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INTEGRAL CONTROL OF INFINITE-DIMENSIONAL SYSTEMS
IN THE PRESENCE OF HYSTERESIS: AN INPUT-OUTPUT APPROACH ∗
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Abstract. This paper is concerned with integral control of systems with hysteresis. Using an input-
output approach, it is shown that application of integral control to the series interconnection of ei-
ther (a) a hysteretic input nonlinearity, an L2-stable, time-invariant linear system and a non-decreasing
globally Lipschitz static output nonlinearity, or (b) an L2-stable, time-invariant linear system and a
hysteretic output nonlinearity, guarantees, under certain assumptions, tracking of constant reference
signals, provided the positive integrator gain is smaller than a certain constant determined by a posi-
tivity condition in the frequency domain. The input-output results are applied in a general state-space
setting wherein the linear component of the interconnection is a well-posed infinite-dimensional system.

Mathematics Subject Classification. 34G20, 47J40, 47N70, 93C23, 93C25, 93D10, 93D25.

Received September 27, 2005. Revised March 20, 2006.
Published online June 5, 2007.

1. Introduction

This paper is concerned with integral control of systems with input or output hysteresis. Consider the system
shown in Figure 1, where u is the input, Φ is a hysteresis nonlinearity, G is the input-output operator of an
L2-stable time-invariant linear system, the signal g ∈ L2(R+) models the effect of initial conditions, ψ is a
non-decreasing globally Lipschitz static nonlinearity and y is the output. The operator Φ belongs to a class of
hysteresis operators with certain natural monotonicity and Lipschitz continuity properties and which contains, in
particular, operators of backlash, elastic-plastic and, more generally, of Prandtl and Preisach type (see Sect. 3).
In Section 4, we show that applying integral control to the system in Figure 1 guarantees tracking of constant
reference signals, in the presence of output disturbances, provided that a number of natural assumptions hold.
In particular, it is assumed that (a) the steady-state gain of the linear part of the plant is positive, (b) the
positive time-dependent integrator gain is ultimately smaller than some constant determined by a positivity
condition in the frequency domain, (c) the output disturbance is of a particular class which encompasses sums
of constant signals and weighted L2-signals and (d) the reference value is feasible in a natural sense to be made
precise in due course.
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Figure 1. System with hysteretic input and static output nonlinearity.

In Section 5, we deal with integral control of linear systems with output hysteresis. Consider the system
shown in Figure 2, where the hysteresis operator Φ is in the plant output.
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Figure 2. System with output hysteresis.

Similar to the case of input hysteretic nonlinearities, we show that applying integral control to the system
in Figure 2 guarantees tracking of constant reference signals (again assumed feasible in a natural sense), in the
presence of output disturbances, under somewhat different assumptions. In particular, it is assumed that (a)G is
a convolution operator with kernel in L2(R+)+Rδ0 (δ0 is the unit point mass at t = 0) and positive steady-state
gain, (b) the positive constant integrator gain is smaller than some number determined by a positivity condition
in the frequency domain, (c) the disturbance is the sum of a constant signal and a L2-signal with zero limit at
infinity. In Section 6, the input-output results of Sections 4 and 5 are applied in a general state-space setting
wherein the linear component of the interconnection belongs to the class of well-posed infinite-dimensional
systems, see [23–25, 29]. We remark that this class is rather general; it includes many distributed parameter
systems and all retarded and neutral time-delay systems which are of interest in control engineering applications
(see Rem. 6.1 for more details).

Some preliminaries are presented in Section 2 and proofs of existence and uniqueness of solutions to the
functional differential equations arising in Sections 4 and 5 are provided in the Appendix.

Systems of the form shown in Figures 1 and 2, where Φ is a hysteretic nonlinearity are common in control
engineering. In particular, hysteresis plays an important role in the context of smart material actuators and
sensors, see, for example, [1, 7, 26]. There has recently been considerable effort in the development of rigorous
results on stability and control of systems with hysteresis, see, for example [7, 11–13, 16, 17, 19, 26, 27]. This
paper represents a further contribution to this effort. We remark that the results in this paper are new even in
the case where G is the input-output operator of a finite-dimensional system. Finally, we mention that in [16],
a state-space approach to low-gain integral control of exponentially stable regular infinite-dimensional systems
with input hysteresis (in the absence of output nonlinearity) was developed. We emphasize that the input-
output approach presented in this paper not only complements but, more importantly, substantially extends
and improves the results in [16].

Notation and terminology. Let C+ denote the open right half of the complex plane. The space of all
complex-valued, bounded and holomorphic functions defined on C+ is denoted by H∞(C+). Let I be an interval
of the form I = [0, T ), where 0 < T ≤ ∞. The space of real-valued (locally) absolutely continuous functions
defined on an interval I is denoted by W 1,1

loc (I): that is, a function f : I → R is in W 1,1
loc (I) if and only if there

exists a locally integrable function g : I → R such that

f(t) = f(0) +
∫ t

0

g(τ)dτ, ∀ t ∈ [0, T ).
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Write R+ := [0,∞). Let θ : R+ → R denote the function which is identically equal to 1, that is,

θ(t) = 1, ∀ t ∈ R+.

The unit point mass at t = τ (Dirac distribution with support at t = τ) is denoted by δτ . As usual, B(X,Y )
denotes the space of bounded linear operators from a normed vector space X into a normed vector space Y : if
X = Y , then we simply write B(X).

Let 0 < T ≤ ∞ and τ ∈ (0, T ). We define Pτ : Lp
loc([0, T )) → Lp(R+) by

(Pτu)(t) =

{
u(t), 0 ≤ t ≤ τ,

0, t > τ.

Furthermore, let I = [0, T ], where 0 < T < ∞, or I = [0, T ), where 0 < T ≤ ∞. For τ ∈ I we define
Qτ : C(I) → C(R+)

(Qτu)(t) =

{
u(t), 0 ≤ t ≤ τ,

u(τ), t > τ.
(1.1)

Let X and Y be subsets of any of the spaces C(R+) or Lp
loc(R+), where 1 ≤ p ≤ ∞. An operator Ψ : X → Y

is said to be causal if, for all τ ≥ 0 and all v1, v2 ∈ X, v1 = v2 on [0, τ ] implies that Ψ(v1) = Ψ(v2) on [0, τ ].
Causality can be expressed using the operators Pτ and Qτ : if X ⊂ Lp

loc(R+) and PτX ⊂ X for all τ ≥ 0, then
Ψ is causal if and only if

PτΨ(Pτv) = PτΨ(v), ∀τ > 0, ∀v ∈ X ;

if X ⊂ C(R+) and QτX ⊂ X for all τ ≥ 0, then Ψ is causal if and only if

PτΨ(Qτv) = PτΨ(v), ∀τ ≥ 0, ∀v ∈ X.

The following simple, but important, remark shows that causal operators can be extended to the “localized”
version of the domain space and to spaces of functions with a finite time horizon.

Remark 1.1. Let 0 < T ≤ ∞ and let Y be a subset of C(R+) or of Lp
loc(R+) for some 1 ≤ p ≤ ∞.

(1) If 1 ≤ p ≤ ∞ and Ψ : Lp(R+) → Lp(R+) is causal, then Ψ extends in a natural way to an operator
mapping Lp

loc([0, T )) into itself: for v ∈ Lp
loc([0, T )) simply set

(Ψ(v))(t) := (Ψ(Pτv))(t), 0 ≤ t ≤ τ < T.

By causality of Ψ, this definition does not depend on the choice of τ and so Ψ(v) is a well-defined
function in Lp

loc([0, T )) for any v ∈ Lp
loc([0, T )).

(2) If Ψ : C(R+) → Y is causal and I is an interval of the form [0, T ) or [0, T ] (where T < ∞), then Ψ
extends in a natural way to an operator mapping on C(I): for v ∈ C(I) simply set

(Ψ(v))(t) := (Ψ(Qτv))(t), 0 ≤ t ≤ τ, τ ∈ I.

Again, the causality of Ψ guarantees that this definition does not depend on the choice of τ and so Ψ(v)
is a well-defined function on YI for any v ∈ C(I), where YI := C(I) if Y = C(R+) and YI := Lp

loc(I) if
Y = Lp

loc(R+) (of course, in the latter case, if I is compact, then YI = Lp(I)).

We will not distinguish notationally between the original causal operator and its various extensions.
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2. Preliminaries

2.1. An absolute stability result

Consider the feedback system shown in Figure 3, where N is a static, possibly time-varying, nonlinearity, the
operator G : L2(R+) → L2(R+) is linear, bounded and shift-invariant and r ∈ L2

loc(R+) is an input signal.

�r � �v N � G � ∫
�−+

Figure 3. Feedback system with static nonlinearity.

The equation describing the system in Figure 3 is

v(t) = r(t) −
∫ t

0

(
G(N(·, v)))(τ)dτ. (2.1)

Since shift-invariance implies causality, G can be extended to a shift-invariant operator mapping L2
loc(R+) into

itself (see Rem. 1.1). A global solution of (2.1) is a function v ∈ L2
loc(R+) such that N(·, v) ∈ L2

loc(R+) and (2.1)
is satisfied almost everywhere.

Denoting the transfer function of G by G, we have that G ∈ H∞(C+), that is, G is holomorphic and bounded
in the open right-half plane. We assume that

(L) G(0) := lim
s→0, Re s>0

G(s) exists, G(0) > 0 and lim sup
s→0, Re s>0

|(G(s) − G(0))/s| <∞.

Set
f(G) := ess inf

ω∈R

Re(G(iω)/iω). (2.2)

We claim that −∞ < f(G) ≤ 0. Indeed, since G is in H∞(C+), we obtain f(G) ≤ 0 by taking |ω| → ∞
in (2.2) and, noting that Re(G(iω)/iω) = Re([G(iω) − G(0)]/iω), the inequality f(G) > −∞ follows from
assumption (L). Hence, the positivity condition

1
a

+ ess inf
ω∈R

Re
(

G(iω)
iω

)
> 0 (2.3)

holds, provided that
a < 1/|f(G)| (with the convention 1/0 := ∞). (2.4)

The following proposition will be employed in the proof of the main results of this paper.

Proposition 2.1. Assume that the following hold:

(a) G : L2(R+) → L2(R+) is a linear bounded shift-invariant operator with transfer function G satisfying
assumption (L);

(b) N : R+ × R → R is a static nonlinearity, satisfying

0 ≤ N(t, ξ)ξ ≤ aξ2 , ∀(t, ξ) ∈ [t0,∞) × R

for some 0 < a < 1/|f(G)| and some t0 ≥ 0;
(c) r ∈ L2(R+) + Rθ.
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If v is a global solution of (2.1), then

(i) v − r ∈ L∞(R+);
(ii) N(·, v) ∈ L2(R+);
(iii)

∫ t

0 N(τ, v(τ))dτ converges to a finite limit as t→ ∞.

Proposition 2.1 is a special case of Theorem 3.3 in [5], the proof of which relies crucially on the positivity
property (2.3).

2.2. A technical lemma

A function u ∈ C(R+) is called ultimately non-decreasing (non-increasing) if there exists τ ∈ R+ such that
u is non-decreasing (non-increasing) on [τ,∞); u is said to be approximately ultimately non-decreasing (non-
increasing) if, for all ε > 0, there exists an ultimately non-decreasing (non-increasing) function v ∈ C(R+) such
that

|u(t) − v(t)| ≤ ε, ∀t ∈ R+.

The following lemma will be used in Sections 4 and 5.

Lemma 2.2. Let g ∈ W 1,1
loc (R+) satisfy

g′ = f1(f2 − f3), (2.5)
where f1 �∈ L1(R+) is measurable, non-negative and bounded, f2 is measurable with limt→∞ f2(t) = l �= 0 and
f3 ∈ Lp(R+), where 1 ≤ p <∞. Then the following assertions hold:

(i) if l < 0, then g is approximately ultimately non-increasing and limt→∞ g(t) = −∞;
(ii) if l > 0, then g is approximately ultimately non-decreasing and limt→∞ g(t) = +∞.

The interpretation of this result is that, under the stated assumptions, f2 ultimately “dominates” f3.

Proof. Assume that l < 0. (The case l > 0 can be treated in analogous way.) Write f3 = h1 + h2, where

h1(t) := max{f3(t), l/3}, h2(t) := f3(t) − h1(t), ∀t ∈ R+.

Thus, h1(t) ≥ l/3 and h2(t) = χE(t)(f3(t) − l/3) for all t ∈ R+, where χE is the indicator function of the set
E := {t ∈ R+ : f3(t) < l/3}. In particular, since f3 ∈ Lp(R+) for some p ∈ [1,∞) and l < 0, the set E has
finite Lebesgue measure, and so, h2 ∈ L1(R+). Since h1 ≥ l/3 and limt→∞ f2(t) = l, by taking T ≥ 0 large
enough, we have

f2(t) − h1(t) ≤ l/3, ∀t ≥ T. (2.6)
Using non-negativity of f1 and (2.6) we obtain from the identity g′ = f1(f2 − h1 − h2) that

g′(t) ≤ l

3
f1(t) − f1(t)h2(t), a.e. t ≥ T. (2.7)

Choose a sequence (tn) such that tn ↑ ∞ and tn ≥ T for all n. Define

gn(t) =

{
g(t), 0 ≤ t ≤ tn

g(tn) +
∫ t

tn
f1(τ)(f2(τ) − h1(τ))dτ, t > tn.

(2.8)

Then, for all t ≥ tn,

|g(t) − gn(t)| =
∣∣∣∣
∫ t

tn

f1(τ)h2(τ)dτ
∣∣ ≤ ∫ ∞

tn

∣∣∣∣ f1(τ)h2(τ)|dτ.
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Since f1 is bounded and h2 ∈ L1(R+), we conclude that f1h2 ∈ L1(R+) and thus

sup
t≥0

|g(t) − gn(t)| → 0 as n→ ∞.

It follows from (2.6) and (2.8), combined with non-negativity of f1, that gn is ultimately non-increasing, showing
that g is approximately ultimately non-increasing. Furthermore, by (2.7)

g(t) − g(τ) ≤ l

3

∫ t

T

f1(τ)dτ −
∫ t

T

f1(τ)h2(τ)dτ, ∀t ≥ T.

Since f1 ≥ 0, f1 /∈ L1(R+) and f1h2 ∈ L1(R+), it follows that limt→∞ g(t) = −∞. �

3. A class of hysteresis operators

In this section we define and discuss properties of a class of hysteresis operators. For more information on
the mathematical theory of hysteresis operators see, for example, [2, 3, 14]. We remark that our treatment of
hysteresis operators has been strongly influenced by Chapter 2 in [3].

A function f : R+ → R+ is called a time transformation if it is continuous and non-decreasing with f(0) = 0
and limt→∞ f(t) = ∞; in other words, f is a time transformation if it is continuous, non-decreasing and
surjective. An operator Φ : C(R+) → C(R+) is called rate independent if, for every time transformation f ,

(Φ(u ◦ f))(t) = (Φ(u))(f(t)), ∀u ∈ C(R+), ∀t ∈ R+.

We say that Φ : C(R+) → C(R+) is a hysteresis operator if Φ is causal and rate independent.

The numerical value set NVS Φ of a hysteresis operator Φ is defined by

NVS Φ := {(Φ(u))(t) : u ∈ C(R+), t ∈ R+}.

For w ∈ C([0, a]) (with a ≥ 0) and γ, δ > 0, we define

C(w; δ, γ) :=
{
v ∈ C([0, a+ γ]) : v|[0,a] = w, sup

t∈[a,a+γ]

|v(t) − w(a)| ≤ δ
}
. (3.1)

Depending on context, we will impose some or all of the following six conditions on hysteresis operators Φ :
C(R+) → C(R+).

(N1) Φ(W 1,1
loc (R+)) ⊂W 1,1

loc (R+).
(N2) Φ is monotone in the sense that, for all u ∈ W 1,1

loc (R+),

(Φ(u))′(t)u′(t) ≥ 0, a.e. t ∈ R+.

(N3) There exists λ > 0 such that for all a ≥ 0 and w ∈ C([0, a]), there exist numbers γ, δ > 0 such that

max
τ∈[a,a+γ]

|(Φ(u))(τ) − (Φ(v))(τ)| ≤ λ max
τ∈[a,a+γ]

|u(τ) − v(τ)|, ∀u, v ∈ C(w; δ, γ). (3.2)

(N4) For all a > 0 and all u ∈ C([0, a)), there exists β > 0 such that

max
τ∈[0,t]

|(Φ(u))(τ)| ≤ β(1 + max
τ∈[0,t]

|u(τ)|), ∀t ∈ [0, a).
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(N5) If u ∈ C(R+) is approximately ultimately non-decreasing and limt→∞ u(t) = ∞, then (Φ(u))(t) and
(Φ(−u))(t) converge, as t→ ∞, to sup NVS Φ and inf NVS Φ, respectively.

(N6) If, for u ∈ C(R+), limt→∞(Φ(u))(t) ∈ intNVS Φ, then u is bounded.

Note that, in (N3) and (N4), the functions Φ(u) and Φ(v) are well-defined by Remark 1.1. It is not difficult to
deduce that (N5) implies that NVS Φ is an interval. As is well-known (see, for example, [3,16]), many hysteresis
operators are Lipschitz continuous in the sense that, for some λ > 0,

sup
τ∈R+

|(Φ(u))(τ) − (Φ(v))(τ)| ≤ λ sup
τ∈R+

|u(τ) − v(τ)|, ∀u, v ∈ C(R+),

in which case (N3) is trivially satisfied. An important consequence of assumptions (N1)–(N3) is described in
the following lemma, a proof of which can be found in [16].

Lemma 3.1. Let Φ : C(R+) → C(R+) be a hysteresis operator satisfying (N1)–(N3). Then, for any u ∈
W 1,1

loc (R+), there exists a measurable function du : R+ → [0, λ] such that

(Φ(u))′(t) = du(t)u′(t), a.e. t ∈ R+.

Remark 3.2. An important and well-known property of hysteresis operators is that they commute with Qτ

for all τ ∈ R+, that is, if Φ is a hysteresis operator, then

ΦQτ = QτΦ, ∀τ ∈ R+, (3.3)

where Qτ : C(R+) → C(R+) is given by (1.1). This commutativity property is an easy consequence of causality
and rate-independence.

There exist causal operators Φ : C(R+) → C(R+) satisfying (3.3), but which are not hysteresis operators.
For example, consider the operator Φ : C(R+) → C(R+) defined by

(Φ(u))(t) = (1 + ϕ(t))u(t) −
∫ t

0

ϕ′(τ)u(τ)dτ, ∀t ∈ R+,

where ϕ : R+ → R is continuously differentiable. Clearly, Φ is causal and a routine calculation shows that Φ
satisfies (3.3). However, unless ϕ is constant, Φ is not, in general, rate-independent and hence not a hysteresis
operator.

In fact, it is the commutativity property, rather than rate independence, which is used in the proof of
Lemma 3.1 and, consequently, in Sections 4–6. Therefore, in the results of Sections 4–6, the requirement that
Φ be a hysteresis operator can be weakened to the assumption that Φ is causal and satisfies (3.3). However,
we believe that non-rate-independent causal operators satisfying (3.3) may be of limited physical relevance and
so are mainly of academic interest. For this reason, we assume that the operators under consideration are
hysteresis (i.e., causal and rate-independent) rather than causal operators satisfying (3.3).

Remark 3.3. Assumption (N3), causality and rate-independence imply the following stronger assertion:

(N3’) There exists λ > 0 such that for all a ≥ 0 and w ∈ C([0, a]), there exist numbers γ, δ > 0 such that

max
τ∈[a,a+ε]

|(Φ(u))(τ) − (Φ(v))(τ)| ≤ λ max
τ∈[a,a+ε]

|u(τ) − v(τ)|, ∀u, v ∈ C(w; δ, γ), ∀ε ∈ (0, γ]. (3.4)

Indeed, let us take λ from (3.2) and arbitrary ε ∈ (0, γ]. Invoking the operator Qτ (with a < τ ≤ a+ γ) defined
in (1.1)), we see that inequality (3.4) is equivalent to

max
τ∈[a,a+γ]

|(Qa+εΦ(u))(τ) − (Qa+εΦ(v))(τ)| ≤ λ max
τ∈[a,a+γ]

|(Qa+εu)(τ) − (Qa+εv)(τ)|.
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The latter inequality is a simple consequence of (N3) and (3.3).

The set of all hysteresis operators satisfying (N1)–(N6) is denoted by N(λ), where λ > 0 is the constant
associated with (N3). It is well known that many standard hysteresis nonlinearities which are important in
control engineering are contained in N(λ) for some suitable λ > 0: two examples are given below and others
can be found in [16, 19].

u

Bh, ξ(u)

h

−h

Figure 4. Backlash hysteresis.

Backlash hysteresis (play operator). A discussion of the backlash operator (also called play operator) can
be found in a number of references, see for example [3, 14] and [16]. Let h ∈ R+ and introduce the function

bh : R
2 → R , (v, w) �→ max{v − h , min{v + h,w}} =

⎧⎨
⎩

v − h, w < v − h
w, w ∈ [v − h, v + h]
v + h, w > v + h.

Let Cpm(R+) denote the space of continuous piecewise monotone functions defined on R+. For all h ∈ R+ and
all ξ ∈ R, we define the operator Bh, ξ : Cpm(R+) → C(R+) by

(Bh, ξ(u))(t) =
{
bh(u(0), ξ) for t = 0 ,
bh(u(t), (Bh, ξ(u))(ti)) for ti < t ≤ ti+1, i = 0, 1, 2, . . . ,

where 0 = t0 < t1 < t2 < . . ., limn→∞ tn = ∞, u is monotone on each interval [ti, ti+1], and ξ plays the role of
an “initial state”. It is not difficult to show that the definition is independent of the choice of the partition (ti).
Figure 4 illustrates how Bh, ξ acts.

It is well-known that Bh, ξ extends to a Lipschitz continuous operator on C(R+) (with Lipschitz constant 1),
the so-called backlash operator, which we will denote by the same symbol Bh, ξ. It is also well-known (and easy
to check) that Bh, ξ is a hysteresis operator. As shown in [16] for example, Bh, ξ satisfies (N1)–(N6) (with λ = 1
in (N3)). It is obvious that NVSBh, ξ = R.

Prandtl operators. The Prandtl operator (also called the Prandtl-Ishlinskii operator), introduced below,
is a generalization of the backlash operator. For certain input functions, it exhibits nested loops in the corre-
sponding input-output characteristics. Let ξ be a Preisach memory curve, i.e. ξ : R+ → R is a function which
has compact support and is globally Lipschitz with Lipschitz constant 1. Furthermore, let µ be a signed Borel
measure on R+ such that |µ|(K) <∞ for all compact sets K ⊂ R+, where |µ| denotes the total variation of µ.
The operator Pξ : C(R+) → C(R+) defined by

(Pξ(u))(t) =
∫ ∞

0

(Bh, ξ(h)(u))(t) dµ(h) , ∀u ∈ C(R+) , ∀t ∈ R+
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is called a Prandtl operator, cf. [3], p. 54. It is well-known (and easy to check) that Pξ is a hysteresis operator.
Assume that the measure µ is finite. Then the operator Pξ is Lipschitz continuous with Lipschitz constant
|µ|(R+) (since the backlash operator is Lipschitz continuous with Lipschitz constant 1). Furthermore, if we
additionally assume that µ is positive, then, as shown for example in [16], (N1)–(N6) hold (with λ = µ(R+)
in (N3)). For ξ ≡ 0 and the measure µ given by µ(E) =

∫
E(sin(πh) + 1)χ[0,10]dh (where χ[0,10] denotes the

indicator function of the interval [0, 10]), the Prandtl operator is illustrated in Figure 5.
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Figure 5. Example of Prandtl hysteresis.
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Figure 6. Integral control in the presence of input hysteresis.

It follows from [16] that NVSPξ = R, provided that µ �= 0. Finally, we remark that the above class of
Prandtl operators can be generalized to include the so-called Preisach operators (see [3]): a large class of such
operators also satisfy (N1)–(N6) (see [16]).

4. Low-gain integral control in the presence of input hysteresis

Consider the feedback system shown in Figure 6, where ρ ∈ R is a constant, κ : R+ → R is a time-varying
gain, the operator G : L2(R+) → L2(R+) is linear, bounded and shift-invariant, Φ is a hysteresis operator,
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ψ : R → R is non-decreasing and globally Lipschitz, the function g ∈ L2(R+) models the effect of non-zero
initial conditions of the system with input-output operator G and ϑ+h is a disturbance containing a constant ϑ
and a locally integrable function h.

This system is described by the following functional differential equation:

u′ = κ
(
ρ− ϑ− h− ψ(g + (G ◦ Φ)(u))

)
, u(0) = u0 ∈ R. (4.1)

A solution of (4.1) on the interval [0, τ) is a function u ∈ W 1,1
loc ([0, τ)) such that u(0) = u0 and the differential

equation in (4.1) is satisfied almost everywhere on [0, τ). Recall that, by causality, the operator G ◦ Φ is
well-defined on W 1,1

loc ([0, τ)), see Remark 1.1.

Our objective is to determine gain functions κ such that the tracking error

e(t) := ρ− y(t) = ρ− ϑ− h(t) − ψ
(
g(t) + ((G ◦ Φ)(u))(t)

)
(4.2)

becomes small in a certain sense as t→ ∞. For example, we might want to achieve “tracking in measure”, i.e.,
for every ε > 0, the Lebesgue measure of the set {τ ≥ t : |e(τ)| ≥ ε} tends to 0 as t→ ∞, or the aim might be
“asymptotic tracking”, that is limt→∞ e(t) = 0. Trivially, tracking in measure is guaranteed if e is of the form
e = e1 + e2, where limt→∞ e1(t) = 0 and e2 ∈ Lp(R+) for some p ∈ [1,∞).

The generality of the input and output nonlinearities Φ and ψ allows specific cases wherein tracking of all
constant reference signals ρ and rejection of all constant disturbances ϑ may not be feasible. For this reason,
we impose a restriction on the difference ρ− ϑ; namely, it should belong to the following set:

R(G,Φ, ψ) := {ψ(G(0)v) : v ∈ NVS Φ} .

The intuition underlying R(G,Φ, ψ) is as follows. If asymptotic tracking occurs, we would expect that Φ∞ :=
limt→∞(Φ(u))(t) exists. Assuming that Φ∞ is finite and that the final-value theorem holds for the linear
system with input-output operator G, we may conclude that limt→∞(G ◦ Φ(u))(t) = G(0)Φ∞. If, additionally,
limt→∞ g(t) = limt→∞ h(t) = 0, it follows from (4.2) that ρ− ϑ ∈ R(G,Φ, ψ). In fact, it has been shown in [6]
that in the case of static input nonlinearities, if ψ is continuous and monotone, then ρ− ϑ ∈ R(G,Φ, ψ) is close
to being a necessary condition for asymptotic tracking.

Theorem 4.1. Assume that the following hold:

(a) G : L2(R+) → L2(R+) is a linear bounded shift-invariant operator with transfer function G, satisfying
assumption (L);

(b) g ∈ L2(R+);
(c) Φ ∈ N(λ1);
(d) ψ : R → R is non-decreasing and globally Lipschitz with Lipschitz constant λ2;
(e) ρ− ϑ ∈ R(G,Φ, ψ);
(f) h is such that h ∈ L1(R+) ∩ L2(R+) and the function t �→ ∫ ∞

t |h(τ)|dτ is in L2(R+);
(g) κ : R+ → R is measurable, non-negative and bounded with

lim sup
t→∞

κ(t) <
1

λ1λ2|f(G)| ,

where 1/0 := ∞.

Then there exists a unique solution u ∈W 1,1
loc (R+) of (4.1) and the following statements hold:

(i) (Φ(u))′ ∈ L2(R+) and the limit Φ∞ := limt→∞(Φ(u))(t) exists and is finite.
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(ii) The signals w = g + (G ◦ Φ)(u) and y = ψ(w) + ϑ+ h (see Fig. 6) can be decomposed as w = w1 + w2

and y = y1 + y2, where w1, y1 are continuous and have finite limits

w∞
1 := lim

t→∞w1(t) = G(0)Φ∞, y∞1 := lim
t→∞ y1(t) = ψ(G(0)Φ∞) + ϑ,

and w2, y2 ∈ L2(R+). Under the additional assumptions that

lim
t→∞

(
g(t) + (Φ(u))(0)((Gθ)(t) − G(0))

)
= 0 (4.3)

and
lim

t→∞ h(t) = 0, (4.4)

we have
lim

t→∞w2(t) = 0, lim
t→∞ y2(t) = 0.

(iii) If κ �∈ L1(R+), then y∞1 = limt→∞ y1(t) = ρ and the error signal e = ρ − y can be decomposed as
e = e1 + e2, where e1 is continuous with limt→∞ e1(t) = 0 and e2 ∈ L2(R+). If, additionally, (4.3) and
(4.4) hold, then

lim
t→∞ e(t) = 0.

(iv) If ρ− ϑ is an interior point of the set R(G,Φ, ψ), then u is bounded.

Remark 4.2. (1) Statement (iii) of Theorem 4.1 implies tracking in measure and, moreover, guarantees as-
ymptotic tracking, provided that (4.3) and (4.4) hold. Trivially, if limt→∞ g(t) = 0 and

lim
t→∞(Gθ)(t) = G(0), (4.5)

then (4.3) is satisfied. If the impulse response of G is a finite Borel measure µ, for example, if

µ(dτ) = fa(τ)dτ +
∞∑

i=0

fiδti(dτ),

where fa ∈ L1(R+), {fi} ∈ l1(Z+) and ti ≥ 0, then (4.5) holds. Finally, since it follows from assumption (L)
via the Paley-Wiener theorem that Gθ − G(0)θ ∈ L2(R+), we conclude that if the limit on the left-hand side
of (4.5) exists, then it must be equal to G(0).

(2) In general, ϑ is unknown, but it is reasonable to assume that ϑ ∈ [ϑ1, ϑ2], where ϑ1 and ϑ2 are known
constants. The condition ρ− ϑ1, ρ− ϑ2 ∈ R(G,Φ, ψ) does not involve ϑ and is sufficient for assumption (e) to
hold.

(3) Note that it is not necessary to know f(G) or the constants λ1, λ2 from (c) and (d), respectively, in
order to apply Theorem 4.1. If κ is chosen such that κ(t) → 0 and κ /∈ L1(R+) (e.g., κ(t) = (1 + t)−p with
p ∈ (0, 1]), then the conclusions of statement (iii) hold. However, from a practical point of view, gain functions
κ with limt→∞ κ(t) = 0 might not be appropriate, since, in that case, the system essentially operates in open
loop as t → ∞. In [20] it has been shown how |f(G)| (or upper bounds for |f(G)|) can be obtained from
frequency-response experiments performed on the linear part of the plant.

(4) Assumption (f) is satisfied if there exists α > 1 such that the function t �→ (1 + t)αh(t) is in L2(R+).

Proof of Theorem 4.1. Let u be the unique solution of (4.1) defined on R+, the existence of which is proved
in Theorem 7.3 of the Appendix.

(i) The key idea is to apply Proposition 2.1 to the signal

w := g + (G ◦ Φ)(u),
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modified by an offset which depends on ρ and ϑ. Since, by assumption (e), ρ − ϑ ∈ R(G,Φ, ψ), there exists
Φ� ∈ NVS Φ satisfying

ψ(G(0)Φ�) = ρ− ϑ.

We define
w̃ := w − G(0)Φ� = g + (G ◦ Φ)(u) − G(0)Φ�,

ψ̃(ξ) := ψ(ξ + G(0)Φ�) − ρ+ ϑ, ∀ξ ∈ R.

By Lemma 3.1, we have
(Φ(u))′(t) = du(t)u′(t), (4.6)

where du : R+ → [0, λ1] is measurable.

It follows from (4.1) and (4.6) that u satisfies

(Φ(u))′ = −N(·, w̃) − κ duh, (4.7)

where N : R+ × R → R is given by
N(t, ξ) := κ(t)du(t)ψ̃(ξ).

From (4.7), we infer

(Φ(u))(t) = (Φ(u))(0) −
∫ t

0

N(τ, w̃(τ))dτ + f(t),

where

f(t) := −
∫ t

0

κ(τ)du(τ)h(τ)dτ, ∀t ∈ R+.

By shift-invariance, G commutes with integration, and thus

(
(G ◦ Φ)(u)

)
(t) = (Φ(u))(0)(Gθ)(t) −

∫ t

0

(
G(N(·, w̃))

)
(τ)dτ + (Gf)(t).

By adding g − G(0)Φ� to both sides of the above identity, we see that w̃ solves an equation of the form (2.1)

w̃(t) = r(t) −
∫ t

0

(
G(N(·, w̃))

)
(τ)dτ, (4.8)

where
r := g − G(0)Φ�θ + (Φ(u))(0)Gθ +Gf.

We observe that, by assumption (a) and the Paley-Wiener theorem, Gθ ∈ L2(R+)+Rθ. Consequently, to prove
that r ∈ L2(R+) + Rθ, it suffices to show that f ∈ L2(R+) + Rθ. Since h ∈ L1(R+) and κ, du are bounded, it
follows that κduh ∈ L1(R+). Thus

f(t) = −
∫ ∞

0

κ(τ)du(τ)h(τ)dτ +
∫ ∞

t

κ(τ)du(τ)h(τ)dτ

provides the desired decomposition of f, since, by assumption, the function t �→ ∫ ∞
t

|h(τ)|dτ is in L2(R+).
Hence

r ∈ L2(R+) + Rθ.

Note that
0 ≤ N(t, ξ)ξ ≤ λ1λ2κ(t)ξ2, ∀(t, ξ) ∈ R+ × R.

By assumption (g) on κ, there exist 0 < a < 1/|f(G)| and t0 ≥ 0 such that

0 ≤ N(t, ξ)ξ ≤ aξ2, ∀(t, ξ) ∈ [t0,∞) × R.
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Applying Proposition 2.1 to (4.8), we obtain that N(·, w̃) ∈ L2(R+) and the limit of
∫ t

0
N(τ, w̃(τ))dτ as t→ ∞

exists and is finite. Therefore,
(Φ(u))′ = −N(·, w̃) − κduh ∈ L2(R+),

and

lim
t→∞(Φ(u))(t) = (Φ(u))(0) −

∫ ∞

0

κ(τ)du(τ)h(τ)dτ − lim
t→∞

∫ t

0

N(τ, w̃(τ))dτ

exists and is finite, which proves statement (i) of Theorem 4.1.

(ii) Define an operator H on L2
loc(R+) by setting

(Hv)(t) :=
∫ t

0

(Gv(τ) − G(0)v(τ))dτ. (4.9)

Since the transfer function of H is s �→ (G(s)−G(0))/s and hence belongs to H∞(C+) via assumption (a), we
deduce that H is a bounded linear shift-invariant operator on L2(R+).

A routine calculation shows that

w = g + (G ◦ Φ)(u) = w1 + w2,

where
w1 := G(0)Φ(u), w2 := g + (Φ(u))(0)(Gθ − G(0)) +H((Φ(u))′). (4.10)

From statement (i) it follows that w∞
1 = limt→∞w1(t) = G(0)Φ∞. It is also clear that w2 ∈ L2(R+) due to

assumption (b) and the facts that Gθ − G(0) ∈ L2(R+) (by assumption (a) and the Paley-Wiener theorem),
(Φ(u))′ ∈ L2(R+) and H(L2(R+)) ⊂ L2(R+).

We obtain the required decomposition of y by defining

y1 := ψ(w1) + ϑ, y2 := y − y1 = ψ(w) + h− ψ(w1). (4.11)

Then y1 is continuous with y∞1 = limt→∞ y1(t) = ψ(G(0)Φ∞) + ϑ. Furthermore, y2 ∈ L2(R+) since

|y2(t)| ≤ λ2|w(t) − w1(t)| + |h(t)| = λ2|w2(t)| + |h(t)|,

and w2 ∈ L2(R+), h ∈ L2(R+).

Let us show that limt→∞H((Φ(u))′)(t) = 0. Since the transfer function of H also belongs to H2(C+)
via assumption (a), the convolution kernel ξ of H is in L2(R+) due to the Paley-Wiener theorem. Thus
H((Φ(u))′) = ξ ∗ (Φ(u))′ is a convolution of two L2(R+) functions, which is known to have a zero limit at
infinity. Hence the additional assumptions (4.3) and (4.4) imply limt→∞w2(t) = limt→∞ y2(t) = 0, completing
the proof of statement (ii).

(iii) We use the decomposition y = y1+y2 given by (4.11). Seeking a contradiction, suppose that y∞1 > ρ (the
case y∞1 < ρ can be treated in an analogous way). Recall the relationship u′ = κ(ρ− y1 − y2). By Lemma 2.2
with g = u, f1 = κ, f2 = ρ − y1, f3 = y2, we conclude that u is approximately ultimately non-increasing and
limt→∞ u(t) = −∞. Consequently, due to (N5),

Φ∞ := lim
t→∞(Φ(u))(t) = inf NVS Φ.

Since ρ− ϑ ∈ R(G,Φ, ψ) (by assumption) and using the fact that ψ is non-decreasing and G(0) > 0, we obtain

ρ ≥ inf R(G,Φ, ψ) + ϑ = ψ(G(0)Φ∞) + ϑ = y∞1 ,
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contradicting the supposition that y∞1 > ρ.

To complete the proof of statement (iii), we define e1 := ρ− y1 and e2 := −y2 and obtain the decomposition
e = ρ − y = e1 + e2. It follows immediately from the properties of y1 and y2 that e1 is continuous with
limt→∞ e1(t) = 0, e2 ∈ L2(R+). Under additional assumptions (4.3) and (4.4), limt→∞ e(t) = 0.

(iv) Assume that ρ − ϑ is an interior point of R(G,Φ, ψ). Let w1, w2, y1 and y2 be defined by (4.10)
and (4.11). By statement (ii), y∞1 = ψ(G(0)Φ∞) + ϑ. If κ �∈ L1(R+), then y∞1 = ρ (due to statement (iii)) and
so ρ−ϑ = ψ(G(0)Φ∞). Since ψ is non-decreasing, NVS Φ is an interval and G(0) > 0, we conclude that Φ∞ is
an interior point of NVS Φ. Therefore, by (N6), u is bounded. Finally, if κ ∈ L1(R+), we write (4.1) in the form

u′ = κ(ρ− y1 − y2).

�
ρ

� �
u

k
∫ � G � �� �

g

+

+

w
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ϑ+ h

�−+

Figure 7. Integral control in the presence of output hysteresis.

Note that, since κ is bounded, κ is also in L2(R+). Furthermore, by statement (ii), y1 is bounded and y2 ∈
L2(R+). Therefore, κ(ρ− y1 − y2) ∈ L1(R+), showing that u′ is integrable and hence u is bounded. �

5. Low-gain integral control in the presence of output hysteresis

Consider the feedback system shown in Figure 7, where ρ ∈ R is a constant, k ∈ R is a constant gain, the
operator G : L2(R+) → L2(R+) is linear, bounded and shift-invariant, Φ is a hysteresis operator, the function g
models the effect of initial conditions of the system with input-output operator G and ϑ + h is a disturbance
containing a constant ϑ and a locally integrable function h.

This system is described by the following functional differential equation:

u′ = k(ρ− ϑ− h− Φ(g +Gu)) , u(0) = u0 ∈ R. (5.1)

A solution of (5.1) on the interval [0, τ) is a function u ∈ W 1,1
loc ([0, τ)) such that g +Gu ∈ C([0, τ)), u(0) = u0

and the differential equation in (5.1) is satisfied almost everywhere on [0, τ). Recall that, by causality, the
function Φ(g +Gu) is well-defined for every u ∈W 1,1

loc ([0, τ)) such that g +Gu ∈ C([0, τ)), see Remark 1.1.

Our objective is to determine gain constants k such that the tracking error

e(t) := ρ− y(t) = ρ− ϑ− h(t) − (Φ(g +Gu))(t)

converges to zero as t→ ∞.

Theorem 5.1. Assume that the following hold:

(a) G : L2(R+) → L2(R+) is a bounded convolution operator with kernel in L2(R+) + Rδ0 and transfer
function G satisfying assumption (L);
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(b) g ∈ W 1,1
loc (R+) and g′ ∈ L2(R+);

(c) Φ ∈ N(λ);
(d) ρ− ϑ ∈ NVS Φ;
(e) h ∈ L2(R+) and limt→∞ h(t) = 0;
(f) k is such that

0 < k <
1

λ|f(G)| ·

Then (5.1) has a unique solution u ∈W 1,1
loc (R+) and

lim
t→∞(Φ(g +Gu))(t) = ρ− ϑ, (Φ(g +Gu))′ ∈ L2(R+).

In particular, limt→∞ e(t) = 0. Moreover, if ρ− ϑ is an interior point of NVS Φ, then g +Gu is bounded.

Remark 5.2. Assumption (a) implies that the step response of G satisfies Gθ ∈ (L2(R+) + Rθ) ∩W 1,1
loc (R+)

and (Gθ)′ ∈ L2(R+).

Proof of Theorem 5.1. Let u be the unique solution of (5.1) (see Th. 7.4 in the Appendix). Let us define an
operator Φ̃ ∈ N(λ) and a function w by

Φ̃(v) := Φ(v) − (ρ− ϑ)θ, ∀v ∈ C(R+); w := g +Gu.

Then
Φ̃(w) = Φ(g +Gu) − (ρ− ϑ)θ,

and so, by (5.1),
u′ = −kΦ̃(w) − kh.

Since

(Gu)(t) =
(
G(u(0)θ +

∫ ·

0

u′(τ)dτ)
)
(t) = u(0)(Gθ)(t) +

∫ t

0

(Gu′)(τ)dτ,

we obtain
w′ = g′ + u(0)(Gθ)′ +Gu′ = g′ + u(0)(Gθ)′ − kGΦ̃(w) − kGh. (5.2)

By Lemma 3.1,
(Φ̃(w))′ = dww

′,

where dw : R+ → [0, λ] is a measurable function. Hence,

(Φ̃(w))(t) = (Φ̃(w))(0) +
∫ t

0

dw(τ)w′(τ)dτ. (5.3)

Substituting this into (5.2) gives

w′(t) = r(t) −
∫ t

0

G(N( · , w′))(τ)dτ, ∀t ≥ 0, (5.4)

where N(t, ξ) := kdw(t)ξ and
r = g′ + u(0)(Gθ)′ − k(Φ̃(w))(0)Gθ − kGh.

Note that r ∈ L2(R+) + Rθ due to Remark 5.2 and

0 ≤ N(t, ξ)ξ ≤ λkξ2, ∀(t, ξ) ∈ R+ × R.
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By assumption (f) on k, there exists 0 < a < 1/|f(G)| such that

0 ≤ N(t, ξ)ξ ≤ aξ2, (t, ξ) ∈ R+ × R.

Applying Proposition 2.1 to (5.4), we obtain that

N(·, w′) = k dww
′ ∈ L2(R+) (5.5)

and the limit

lim
t→∞

∫ t

0

N(τ, w′(τ))dτ = k lim
t→∞

∫ t

0

dw(τ)w′(τ)dτ (5.6)

exists and is finite. Combining (5.3) and (5.6) we conclude that

lim
t→∞(Φ(g +Gu))(t) = lim

t→∞(Φ̃(w))(t) + ρ− ϑ = (Φ̃(w))(0) + ρ− ϑ+ lim
t→∞

∫ t

0

dw(τ)w′(τ)dτ

is finite. Furthermore, by (5.5)

(Φ(g +Gu))′ = (Φ̃(w))′ = dww
′ ∈ L2(R+).

It remains to prove that
lim

t→∞(Φ(g +Gu))(t) = ρ− ϑ, (5.7)

which is equivalent to limt→∞(Φ̃(w))(t) = 0. Seeking a contradiction, suppose that limt→∞(Φ̃(w))(t) > 0 (the
case limt→∞(Φ̃(w))(t) < 0 can be treated similarly). Note that

G(Φ̃(w)) = f̃ + G(0)(Φ̃(w)),

where f̃ = (Φ̃(w))(0)(Gθ −G(0)) +H((Φ̃(w))′) ∈ L2(R+) with H defined by (4.9). Therefore, by (5.2), w′ can
be written in the form

w′ = f − kG(0)(Φ̃(w)),
where f ∈ L2(R+). Employing Lemma 2.2 with g = w, f1 = 1, f2 = −kG(0)(Φ̃(w)), f3 = −f, we obtain that
the function w is approximately ultimately non-increasing and w(t) → −∞ as t → ∞. This implies, due to
(N5), that

lim
t→∞(Φ̃(w))(t) = lim

t→∞(Φ(w))(t) − ρ+ ϑ = inf NVS Φ − ρ+ ϑ.

Since ρ− ϑ ∈ NVS Φ by assumption (d),

ρ− ϑ ≥ inf NVS Φ = lim
t→∞(Φ̃(w))(t) + ρ− ϑ,

contradicting the supposition that limt→∞(Φ̃(w))(t) > 0.

Finally, assume that ρ−ϑ is an interior point of NVS Φ. Then from (5.7) and (N6) we readily conclude that
g +Gu is bounded. �

6. Application to well-posed infinite-dimensional state-space systems

There are a number of equivalent definitions of well-posed systems, see [23–25, 29]. We will be brief in
the following and refer the reader to the above references for more details. We wish to consider a well-posed
system Σ with state-space X (a real Hilbert space with norm denoted by ‖ · ‖), input space U = R and output
space Y = R, generating operators (A,B,C), input-output operator G and transfer function G. Here A is the



474 H. LOGEMANN, E.P. RYAN AND I. SHVARTSMAN

generator of a strongly continuous semigroup T = (Tt)t≥0 on X , B ∈ B(R, X−1) and C ∈ B(X1,R), where
X1 denotes the domain of A endowed with the norm ‖x‖1 := ‖x‖ + ‖Ax‖ (the graph norm of A), whilst X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(ζI −A)−1x‖, where ζ ∈ res(A), the resolvent
set of A (different choices of ζ lead to equivalent norms). Clearly, X1 ⊂ X ⊂ X−1 and the canonical injections
are bounded and dense. The semigroup T restricts to a strongly continuous semigroup on X1 and extends to a
strongly continuous semigroup on X−1 with the exponential growth constant

ω(T) := lim
t→∞

ln ‖Tt‖
t

being the same on all three spaces; the generator of the restriction (extension) of T is a restriction (extension)
of A; we will use the same symbol T (respectively, A) for the original semigroup (respectively, generator) and
the associated restrictions and extensions: with this convention, we may write A ∈ B(X,X−1) (considered as
a generator on X−1, the domain of A is X). Moreover, the operators B and C are admissible control and
observation operators for T, respectively. The transfer function G of Σ is related to the state-space operators
A, B and C as follows:

1
s− ζ

(G(s) − G(ζ)) = −C(sI −A)−1(ζI −A)−1B, Re s, Re ζ > ω(T), s �= ζ. (6.1)

The so-called Λ-extension CΛ of C is defined by

CΛz := lim
s→∞, s∈R

Cs(sI −A)−1z,

where the domain D(CΛ) of CΛ consists of all z ∈ X for which the above limit exists. For every z ∈ X ,
Ttz ∈ D(CΛ) for almost every t ∈ R+ and, if ω > ω(T), then the function t �→ e−ωtCΛTtz is in L2(R+).

For x0 ∈ X and v ∈ L2
loc(R+), let x and w denote the state and output functions of Σ, respectively,

corresponding to the initial condition x(0) = x0 ∈ X and the input function v. Then w = CΛTx0 + Gv,
x(t) = Ttx

0 +
∫ t

0 Tt−τBv(s)ds for all t ∈ R+, x(t) + (ζI −A)−1Bv(t) ∈ D(CΛ) for a.e. t ∈ R+ and

x′ = Ax+Bv, x(0) = x0, (6.2a)
w = CΛ

(
x− (ζI −A)−1Bv

)
+ G(ζ)v, (6.2b)

where Re ζ > ω(T). Of course, (6.2) holds almost everywhere on R+ and the differential equation (6.2a) has to
be interpreted in X−1. In the following, we identify Σ and (6.2).

The well-posed system (6.2) is said to be strongly stable if the following four conditions are satisfied:

(i) G is L2-stable, i.e., G ∈ B(L2(R+)), or, equivalently, G ∈ H∞(C+);
(ii) T is strongly stable, i.e., limt→∞ Ttz = 0 for all z ∈ X ;
(iii) B is an infinite-time admissible control operator, i.e., there exists α ≥ 0 such that

‖ ∫ ∞
0

TτBv(τ)dτ‖ ≤ α‖v‖L2(R+) for all v ∈ L2(R+);
(iv) C is an infinite-time admissible observation operator, i.e., there exists β ≥ 0 such that

(
∫ ∞
0 ‖CTτz‖2dτ)1/2 ≤ β‖z‖ for all z ∈ X1.

Obviously, exponential stability (i.e., ω(T) < 0) implies strong stability; the converse is not true.

If the well-posed system (6.2) is regular, i.e. if the following limit

lim
s→∞, s∈R

G(s) = D
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exists and is finite, then x(t) ∈ D(CΛ) for almost every t ∈ R+, the output equation (6.2b) simplifies to

y(t) = CΛx(t) +Du(t), a.e. t ≥ 0

and

(Gu)(t) = CΛ

∫ t

0

Tt−τBu(τ)dτ +Du(t), ∀u ∈ L2
loc(R+), a.e. t ∈ R+.

Moreover, in the regular case, we have that (sI −A)−1BR ⊂ D(CΛ) for all s ∈ res(A) and

G(s) = CΛ(sI −A)−1B +D, Re s > ω(T).

The number D is called the feedthrough of (6.2).

Remark 6.1. It has been known for a considerable time that a large class of retarded and neutral systems
(containing all delay systems which are relevant in control engineering) is captured by the theory of well-posed
systems (see, for example, [22, 23]). In the last decade, much work has been done to verify well-posedness
or regularity for systems described by multidimensional partial differential equations with boundary control
and/or boundary observation, see, for example, [4, 23] for heat equations, [10, 15, 28, 30] for wave equations, [8]
for Schrödinger equations, [9] for the Euler-Bernoulli plate equation and [21,30] for certain structural acoustics
models.

Assume that (6.2) is connected in series with a hysteretic input nonlinearity and a static output nonlinearity,
the latter of which is subject to output disturbances. Application of integral control to the series interconnection
(see Fig. 6) leads to the following feedback law

v = Φ(u), (6.3a)
y = ψ(w) + ϑ+ h, (6.3b)
u′ = κ(ρ− y), u(0) = u0, (6.3c)

where Φ is a hysteresis operator, ψ is a static nonlinearity, κ is a time-varying gain, ρ, ϑ ∈ R and h is the
nonconstant part of the output disturbance. A solution of the feedback system given by (6.2) and (6.3) on
an interval [0, τ) is a continuous function (x, u) : [0, τ) → X × R such that (x(0), u(0)) = (x0, u0), (x, u) ∈
W 1,1

loc ([0, τ), X−1 × R) and the equations (6.2) and (6.3) are satisfied almost everywhere on [0, τ).

The following theorem is a state-space version of Theorem 4.1. Before stating it, we remark that if (6.2) is
strongly stable and 0 ∈ res(A), then G can be analytically extended from C+ to a neighbourhood of 0. Hence,
the evaluation G(0) of G(s) at s = 0 makes sense and (6.1) holds for ζ = 0. Consequently, since ω(T) ≤ 0 (by
strong stability), we have that

(G(s) − G(0)) /s = C(sI −A)−1A−1B, Re s > 0. (6.4)

Theorem 6.2. Assume that the following hold:

(a) System (6.2) is strongly stable, 0 ∈ res(A) and G(0) > 0;
(b) Φ ∈ N(λ1);
(c) ψ : R → R is non-decreasing and globally Lipschitz continuous with Lipschitz constant λ2;
(d) ρ− ϑ ∈ R(G,Φ, ψ);
(e) h is such that h ∈ L1(R+) ∩ L2(R+) and the function t �→ ∫ ∞

t |h(τ)|dτ is in L2(R+);
(f) κ : R+ → R+ is measurable and bounded with

lim sup
t→∞

κ(t) <
1

λ1λ2|f(G)| ,
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where 1/0 := ∞.

Then, for every (x0, u0) ∈ X × R, there exists a unique solution

(x, u) ∈ C(R+, X × R) ∩W 1,1
loc (R+, X−1 × R)

of the feedback system, given by (6.2) and (6.3), and the following statements hold:

(i) (Φ(u))′ ∈ L2(R+) and the limit Φ∞ := limt→∞(Φ(u))(t) exists and is finite.
(ii) limt→∞ ‖x(t) +A−1BΦ∞‖ = 0.
(iii) The signals w = CΛTx0 + (G ◦ Φ)(u) and y = ψ(w) + ϑ + h can be decomposed as w = w1 + w2 and

y = y1 + y2, where w1, y1 are continuous and have finite limits

w∞
1 := lim

t→∞w1(t) = G(0)Φ∞, y∞1 := lim
t→∞ y1(t) = ψ(G(0)Φ∞) + ϑ,

and w2, y2 ∈ L2(R+). If limt→∞ h(t) = 0 and, for some t0 ≥ 0,

Tt0

(
Ax0 +B(Φ(u))(0)

) ∈ X (6.5)

or
Tt0x

0 ∈ X1 and lim
t→∞(Gθ)(t) = G(0), (6.6)

we have
lim

t→∞w2(t) = 0, lim
t→∞ y2(t) = 0.

(iv) If κ �∈ L1(R+), then y∞1 = ρ and the error signal e = ρ− y can be decomposed as e = e1 + e2, where e1
is continuous with limt→∞ e1(t) = 0 and e2 ∈ L2(R+). If limt→∞ h(t) = 0 and, for some t0 ≥ 0, (6.5)
or (6.6) holds, then

lim
t→∞ e(t) = 0.

(v) If ρ− ϑ is an interior point of the set R(G,Φ, ψ), then u is bounded.

Proof. It follows from hypothesis (a) that G satisfies assumption (L). Let (x0, u0) ∈ X × R and set

g := CΛTx0. (6.7)

Strong stability yields that g ∈ L2(R+). By Theorem 4.1, the functional differential equation

u′ = κ
(
ρ− ϑ− h− ψ(g + (G ◦ Φ)(u))

)
, u(0) = u0 (6.8)

has a unique solution u ∈W 1,1
loc (R).Define the continuous function x : R+ → X by

x(t) = Ttx
0 +

∫ t

0

Tt−τB(Φ(u))(τ)dτ. (6.9)

Then
g +GΦ(u) = w = CΛ

(
x− (ζI −A)−1BΦ(u)

)
+ G(ζ)Φ(u)

and a routine argument using standard properties of well-posed systems shows that (x, u) is the unique solution
(defined on R+) of the feedback system given by (6.2) and (6.3). Statements (i) and (v) follow immediately
from Theorem 4.1 and statement (ii) is a consequence of part (b) of Lemma 5.2 in [19].
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To prove statements (iii) and (iv), write w = w1 + w2 and y = y1 + y2, where wi and yi (i = 1, 2) are given
by (4.10) and (4.11). Moreover, write e = e1 + e2, with e1 := ρ− y1 and e2 := −y2. It follows immediately from
Theorem 4.1 that w1, y1 and e1 are continuous,

w∞
1 = G(0)Φ∞, y∞1 = ψ(G(0)Φ∞) + ϑ,

and w2, y2, e2 ∈ L2(R+). Now assume that limt→∞ h(t) = 0 and (6.5) or (6.6) hold. To prove that w2(t) and
y2(t) converge to 0 as t → ∞, it is sufficient to show that (4.3) is satisfied (see statement (ii) of Th 4.1). If (6.6)
holds, then (4.3) follows trivially. If (6.5) holds, then, setting

f := g + (Φ(u))(0)(Gθ − G(0)),

taking Laplace transform and invoking (6.4) and (6.7), we obtain

f̂(s) = C(sI −A)−1x0 +
1
s
(G(s) − G(0))Φ(u))(0)

= C(sI −A)−1x0 + C(sI −A)−1A−1BΦ(u))(0)

= C(sI −A)−1A−1(Ax0 +BΦ(u))(0)).

Inverse Laplace transform gives

f(t) = CΛTtA
−1(Ax0 +BΦ(u))(0)) = CA−1Tt−t0Tt0(Ax

0 +BΦ(u))(0)), ∀t ≥ t0.

Strong stability combined with (6.5) yields that f(t) → 0 as t → ∞, showing that (4.3) is satisfied. Finally,
assume in addition that κ �∈ L1(R+). Then, by Theorem 4.1, y∞1 = ρ and hence limt→∞ e(t) = 0, completing
the proof of statements (iii) and (iv). �

Finally, we show how Theorem 5.1 can be used in a state-space context. To this end assume that (6.2) is
connected in series with a hysteretic output nonlinearity which is subject to output disturbances. Application
of integral control to the series interconnection (see Fig. 7) leads to the following feedback law

v = u, (6.10a)
y = Φ(w) + ϑ+ h, (6.10b)
u′ = k(ρ− y), u(0) = u0, (6.10c)

where Φ is a hysteresis operator, k is a constant gain, ρ, ϑ ∈ R and h is in L2(R+). A solution of the
feedback system given by (6.2) and (6.10) on an interval [0, τ) is a continuous function (x, u) : [0, τ) → X × R

such that (x(0), u(0)) = (x0, u0), the output w of the linear system given by (6.2b) is continuous, (x, u) ∈
W 1,1

loc ([0, τ), X−1 × R), and the feedback system equations (6.2) and (6.10) are satisfied almost everywhere on
[0, τ).

Theorem 6.3. Assume that the following hold:

(a) System (6.2) is exponentially stable, G(0) > 0 and either B ∈ B(R, X) or C ∈ B(X,R);
(b) Φ ∈ N(λ);
(c) ρ− ϑ ∈ NVS Φ;
(d) h ∈ L2(R+) and limt→∞ h(t) = 0;
(f) k is such that

0 < k <
1

λ|f(G)| ·
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Then, for every (x0, u0) ∈ X1 × R, there exists a unique solution

(x, u) ∈ C(R+, X × R) ∩W 1,1
loc (R+, X−1 × R)

of the feedback system, given by (6.2) and (6.10), and

lim
t→∞(Φ(CTx0 +Gu))(t) = ρ− ϑ, (Φ(CTx0 +Gu))′ ∈ L2(R+).

In particular, the tracking error

e(t) = ρ− y(t) = ρ− ϑ− h(t) − (Φ(CTx0 +Gu))(t)

converges to 0 as t→ ∞. Moreover, if ρ− ϑ is an interior point of NVS Φ, then CTx0 +Gu is bounded.

Proof. It is a trivial consequence of hypothesis (a) that G satisfies assumption (L). Moreover, it follows from [18]
and hypothesis (a) that G is a convolution operator with kernel in L2(R+)+Rδ0. Let (x0, u0) ∈ X1×R and set

g := CTx0. (6.11)

A routine argument shows that g ∈ W 1,1
loc (R+) and g′ = CΛTAx0 ∈ L2(R+). By Theorem 5.1, the functional

differential equation
u′ = k

(
ρ− ϑ− h− Φ(g +Gu)

)
, u(0) = u0 (6.12)

has a unique solution u ∈W 1,1
loc (R). Define the continuous function x : R+ → X by

x(t) = Ttx
0 +

∫ t

0

Tt−τBu(τ)dτ. (6.13)

It is straightforward to show that (x, u) is the unique solution (defined on R+) of the feedback system given
by (6.2) and (6.10). The claim now follows from Theorem 5.1. �

7. Appendix

In this section, we prove (in Th. 7.3) the existence and uniqueness of global solutions of the initial-value
problem (4.1) and, for brevity, we simply state (in Th. 7.4) the corresponding result for the initial-value prob-
lem (5.1) (the proof of the latter theorem is similar to that of the former). To this end, we first consider the
following initial-value problem:

u′(t) = (F (u))(t), t ≥ α, (7.1a)
u(t) = w(t), t ∈ [0, α], (7.1b)

where α ≥ 0 and w ∈ C([0, α]) (if α = 0, then C([0, α]) = R). We assume that the operator F : C(R+) →
L1

loc(R+) is causal and satisfies the following hypotheses:

(H1) For all a ≥ 0 and v ∈ C([0, a]) there exist δ > 0, γ > 0 and a function f : [0, γ] → R+, with f(0) = 0,
continuous at zero, such that for all ε ∈ (0, γ]

∫ a+ε

a

|(F (v1))(τ) − (F (v2))(τ)|dτ ≤ f(ε) max
τ∈[a,a+ε]

|v1(τ) − v2(τ)| ∀v1, v2 ∈ C(v; δ, ε),

where the set C(v; δ, ε) is defined in (3.1).
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(H2) For all a > 0 and v ∈ C([0, a)) there exists c > 0 such that

∫ t

0

|(F (v))(τ)|dτ ≤ c(1 + max
τ∈[0,t]

|v(τ)|), ∀t ∈ [0, a).

Let I be an interval of the form I = [0, T ] (with a < T < ∞) or I = [0, T ) (with a < T ≤ ∞). A solution of
the initial-value problem (7.1) on I is a function u ∈ C(I) such that u(t) = w(t) for all t ∈ [0, α], u is locally
absolutely continuous on I ∩ [α,∞) and (7.1a) is satisfied almost everywhere on I ∩ [α,∞). Note that F (u) is
well-defined when u is a continuous function defined on a finite interval, see Remark 1.1.

Lemma 7.1. For every α ≥ 0 and every w ∈ C([0, α]), there exists a unique solution u of (7.1) defined on a
maximal interval [0, tmax) with tmax > α. Moreover, if tmax <∞, then

lim sup
t→tmax

|u(t)| = ∞.

Remark 7.2. In order to prove the existence and uniqueness of solutions of (4.1) and (5.1) (which is done in
Ths. 7.3 and 7.4 below), we apply Lemma 7.1 with α = 0. However, to prove extended uniqueness (see step 2 in
the proof below), it is convenient, even in the case α = 0, to have existence and uniqueness on a small interval
(see step 1 in the proof below) for general α ≥ 0. For this reason we consider the initial-value problem (7.1) for
α ≥ 0.

Proof of Lemma 7.1. We proceed in several steps.

Step 1. Existence and uniqueness on a small interval.

Let δ > 0 and γ > 0 be the parameters whose existence is guaranteed by (H1) with a = α and v = w. Let
Γε, parameterized by ε ∈ (0, γ], denote the operator defined on C([0, α+ ε]) by

(Γε(x))(t) :=

{
w(t), t ∈ [0, α]
w(α) +

∫ t

α(F (x))(τ)dτ, t ∈ (α, α + ε].

Endowed with the metric

(v1, v2) �→ max
τ∈[α,α+ε]

|v1(τ) − v2(τ)|,

C(w; δ, ε) is a complete metric space. We will prove that for all ε ∈ (0, γ] sufficiently small, Γε is a strict
contraction on C(w; δ, ε). To show that

Γε(C(w; δ, ε)) ⊂ C(w; δ, ε),

for sufficiently small ε > 0, define w̃ by

w̃(t) :=

{
w(t), 0 ≤ t ≤ α

w(α), t > α.

If restricted to the interval [α, α + ε], w̃ belongs to C(w; δ, ε). We do not distinguish notationally between w̃
and its restriction.
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Let v ∈ C(w; δ, ε) and t ∈ [α, α+ ε]. Then, using (H1),

|(Γε(v))(t) − w(α)| ≤
∫ α+ε

α

|(F (v))(τ)|dτ

≤
∫ α+ε

α

|(F (v))(τ) − (F (w̃))(τ)|dτ +
∫ α+ε

α

|(F (w̃))(τ)|dτ

≤ f(ε) max
τ∈[α,α+ε]

|v(τ) − w(α)| + f̃(ε)

≤ f(ε)δ + f̃(ε),

where

f̃(ε) :=
∫ α+ε

α

|(F (w̃))(τ)|dτ.
Since f(ε) and f̃(ε) converge to 0 as ε ↓ 0, it follows that, for all sufficiently small ε > 0,

|(Γε(v))(t) − w(α)| ≤ δ, ∀t ∈ [α, α+ ε], ∀v ∈ C(w; δ, ε).

Thus Γε(C(w; δ, ε)) ⊂ C(w; δ, ε), provided that ε > 0 is sufficiently small. Furthermore, invoking (H1), we obtain
that, for all v1, v2 ∈ C(w; δ, ε) and for all t ∈ [α, α+ ε],

|(Γε(v1))(t) − (Γε(v2))(t)| ≤
∫ α+ε

α

|(F (v1))(τ) − (F (v2))(τ)|dτ ≤ f(ε)‖v1 − v2‖C([α,α+ε]).

Since f(ε) < 1 for all sufficiently small ε > 0, there exists ε∗ ∈ (0, γ] such that Γε has a unique fixed point in
C(w; δ, ε) for every ε ∈ (0, ε∗]. In particular, there exists a unique solution u of (7.1) in C(w; δ, ε∗). However, at
this point we cannot exclude the situation that there may exist other solutions on the interval [0, α+ ε∗] which
do not belong to this space. To establish uniqueness on a sufficiently small interval, we define

S := {t ∈ [0, ε∗] : |u(α+ t) − w(α)| = δ}, ε∗∗ :=

{
inf S, S �= ∅
ε∗, S = ∅.

It is clear that ε∗∗ ∈ (0, ε∗] and that u restricted to the interval [0, α + ε∗∗] is the unique solution of (7.1) on
this interval.

Step 2. Extended uniqueness.

Let u1 ∈ C([0, α1)) and u2 ∈ C([0, α2)) be solutions, where α1, α2 > α. Set β := min{α1, α2}. We claim
that u1 = u2 on [0, β). Seeking a contradiction, suppose that the claim is false. Then

α∗ := inf{t ∈ [0, β) : u1(t) �= u2(t)} < β.

By the uniqueness property at the end of Step 1, we have that α∗ > α. Define w∗(t) := u1(t) = u2(t) for all
t ∈ [0, α∗]. Again by Step 1 (applied in the case α = α∗ and w = w∗), there exists 0 < ε < β−α∗ and a unique
solution u ∈ C([0, α∗ + ε]). It follows that u1(t) = u2(t) = u(t) on [0, α∗ + ε], yielding a contradiction to the
definition of α∗.

Step 3. Existence of a maximal solution.

Let T be a set of all τ > α such that there exists a solution uτ of (7.1) on the interval [0, τ). By step 1,
T �= ∅. Let tmax := sup T and define a function u : [0, tmax) → R by setting

u(t) = uτ (t), for t ∈ [0, τ), where τ ∈ T.
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By Step 2 the function u is well-defined, i.e., the definition of u(t) for a particular value t ∈ [0, tmax) does not
depend on the choice of τ ∈ T ∩ (t,∞). Moreover, it is clear that u is a maximal solution of (4.1). Uniqueness
of this maximal solution follows from Step 2.

Step 4. Unboundedness of u if tmax <∞.

Assume that tmax <∞. Seeking a contradiction, suppose that u is bounded. Integrating (7.1a) gives

u(t) = u(α) +
∫ t

α

(F (u))(τ)dτ, ∀t ∈ [α, tmax). (7.2)

By (H2) (with a = tmax and v = u) there exists c > 0 such that

∫ t

0

|(F (u))(τ)|dτ ≤ c(1 + sup
t∈[0,tmax]

|u(t)|) <∞, ∀t ∈ [0, tmax),

showing that F (u) ∈ L1([0, tmax]). Combining this with (7.2), we conclude that the limit limt→tmax u(t) =:
u(tmax) exists and is finite. Using Step 1, u can be extended from the interval [α, tmax] to the right, contradicting
the definition of tmax. �

Theorem 7.3. Under the assumptions of Theorem 4.1, there exists a unique maximal solution u of (4.1) defined
on R+ (no finite-escape time).

Proof. Define the causal operator F : C(R+) → L1
loc(R+) representing the right-hand side of (4.1) by

F (v) := κ
(
ρ− ϑ− h− ψ(g + (G ◦ Φ)(v))

)
.

We claim that F satisfies (H1) and (H2). To this end, let a ≥ 0 and v ∈ C([0, a]). Since Φ ∈ N(λ1), it follows
via Remark 3.3 that there exist γ > 0 and δ > 0 such that, for all ε ∈ (0, γ],

max
τ∈[a,a+ε]

|(Φ(v1))(τ) − (Φ(v2))(τ)| ≤ λ1 max
τ∈[a,a+ε]

|v1(τ) − v2(τ)|, ∀v1, v2 ∈ C(v; δ, ε). (7.3)

Invoking the global Lipschitz property of ψ (with Lipschitz constant λ2), the Hölder inequality and (7.3), yields
that, for all v1, v2 ∈ C(v; δ, ε),

∫ a+ε

a

|(F (v1))(τ) − (F (v2))(τ)|dτ ≤ λ2‖κ‖L∞(R+)

∫ a+ε

a

|(G(Φ(v1) − Φ(v2)))(τ)|dτ
≤ √

ελ2‖κ‖L∞(R+)‖G‖‖Φ(v1) − Φ(v2)‖L2([a,a+ε])

≤ ελ2‖κ‖L∞(R+)‖G‖‖Φ(v1) − Φ(v2)‖C([a,a+ε])

≤ ελ1λ2‖κ‖L∞(R+)‖G‖‖v1 − v2‖C([a,a+ε]).

Consequently, (H1) holds with
f(ε) := ελ1λ2‖κ‖L∞(R+)‖G‖.

To establish (H2), we take a > 0 and v ∈ C([0, a)). Then for t ∈ [0, a) we have

∫ t

0

|(F (v))(τ)|dτ ≤‖κ‖L∞(R+)

∫ t

0

|ρ− ϑ− h(τ) − ψ(0)|dτ + λ2‖κ‖L∞(R+)

∫ t

0

|g(τ)|dτ

+ λ2‖κ‖L∞(R+)

∫ t

0

|(G(Φ(v)))(τ)|dτ.
(7.4)
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Since, by assumption, g, h ∈ L2(R+), it follows that the first two integrands on the right-hand-side of (7.4) are
in L1

loc(R+). Estimating the last term in (7.4), via the Hölder inequality and (N4), yields

∫ t

0

|(G(Φ(v)))(τ)|dτ ≤ √
t

(∫ t

0

|(G(Φ(v)))(τ)|2dτ
)1/2

≤ √
t‖G‖

(∫ t

0

|(Φ(v))(τ)|2dτ
)1/2

≤ t‖G‖ max
τ∈[0,t]

|(Φ(v))(τ)| ≤ t‖G‖β(1 + max
τ∈[0,t]

|v(τ)|), ∀t ∈ [0, a).

Combining this estimate with (7.4), we see that (H2) holds with

c := ‖κ‖L∞(R+)

(∫ a

0

|ρ− ϑ− h(τ) − ψ(0)|dτ + λ2

∫ a

0

|g(τ)|dτ + λ2a‖G‖β
)
.

From Lemma 7.1 we conclude that there exists a unique solution u of (4.1) defined on a maximal interval
[0, tmax).

It remains to prove that u has no finite-escape time, i.e., tmax = ∞. To this end we take σ ∈ [0, tmax).
Integrating (4.1) from 0 to σ, we obtain

u(σ) = u(0) +
∫ σ

0

κ(τ)
(
ρ− ϑ− h(τ) − ψ[g(τ) + (G(Φ(u)))(τ)]

)
dτ,

which implies

max
σ∈[0,t]

|u(σ)| ≤|u(0)| + ‖κ‖L∞(R+)

∫ t

0

|ρ− ϑ− h(τ) − ψ(0)|dτ

+ ‖κ‖L∞(R+)λ2

∫ t

0

|g(τ)|dτ + ‖κ‖L∞(R+)λ2

∫ t

0

|(G(Φ(u)))(τ)|dτ, ∀t ∈ [0, tmax).
(7.5)

Seeking a contradiction, suppose that tmax < ∞. Estimating the last integral in (7.5) and using (N4) (with
a = tmax) gives ∫ t

0

|(G(Φ(u)))(τ)|dτ ≤ √
t‖G‖

(∫ t

0

max
σ∈[0,τ ]

|(Φ(u))(σ)|2dτ
)1/2

≤ √
tmax‖G‖β

(∫ t

0

(1 + max
σ∈[0,τ ]

|u(σ)|)2dτ
)1/2

, ∀t ∈ [0, tmax).

(7.6)

Define U : [0, tmax) → R+ by U(t) := maxσ∈[0,t] |u(σ)|. From (7.5) and (7.6) we infer that there exist positive
constants β1 and β2 such that

U(t) ≤ β1 + β2

(∫ t

0

(1 + U2(τ))dτ
)1/2

, ∀t ∈ [0, tmax).

Consequently,

U2(t) ≤ 2β2
1 + 2β2

2tmax + 2β2
2

∫ t

0

U2(τ)dτ, ∀t ∈ [0, tmax).

An application of the Gronwall’s lemma shows that U2(t) ≤ (2β2
1 + 2β2

2tmax) exp(2β2
2tmax) for all t ∈ [0, tmax).

Therefore u is bounded on [0, tmax), contradicting, via Lemma 7.1, the supposition tmax <∞. �

We proceed to state the corresponding existence and uniqueness result for the initial-value problem (5.1):
the proof, which is based on Lemma 7.1, is similar to that of Theorem 7.3 and is omitted here.
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Theorem 7.4. Under the assumptions of Theorem 5.1, there exists a unique maximal solution u of (5.1) defined
on R+ (no finite-escape time).
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