map ðd; vÞ/Kðd; vÞ from RM � RM to the

non-empty convex compact subsets of RM : Let ðy0; v0ÞARM � RM : Assume that x ¼
ðy; ’yÞ : Rþ-RM � RM is a solution of the initial-value problem (12). If y is bounded

and ’y is meagre, then the set

E :¼ fz j 0AKðz; 0Þg � f0g

is non-empty and is approached by ðy; ’yÞ:

Proof. With f and x given by (14), (12) is equivalent to (1). Moreover, f is of

Carathéodory class and satisfies (AA) with FAU given by (15). Define g : RN-R;
ðd; vÞ/jjvjj: By hypothesis, g3x is meagre. By boundedness of y; there exists a

compact set DCRM such that the trajectory of x ¼ ðy; ’yÞ is contained in S :¼
D � RM : Therefore, C :¼ S-g�1ð0Þ ¼ D � f0g is compact and so property (i) of
Theorem 4.1 holds; clearly, property (ii) also holds. It now follows from Theorem 4.1
that x approaches the largest subset ICC that is weakly invariant with respect to

the autonomous system ’zAFðzÞ: Let #x ¼ ðy; 0ÞAI*OðxÞa|: By weak invariance of

I; there exists a solution z ¼ ðd; vÞ : Rþ-RN of the inclusion ð ’d; ’vÞ ¼ ’zAFðzÞ ¼
fvg � Kðd; vÞ with zð0Þ ¼ #x and vðtÞ ¼ 0 for all tARþ: Therefore, zðtÞ ¼ ðdðtÞ; 0Þ ¼
ðy; 0Þ ¼ #x for all tARþ and so 0AKðy; 0Þ: Hence, #xAE and the proof is
complete. &

Remark 5.1. The hypothesis of boundedness of y in Theorem 5.1 may be removed at

the expense of imposing a stronger hypothesis on ’y; namely, ’yAL1 (of which
boundedness of y is a consequence).

5.1. Stabilization by adaptive ‘‘velocity’’ feedback

For continuous p : Rþ-Rþ with p�1ð0Þ ¼ f0g; let SðpÞ denote the class of

systems, with control uðtÞARM ; of the form

ÿðtÞ þ pðyðtÞ; ’yðtÞÞ þ qðyðtÞÞ ¼ bðuðtÞÞ;
ðyð0Þ; ’yð0ÞÞ ¼ ðy0; v0ÞARM � RM ;

)
ð16Þ

with the following properties:

(i) b : RM-RM is continuous, bð0Þ ¼ 0 and there exists b40 such that

/bðuÞ; uSXbjjujj2 8uARM ;

(ii) p : RM � RM-RM is continuous and such that, for some g40;

jjpðd; vÞjjpgpðjjvjjÞ 8ðd; vÞARM � RM ;
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(iii) q : RM-RM is such that q ¼ rQ for some C1 function Q : RM-R with

jjyjj-N ) QðyÞ-N:

Note that (iii) above implies that q�1ð0Þa|:
We assume that the velocity ’yðtÞ is available for feedback purposes and that the

only other system data available to the control designer is knowledge of the function

p: Define the continuous function #p : RM-RM by #pð0Þ :¼ 0 and #pðvÞ :¼ pðjjvjjÞv=jjvjj
for all va0: Consider the adaptive feedback strategy

uðtÞ ¼ �yðtÞ #pð ’yðtÞÞ; ’yðtÞ ¼ jj ’yðtÞjjpðjj ’yðtÞjjÞ; yð0Þ ¼ y0AR: ð17Þ

The essence of our final result is that, if p : Rþ-Rþ is continuous with p�1ð0Þ ¼ f0g;
then, for every system in SðpÞ; the adaptive control (17) renders the set q�1ð0Þ � f0g
globally attractive.

Theorem 5.2. Let p : Rþ-Rþ be continuous with p�1ð0Þ ¼ f0g: Let ðb; p; qÞ be such

that (16) is in SðpÞ: Let ðy0; v0; y0ÞAR2Mþ1: Let ðy; ’y; yÞ : ½0;oÞ-R2M be a maximal

solution of the (feedback-controlled) initial-value problem (16)–(17). Then

(i) o ¼ N and ðy; ’y; yÞ is bounded;
(ii) limt-N yðtÞ exists;

(iii) ðy; ’yÞ approaches the set q�1ð0Þ � f0g:

Proof. Define V : ½0;oÞ-R by VðtÞ :¼ QðyðtÞÞ þ/ ’yðtÞ; ’yðtÞS=2 and note that V is
bounded from below. Then,

’VðtÞ ¼ �/pðyðtÞ; ’yðtÞÞ; ’yðtÞSþ/bð�yðtÞ #pð ’yðtÞÞ; ’yðtÞS

p ðg� byðtÞÞpðjj ’yjjÞjj ’yðtÞjj

¼ ðg� byðtÞÞ’yðtÞ for a:a: tA½0;oÞ;

which, on integration, yields

constantpVðtÞpVð0Þ þ gðyðtÞ � y0Þ � bðy2ðtÞ � ðy0Þ2Þ=2 8tA½0;oÞ: ð18Þ

By (18), y is bounded, implying the boundedness of V : It follows from the definition
of V that ’y and QðyÞ are bounded. Invoking the radial unboundedness property of
Q; we see that y is bounded. Boundedness of ðy; ’y; yÞ implies that o ¼ N (assertion
(i) of the Theorem). Assertion (ii) follows by boundedness and monotonicity of y: It
remains to establish assertion (iii).

Let sn be such that jj ’yðtÞjjpsn for all tARþ: Define a : Rþ-Rþ by aðsÞ :¼ pðsÞs for

sA½0; sn� and aðsÞ :¼ pðsnÞsn for sAðsn;NÞ: Then a is a J-function and aðjj ’yðtÞjjÞ ¼
pðjj ’yðtÞjjÞjj ’yðtÞjj for all tARþ: By boundedness of y;

R
N

0 pðjj ’yðtÞjjÞjj ’yðtÞjj dt ¼R
N

0
aðjj ’yðtÞjjÞdtoN and so (by equivalence of (i) and (iii) in Proposition 2.1) ’y is
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meagre. Define k : Rþ � RM � RM-RM by

kðt; d; vÞ :¼ �pðd; vÞ � qðdÞ þ bð�yðtÞ #pðvÞÞ

for which (13) holds with K : ðd; vÞ/f�pðd; vÞ � qðdÞ þ bð�yn #pðvÞÞg; where

yn :¼ limt-N yðtÞ: Moreover, ðy; ’yÞ is a solution of the equation ÿðtÞ ¼
kðt; yðtÞ; ’yðtÞÞ with y bounded and ’y meagre. By Theorem 5.1, it follows that ðy; ’yÞ
approaches the set fz j 0AKðz; 0Þg � f0g ¼ q�1ð0Þ � f0g: This completes the
proof. &

Corollary 5.1. Let p : Rþ-Rþ be continuous with p�1ð0Þ ¼ f0g: Let S0ðpÞ denote the

subclass of SðpÞ systems with the additional condition that q�1ð0Þ ¼ f0g: For every

system in S0ðpÞ; the feedback control (17) renders f0; 0g globally attractive.
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