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Abstract. The principle of low-gain integral control for finite-dimensional systems is well known.
More recently, low-gain integral control results have been obtained for classes of infinite-dimensional
systems. In this paper we show that integral control with a simple and natural adaptation of
the integrator gain achieves tracking of constant reference signals for every exponentially stable,
multivariable, well-posed, infinite-dimensional, linear system whose steady-state gain matrix has
its spectrum in the open right-half plane. Our results considerably extend, improve, and simplify
previous work by the authors [SIAM J. Control Optim. 35 (1997), pp. 78–116].
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1. Introduction. There has been much interest over the last twenty-five years in
low-gain integral control. Indeed, the following principle has become well established
(see Davison [2], Lunze [7], and Morari [10]): closing the loop around an asymptoti-
cally stable, finite-dimensional, continuous-time plant, with transfer-function matrix
G(s), compensated by an integrator (k/s)I (see Figure 1), will result in an asymp-
totically stable closed-loop system which achieves asymptotic tracking of arbitrary
constant reference signals, provided that the gain parameter k > 0 is sufficiently
small and the eigenvalues of the steady-state gain matrix G(0) have positive real
parts, i.e.,

spectrum(G(0)) ⊂ {s ∈ C | Re s > 0} .(1.1)

This principle has been extended to various classes of infinite-dimensional systems; see
Logemann and Townley [6] and the references therein. The generalization in [6] applies
to so-called regular well-posed systems. We remark that the class of well-posed linear
systems is the largest class of infinite-dimensional systems for which a well-developed
state-space and frequency-domain theory exists; see Curtain and Weiss [3], Salamon
[15], Staffans and Weiss [19], and Weiss [20], to mention just a few references. Well-
posed systems are rather general in the sense that they capture most distributed
parameter systems and all time-delay systems (retarded and neutral) which are of
interest in applications. A well-posed system is called regular if the average of its
step-response over [0, t] converges as t→ 0 (equivalently, if its transfer functions G(s)
converges as s → ∞ on the positive real axis). Whilst the authors believe that any
physically motivated well-posed linear system is regular, for a given well-posed system,
regularity can be difficult to check.

∗Received by the editors October 18, 2001; accepted for publication (in revised form) July 8, 2002;
published electronically February 4, 2003. This work was supported in part by UK EPSRC grant
GR/L78086.

http://www.siam.org/journals/sicon/41-6/39668.html
†Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

(hl@maths.bath.ac.uk).
‡School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom

(townley@maths.ex.ac.uk).

1722



ADAPTIVE LOW-GAIN INTEGRAL CONTROL 1723

✻–

❤✲
r

+
✲

e
k

s
I ✲

u
G(s) � ✲

y

Fig. 1. Low-gain control system.

One of the main issues in the design of low-gain integral controllers is the tuning of
the integrator gain k. There have been two basic approaches to the tuning problem—
either steady-state data from the plant is used off-line to determine suitable ranges
for the gain k (see, for example, [2], Logemann, Ryan, and Townley [5], or [7]) or else
simple on-line adaptive tuning of k is used (see, for example, Miller and Davison [8, 9]
in the finite-dimensional case and [6] in the infinite-dimensional case). Of particular
relevance here is a result in [6] which shows that the adaptive integral controller

u̇(t) = γ−p(t)(r − y(t)) , γ̇(t) = ‖r − y(t)‖2(1.2)

achieves asymptotic tracking of arbitrary constant reference signals r, provided that
the following three assumptions are satisfied:

(i) the plant is an exponentially stable, regular, well-posed, infinite-dimensional
system;

(ii) the steady-state gain matrix G(0) is symmetric and positive definite;
(iii) the parameter p in (1.2) satisfies p ∈ (0, 1/2).

We note that earlier work by Cook [1] shows that in the finite-dimensional single-
input single-output case, assumption (iii) can be relaxed to p ∈ (0, 1]. Of course, the
symmetry assumption in (ii) is restrictive and highly nonrobust, essentially limiting
the applications of the above result to single-input single-output systems. The main
result of this note (Theorem 3.1) shows that assumption (ii) can be replaced by the
considerably weaker assumption (1.1), that the regularity assumption in (i) can be
dropped, and that (iii) can replaced by p ∈ (0, 1]. Furthermore, in comparing the
results we present here to those in [6], the proofs are dramatically simplified and
more importantly give a clearer insight into the structure of the resulting closed-loop
system. We emphasize that our main result is new even in the finite-dimensional case.

Notation. R+ := [0,∞); for α ∈ R, set Cα := {s ∈ C | Re s > α}; let Z be a real
or complex Banach space; for α ∈ R, we define the exponentially weighted Lp-space
Lp
α(R+, Z) := {f ∈ Lp

loc(R+, Z) | f(·) exp(−α ·) ∈ Lp(R+, Z)} and endow it with the
norm ‖f‖p,α := ‖e−α ·f(·)‖Lp ; let H2(Cα, Z) denote the Hardy–Lebesgue space of
square-integrable holomorphic functions defined on Cα with values in Z; H∞(Cα, Z)
denotes the space of bounded holomorphic functions defined on Cα with values in
Z; B(Z1, Z2) denotes the space of bounded linear operators from a Banach space Z1

to a Banach space Z2; we write B(Z) for B(Z,Z); let A : dom(A) ⊂ Z → Z be a
linear operator, where dom(A) denotes the domain of A; the resolvent set of A and
the spectrum of A is denoted by �(A)and σ(A), respectively; the Laplace transform
is denoted by L.

2. Preliminaries on well-posed sytems. There are a number of equivalent
definitions of well-posed systems; see [3, 14, 15, 16, 17, 18, 19, 20, 21]. We will be
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brief in the following and refer the reader to the above references for more details.
Throughout this section, we shall be considering a well-posed system Σ with state-
space X, input space R

m, and output space R
m, generating operators (A,B,C), input-

output operator G, and transfer function G. Here X is a real Hilbert space with norm
denoted by ‖ · ‖, A is the generator of a strongly continuous semigroup T = (Tt)t≥0

on X, B ∈ B(Rm, X−1), and C ∈ B(X1,R
m), where X1 denotes the space dom(A)

endowed with the norm ‖x‖1 := ‖x‖ + ‖Ax‖ (the graph norm of A), whilst X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(λI−A)−1x‖, where
λ ∈ �(A) (different choices of λ lead to equivalent norms). Clearly, X1 ⊂ X ⊂ X−1

and the canonical injections are bounded and dense. The semigroup T restricts to a
strongly continuous semigroup on X1 and extends to a strongly continuous semigroup
on X−1 with the exponential growth constant being the same on all three spaces;
the generator of the restriction (extension) of T is a restriction (extension) of A; we
shall use the same symbol T (respectively, A) for the original semigroup (respectively,
generator) and the associated restrictions and extensions: with this convention, we
may write A ∈ B(X,X−1) (considered as a generator on X−1, the domain of A is X).
Moreover, the operator B is an admissible control operator for T, i.e., for each t ∈ R+

there exists αt ≥ 0 such that
∥∥∥∥
∫ t

0

Tt−τBu(τ)dτ

∥∥∥∥ ≤ αt‖u‖L2([0,t],Rm) ∀u ∈ L2([0, t],Rm) .

The operator C is an admissible observation operator for T, i.e., for each t ∈ R+ there
exists βt ≥ 0 such that

(∫ t

0

‖CTτx‖2dτ

)1/2

≤ βt‖x‖ ∀x ∈ X1 .

The control operator B is said to be bounded if it is so as a map from the input
space R

m to the state-space X; otherwise, it is said to be unbounded; the observation
operator C is said to be bounded if it can be extended continuously to X; otherwise,
C is said to be unbounded.

The so-called Λ-extension CΛ of C is defined by

CΛx = lim
s→∞, s∈R

Cs(sI −A)−1x ,

with dom(CΛ) consisting of all x ∈ X for which the above limit exists. For every
x ∈ X, Ttx ∈ dom(CΛ) for a.a. t ∈ R+, and, if ω > ω(T), then CΛTx ∈ L2

ω(R+,R
m),

where

ω(T) := lim
t→∞

1

t
ln ‖Tt‖

denotes the exponential growth constant of T. The transfer function G satisfies

1

s− λ
(G(s) −G(λ)) = −C(sI −A)−1(λI −A)−1B ∀ s, λ ∈ Cω(T), s �= λ ,(2.1)

and G ∈ H∞(Cω,R
m×m) for every ω > ω(T). Moreover, the input-output operator

G : L2
loc(R+,R

m) → L2
loc(R+,R

m) is continuous and shift-invariant; for every ω >
ω(T), G ∈ B(L2

ω(R+,R
m)) and

(L(Gu))(s) = G(s)(L(u))(s) ∀ s ∈ Cω, ∀u ∈ L2
ω(R+,R

m) .
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In the following, let λ ∈ Cω(T) be fixed but arbitrary. For x0 ∈ X and u ∈
L2

loc(R+,R
m), let x and y denote the state and output functions of Σ, respectively,

corresponding to the initial condition x(0) = x0 ∈ X and the input function u. Then

x(t) = Ttx
0 +

∫ t

0
Tt−τBu(τ)dτ for all t ∈ R+, x(t)− (λI −A)−1Bu(t) ∈ dom(CΛ) for

a.a. t ∈ R+,1 and

ẋ(t) = Ax(t) +Bu(t) , x(0) = x0 , for a.a. t ∈ R+ ,(2.2a)

y(t) = CΛ

(
x(t) − (λI −A)−1Bu(t)

)
+ G(λ)u(t) , for a.a. t ≥ 0 .(2.2b)

Of course, the differential equation (2.2a) has to be interpreted in X−1. Note that the
output equation (2.2b) yields the following formula for the input-output operator G:

(Gu)(t) = CΛ

[∫ t

0

Tt−τBu(τ)dτ − (λI −A)−1Bu(t)

]
+ G(λ)u(t)

∀u ∈ L2
loc(R+,R

m), for a.a. t ∈ R+.

(2.3)

In the following, we identify Σ and (2.2) and refer to (2.2) as a well-posed system.
We say that the well-posed system (2.2) is exponentially stable if ω(T) < 0. If the
well-posed system (2.2) is regular, i.e., the following limit

lim
s→∞, s∈R

G(s) = D

exists, then x(t) ∈ dom(CΛ) for a.a. t ∈ R+, the output equation (2.2b) simplifies to

y(t) = CΛx(t) +Du(t) , for a.a. t ≥ 0,

and

(Gu)(t) = CΛ

∫ t

0

Tt−τBu(τ)dτ +Du(t) ∀u ∈ L2
loc(R+,R

m) , for a.a. t ∈ R+ .

Moreover, in the regular case, we have that (sI − A)−1BR
m ⊂ dom(CΛ) for all

s ∈ �(A) and

G(s) = CΛ(sI −A)−1B +D ∀ s ∈ Cω(T) .

The matrix D ∈ R
m×m is called the feedthrough matrix of (2.2). We mention that if

the control operator B or the observation operator C is bounded, then (2.2) is regular.

3. Main result. We consider adaptive low-gain integral control of an exponen-
tially stable well-posed system of the form (2.2). By exponential stability, we may
assume w.l.o.g. that λ = 0 in (2.2b), and hence the plant equations are given by

ẋ = Ax+Bu , x(0) = x0 ∈ X ,(3.1a)

y = CΛ(x+A−1Bu) + G(0)u .(3.1b)

Let r ∈ R
m be a given reference vector and consider the following simple adaptive

low-gain integral controller:

u̇ = γ−p(r − y) , u(0) = u0 ∈ R
m ,(3.2a)

γ̇ = ‖r − y‖2 , γ(0) = γ0 > 0 ,(3.2b)

1 It was stated in [21] (without proof) that, for arbitrary u ∈ L2
loc(R+,Rm), x(t) − (λI −

A)−1Bu(t) ∈ dom(CΛ) for a.a. t ∈ R+ and the output formula (2.2b) holds. The proof can be
found in [19].
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where 0 < p ≤ 1. The closed-loop system is then given by

ẋ = Ax+Bu , x(0) = x0 ∈ X ,(3.3a)

u̇ = γ−p
(
r − CΛ(x+A−1Bu) −G(0)u

)
, u(0) = u0 ∈ R

m ,(3.3b)

γ̇ = ‖r − CΛ(x+A−1Bu) −G(0)u‖2 , γ(0) = γ0 > 0 .(3.3c)

Let T > 0. A continuous function (x, u, γ) : [0, T ) → X × R
m × R is called a solution

of (3.3) if (x(0), u(0), γ(0)) = (x0, u0, γ0), (x, u, γ) is absolutely continuous on [0, t] as
a (X−1 × R

m × R)-valued function for every t ∈ (0, T ) and the differential equations
in (3.3) are satisfied almost everywhere on [0, T ).

Our main result, Theorem 3.1, shows that the controller (3.2) achieves tracking of
constant reference signals for all exponentially stable well-posed systems (3.1) whose
steady-state gain matrix G(0) satisfies σ(G(0)) ⊂ C0.

Theorem 3.1. Assume that the well-posed system (3.1) is exponentially stable
with σ(G(0)) ⊂ C0 and that 0 < p ≤ 1 in (3.2). Let r ∈ R

m be given and define
ur := [G(0)]−1r. Then, for all (x0, u0, γ0) ∈ X × R

m × (0,∞), there exists a unique
solution (x, u, γ) : R+ → X × R

m × (0,∞) of the closed-loop system (3.3) and the
following statements hold:

(1) limt→∞ γ(t) = γ∞ <∞ ;
(2) u− ur ∈ L2(R+,R

m) and limt→∞ u(t) = ur ;
(3) x+A−1Bur ∈ L2(R+, X) and limt→∞ ‖x(t) +A−1Bur‖ = 0 ;
(4) e := r − y ∈ L2(R+,R

m) and e admits a decomposition of the form e =
e1 + e2, where e1 ∈ C(R+,R

m), e2 ∈ L2
ω(R+,R

m) for every ω > ω(T), and
limt→∞ e1(t) = 0 ; moreover, if there exists t0 ≥ 0 such that Tt0(Ax0+Bu0) ∈
X, then e ∈ C([t0,∞),Rm) and limt→∞ e(t) = 0.

Proof. As in [6] it can be proved that there exists a unique maximally defined
solution (x, u, γ) : [0, T ) → X × R

m × (0,∞) to the closed-loop system (3.3), where
T = ∞ if γ is bounded on [0, T ). To analyze the stability of the closed-loop system
(3.3), we use a change of coordinates. Define

z(t) := x(t) +A−1Bu(t) , v(t) := u(t) − ur ;(3.4)

it follows from (3.1) and (3.2) that

ż(t) = Az(t) + γ−p(t)A−1Be(t) , for a.a. t ∈ [0, T ) ,(3.5a)

v̇(t) = γ−p(t)e(t) , for a.a. t ∈ [0, T ) ,(3.5b)

where

e(t) := r − y(t) = − (CΛz(t) + G(0)v(t)) , for a.a. t ∈ [0, T ) .(3.6)

Of course, the derivative on the left-hand side of (3.5a) has to be interpreted in X−1.
There are two advantages to viewing the closed-loop system in the coordinates (3.4):
the unbounded B in (3.1a) is replaced by a bounded A−1B and it turns out that
the stability of −G(0) is easier to exploit in the (z, v)-coordinates than in the (x, u)-
coordinates.

To proceed, we use the stability of −G(0) to obtain the existence of Q = QT ∈
R

m×m with Q > 0 such that

QG(0) + G(0)TQ = I.(3.7)



ADAPTIVE LOW-GAIN INTEGRAL CONTROL 1727

Furthermore, using the exponential stability of T and the admissibility of C, a stan-
dard argument (see the appendix) shows that there exists P = P ∗ ∈ B(X) with P ≥ 0
and such that

〈Ax1, Px2〉 + 〈Px1, Ax2〉 = −〈x1, x2〉 − 〈Cx1, Cx2〉 ∀x1, x2 ∈ X1 .(3.8)

Our aim is to show that γ is bounded on [0, T ), from which we will deduce that T = ∞
and that statements (1)–(4) hold. To this end, define a function V : [0, T ) → R+ by

V (t) = 〈z(t), P z(t)〉 + 〈v(t), Qv(t)〉 ∀ t ∈ [0, T ) ,

where the first inner product is taken in X and the second inner product is the
standard inner product in R

m. Since, due to lack of regularity of z as a X-valued
function, V is in general not differentiable, we adopt an approximation argument.
Define

zn(t) := Ttz
0
n +A−1

∫ t

0

Tt−τBγ
−p(τ)e(τ)dτ ∀ t ∈ [0, T ) ,

where z0
n ∈ X1 is such that z0

n → z(0) = x0 +A−1Bu0 as n→ ∞. Clearly, zn(t) ∈ X1

for all t ∈ [0, T ). It follows from the admissibility of B and well-known results on
abstract Cauchy problems (see [11, p. 109]) that zn is absolutely continuous as a
X-valued function and

żn(t) = Azn(t) + γ−p(t)A−1Be(t) , for a.a. t ∈ [0, T ) .

Therefore, the function

Vn : [0, T ) → R+ , t �→ 〈zn(t), P zn(t)〉 + 〈v(t), Qv(t)〉

is absolutely continuous. Invoking (3.5)–(3.8), we compute the derivative of Vn to be

V̇n = −‖zn‖2 − ‖Czn‖2 + 2γ−p〈zn, PA−1Be〉 − γ−p‖v‖2 − 2γ−p〈v,QCΛz〉.(3.9)

Integrating (3.9) from s to t, where 0 ≤ s ≤ t < T , we obtain

Vn(t) − Vn(s) = −
∫ t

s

(‖zn(τ)‖2 + ‖Czn(τ)‖2 + γ−p‖v(τ)‖2

− 2γ−p(τ)〈zn(τ), PA−1Be(τ)〉 + 2γ−p(τ)〈v(τ), QCΛz(τ)〉) dτ.(3.10)

It follows from (3.5a) that z(t) := Ttz(0)+A−1
∫ t

0
Tt−τBγ

−p(τ)e(τ)dτ , showing that
z(t) − zn(t) = Tt(z(0) − z0

n) for all t ∈ [0, T ) and hence for all t ∈ [0, T )

lim
n→∞ ‖z(t) − zn(t)‖ = 0, lim

n→∞ ‖z − zn‖L2(0,t) = 0, lim
n→∞ ‖CΛz − CΛzn‖L2(0,t) = 0,

where the last limit follows from the admissibility of C. Consequently, letting n→ ∞
in (3.10), we may conclude that

V (t) − V (s) = −
∫ t

s

(‖z(τ)‖2 + ‖CΛz(τ)‖2 + γ−p‖v(τ)‖2

− 2γ−p(τ)〈z(τ), PA−1Be(τ)〉 + 2γ−p(τ)〈v(τ), QCΛz(τ)〉) dτ.(3.11)
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Denoting the integrand on the right-hand side of (3.11) by f(τ) and using (3.6),
routine estimates give

f ≥ ‖z‖2 + ‖CΛz‖2 + c1γ
−p‖G(0)v‖2

− c2γ
−p (‖z‖‖CΛz‖ + ‖z‖‖G(0)v‖ + ‖CΛz‖‖G(0)v‖)

≥ ‖z‖2 + ‖CΛz‖2 + c1γ
−p‖G(0)v‖2 − c2γ

−p
(‖z‖2 + ‖CΛz‖2

)
− c2γ

−p
(
λ‖z‖2 + ‖G(0)v‖2/λ

)− c2γ
−p

(
λ‖CΛz‖2 + ‖G(0)v‖2/λ

)
,(3.12)

where c1, c2 > 0 are suitable constants and λ > 0 is arbitrary. In the following we
choose

λ = 4c2/c1 .(3.13)

We show that γ is bounded on [0, T ). If

γ−p(τ) > 1/[2c2(1 + λ)] ∀ t ∈ [0, T ) ,(3.14)

then there is nothing to prove. So assume that (3.14) does not hold. Then, by
monotonicity of γ, there exists t0 ∈ [0, T ) such that

γ−p(τ) ≤ 1/[2c2(1 + λ)] ∀ t ∈ [t0, T ) .

Combining this with (3.12) and (3.13) yields

f(τ) ≥ (‖z(τ)‖2 + ‖CΛz(τ)‖2 + c1γ
−p(τ)‖G(0)v(τ)‖2

)
/2

≥ c3γ
−p(τ)

(‖CΛz(τ)‖2 + ‖G(0)v(τ)‖2
) ∀ t ∈ [t0, T ) ,

where c3 > 0 is a suitable constant. Noting that

‖r − y‖2 = ‖e‖2 = ‖CΛz + G(0)v‖2 ≤ 2
(‖CΛz‖2 + ‖G(0)v‖2

)
,

we see that there exists a constant c4 > 0 such that

f(τ) ≥ c4γ
−p(τ)‖r − y(τ)‖2 ∀ τ ∈ [t0, T ) .

Therefore, by (3.11),

V (t) − V (t0) = −
∫ t

t0

f(τ)dτ ≤ −c4
∫ t

t0

γ−p(τ)‖r − y(τ)‖2dτ ∀ t ∈ [t0, T ) .(3.15)

But γ̇ = ‖r − y‖2, and hence, by (3.15),

∫ γ(t)

γ(t0)

w−pdw =

∫ t

t0

γ−p(τ)γ̇(τ)dτ ≤ V (t0)/c4 ∀ t ∈ [t0, T ) .

Since 0 < p ≤ 1, this inequality implies that γ is bounded on [0, T ), showing that
T = ∞ and also establishing statement (1).

To prove statements (2) and (3) note that

e ∈ L2(R+,R
m) ,(3.16)
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which follows immediately from the boundedness of γ and the fact that γ̇ = ‖e‖2.
Since (A,A−1B,C) are the generators of an exponentially stable regular system (with
zero feedthrough), it follows from (3.5a) and (3.16) that

lim
t→∞ ‖z(t)‖ = 0 , z ∈ L2(R+, X) , CΛz ∈ L2(R+,R

m).(3.17)

Using that CΛz ∈ L2(R+,R
m), it follows from (3.6), (3.16), and the invertibility

of G(0) that v ∈ L2(R+,R
m). But by (3.5b) and (3.16) we also have that v̇ ∈

L2(R+,R
m), showing that limt→∞ v(t) = 0 and completing the proof of statement

(2). Since x + A−1Bur = z + A−1B(ur − u), statement (3) follows from statement
(2) and (3.17).

To prove statement (4), we first note that we have already shown that e ∈
L2(R+,R

m), and so

u̇ ∈ L2(R+,R
m) .(3.18)

We recall that G denotes the input-output operator of (3.1). Define a shift-invariant
operator H : L2

loc(R+,R
m) → L2

loc(R+,R
m) by setting

(Hw)(t) :=

∫ t

0

((Gw)(τ) −G(0)w(τ)) dτ ∀w ∈ L2
loc(R+,R

m) ∀ t ∈ R+ .

The transfer function H of H is given by H(s) = (G(s)−G(0))/s. Clearly, for every
ω > ω(T)

H ∈ H2(Cω,C
m×m) ∩H∞(Cω,C

m×m) ,

showing in particular that H is bounded, i.e., H ∈ B(L2(R+,R
m)). Using that G

commutes with the integration operator (by shift-invariance), a routine calculation
gives

Gu = Hu̇+ G(0)u+G(u0θ) −G(0)u0 ,

where θ denotes the unit-step function. Invoking the output formula y = CΛTx
0+Gu,

we may write e = r − y = e1 + e2, where

e1 := G(0)(ur − u) −Hu̇ , e2 := G(0)u0 −G(u0θ) − CΛTx
0 .

Clearly, e1 is continuous. Using (3.18) and the boundedness of H and G, it follows that
Hu̇ and (d/dt)(Hu̇) are in L2(R+,R

m) and hence limt→∞(Hu̇)(t) = 0. Combining
this with statement (2) shows that limt→∞ e1(t) = 0. Let ω > ω(T). To prove that
e2 ∈ L2

ω(R+,R
m), it is sufficient to show that g := G(0)u0 − G(u0θ) ∈ L2

ω(R+,R
m).

But (Lg)(s) = −H(s)u0, and so Lg ∈ H2(Cω,C
m), which in turn implies (by a well-

known result of Paley and Wiener, see [12, p. 405]) that g ∈ L2
ω(R+,R

m). Finally,
assume that there exists t0 ≥ 0 such that Tt0(Ax0 + Bu0) ∈ X. Taking the Laplace
transform of e2 gives

(Le2)(s) = (G(0) −G(s))u0/s− C(sI −A)−1x0 ∀ s ∈ Cω .

Invoking (2.1) leads to

(Le2)(s) = −C(sI −A)−1A−1Bu0 − C(sI −A)−1x0

= −C(sI −A)−1A−1(Ax0 +Bu0) ∀ s ∈ Cω,



1730 HARTMUT LOGEMANN AND STUART TOWNLEY

implying that e2(t) = −CΛTtA
−1(Ax0+Bu0) for a.a. t ∈ R+. Hence, since Tt0(Ax0+

Bu0) ∈ X,

e2(t) = −CTt−t0A
−1Tt0(Ax0 +Bu0) , for a.a. t ≥ t0 ,

showing that e2, and hence e, is continuous on [t0,∞) and limt→∞ e2(t) = 0 =
limt→∞ e(t).

Remark 3.2. (1) Statement (4) in Theorem 3.1 shows that the tracking error e
becomes small in the sense that e = e1 + e2, where e1(t) converges to 0 as t → ∞,
e1 ∈ L2(R+,R

m), and e2 ∈ L2
ω(R+,R

m) for ω > ω(T). This implies, in particular,
“tracking in measure,” i.e., for all ε > 0 we have that

lim
τ→∞µL ({t ≥ τ | ‖e(t)‖ ≥ ε}) = 0 ,

where µL denotes the Lebesgue measure on R+. The last part of statement (4)
shows that “asymptotic tracking” (i.e., limt→∞ e(t) = 0) is guaranteed, provided
that Tt0(Ax0 + Bu0) ∈ X for some t0 ≥ 0 (which, for example, is the case if T is
holomorphic).

(2) Under the conditions of Theorem 3.1, it is easy to see that if Tt0x
0 ∈ X1 for

some t0 ≥ 0 and the convolution kernel of G is a finite (matrix-valued) Borel measure,
then limt→∞ e(t) = 0.

(3) Combining the above change of coordinates technique with the approach in [4],
it can be shown that the adaptation law (3.2b) can be generalized to γ̇(t) = ‖r−y(t)‖q
for arbitrary q ≥ 1.

(4) Theorem 3.1 remains true if we replace the finite-dimensional input space R
m

by an arbitrary real Hilbert space; the proof carries over word for word to this more
general situation.

(5) Suppose that the parameter p in (3.2a) satisfies p ∈ (0, 1]. Then, by Theorem
3.1, for the adaptive low-gain integral controller (3.2) to achieve its objective, it is
sufficient that the following two assumptions are satisfied:

(i) the semigroup generated by A is exponentially stable;
(ii) σ(G(0)) ⊂ C0.

It can be shown that if the well-posed system (2.2) is low-gain integral stabilizable,
i.e., there exists k∗ ∈ (0,∞] such that (2.2) is exponentially stabilized by the integrator
u̇ = −ky for all k ∈ (0, k∗), then σ(A) ∩ C0 = ∅ and σ(G(0)) ⊂ C0. Note that these
necessary conditions for low-gain integral stabilizability are only “slightly weaker”
than the sufficient conditions (i) and (ii) for adaptive low-gain integral control. Simple
counterexamples (see the appendix) show that low-gain integral stabilizability does
not imply either of the above conditions (i) or (ii).

(6) If, in (3.2a), p > 1, then in general the adaptive controller fails, that is, the
conclusions of Theorem 3.1 are not valid. To see this, consider the case of an expo-
nentially stable regular single-input single-output system with C = 0 and feedthrough
D = 1. Then G(s) ≡ G(0) = D = 1. Suppose that r = 0, so that y(t) = u(t). Let
p = 1 + ε, where ε > 0. Then (3.2) becomes

u̇ = −γ−(1+ε)u , u(0) ∈ R ,
γ̇ = u2 , γ(0) > 0 ,

from which it follows that uu̇ = −γ−(1+ε)γ̇. Integration from 0 to t yields

u2(t) = u2(0) +
2

ε

(
γ−ε(t) − γ−ε(0)

)
.
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If u(0) >
√

2γ−ε(0)/ε, then limt→∞ u(t) > 0, and so the tracking of r = 0 is not
achieved.

4. Appendix.

Existence of a self-adjoint positive semidefinite solution to the Lya-
punov equation (3.8). It follows from the exponential stability of T and the ad-
missibility of C that the bilinear form F : X ×X → R defined by

F (x1, x2) :=

∫ ∞

0

〈Ttx1,Ttx2〉dt+

∫ ∞

0

〈CΛTtx1, CΛTtx2〉dt

is bounded. Consequently, there exists P ∈ B(X) such that F (x1, x2) = 〈x1, Px2〉 for
all x1, x2 ∈ X (see [13, Theorem 12.8, p. 296]). It is clear that P = P ∗ ≥ 0. Moreover,

〈Ax1, Px2〉 + 〈Ax2, Px1〉 =

∫ ∞

0

d

dt
〈Ttx1,Ttx2〉 +

∫ ∞

0

d

dt
〈CTtx1, CTtx2〉

= −〈x1, x2〉 − 〈Cx1, Cx2〉 ∀x1, x2 ∈ dom(A2) .

Since dom(A2) is dense in X1, A ∈ B(X1, X), and C ∈ B(X1,R
m) the above identity

extends to all of X1, showing that (3.8) holds.

Counterexamples showing that low-gain integral stabilizability does not
imply conditions (i) or (ii) in part (5) of Remark 3.2. Consider the finite-
dimensional system (with zero feedthrough) given by

A =

(
0 1
0 −1

)
, B =

(
0
1

)
, C = (1/2, 1).

This system is integral stabilizable (with k∗ = ∞), but 0 ∈ σ(A), showing that
condition (i) in part (5) of Remark 3.2 does not hold.

The finite-dimensional system given by

A =

( −2 0
0 −2

)
, B =

(
0 −1

−1 0

)
, C =

(
1 0
0 1

)
, D =

(
0 −1
1 0

)

is integral stabilizable (with k∗ = ∞). However, the transfer function is given by

G(s) = C(sI −A)−1B +D =


 0 −s+ 1

s+ 2
s+ 1

s+ 2
0


 ,

and thus σ(G(0)) = {± i/2}, showing that condition (ii) in part (5) of Remark 3.2
does not hold.
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