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Abstract. The initial-value problem for a class of Volterra functional differential equations—
of sufficient generality to encompass, as special cases, ordinary differential equations, retarded
differential equations, integro-differential equations, and hysteretic differential equations—
is studied. A self-contained and elementary treatment of this over-arching problem is pro-
vided, in which a unifying theory of existence, uniqueness, and continuation of solutions is
developed. As an illustrative example, a controlled differential equation with hysteresis is
considered.

1. INTRODUCTION. Initial-value problems for systems of differential equations
permeate many areas of mathematics: such problems arise naturally in modelling the
evolution of dynamical processes in economics, engineering, and the physical and bi-
ological sciences. As a starting point, consider an ordinary differential equation in
R

N :

u′(t) = f (t, u(t)), (1.1)

where f is some suitably regular function, and the independent variable t carries the
connotation of “time.” Loosely speaking, such a formulation is appropriate in applica-
tions wherein the forward-time, or future, behaviour of the process under investigation
depends only on the current state u(t) (at current time t) and, in particular, is inde-
pendent of its past u(s), s < t , and future u(s), s > t , states. Adopting the standpoint
that the processes under investigation are “real-world” phenomena, it is reasonable
to assume independence with respect to future states (and this we do throughout, via
an assumption of causality or non-anticipativity); however, there are many situations
wherein the process may “remember” the past and so its future behaviour depends,
not only on the current state, but also on its past states. The simplest example of such
dependence on the past is a differential equation with a point delay of length h > 0:

u′(t) = f (t, u(t), u(t − h)). (1.2)

System (1.2) may be embedded in the class of retarded differential equations of the
form

u′(t) = f (t, ut), (1.3)

where, for a continuous function u on some interval I containing [−h, 0] and t ∈ I
with t ≥ 0, ut denotes the continuous function on [−h, 0] defined by ut(s) := u(t + s).

Another commonly encountered class of systems which exhibit dependence on the
past is comprised of integro-differential equations of the form

u′(t) =
∫ t

0
k(t, s)g(s, u(s)) ds. (1.4)
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As a final class of systems with memory, consider hysteretic differential equations of
the form

u′(t) = f (t, u(t), (H(u))(t)), (1.5)

where H is a hysteresis operator (that is, an operator which is causal and rate inde-
pendent in a sense to be made precise in due course). As a prototype, consider a scalar
nonlinear mechanical system with hysteretic restoring force

y′′(t) + g(t, y(t), y′(t))y′(t) + (P(y))(t) = 0,

where P is the play or backlash operator, the action of which is captured in Figure 1,
wherein z = P(y) (we will return later to such an operator, with full details).

y

z

−σ

σ

Figure 1. Play hysteresis.

Writing u(t) = (u1(t), u2(t)) := (y(t), y′(t)) and defining f : R+ × R
2 × R by

f (t, v, w) = f (t, (v1, v2), w) := (v2, −g(t, v1, v2)v2 − w),

this system takes the form (1.5) with H(u) = P(u1).
Notwithstanding an outward appearance of diversity, the above examples (1.1)–

(1.5) can be subsumed (as we shall see) in a common formulation, expressed as an
initial-value problem for a functional differential equation of the form

u′(t) = (F(u))(t), t ≥ 0, u|[−h,0] = ϕ, (1.6)

with h ≥ 0 and ϕ continuous. The operator F is assumed to be causal or non-
anticipative (loosely speaking, F is causal if, whenever functions u and v are such
that their values u(t) and v(t) coincide up to t = τ , (F(u))(t) and (F(v))(t) also
coincide up to t = τ : a precise definition is contained in hypothesis (H1) in Section
3 below). This paper provides an elementary, self-contained, and tutorial treatment of
this over-arching problem: a unifying theory of existence, uniqueness, and continua-
tion of solutions is developed which, when specialized, applies in the context of each
of the systems (1.1)–(1.5) outlined above.

For clarity of exposition, proofs of only the main results (viz., Proposition 3.5, The-
orem 3.6, Theorem 3.7, and Corollary 3.8) are contained in the main body of the text:
proofs of auxiliary technical propositions and lemmas are provided in the appendix.

We close the introduction with a brief list of some standard references: for ordinary
differential equations, see [1, 15]; for functional equations with causal operators, see
[3, 4, 8]; for retarded differential equations of the form (1.3), see [5, 6, 9]; for integro-
differential equations of the form (1.4), see [3, 8]; for systems with hysteresis of the
form (1.5), see [2, 12].
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Notation. The vector space of continuous functions defined on an interval I with
values in R

N is denoted by C(I ). If I is compact, then, endowed with the norm

‖u‖C(I ) := sup{‖u(t)‖: t ∈ I }, (1.7)

where ‖ · ‖ denotes the Euclidean norm in R
N , C(I ) is a Banach space. For u ∈ C(I ),

define gr u, the graph of u, by gr u := {(t, u(t)) : t ∈ I } ⊂ R × R
N . Finally, if I is an

interval, then I+ := I ∩ R+, where R+ := [0, ∞).

2. PRELIMINARIES: ABSOLUTELY CONTINUOUS FUNCTIONS AND THE
SOBOLEV SPACE W1,1. Let a < b. A function u : [a, b] → R

N is said to be abso-
lutely continuous if, for all ε > 0, there exists δ > 0 such that, for any finite collection
of disjoint open intervals (a1, b1), . . . , (an, bn) contained in [a, b],

n∑
i=1

(bi − ai ) ≤ δ ⇒
n∑

i=1

‖u(bi ) − u(ai )‖ ≤ ε.

The importance of the concept of absolute continuity stems from the fact that ab-
solutely continuous functions are precisely the functions for which the fundamen-
tal theorem of calculus (in the context of Lebesgue integration) is valid: a function
u : [a, b] → R

N is absolutely continuous if, and only if, u is differentiable at almost
every t ∈ [a, b], u′ ∈ L1[a, b], and u(t) = u(a) + ∫ t

a u′(s) ds for all t ∈ [a, b]; see, for
example, [7, 11]. We define

W 1,1[a, b] := {
u : [a, b] → R

N | u is absolutely continuous
}
.

It is well known that, endowed with the norm ‖u‖W 1,1 := ‖u‖L1 + ‖u′‖L1 , the space
W 1,1[a, b] is complete, and hence a Banach space. Usually, W 1,1[a, b] is referred to as
a Sobolev space. An alternative, and sometimes more convenient, norm on W 1,1[a, b]
is the BV-norm (where BV stands for bounded variation) defined by

‖u‖BV := ‖u(a)‖ + ‖u′‖L1 .

The total variation of a function u : [a, b] → R
N is given by sup

{∑n
k=1 ‖u(tk) −

u(tk−1)‖: n ∈ N, a = t0 < t1 < · · · < tn = b
}

and, if this quantity is finite, u is said
to be of bounded variation. As is well known, an absolutely continuous function u is
of bounded variation and its total variation is equal to ‖u′‖L1 : this fact motivates the
name “BV-norm.”

Proposition 2.1. There exist k1, k2 > 0 such that

k1‖u‖W 1,1 ≤ ‖u‖BV ≤ k2‖u‖W 1,1 ∀ u ∈ W 1,1[a, b],

that is, the norms ‖ · ‖W 1,1 and ‖ · ‖BV are equivalent. Consequently, W 1,1[a, b] is
complete with respect to the BV-norm.

The proof of Proposition 2.1 can be found in the appendix. For an arbitrary (not
necessarily compact) interval I ⊂ R and arbitrary p ∈ [1, ∞], we define

L p
loc(I ) := {u : I → R

N | u|[a,b] ∈ L p[a, b] for all a, b ∈ I , a < b}
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and

W 1,1
loc (I ) := {u : I → R

N | u|[a,b] ∈ W 1,1[a, b] for all a, b ∈ I , a < b}.

Clearly, if I is compact, then L p
loc(I ) = L p(I ) and W 1,1

loc (I ) = W 1,1(I ).

3. VOLTERRA FUNCTIONAL DIFFERENTIAL EQUATIONS. The focus of
our study is an initial-value problem of the form

u′(t) = (F(u))(t), t ≥ 0; u|[−h,0] = ϕ ∈ C[−h, 0], gr ϕ ⊂ �, (3.1)

with h ≥ 0 and � ⊂ [−h, ∞) × R
N , and where F is an operator acting on suitable

spaces of functions u defined on intervals of the form [−h, η] or [−h, η) (where η > 0)
and with gr u ⊂ �. Throughout, we assume that

• � is open relative to [−h, ∞) × R
N , that is, there exists an open set D ⊂ R

N+1 such
that � = D ∩ ([−h, ∞) × R

N );
• {u ∈ C[−h, 0] : gr u ⊂ �} �= ∅.

The following convention is adopted: in the case h = 0, C[−h, 0] should be interpreted
as R

N and the second of the above assumptions is equivalent to

�0 := {x ∈ R
N : (0, x) ∈ �} �= ∅.

We proceed to describe the nature of the operator F in (3.1). For each interval I (pos-
sibly singleton), we define

W�(I ) := {u ∈ C(I ) : u|I+ ∈ W 1,1
loc (I+), gr u ⊂ �}.

Note that

W�[−h, 0] = {u ∈ C[−h, 0] : gr u ⊂ �},
and, by convention, in the case h = 0 we have W�({0}) = �0. As will shortly be
precisely defined, a solution of (3.1) is a function in W�(I ) for some interval I of the
form [−h, η] (where 0 < η < ∞) or [−h, η) (where 0 < η ≤ ∞). In the following,
I denotes the set of all such intervals I with the property that W�(I ) �= ∅. Thus, I
contains all possible domains of solutions of the functional differential equation. From
the assumptions imposed on �, it follows that [−h, α] ∈ I for all sufficiently small
α > 0, or equivalently,

T := sup{α > 0 : W�[−h, α] �= ∅} > 0.

We are now in a position to make precise the nature of the operator F in (3.1) and the
concept of a solution of the initial-value problem. We assume that, for every I ∈ I, the
operator F (in general, nonlinear) maps W�(I ) to L1

loc(I+). In particular, the domain of
F is ∪I∈IW�(I ) and the range of F is contained in ∪I∈IL1

loc(I+). We say that u : I →
R

N is a solution of (3.1) (on the interval I ) if I ∈ I, u ∈ W�(I ), u|[−h,0] = ϕ, and u
satisfies the differential equation in (3.1) for almost every t ∈ I+.

If w ∈ W�[−h, α] is a solution, then it is natural to ask if this solution can be
extended to a solution u on [−h, β] with β > α. We will be especially interested in
extensions u which are “well behaved” in the sense that, for given γ > 0, they satisfy
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∫ β

α
‖u′(s)‖ ds ≤ γ (so that, in particular, ‖u(s) − w(α)‖ ≤ γ for all s ∈ [α, β]). This

and other technical reasons lead to the consideration of a suitable space of extensions
of functions w ∈ W�[−h, α]. Specifically, let 0 ≤ α < T , β > α, γ > 0, and w ∈
W�[−h, α], and define

W(w; α, β, γ ) :={
u ∈ C[−h, β] : u|[−h,α] = w, u|[α,β] ∈ W 1,1[α, β],

∫ β

α

‖u′(s)‖ ds ≤ γ

}
.

It is clear that, for all u ∈ W(w; α, β, γ ), u|[0,β] ∈ W 1,1[0, β]. We equip the space
W(w; α, β, γ ) with the metric μ given by

μ(u, v) =
∫ β

α

∥∥u′(s) − v′(s)
∥∥ ds.

A routine argument, invoking Proposition 2.1, yields the following lemma (see ap-
pendix for details).

Lemma 3.1. For every α ∈ [0, T ), β > α, γ > 0, and w ∈ W�[−h, α], the metric
space W(w; α, β, γ ) is complete.

Observe that some elements of W(w; α, β, γ ) may not be in W�[−h, β]: such ele-
ments do not qualify as candidate solutions extending the solution w. This observation
motivates the following definition. Given α ∈ [0, T ) and w ∈ W�[−h, α], we define

A(w; α) := {(β, γ ) ∈ (α, T ) × (0, ∞) : W(w; α, β, γ ) ⊂ W�[−h, β]}.
It is clear that (β, γ ) ∈ (α, T ) × (0, ∞) is in A(w; α) if and only if gr u ⊂ � for all
u ∈ W(w; α, β, γ ). Important properties of the set A(w; α) are given in the following
lemma, the proof of which is relegated to the appendix.

Lemma 3.2. If α ∈ [0, T ) and w ∈ W�[−h, α], then the following statements hold.

(1) The set A(w; α) is nonempty.

(2) If (β, γ ) ∈ A(w; α), then (b, c) ∈ A(w; α) for all b ∈ (α, β] and all c ∈ (0, γ ].
If α ∈ [0, T ), w ∈ W�[−h, α], (β, γ ) ∈ A(w; α), b ∈ (α, β], and c ∈ (0, γ ], then it
follows from Lemma 3.2 that W(w; α, b, c) ⊂ W�[−h, b], implying that F(u) is well
defined for all u ∈ W(w; α, b, c). This fact will be used freely throughout.

We assemble the following hypotheses on F which will be variously invoked in the
theory developed below.

(H1) Causality: if I, J ∈ I, then, for all τ ∈ (I+ ∩ J+) \ {0}, all u ∈ W�(I ), and all
v ∈ W�(J ),

u|[−h,τ ] = v|[−h,τ ] ⇒ F(u)|[0,τ ] = F(v)|[0,τ ].

(H2) Local Lipschitz-type condition: for every α ∈ [0, T ) and every function w ∈
W�[−h, α], there exists λ ∈ (0, 1) and (β, γ ) ∈ A(w; α) such that

‖F(u) − F(v)‖L1[α,β] ≤ λμ(u, v) ∀ u, v ∈ W(w; α, β, γ ). (3.2)
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(H3) Integrability condition: for every I ∈ I and every u ∈ W�(I ) such that gr u is
compact and contained in �, the function F(u) is integrable, that is, F(u) ∈ L1(I+).

The causality condition in (H1) is also referred to as non-anticipativity or as the
Volterra property. Furthermore, in the literature, the term Volterra operator is some-
times used for a causal (or non-anticipative) operator. If (H1) holds, then the differen-
tial equation in (3.1) is often referred to as a Volterra functional differential equation
or an abstract Volterra integro-differential equation (see, for example, [3, 8]). The
essence of (H3) is that it encompasses all I ∈ I (including noncompact intervals): if I
is compact, then obviously, even without (H3) being satisfied, F(u) ∈ L1(I+) for all
u ∈ W�(I ), since L1

loc(I+) = L1(I+).
The following lemma records a particular consequence of hypotheses (H1) and

(H2), which will be invoked in the later analysis. A proof of the lemma is provided
in the appendix.

Lemma 3.3. Assume that (H1) and (H2) hold. Then, for every α ∈ [0, T ) and every
w ∈ W�[−h, α], there exist λ ∈ (0, 1) and (β, γ ) ∈ A(w; α) such that, for every b ∈
(α, β] and every c ∈ (0, γ ],

‖F(u) − F(v)‖L1[α,b] ≤ λ

∫ b

α

‖u′(s) − v′(s)‖ ds, ∀ u, v ∈ W(w; α, b, c).

On first encounter, it may seem that, in hypothesis (H2), the requirement that λ < 1
is quite restrictive. We proceed to show that this is not the case. To this end, assume
that, for every I ∈ I, F(W�(I )) ⊂ L p

loc(I+) for some p ∈ (1, ∞] and consider the
following hypothesis.

(H2′) For every α ∈ [0, T ) and every w ∈ W�[−h, α], there exists ρ > 0 and (β, γ ) ∈
A(w; α) such that

‖F(u) − F(v)‖L p[α,β] ≤ ρμ(u, v) ∀ u, v ∈ W(w; α, β, γ ). (3.3)

Note that, in (H2′), the Lipschitz constant ρ is not required to be smaller than 1.

Proposition 3.4. Assume that there exists p ∈ (1, ∞] such that F(W�(I )) ⊂ L p
loc(I+)

for every I ∈ I. If (H1) and (H2′) are satisfied, then (H2) holds.

A proof of this proposition is contained in the appendix.
In order to study the problems of existence, uniqueness, and continuation of solu-

tions, it is convenient to consider the following initial-value problem which is slightly
more general than (3.1):

u′(t) = (F(u))(t), t ≥ α; u|[−h,α] = ψ ∈ W�[−h, α], α ∈ [0, T ). (3.4)

Trivially, the original initial-value problem (3.1) can be recovered from (3.4) by setting
α = 0.

We say that u : I → R
N is a solution of (3.4) (on the interval I ) if I ∈ I with

sup I > α, u ∈ W�(I ), u|[−h,α] = ψ , and u satisfies the differential equation in (3.4)
for almost every t ∈ I ∩ [α, ∞).

We now arrive at the first of three core results.
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Proposition 3.5. Assume that the operator F satisfies (H1) and (H2), and let α ∈
[0, T ) and ψ ∈ W�[−h, α]. There exists η > α such that (3.4) has precisely one solu-
tion u on the interval [−h, η]; moreover, for every I ∈ I such that α < sup I ≤ η, the
function u|I is the only solution of (3.4) on I .

Proof. Let α ∈ [0, T ) and ψ ∈ W�[−h, α]. We proceed in two steps.

Step 1. Existence and uniqueness in W(ψ; α, β, γ ) for small β − α > 0. First, we
convert (3.4) into an integral equation. To this end, for each β ∈ (α, T ), define an
operator Gβ on W�[−h, β] by

(Gβ(u))(t) :=
{

ψ(t), t ∈ [−h, α]
ψ(α) + ∫ t

α
(F(u))(s) ds, t ∈ (α, β].

It is clear that u ∈ W�[−h, β] is a solution of (3.4) if and only if Gβ(u) = u.
We claim that there exist β∗ > α and γ > 0 such that (3.4) has a solution u ∈
W(ψ; α, β∗, γ ), and moreover, for every β ∈ (α, β∗], u|[−h,β] is the only solution of
(3.4) in W(ψ; α, β, γ ). Invoking the completeness of W(ψ; α, β, γ ) (guaranteed by
Lemma 3.1) and the contraction-mapping theorem, it is sufficient to show that there
exist (β∗, γ ) ∈ A(w; α) and λ ∈ (0, 1) such that

Gβ(W(ψ; α, β, γ )) ⊂ W(ψ; α, β, γ ) ∀ β ∈ (α, β∗] (3.5)

and, moreover,

μ(Gβ(u), Gβ(v)) ≤ λμ(u, v) ∀ u, v ∈ W(ψ; α, β, γ ), ∀ β ∈ (α, β∗]. (3.6)

We proceed to establish (3.5) and (3.6).
Using Lemma 3.3, we conclude that there exist λ ∈ (0, 1) and (β�, γ ) ∈ A(w; α)

such that, for every β ∈ (α, β�],

‖F(u) − F(v)‖L1[α,β] ≤ λμ(u, v) ∀ u, v ∈ W(ψ; α, β, γ ). (3.7)

Let β ∈ (α, β�]. To show that Gβ(W(ψ; α, β, γ )) ⊂ W(ψ; α, β, γ ), let u ∈
W(ψ; α, β, γ ) and note that, by the definition of Gβ , we have that Gβ(u) ∈ C[−h, β],
(Gβ(u))|[−h,α] = ψ , and (Gβ(u))|[α,β] ∈ W 1,1[α, β]. It remains to show that∫ β

α
‖(Gβ(u))′(s)‖ ds ≤ γ . To this end, define a function ψ̃ : [−h, β] → R

N by

ψ̃(t) =
{

ψ(t), t ∈ [−h, α]
ψ(α), t ∈ (α, β].

Clearly, ψ̃ ∈ W(ψ; α, β, γ ). By Lemma 3.2, (β, γ ) ∈ A(w; α), so that ψ̃ ∈
W�[−h, β]. Consequently, F(ψ̃) is well defined, and, furthermore, invoking (3.7),

∫ β

α

‖(Gβ(u))′(s)‖ ds ≤
∫ β

α

‖(F(u))(s) − (F(ψ̃))(s)‖ ds +
∫ β

α

‖(F(ψ̃)(s)‖ ds

≤ λ

∫ β

α

‖u′(s) − ψ̃ ′(s)‖ ds +
∫ β

α

‖(F(ψ̃))(s)‖ ds.
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Since ψ̃ ′(s) = 0 for all s ∈ [α, β], we obtain

∫ β

α

‖(Gβ(u))′(s)‖ ds ≤ λγ +
∫ β

α

‖(F(ψ̃))(s)‖ ds.

Now choose β∗ ∈ (α, β�] such that

∫ β∗

α

‖(F(ψ̃))(s)‖ ds ≤ γ (1 − λ).

Then
∫ β

α
‖(Gβ(u))′(s)‖ds ≤ γ for every β ∈ (α, β∗], so that (3.5) follows. Further-

more, (3.6) is an immediate consequence of (3.7) (in which λ < 1) and the fact that,
for all β ∈ (α, β∗],

μ(Gβ(u), Gβ(v)) =
∫ β

α

‖(F(u))(s) − (F(v))(s)‖ ds ∀ u, v ∈ W(ψ; α, β, γ ).

Step 2. Uniqueness in W�[−h, β] for small β − α > 0. By Step 1, there exists β∗ >

α such that (3.4) has a solution u ∈ W(ψ; α, β∗, γ ), and moreover, for every β ∈
(α, β∗], u|[−h,β] is the only solution of (3.4) in W(ψ; α, β, γ ). Choosing η ∈ (α, β∗]
such that ∫ η

α

‖u′(s)‖ ds < γ, (3.8)

let I ∈ I be such that α < sup I ≤ η and let v ∈ W�(I ) be a solution of (3.4). Setting
σ := sup I , we claim that ∫ σ

α

‖v′(s)‖ ds ≤ γ. (3.9)

Seeking a contradiction, suppose that this is not true. Then there exists τ ∈ (α, σ ) such
that ∫ τ

α

‖v′(s)‖ ds = γ. (3.10)

In particular, v ∈ W(w; α, τ, γ ), so that, by Step 1, v[−h,τ ] = u|[−h,τ ]. Consequently,
by (3.8),

∫ τ

α
‖v′(s)‖ ds < γ , contradicting (3.10). We conclude that (3.9) holds, and

thus, for every β ∈ (α, σ ), v ∈ W(w; α, β, γ ). Invoking Step 1 again, we obtain that
v[−h,β] = u|[−h,β] for every β ∈ (α, σ ), implying that v = u|I .

We now use Proposition 3.5 to prove the following result relating to the initial-value
problem (3.1).

Theorem 3.6. Assume that F satisfies (H1) and (H2).

(1) The initial-value problem (3.1) has a solution u : [−h, η] → R
N for sufficiently

small η > 0.

(2) Given an interval I ∈ I, there exists at most one solution u : I → R
N of the

initial-value problem (3.1).
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Proof. (1) The claim follows immediately from an application of Proposition 3.5 with
α = 0.

(2) Let I ∈ I. Suppose that u1 and u2 are solutions of (3.1) defined on I . Define

τ := sup{t ∈ I+ : u1(s) = u2(s) ∀s ∈ [0, t]}.
Note that an application of Proposition 3.5 with α = 0 shows that τ > 0. It is sufficient
to show that τ = sup I = sup I+. Seeking a contradiction, suppose that τ < sup I .
Defining ψ : [−h, τ ] → R

N by

ψ(t) =
{

ϕ(t), −h ≤ t ≤ 0
u1(t), 0 < t ≤ τ,

it is clear that ψ ∈ W�[−h, τ ] and

u1(t) = u2(t) = ψ(t) ∀ t ∈ [−h, τ ].
Applying Proposition 3.5 again, now with α = τ , yields the existence of an ε > 0 such
that u1(t) = u2(t) for all t ∈ [0, τ + ε], contradicting the definition of τ .

Let I ∈ I and assume that u ∈ W�(I ) is a solution of the initial-value problem (3.1).
We say that the interval I is a maximal interval of existence, and u is a maximally
defined solution, if u does not have a proper extension which is also a solution of (3.1),
that is, there does not exist Ĩ ∈ I and a solution ũ ∈ W�( Ĩ ) of (3.1) such that I ⊂ Ĩ ,
I �= Ĩ , and u(t) = ũ(t) for all t ∈ I .

Theorem 3.7. Assume that F satisfies (H1) and (H2). Then there exists a unique max-
imally defined solution u of (3.1). The associated maximal interval of existence is of
the form [−h, τ ), where 0 < τ ≤ ∞. If τ < ∞ and, in addition, F satisfies (H3),
then, for every compact set � ⊂ � and every σ ∈ (0, τ ), there exists t ∈ (σ, τ ) such
that (t, u(t)) �∈ �.

If F satisfies (H1)–(H3) and if u : [−h, τ ) → R
N is the unique maximally defined

solution of (3.1), then the last assertion of the above theorem implies the following
two statements:

(i) if τ < ∞, then there exists a sequence (tn) in [0, τ ) such that tn → τ as n → ∞
and at least one of the following two properties holds:
(a) limn→∞ ‖u(tn)‖ = ∞, (b) (tn, u(tn)) approaches ∂� as n → ∞;

(ii) if u is bounded and gr u ⊂ �, then τ = ∞.

Proof of Theorem 3.7. Set

τ := sup{η ≥ 0 : there exists a solution of (3.1) on [−h, η]}
By Theorem 3.6, τ > 0, and, for every η ∈ (0, τ ), there exists a unique solution uη ∈
W�[−h, η] of (3.1). We define u : [−h, τ ) → R

N by

u(t) = uη(t) −h ≤ t ≤ η, for every η ∈ (0, τ ).

It follows from statement (2) of Theorem 3.6 that u is well defined. Moreover, it is clear
that u ∈ W�[−h, τ ) and that u solves (3.1). We claim that u is a maximally defined
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solution on the maximal interval of existence [−h, τ ). If τ = ∞, then there is nothing
to prove. So without loss of generality assume that τ < ∞. Seeking a contradiction,
suppose that there exists an extension ũ of u, ũ ∈ W�[−h, τ̃ ] with τ̃ ≥ τ , and such
that ũ solves (3.1). From the definition of τ it follows immediately that τ̃ = τ . An
application of Proposition 3.5, with α = τ = τ̃ and ψ = ũ, shows that there exist
τ ∗ > τ and a (proper) extension u∗ ∈ W�[−h, τ ∗] of ũ which also solves (3.1); this
contradicts the definition of τ . Uniqueness of u follows from statement (2) of Theorem
3.6.

Now assume that τ < ∞ and F satisfies (H3). Seeking a contradiction, suppose
there exist a compact set � ⊂ � and σ ∈ (0, τ ) such that (t, u(t)) ∈ � for all t ∈
(σ, τ ). Then

gr u ⊂ {(t, u(t)) : t ∈ [−h, σ ]} ∪ �,

and consequently, gr u is compact and contained in �. Invoking (H3), together with
the identity

u(t) = u(0) +
∫ t

0
(F(u))(s) ds, ∀ t ∈ [0, τ ),

shows that the limit l := limt↑τ u(t) exists. Obviously, (τ, l) ∈ gr u, and thus, (τ, l) ∈
�. This implies that the function ũ : [−h, τ ] → R

N defined by

ũ(t) =
{

u(t), −h ≤ t < τ

l, t = τ

is in W�[−h, τ ], is a solution of (3.1), and is a proper extension of the solution u. This
contradicts the fact that u is a maximally defined solution.

Example: A Controlled Differential Equation with Hysteresis. Consider a forced
system with forcing input (control) v subject to hysteresis H :

my′′(t) + cy′(t) + ky(t) + (H(v))(t) = 0, y(0) = y0, y′(0) = y1. (3.11)

In a mechanical context, y(t) represents displacement at time t ∈ R+, m > 0 and c
are the mass and the damping constant, and k is a linear spring constant: the function
v is interpreted as a control (which is open to choice and may be generated by feed-
back of y) and the operator H models hysteretic actuation. Such hysteretic effects arise
in, for example, micro-positioning control problems using piezo-electric actuators or
smart actuators, as investigated in, for example, [13]; general treatments of hysteresis
phenomena can be found in, for example, [2], [12], and [14]. We deem an operator
H : C(R+) → C(R+) to be a hysteresis operator if it is both causal and rate indepen-
dent. By rate independence we mean that H(y ◦ ζ ) = H(y) ◦ ζ for every y ∈ C(R+)

and every time transformation ζ : R+ → R+ (that is, a continuous, nondecreasing, and
surjective function).

The control objective is to generate the input function v in such a way that the
displacement y(t) tends, as t → ∞, to some desired value r ∈ R. In view of this
objective, it is natural to seek to generate the input by feedback of the error y(t) − r .
Proportional-integral-derivative (PID) feedback control action is ubiquitous in control
theory and practice and takes the form

v(t) = kp(y(t) − r) + ki

∫ t

0
(y(τ ) − r) dτ + kd y′(t), (3.12)
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the control objective being reduced to that of determining the parameter values
kp, ki , kd ∈ R so as to cause the variable y to approach asymptotically the prescribed
constant value r . This methodology, applied in the context of (3.11), is depicted in
Figure 2. Introducing the variables

u1(t) =
∫ t

0
(y(τ ) − r) dt, u2(t) = y(t) − r, u3(t) = y′(t),

the feedback system given by (3.11) and (3.12) may be expressed as

u′
1(t) = u2(t), u′

2(t) = u3(t),

mu′
3 + cu3(t) + k(u2(t) + r) + (H(ki u1 + kpu2 + kdu3))(t) = 0,

u1(0) = 0, u2(0) = y0 − r, u3(0) = y1.

⎫⎪⎬
⎪⎭ (3.13)

Therefore, central to any study (see [10], for example) of the efficacy of the PID feed-
back structure is the initial-value problem (3.13) which we proceed to show is sub-
sumed by (3.1). Writing u := (u1, u2, u3) and defining an operator F by

F(u) = (
u2, u3, −cm−1u3 − km−1(u2 + r) − m−1 H(ki u1 + kpu2 + kdu3)

)
,

(3.14)

we see that the initial-value problem (3.13) may be expressed as

u′ = F(u), u(0) = ϕ := (0, y0 − r, y1), (3.15)

which has the form (3.1) with h = 0 and � = R+ × R
3. In particular, I consists of all

intervals of the form [0, η] (where 0 < η < ∞) or [0, η) (where 0 < η < ∞). Clearly,
for every I ∈ I, the operator F maps W�(I ) = W 1,1

loc (I ) to L1
loc(I ).

my′′ + cy′ + ky + z = 0H
v z

PID − r

y

y − r

Figure 2. System (3.11) under PID control action.

Many commonly-encountered hysteresis operators H satisfy a global Lipschitz
condition in the sense that there exists a Lipschitz constant L > 0 such that

sup
t∈R+

|(H(y1))(t) − (H(y2))(t)| ≤ L sup
t∈R+

|y1(t) − y2(t)| ∀ y1, y2 ∈ C(R+).

Corollary 3.8. Assume that the hysteresis operator H satisfies a global Lipschitz con-
dition. Then the operator F given by (3.14) satisfies (H1)–(H3) and, for every initial
condition ϕ, the equation (3.15) has a unique maximally defined solution with maximal
interval of existence R+.

Proof. Since H is a hysteresis operator, H is causal, whence causality of F follows.
Therefore hypothesis (H1) holds. The global Lipschitz condition for H clearly implies
that F is globally Lipschitz and hence, (H2) is satisfied. Moreover, it follows easily
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from the rate independence of H that H(0) (where 0 denotes the zero function on
R+) is a constant function, implying that the function F(0) is constant. Denoting this
constant by c and using the global Lipschitz property of F , a routine argument yields

‖(F(u))(t)‖ ≤ c + L F‖u(t)‖ ∀ u ∈ W 1,1
loc [0, η), ∀ η ∈ (0, ∞), (3.16)

where L F denotes the Lipschitz constant of F . It follows that (H3) also holds. Conse-
quently, Theorem 3.7 applies. Let u : [0, τ ) → R

3 be a maximally defined solution of
(3.15). To complete the proof, we have to show that τ = ∞. Seeking a contradiction,
suppose that τ < ∞. Since � = R+ × R

3, it then follows from Theorem 3.7 that u is
unbounded. Integrating (3.15) from 0 to t and invoking (3.16) leads to

‖u(t)‖ ≤ ‖u(0)‖ + ct + L F

∫ t

0
‖u(s)‖ ds ∀ t ∈ [0, τ ).

An application of Gronwall’s lemma (see, for example, [1, Lemma 6.1]) now yields
that

‖u(t)‖ ≤ (‖u(0)‖ + cτ
)
eL F τ ∀ t ∈ [0, τ ),

which is in contradiction to the unboundedness of u.

There follows an illustrative example of hysteresis with the requisite Lipschitz prop-
erty.

Play and Prandtl Hysteresis. A basic hysteresis operator is the play operator (already
alluded to in the introduction). A detailed discussion of the play operator (also called
the backlash operator) can be found in, for example, [2, 12, 14]. Intuitively, the play
operator describes the input-output behaviour of a simple mechanical play between
two mechanical elements as shown in Figure 3, where the input y is the position of the
vertical component of element I and the output z is the the position of the midpoint of
element II. The resulting input-output diagram is shown in Figure 1. The output value
z(t) at time t ∈ R+ depends not only on the input value y(t) but also on the past history
of the input. To aid in the characterization of this dependence, it is convenient to restrict
initially to piecewise monotone input functions y. We seek an operator Pσ,ζ such that,
given a piecewise monotone function y, the corresponding output function is given by
z = Pσ, ζ (y). Here the parameter ζ ∈ R plays the role of an “initial state,” determining
the initial output value z(0) ∈ [y(0) − σ, y(0) + σ ]. To give a formal definition of the
play operator, let σ ∈ R+ and introduce the function pσ : R

2 → R given by

pσ (v1, v2) := max
{
v1 − σ, min{v1 + σ, v2}

}

=

⎧⎪⎨
⎪⎩

v1 − σ, if v2 < v1 − σ

v2, if v2 ∈ [v1 − σ, v1 + σ ]
v1 + σ, if v2 > v1 + σ.

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined
on R+. For all σ ∈ R+ and ζ ∈ R, define the operator Pσ, ζ : Cpm(R+) → C(R+) by

(Pσ, ζ (y))(t) =
{

pσ (y(0), ζ ) for t = 0,
pσ (y(t), (Pσ, ζ (y))(ti )) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,
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y

z

2σ

I

II

Figure 3. Mechanical play.

where 0 = t0 < t1 < t2 < · · · , limn→∞ tn = ∞, and u is monotone on each interval
[ti , ti+1]. It is not difficult to show that the definition is independent of the choice of the
partition (ti ). It is well known that Pσ, ζ extends to a hysteresis operator on C(R+), the
so-called play operator, which we shall denote by the same symbol Pσ, ζ ; furthermore,
Pσ, ζ is globally Lipschitz with Lipschitz constant L = 1 (see [2] for details).

We are now in a position to model more complex hysteretic effects (displaying, for
example, nested hysteresis loops) by using the play operator as a basic building block.
To this end, let ξ : R+ → R be a compactly supported and globally Lipschitz function
with Lipschitz constant 1 and let m ∈ L1(R+). The operator Pξ : C(R+) → C(R+)

defined by

(Pξ (y))(t) =
∫ ∞

0
(Pσ, ξ(σ )(y))(t)m(σ ) dσ ∀ y ∈ C(R+), ∀ t ∈ R+,

is called a Prandtl operator. It is clear that Pξ is a hysteresis operator (this follows from
the fact that Pσ, ξ(σ ) is a hysteresis operator for every σ ≥ 0). Moreover, Pξ is gob-
ally Lipschitz with Lipschitz constant L = ‖m‖L1 (see [2]). For ξ = 0 and m = I[0,5]
(where I[0,5] denotes the indicator function of the interval [0, 5]), the Prandtl operator
is illustrated in Figure 4.

10
−20

0

0

40

t

P0(y)

y

−5 10
−20

0

40

P
0
(y

)

y

Figure 4. Example of Prandtl hysteresis.

4. RETARDED DIFFERENTIAL EQUATIONS. Let h ≥ 0 and let I be an interval
containing [−h, 0]. For u ∈ C(I ) and t ∈ I+, ut ∈ C[−h, 0] is defined by ut (s) :=
u(t + s) for all s ∈ [−h, 0]. Let � ⊂ [−h, ∞) × R

N be a relatively open set with the
property that the set {u ∈ C[−h, 0] : gr u ⊂ �} is nonempty. As before, let I be the set
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of all intervals I of the form [−h, η] (with 0 < η < ∞) or [−h, η) (with 0 < η ≤ ∞)
such that W�(I ) �= ∅ and recall that T := sup{α > 0 : W�[−h, α] �= ∅} > 0. Define

D� := {(t, u) ∈ R+ × C[−h, 0] : (t + s, u(s)) ∈ � ∀ s ∈ [−h, 0]}.
It is readily verified that D� is nonempty and is open relative to R+ × C[−h, 0], where
C[−h, 0] is endowed with the topology induced by the supremum norm (1.7). More-
over, for I ∈ I and u ∈ C(I ), we have

gr u ⊂ � ⇔ (t, ut) ∈ D� ∀ t ∈ I+.

If � is a Cartesian product, that is, � = [−h, α) × G, where 0 < α ≤ ∞ and G ⊂ R
N

is open, then D� is also a Cartesian product, namely D� = [0, α) × C([−h, 0], G),
where C([−h, 0], G) is the subset of all functions in C[−h, 0] with values in G.

Consider the initial-value problem

u′(t) = f (t, ut), u|[−h,0] = ϕ ∈ C[−h, 0], gr ϕ ⊂ �, (4.1)

where f : D� → R
N . By a solution of (4.1), we mean a function u ∈ W�(I ), with

I ∈ I, such that u|[−h,0] = ϕ and u′(t) = f (t, ut) for almost every t ∈ I+. We impose
the following hypotheses on f .

(RDE1) For every (t, w) ∈ D� there exist a relatively open interval I ⊂ R+ contain-
ing t , an open ball B ⊂ C[−h, 0] containing w, and a function l ∈ L1(I ) such that
I × B ⊂ D� and

‖ f (s, u) − f (s, v)‖ ≤ l(s) ‖u − v‖C[−h,0] ∀ s ∈ I, ∀ u, v ∈ B.

(RDE2) For every I ∈ I and every u ∈ W�(I ) such that gr u is a compact subset of
�, the function I+ → R

N , t �→ f (t, ut) is in L1(I+).
For each I ∈ I, define the operator F on W�(I ) by

(F(v))(t) := f (t, vt) ∀ t ∈ I+.

Let I ∈ I and v ∈ W�(I ) be arbitrary. Let τ > 0 be such that J := [−h, τ ] ⊂ I and
write u := v|J . Then gr u is a compact subset of � and so, by (RDE2), the function
F(u) is in L1(J+). It follows that the function F(v) is in L1

loc(I+). Therefore, for each
I ∈ I, F maps W�(I ) to L1

loc(I+) and, in view of (RDE2), F satisfies the integrabil-
ity hypothesis (H3). It is evident that the causality hypothesis (H1) is also valid. We
proceed to show that F satisfies the local Lipschitz hypothesis (H2). Let α ∈ [0, T )

and w ∈ W�[−h, α] be arbitrary. By (RDE1), there exist a relatively open interval
I ⊂ R+ containing α, an open ball B ⊂ C[−h, 0] containing wα, and l ∈ L1(I ) such
that I × B ⊂ D� and

‖ f (t, x) − f (t, y)‖ ≤ l(t)‖x − y‖C[−h,0] ∀ t ∈ I, ∀ x, y ∈ B, (4.2)

A routine argument (see appendix for details) then yields the following.

Lemma 4.1. There exists γ > 0 such that

λ := ∫ α+γ

α
l(t) dt < 1,

vt ∈ B ∀ v ∈ W(w; α, α + γ, γ ), ∀ t ∈ [α, α + γ ].

}
(4.3)
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By Lemma 4.1, there exists γ > 0 such that (4.3) holds. Set β := α + γ and let
u, v ∈ W(w; α, β, γ ) be arbitrary. Then, by (4.2) and (4.3), we have

‖(F(u))(t) − (F(v))(t)‖ = ‖ f (t, ut) − f (t, vt)‖
≤ l(t)‖ut − vt‖C[−h,0] ≤ l(t)‖u − v‖C[α,β]

≤ l(t)
∫ β

α

‖u′(s) − v′(s)‖ ds ∀ t ∈ [α, β].

Integrating from α to β = α + γ yields

‖F(u) − F(v)‖L1[α,β] ≤ λ

∫ β

α

‖u′(s) − v′(s)‖ ds.

Therefore, the local Lipschitz hypothesis (H2) holds.
We may now infer that, if (RDE1) and (RDE2) hold, then the assertions of Theo-

rems 3.6 and 3.7 are valid in the context of the initial-value problem (4.1).

5. ORDINARY DIFFERENTIAL EQUATIONS. Let G ⊂ R+ × R
N be a rela-

tively open set with G0 := {x ∈ R
N : (0, x) ∈ G} �= ∅. In this section, we consider

the initial-value problem for an ordinary differential equation of the form

u′(t) = f (t, u(t)), u(0) = u0 ∈ G0, (5.1)

where f : G → R
N . Let I be the set of all intervals I of the form [0, α] (with 0 < α <

∞) or [0, α) (with 0 < α ≤ ∞) such that WG(I ) = {u ∈ W 1,1
loc (I ) : gr u ⊂ G} �= ∅. By

a solution of (5.1), we mean a function u ∈ WG(I ), with I ∈ I, such that u(0) = u0

and u′(t) = f (t, u(t)) for almost all t ∈ I . We impose the following hypothesis on f .

(ODE) For every (t, z) ∈ G, there exists a relatively open interval I ⊂ R+ containing
t , an open ball B ⊂ R

N containing z, and a function l ∈ L1(I ) such that I × B ⊂ G,

‖ f (s, x) − f (s, y)‖ ≤ l(s)‖x − y‖ ∀ s ∈ I, ∀ x, y ∈ B,

and, moreover, the function I → R
N , s �→ f (s, x) is measurable for all x ∈ B and is

in L1(I ) for some x ∈ B.
The following proposition shows that, under this hypothesis, the initial-value prob-

lem (5.1) is subsumed by the theory of retarded differential equations developed in
the previous section specialized to the situation h = 0, in which case C[−h, 0] = R

N ,
� = D� = G, and the initial-value problems (4.1) and (5.1) coincide.

Proposition 5.1. If (ODE) is satisfied, then (RDE1) and (RDE2) hold with h = 0.

Proposition 5.1 (a proof of which may be found in the appendix), together with the
conclusion of Section 4, imply that, if hypothesis (ODE) is satisfied, then Theorems
3.6 and 3.7 apply to the initial-value problem (5.1).

6. INTEGRO-DIFFERENTIAL EQUATIONS. In this section, we apply the theory
developed in Section 3 to initial-value problems associated with integro-differential
equations (also called Volterra integro-differential equations), that is,

u′(t) =
∫ t

0
k(t, s)g(s, u(s)) ds, t ≥ 0; u(0) = u0. (6.1)
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Here k ∈ L p
loc(J × J, R

N×M) and g : G → R
M , where p ∈ [1, ∞], J = [0, a) for

some a satisfying 0 < a ≤ ∞, R
N×M is the set of all N × M matrices with real entries,

and G ⊂ R+ × R
N is relatively open. It is assumed that G0 := {x ∈ R

N : (0, x) ∈
G} �= ∅ and u0 ∈ G0.

To apply the theory developed in Section 3 to the initial-value problem (6.1), we
set h := 0 and � := (J × R

N ) ∩ G. Note that �0 = G0 and, moreover, since h =
0, I+ = I for all I ∈ I. Trivially, if I ∈ I is such that W�(I ) �= ∅, then I ⊂ J and
W�(I ) = WG(I ). By a solution of (6.1), we mean a function u ∈ W�(I ), with I ∈ I,
such that u(0) = u0 and u′(t) = ∫ t

0 k(t, s)g(s, u(s)) ds for almost every t ∈ I .
Defining, for each I ∈ I, the operator F on W�(I ) by

(F(v))(t) =
∫ t

0
k(t, s)g(s, v(s)) ds ∀ t ∈ I, (6.2)

the initial-value problem (6.1) can be written in the form (3.1).
Set q := p/(p − 1). We impose the following hypothesis on g.

(IDE) For every (t, z) ∈ G, there exist a relatively open interval I ⊂ R+ containing
t , an open ball B ⊂ R

N containing z, and a nonnegative function l ∈ Lq(I ) such that
I × B ⊂ G, the function I → R

M , s �→ g(s, x) is measurable for all x ∈ B and is in
Lq(I ) for some x ∈ B, and moreover,

‖g(s, x) − g(s, y)‖ ≤ l(s)‖x − y‖ ∀ s ∈ I, ∀ x, y ∈ B. (6.3)

Proposition 6.1. Assume that (IDE) holds and that F is given by (6.2). Then, for all
I ∈ I, F maps W�(I ) to L1

loc(I ) and F satisfies (H1), (H2), and (H3).

Proposition 6.1, a proof of which may be found in the appendix, implies that if
hypothesis (IDE) is satisfied, then Theorems 3.6 and 3.7 apply to the initial-value
problem (6.1).

7. APPENDIX.

Proof of Proposition 2.1. Let u ∈ W 1,1[a, b]. Since u(t) = u(a) + ∫ t
a u′(s) ds for all

t ∈ [a, b], it is clear that

‖u‖∞ := max
t∈[a,b]

‖u(t)‖ ≤ ‖u‖BV .

Consequently,

‖u‖W 1,1 ≤ (b − a)‖u‖∞ + ‖u′‖L1 ≤ (
(b − a) + 1

)‖u‖BV ,

and so, setting k1 := (
(b − a) + 1

)−1
, it follows that k1‖u‖W 1,1 ≤ ‖u‖BV for all u ∈

W 1,1[a, b].
Furthermore, denoting the components of u by u j , the mean value theorem for

integrals guarantees the existence of c j ∈ [a, b] such that

u j (c j ) = 1

b − a

∫ b

a
u j (s) ds j = 1, . . . , N .
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Consequently, for j = 1, . . . , N ,

|u j (a)| ≤ |u j (a) − u j (c j )| + |u j (c j )| ≤
∫ b

a
|u′

j (s)| ds + 1

b − a

∫ b

a
|u j (s)| ds,

and thus, by a routine calculation,

‖u(a)‖ =
√√√√ N∑

j=1

|u j (a)|2 ≤ (1 + b − a)
√

N

b − a
‖u‖W 1,1 .

Therefore, setting k2 := 1 + (1 + b − a)
√

N/(b − a), it follows that ‖u‖BV ≤
k2‖u‖W 1,1 for all u ∈ W 1,1[a, b].
Proof of Lemma 3.1. It is clear that μ is a metric on W(w; α, β, γ ). Let (un) be
a Cauchy sequence in W(w; α, β, γ ) and set vn = un|[α,β]. Then vn ∈ W 1,1[α, β],
vn(α) = w(α), and

‖vn − vm‖BV =
∫ β

α

‖u′
n(s) − u′

m(s)‖ ds = μ(un, um),

showing that (vn) is a Cauchy sequence in W 1,1[α, β] with respect to the norm ‖ · ‖BV .
By Proposition 2.1, W 1,1[α, β] is complete with respect to the BV-norm and so there
exists v ∈ W 1,1[α, β] such that

‖v(α) − w(α)‖ +
∫ β

α

‖v′(s) − v′
n(s)‖ ds = ‖v − vn‖BV → 0 as n → ∞.

Thus, v(α) = w(α),
∫ β

α
‖v′(s) − v′

n(s)‖ ds → 0 as n → ∞, and
∫ β

α
‖v′(s)‖ ds ≤ γ .

Therefore, defining

u(t) :=
{

w(t), t ∈ [−h, α]
v(t), t ∈ (α, β],

it follows that u ∈ W(w; α, β, γ ) and μ(u, un) → 0 as n → ∞, completing the proof.

Proof of Lemma 3.2. (1) Since (α, w(α)) ∈ �, it follows from the assumptions im-
posed on � that there exists β > α and γ > 0 such that [α, β] × Bγ ⊂ �, where
Bγ denotes the closed ball of radius γ > 0 centered at w(α) ∈ R

N . We claim that
(β, γ ) ∈ A(w; α). To this end, let u ∈ W(w; α, β, γ ). Then,

‖u(t) − w(α)‖ = ‖u(t) − u(α)‖ ≤
∫ β

α

‖u′(s)‖ ds ≤ γ ∀ t ∈ [α, β].

Consequently, (t, u(t)) ∈ [α, β] × Bγ ⊂ � for all t ∈ [α, β], implying that gr u ⊂ �.
Since u ∈ W(w; α, β, γ ) was arbitrary, it follows that (β, γ ) ∈ A(w; α).

(2) Let (β, γ ) ∈ A(w; α), b ∈ (α, β], and c ∈ (0, γ ], and let u ∈ W(w; α, b, c). It
is sufficient to show that gr u ⊂ �. To this end, define an extension ũ : [−h, β] → R

N

of u by

ũ(t) :=
{

u(t), t ∈ [−h, b]
u(b), t ∈ (b, β].
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Clearly, ũ ∈ W(w; α, β, γ ), and hence, by the admissibility of (α, β), gr ũ ⊂ �. Since
ũ is an extension of u, we have that gr u ⊂ gr ũ, and so gr u ⊂ �.

Proof of Lemma 3.3. Let α ∈ [0, T ) and w ∈ W�[−h, α]. Then, by (H2), there exist
λ ∈ (0, 1) and (β, γ ) ∈ A(w; α) such that (3.2) holds. Let b ∈ (α, β], c ∈ (0, γ ], and
u, v ∈ W(w; α, b, c). Define ũ, ṽ ∈ W(w; α, β, γ ) by

ũ(t) :=
{

u(t), t ∈ [−h, b]
u(b), t ∈ (b, β], ṽ(t) :=

{
v(t), t ∈ [−h, b]
v(b), t ∈ (b, β].

By (H1), F(ũ)|[0,b] = F(u)|[0,b] and F(ṽ)|[0,b] = F(v)|[0,b], so that, by (3.2),

‖F(u) − F(v)‖L1[α,b] ≤ ‖F(ũ) − F(ṽ)‖L1[α,β] ≤ λ

∫ β

α

‖ũ′(s) − ṽ′(s)‖ ds.

The claim now follows, since
∫ β

α
‖ũ′(s) − ṽ′(s)‖ ds = ∫ b

α
‖u′(s) − v′(s)‖ ds.

Proof of Proposition 3.4. Let α ∈ [0, T ) and w ∈ W�[−h, α]. Since (H2′) is satisfied,
there exists ρ > 0 and (β, γ ) ∈ A(w; α) such that (3.3) holds. Invoking (H1), the
argument employed in the proof of Lemma 3.3 applies mutatis mutandis to yield that,
for every b ∈ (α, β],

‖F(u) − F(v)‖L p[α,b] ≤ ρ

∫ b

α

‖u′(s) − v′(s)‖ ds ∀ u, v ∈ W(w; α, b, γ ).

Hence, setting q := p/(p − 1) ∈ [1, ∞), it follows from Hölder’s inequality that, for
every b ∈ (α, β] and all u, v ∈ W(w; α, b, γ ),

‖F(u) − F(v)‖L1[α,b] ≤ (b − α)1/q‖F(u) − F(v)‖L p[α,b]

≤ ρ(b − α)1/q

∫ b

α

‖u′(s) − v′(s)‖ ds.

Choosing b ∈ (α, β] sufficiently close to α, so that ρ(b − α)1/q < 1, and noting that,
by Lemma 3.2, (b, γ ) ∈ A(w; α), we conclude that (H2) holds with λ = ρ(b − α)1/q .

Proof of Lemma 4.1. To show that there exists γ > 0 such that (4.3) holds, recall that
α ∈ [0, T ), w ∈ W�[−h, α], I ⊂ R+ is a relatively open interval containing α, and
B ⊂ C[−h, 0] is an open ball containing wα. Without loss of generality we may as-
sume that B is centered at wα. Let ρ denote the radius of B.

By Lemma 3.2, the set A(w; α) is nonempty. Let (β∗, γ ∗) ∈ A(w; α) and define
w̃ ∈ C[−h, β∗] by

w̃(t) :=
{

w(t), t ∈ [−h, α]
w(α), t ∈ (α, β∗].

By uniform continuity of w, there exists δ > 0 such that

s, t ∈ [−h, α], |s − t | < δ �⇒ ‖w(s) − w(t)‖ <
ρ

2
.
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Now choose γ > 0 sufficiently small so that

γ < min{β∗ − α, γ ∗, δ, ρ/2}, [α, α + γ ] ⊂ I, λ :=
∫ α+γ

α

l(t) dt < 1

and define β := α + γ . By Lemma 3.2, (β, γ ) ∈ A(w; α). Let t ∈ [α, β] and v ∈
W(w; α, β, γ ) be arbitrary. Observe that

s ∈ [−h, 0], t + s ≤ α �⇒ |(α + s) − (t + s)| = t − α ≤ β − α = γ < δ

and so

s ∈ [−h, 0], t + s ≤ α �⇒ ‖w(α + s) − v(t + s)‖ = ‖w(α + s) − w(t + s)‖ <
ρ

2
.

Furthermore,

s ∈ [−h, 0], t + s > α �⇒ |(α + s) − α| = |s| < t − α ≤ β − α = γ < δ

and so, for s ∈ [−h, 0] such that t + s > α it follows that

‖w(α + s) − v(t + s)‖ ≤ ‖w(α + s) − w̃(t + s)‖ + ‖w̃(t + s) − v(t + s)‖

= ‖w(α + s) − w(α)‖ + ∥∥w(α) − v(α) −
∫ t+s

α

v′(σ ) dσ
∥∥

<
ρ

2
+

∫ β

α

‖v′(σ )‖ dσ ≤ ρ

2
+ γ <

ρ

2
+ ρ

2
= ρ.

Thus,

s ∈ [−h, 0], t + s > α �⇒ ‖w(α + s) − v(t + s)‖ < ρ.

We have now shown that

‖w(α + s) − v(t + s)‖ < ρ ∀ v ∈ W(w; α, β, γ ), ∀ s ∈ [−h, 0], ∀ t ∈ [α, β].
Consequently, vt ∈ B for all v ∈ W(w; α, α + γ, γ ) and for all t ∈ [α, α + γ ], com-
pleting the proof.

To facilitate the proofs of Propositions 5.1 and 6.1, we state and prove the following
lemma.

Lemma 7.1. Let G ⊂ R+ × R
N be a relatively open set and let 1 ≤ q ≤ ∞. Assume

that g : G → R
M is such that, for every (t, z) ∈ G, there exist a relatively open interval

I ∈ R+ containing t, an open ball B ⊂ R
N containing z, and a function l ∈ Lq(I )

such that I × B ⊂ G,

‖g(s, x) − g(s, y)‖ ≤ l(s)‖x − y‖ ∀ s ∈ I, ∀ x, y ∈ B, (7.1)

and the function I → R
M , s �→ g(s, x) is measurable for all x ∈ B and is in Lq(I )

for some x ∈ B. Then the following statements hold.

(1) If I ⊂ R+ is an interval and v ∈ C(I ) is such that gr v ⊂ G, then the function
I → R

M , s �→ g(s, v(s)) is measurable.
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(2) For every (t, z) ∈ G, there exist a relatively open interval I ∈ R+ containing t,
an open ball B ⊂ R

N containing z, and a function b ∈ Lq(I ) such that I × B ⊂
G and ‖g(s, x)‖ ≤ b(s) for all (s, x) ∈ I × B.

(3) If I ⊂ R+ is an interval and v ∈ C(I ) is such that gr v is a compact subset of
G, then the function I → R

M , s �→ g(s, v(s)) is in Lq(I ).

Proof. (1) It is sufficient to show that, for every compact subinterval K ⊂ I , the func-
tion K → R

M , s �→ g(s, v(s)) is measurable. To this end, let K ⊂ I be a compact
subinterval. Then gr(v|K ) is compact and contained in G. It follows from the hy-
pothesis that there exist finitely many relatively open intervals I1, . . . , Im in R+ and
open balls B1, . . . , Bm in R

N such that gr(v|K ) ⊂ ∪m
i=1 Ii × Bi and, for i = 1, . . . , m,

v(Ii ) ⊂ Bi , Ii × Bi ⊂ G, and the function Ii → R
M , s �→ g(s, x) is measurable for

every x ∈ Bi . Setting Ki := Ii ∩ K it follows that K = ∪m
i=1 Ki . Let i ∈ {1, . . . , m}

be arbitrary, let J1, . . . , Jn be any finite disjoint family of subintervals of Ki such that
Ki = ∪n

j=1 Jj , and let x1, . . . , xn ∈ Bi . Since Ki → R
M , s �→ g(s, x j ) is measurable

for each j , it follows that the function

Ki → R
M , s �→

n∑
j=1

g(s, x j )IJ j (s) (7.2)

is measurable, where IJ j denotes the characteristic function of Jj . Since, for fixed
s ∈ Ki , the function Bi → R

M , x �→ g(s, x) is continuous and v|Ki is continuous with
v(Ki ) ⊂ Bi , it follows that the function Ki → R

M , s �→ g(s, v(s)) is the pointwise
limit of functions of the form (7.2) and hence is measurable. Since i ∈ {1, . . . , m} is
arbitrary and K = ∪m

i=1 Ki , the function K → R
M , s �→ g(s, v(s)) is measurable.

(2) Let (t, z) ∈ G. Then there exist a relatively open interval I ⊂ R+ containing t ,
an open ball B ⊂ R

N containing z, and l ∈ Lq(I ) such that I × B ⊂ G, (7.1) holds,
and, moreover, the function I → R

M , s �→ g(s, y) is in Lq(I ) for some y ∈ B. There-
fore,

‖g(s, x)‖ ≤ ‖g(s, x) − g(s, y)‖ + ‖g(s, y)‖ ≤ l(s)‖x − y‖ + ‖g(s, y)‖
≤ l(s) sup

x∈B
‖x − y‖ + ‖g(s, y)‖ =: b(s) ∀ s ∈ I, ∀ x ∈ B.

Since l ∈ Lq(I ) and g(·, y) ∈ Lq(I ), it follows that b ∈ Lq(I ).
(3) By compactness of gr v and statement (2), there exist finitely many relatively

open intervals I1, . . . , Im in R+, open balls B1, . . . , Bm in R
N , and functions bi ∈

Lq(Ii), i = 1, . . . , m, such that Ii × Bi ⊂ G, i = 1, . . . , m, gr v ⊂ ∪m
i=1 Ii × Bi , and

‖g(s, x)‖ ≤ bi (s) for all (s, x) ∈ Ii × Bi , i = 1, . . . , m. Defining b̃i : I → R+ by

b̃i (s) :=
{

bi (s), s ∈ Ii ∩ I
0, s ∈ I\Ii ,

it follows that ‖g(s, x)‖ ≤ ∑
i b̃i (s) for all (s, x) ∈ gr v. Therefore, since

∑
i b̃i ∈

Lq(I ) and since the function s �→ g(s, v(s)) is measurable (by statement (1)), the
result follows.

Proof of Proposition 5.1. We make the following connections with the notation of
Section 4: for h = 0, we set C[−h, 0] = R

N and � = D� = G. Then the initial-
value problems (4.1) and (5.1) coincide. Furthermore note that, for all I ∈ I, I+ = I .
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By (ODE), we see that (RDE1) holds (with h = 0). It remains only to show that
(RDE2) also holds (with h = 0). Let I ∈ I and v ∈ WG(I ) be such that gr v is a com-
pact subset of G. In view of (ODE), we see that the hypotheses of Lemma 7.1 hold
with M = N , q = 1, and g = f . By assertion (3) of Lemma 7.1, we may infer that
I → R

N , t �→ f (t, v(t)) is in L1(I ). Therefore, (RDE2) holds.

Proof of Proposition 6.1. In view of (IDE), we see that the hypotheses of Lemma 7.1
hold. Let I ∈ I and v ∈ W�(I ). Invoking statement (3) of Lemma 7.1, we conclude
that the function s �→ g(s, v(s)) is in Lq

loc(I ). It follows now from a routine argument
based on Fubini’s theorem (see, for example, [7, 11]) that F(v) ∈ L1

loc(I ). Similarly,
under the additional assumption that gr v is compact and contained in �, statement (3)
of Lemma 7.1 guarantees that the function s �→ g(s, v(s)) is in Lq(I ) and the same
routine argument based on Fubini’s theorem yields F(v) ∈ L1(I ), showing that (H3) is
valid. Moreover, it is trivial that (H1) holds, and therefore, it only remains to show that
(H2) is satisfied. To this end, let α > 0, w ∈ W�[0, α], and (β0, γ0) ∈ A(w; α). Then
(α, w(α)) ∈ � ⊂ G and, by (IDE), there exist β1 ∈ (α, β0], an open ball B ⊂ R

N , and
l ∈ Lq [α, β1] such that w(α) ∈ B, [α, β1] × B ⊂ � ⊂ G, and

‖g(s, x) − g(s, y)‖ ≤ l(s)‖x − y‖ ∀ s ∈ [α, β1], ∀ x, y ∈ B.

Let Bγ denote the closed ball of radius γ centered at w(α). Choose β ∈ (α, β1] and
γ ∈ (0, γ0] such that

λ :=
∫ β

α

∫ t

0
‖k(s, t)‖l(s) ds dt < 1 and Bγ ⊂ B.

Let u, v ∈ W(w; α, β, γ ). Then, u(s), v(s) ∈ Bγ ⊂ B for all s ∈ [α, β], and, more-
over,

‖F(u) − F(v)‖L1[α,β] ≤
∫ β

α

∫ t

0
‖k(s, t)‖‖g(s, u(s)) − g(s, v(s))‖ ds dt

≤
∫ β

α

∫ t

0
‖k(s, t)‖l(s)‖u(s) − v(s)‖ ds dt

≤ λ sup
s∈[α,β]

‖u(s) − v(s)‖ ≤ λ

∫ β

α

‖u′(s) − v′(s)‖ ds,

completing the proof.
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