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Summary

We derive, in an input-output setting, absolute stability results of Popov and
circle-criterion-type for discrete-time non-linear feedback systems, where the lin-
ear part is the series interconnection of an l2-stable shift-invariant linear system
pre-compensated by an integrator. We apply this discrete-time stability theory to
obtain input-output results on low-gain integral control of discrete-time systems
in the presence of actuator and sensor non-linearities. This discrete-time theory
is in turn applied to develop a low-gain sampled-data integral control strategy for
tracking of constant reference signals in the context of L2-stable shift-invariant lin-
ear systems subject to non-decreasing globally Lipschitz actuator non-linearities.
It is shown that applying error feedback using a sampled-data integral controller
ensures that the tracking error is asymptotically small in a certain sense, provided
that (a) the transfer function of the linear system is holomorphic in a neighbour-
hood of 0, (b) the steady-state gain is positive, (c) the reference value is feasible
in an entirely natural sense, and (d) the positive-valued (possibly time-varying)
integrator gain is ultimately sufficiently small and not summable. Generalised as
well as ideal samplers are considered together with zero-order hold. In the case of
ideal sampling sensor non-linearities can also be included. The discrete-time and
sampled-data input-output results are applied to infinite-dimensional state-space
settings. Applications of the discrete-time stability theory to numerical linear
multistep methods are also discussed.
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Chapter 1

Introduction

The term absolute stability refers to the study of the stability of an entire family
of systems. Consider the feedback system shown in Figure 1.1, where L is a linear
shift-invariant system and N is a (possibly time-varying) static non-linearity. For
simplicity, we assume that L and N are ‘scalar’ systems, that is, L and N have
only one input and one output channel. A sector condition for N is a condition
of the form

a1v
2 ≤ N(t, v)v ≤ a2v

2, ∀ (t, v) ∈ R+ × R, (1.1)

where −∞ ≤ a1 ≤ a2 ≤ ∞ and at least one of the sector bounds a1 and a2 is fi-
nite. Standard examples of sector-bounded non-linearities are given by deadzone
and saturation (see, for example, Figure 1.2), both of which arise naturally in
control engineering. An absolute stability result for the feedback system shown
in Figure 1.1 is a stability criterion in terms of the transfer function or the fre-
quency response of the linear system L and the sector bounds a1 and a2 of the
non-linearity N . Given a linear system L and sector data a1 and a2, an abso-
lute stability criterion guarantees closed-loop stability for all non-linearities N
satisfying the sector condition (1.1).

Absolute stability problems and their relations to positive-real conditions have
played a prominent role in systems and control theory and permeate much of
the classical and modern control literature, see Fliegner et al. [19], Haddad and
Kapila [22], Halanay and Rǎsvan [23], Hu and Lin [28], Khalil [31], Szegö and
Pearson [58], Vidyasagar [62] for the finite-dimensional case, and Corduneanu
[3], Curtain et al. [9, 10], Curtain and Oostveen [11], Desoer and Vidyasagar
[15], Logemann and Curtain [33], Logemann and Ryan [38], Vidyasagar [62] and
Wexler [66, 67] for the infinite-dimensional case, to mention just a few references.
In the finite-dimensional case there are a large number of results available in the
literature, many of which have been obtained by Lyapunov techniques applied
to state-space models with the so-called Kalman-Yakubovich-Popov (or positive-
real) lemma playing a crucial role. In the infinite-dimensional case the literature
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Figure 1.2: Non-linearity with saturation and deadzone

on absolute stability problems is dominated by input-output approaches.

Of particular importance in the context of static non-linearities, are absolute
stability results of circle-criterion type and those of Popov-type, each applicable
to the feedback system shown in Figure 1.1. In recent papers, Curtain, Logemann
and Staffans [9, 10] presented continuous-time absolute stability results of Popov
and circle-criterion type in infinite-dimensions. In [9] these results are applied
in the context of integral control in the presence of input/output non-linearities.
The conjunction of the series interconnection of a stable system pre-compensated
by an integrator and non-linearities with possibly zero lower gain that is, a1 = 0
in (1.1) (so-called critical cases of circle and Popov criteria) is a distinguishing
feature of [9] and [10]. The approach taken in [9] and [10] is the input-output
approach as opposed to the state-space approach.

While most of the available absolute-stability literature is devoted to continuous-
time systems, there are still a considerable number of references which treat
discrete-time systems; see, for example, [15], [23], [28], [58] and [62]. In this the-
sis we consider a discrete-time absolute stability problem for the feedback system
shown in Figure 1.3. A unique feature of discrete-time integral control is the
different choices of integrator J and J0, where J is a strictly causal integrator,
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whereas integrator J0 has direct feedthrough. The input-output operator G is
assumed to be l2-stable, linear, and shift-invariant. Consequently, G has a trans-
fer function G which is analytic and bounded on the exterior of the closed unit
disc in the complex plane. The (possibly time-varying) non-linearity ϕ is sector
bounded with potentially zero lower gain. Corresponding to the two integrators
J and J0 we consider slightly different positive real conditions. Let ε ≥ 0 and
q ≥ 0. For integrator J :

P +
1

2

[
qG(eiθ) +

1

eiθ − 1
QG(eiθ) + qG∗(eiθ) +

1

e−iθ − 1
G∗(eiθ)Q∗

]
≥ εI, (1.2)

and for integrator J0:

P +
1

2

[
qG(eiθ) +

eiθ

eiθ − 1
QG(eiθ) + qG∗(eiθ) +

e−iθ

e−iθ − 1
G∗(eiθ)Q∗

]
≥ εI, (1.3)

where (1.2) and (1.3) hold for a.a θ ∈ (0, 2π), P : U → U denotes a linear,
bounded, self-adjoint operator, Q : U → U denotes a linear, bounded, invertible
operator and U denotes a Hilbert space.

In this thesis, the main motivation for studying discrete-time absolute stability
problems is to develop an input-output theory of low-gain integral control of
discrete-time systems and low-gain sampled-data integral control, in the presence
of static input and/or output non-linearities.

The low-gain integral control problem has its roots in control engineering, where
it is often required that the output y of a system tracks a constant reference
signal r, that is, the error e(t) := y(t) − r should be small in some sense for
large t. It is well-known (see, for example, Davison [14], Lunze [44] and Morari
[46]) that, for exponentially stable continuous-time shift-invariant linear finite-
dimensional systems with positive steady-state gain (that is, G(0) > 0), this can
be achieved by feeding the error into an integrator with sufficiently small positive

- e
6

- ϕ - G - J/J0
r -

u yr

−
+

Figure 1.3: Discrete-time feedback system with choice of integrator
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gain parameter and then closing the feedback loop.

There is a wealth of recent research on low-gain integral control, see, for example,
Fliegner et al. [17, 18, 19], for the non-linear finite-dimensional case, Curtain et al.
[9], Fliegner et al. [16], Logemann and Curtain [33], Logemann and Mawby [34],
Logemann and Ryan [36, 37, 39], Logemann et al. [40], for the non-linear infinite-
dimensional case and Logemann and Townley [42, 43] for the linear infinite-
dimensional case. With the exception of [9] and [39] the above references adopt
a state-space approach. Whilst most of the above references are concerned with
continuous-time systems, there are a number of references which consider discrete-
time and sampled-data systems, see for example, [17, 34, 37, 42].

We now give some additional details on the problems considered. Chapter 2 con-
sists of some preliminaries required for the rest of the thesis. In Chapter 3, we
discuss three key notions; the convolution of two sequences, the Z -transform of
a sequence, and transfer functions of bounded, linear, shift-invariant operators
on l2. We introduce the concepts of asymptotic steady-state gain, l2-steady-state
gain and step error, in discrete-time. We conclude this chapter by proving exis-
tence and uniqueness results for the discrete-time closed loop systems considered
in Chapter 4.

In Chapter 4, we derive discrete-time analogues of the continuous-time absolute
stability results of [9] and [10]. Results of Popov and circle-criterion-type are
presented for both a strictly causal discrete-time integrator J and an integrator
J0 with direct feedthrough. We also derive incremental versions of the circle-
criterion-type results.

In Chapter 5, we apply the discrete-time absolute stability results of Chapter
4 (with strict positive real condition, that is, ε > 0 in (1.2) and (1.3)) to the
low-gain integral control problem with input/output non-linearities and output
disturbances, see Figure 5.3. In the case of constant gain and static input non-
linearities it is shown that single-input single-output tracking of constant refer-
ence values is achievable, provided that, the reference value is feasible in some
entirely natural sense, the steady-state gain is positive (that is, G(1) > 0), G(z)
is “well-behaved” as z → 1 for |z| > 1 and the input non-linearity satisfies a
local Lipschitz condition and is non-decreasing. Tracking of constant reference
values is shown to persist in the presence of a large class of output disturbances,
provided the integrator gain is in some interval (0, k∗), where k∗ is determined
by the quantities

sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
.
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for the J integrator and

sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]}
.

for the J0 integrator.

In the case of time-varying gain and static input and output non-linearities, it
is shown that single-input single-output tracking of constant reference values is
achievable, provided that, the reference value is feasible in some entirely natural
sense, G(1) > 0, G(z) is “well-behaved” as z → 1 for |z| > 1, the input/output
non-linearities are non-decreasing and globally Lipschitz continuous. As before,
tracking of constant reference values is shown to persist in the presence of a
large class of output disturbances, provided the time-varying integrator gain is
non-negative, not summable and bounded above in terms of the quantity,

ess infθ∈(0,2π)Re

[
G(eiθ)

eiθ − 1

]
,

for the J integrator and

ess infθ∈(0,2π)Re

[
G(eiθ)eiθ

eiθ − 1

]
,

for the J0 integrator.

Chapter 6 is devoted to applications of the results in Chapters 4 and 5 to infinite-
dimensional discrete-time state-space systems. We introduce the concept of a
power stable system and a strongly stable system. We provide a non-trivial
example of a strongly stable system which is not power stable. The absolute
stability results from Chapter 4 with strict positive real condition (that is, ε > 0
in (1.2) and (1.3)) are then applied to strongly stable state-space systems and the
absolute stability results with non-strict positive real condition (that is, ε = 0 in
(1.2) and (1.3)) are applied to power stable systems. The results from Chapter 5
are applied to strongly stable state-space systems.

To enable applications of the discrete-time integral control results (see Chapter
5) to sampled-data systems, we study sample-hold discretisations of linear, shift-
invariant, continuous-time systems. Previously, using an input-output approach,
Helmicki, Jacobson and Nett [24, 25] studied sample-hold discretisations of dis-
tributed parameter systems belonging to the Callier-Desoer algebra. In Chapter
7, the setting is more general than in [24, 25]. At the basis of our considerations
are the algebra of continuous-time shift-invariant bounded linear input-output
operators on L2 and the subalgebra consisting of all convolution operators with
bounded measure kernels. We introduce the concepts of asymptotic steady-state
gain, L2-steady-state gain and step error, in continuous-time. We give results for

11
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continuous-time systems which, under certain natural conditions, guarantee the
existence of the various steady-state gains. The main contributions of Chapter
7 are results on the behaviour of the continuous-time steady-state under sample-
hold discretisations as illustrated in Figure 1.4, where Gc is a L2-stable shift-
invariant linear input-output operator, H is the zero-order hold operator and S
is a generalised sampling operator. It is shown that the sample-hold discretisation
of Gc, defined by G := SGcH, is a l2-stable shift-invariant linear input-output
operator. Furthermore, we show that under a certain mild assumption on Gc, the
L2-steady-state gain of Gc and the l2-steady-state gain of G exist and coincide.
Under suitable restrictions on Gc, namely that Gc is given by convolution with
a (matrix-valued) Borel measure, it is shown that this result remains true if the
generalized sampling operator S is replaced by ideal sampling.

In Chapter 8 we apply the discrete-time theory of Chapter 5 in the context of
sampled-data low-gain integral control. In the presence of a static input non-
linearity both constant and time-varying gains are considered together with gen-
eralised sampling. With the additional inclusion of a static output non-linearity,
we consider time-varying gain with idealised sampling, but restrict to continuous-
time systems given by convolution with measure. Results are presented which
guarantee that the continuous-time tracking error is asymptotically small in a
certain sense, provided that, the reference value is feasible in some entirely nat-
ural sense, the steady-state gain is positive (that is, Gc(0) > 0), Gc satisfies a
mild assumption, and the positive-valued (possibly time-varying) integrator gain
is ultimately sufficiently small and not summable. The results in Chapter 8 allow
for a large class of output disturbances. We briefly discuss how through various
choices of weighting function, associated with the generalised sampling operator,
we can weaken some of the technical assumptions imposed in the statements of
the results in Chapter 8.

Chapter 9 consists of applications of the input-output theory developed in Chap-
ter 8 to infinite-dimensional well-posed state-space systems.

In Chapter 10, we apply results from Chapter 4 in order to study an important
area of research in numerical analysis, namely, the long term behaviour of solu-
tions of numerical methods. In particular, we discuss stability of a particular class

12



of numerical methods, the so-called linear multistep methods. Stability analy-
sis of linear multistep methods has previously been considered in Dahlquist [13],
Nevanlinna and Odeh [49] and Nevanlinna [47, 48]. We derive stability results
for linear multistep methods by applying some of the discrete-time absolute sta-
bility theory contained in Chapter 4 to a convolution equation which represents
a general linear multistep method.

In Chapter 11, we briefly discuss future research topics related to this thesis.

Some technicalities have been relegated to the Appendices (Chapter 12).
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Chapter 2

Notation and preliminaries

Notation

The following notation shall be used throughout the thesis.

We define Z+ := {x ∈ Z | x ≥ 0}, R+ := {x ∈ R | x ≥ 0} and N := Z+ \ {0}.
Let X be a Banach space and U be a Hilbert space. Let F (Z+, X) denote the
set of X-valued functions defined on Z+ and let F (R+, X) denote the set of
X-valued functions defined on R+. For 1 ≤ p ≤ ∞, let lp(Z+, X) denote the
lp-space of unilateral X-valued sequences. In the special case X = C, we write
lp(Z+) for lp(Z+,C), F (Z+) for F (Z+,C) and F (R+) for F (R+,C). For c ∈ C
and R > 0 define B(c, R) := {z ∈ C | |z − c| < R}. We define B := B(0, 1).
For α > 0 define Eα := {z ∈ C | |z| > α} = C \ B(0, α). For α ∈ R define
Cα := {s ∈ C | Re s > α}. We denote by T the boundary of the set E1 which is
also the boundary of B. A set S ⊂ X is called a sphere centred at z ∈ X if there
exists η ≥ 0 such that S = {x ∈ X | ‖x − z‖ = η}. For a function f : Z+ → X
and a subset V ⊂ X, we say that f(n) approaches V as n→∞ if

dist(f(n), V ) = inf
v∈V

‖f(n)− v‖ → 0.

For a set V ⊂ X, we denote by cl(V ) or V the closure of V in X and by int(V ) the
interior of V . We say that V ⊂ X is precompact if its closure is compact. We use
B(X1, X2) to denote the space of bounded linear operators from a Banach space
X1 to a Banach space X2; we write B(X) for B(X,X). We define ϑ ∈ F (Z+)
by ϑ(n) = 1 for all n ∈ Z+ and ϑc ∈ F (R+) by ϑc(t) = 1 for all t ∈ R+.

For τ ≥ 0, the right-shift operator Sτ : F (R+, X) → F (R+, X) is defined by,

(Sτy)(t) :=

{
0, if t ∈ [0, τ),

y(t− τ), if t ≥ τ.

14



We say that G : F (R+, X) → F (R+, X) is (right) shift-invariant if GSτ = SτG
for all τ ≥ 0.

Let I denote the integral operator given by

(I u)(t) =

∫ t

0

u(s) ds, ∀ u ∈ L1
loc(R+, X), t ∈ R+.

For any f ∈ L1(T, X), we define the Fourier coefficients of f by the formula,

f̃(n) =
1

2π

∫ 2π

0

f(eiθ)e−inθ dθ, n ∈ Z.

We thus associate with each f ∈ L1(T, X) a function f̃ : Z → X. The Fourier
series of f is

∞∑
n=−∞

f̃(n)einθ.

The subspace of all functions w ∈ F (Z+, X) which admit a decomposition of the
form w = w0ϑ + w1 where w0 ∈ X and w1 ∈ lp(Z+, X) for p < ∞ is denoted
by mp(Z+, X) := X + lp(Z+, X) (again in the special case X = C we denote
mp(Z+,C) by mp(Z+)). Endowed with the norm

‖w‖mp := ‖w0‖+ ‖w1‖lp ,

the space mp(Z+, X) is complete. Let C∞(R+, X) denote the space of infinitely
differentiable functions defined on R+ with values inX. A function f ∈ F (R+, X)
is called piecewise continuous if there exists a sequence 0 = t0 < t1 < t2 < . . .
such that limk→∞ tk = ∞, f is continuous on each of the intervals (tk, tk+1)
and the right and left limits of f exist at each tk. We denote the space of all
piecewise continuous functions f ∈ F (R+, X) by PC(R+, X). For α ∈ R, we
define the exponentially weighted Lp-space Lp

α(R+, X) := {f ∈ Lp
loc(R+, X) |

f(·) exp(−α ·) ∈ Lp(R+, X)} and endow it with the norm

‖f‖Lp
α

:=

(∫ ∞

0

‖e−αtf(t)‖p dt

)1/p

.

For β > 0, we define the weighted lp-space lpβ(Z+, X) := {f ∈ F (Z+, X) |
f(·)β−( · ) ∈ lp(Z+, U)} and endow it with the norm

‖f‖lpβ
:=

( ∞∑
n=0

‖f(n)β−n‖p

)1/p

.

We denote by W 1,p(R+, X), where p < ∞, the space of all functions f ∈
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Lp(R+, X) for which there exists g ∈ Lp(R+, X) such that f(t)−f(0) =
∫ t

0
g(s) ds

for all t ∈ R+. We denote by L the Laplace transform.

We begin with several definitions of discrete-time operators that will be used
throughout the thesis.

Discrete-time operators

Definition. We define the right-shift operator S : F (Z+, X) → F (Z+, X) by,

(Sx)(n) :=

{
0, if n = 0,

x(n− 1), if n ≥ 1.

The left-shift operator S∗ : F (Z+, X) → F (Z+, X) is defined by,

(S∗x)(n) := x(n+ 1), ∀ n ∈ Z+.

Remark 2.1.1. If we consider S : l2(Z+, U) → l2(Z+, U) then the left shift S∗ is
the adjoint of S on l2(Z+, U). 3

Definition. The forward difference operator 4 : F (Z+, X) → F (Z+, X) is de-
fined by

(4x)(n) := x(n+ 1)− x(n), ∀ n ∈ Z+.

The backward difference operator 40 : F (Z+, X) → F (Z+, X) is defined by

(40x)(n) :=

{
x(0), if n = 0,

x(n)− x(n− 1), if n ≥ 1.

We now define two discrete-time integrators.

Definition. The discrete-time integrator J : F (Z+, X) → F (Z+, X) is defined
by,

(Jy)(n) :=

{
0, if n = 0,∑n−1

j=0 y(j), if n ≥ 1.

The discrete-time integrator J0 : F (Z+, X) → F (Z+, X) is defined by,

(J0y)(n) :=
n∑

j=0

y(j), ∀ n ∈ Z+. (2.1)

Let x ∈ F (Z+, X). Define E : F (Z+, X) → F (Z+, X) by x 7→ x(0)ϑ. We now
state some identities which will be used throughout the thesis.
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Lemma 2.1.2.

(a) 40J = J40 = S and 40J0 = J040 = I.

(b) J4 = I − E and 4J = I.

(c) J04 = S∗ − E and 4J0 = S∗.

The proof of Lemma 2.1.2 is routine and therefore omitted.

Shift-invariance and causality

Definition. We say that H : F (Z+, X) → F (Z+, X) is (right) shift-invariant if
HS = SH. Throughout the thesis ‘shift-invariant’ means invariant with respect
to right shifts.

We aim to show that every linear, shift-invariant operator H : F (Z+, X) →
F (Z+, X) is causal.

Definition. Let H : F (Z+, X) → F (Z+, X). Then we define H to be weakly
causal if, x(n) = 0 for n ≤ N implies that (Hx)(n) = 0 for n ≤ N , for all
N ∈ Z+, x ∈ F (Z+, X).

Definition. Let PN : F (Z+, X) → F (Z+, X) be the linear map defined by,

(PNf)(n) :=

{
f(n), n ≤ N,

0, n > N.

Then we say H : F (Z+, X) → F (Z+, X) is causal (non-anticipative) if and only
if

PNHPN = PNH, ∀ N ∈ Z+.

Equivalently, H is said to be causal if, for all x, y ∈ F (Z+, X),

x(n) = y(n), n ≤ N ⇒ (Hx)(n) = (Hy)(n), n ≤ N, ∀ N ∈ Z+.

Remark 2.1.3. We say that H : F (Z+, X) → F (Z+, X) is strictly causal if, for
all x, y ∈ F (Z+, X),

x(n) = y(n), n < N ⇒ (Hx)(n) = (Hy)(n), n ≤ N, ∀ N ∈ N.

Note that, in particular, the discrete-time integrator J is strictly causal, whereas
J0 is not. 3

The following three results are an adaptation of arguments in [61].
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Proposition 2.1.4. If H : F (Z+, X) → F (Z+, X) is linear and weakly causal
then it is causal.

Proof. Suppose that x(n) = y(n) for n ≤ N , where N ∈ Z+. Define z(n) :=
x(n) − y(n) = 0 for n ≤ N . Then by weak causality we have (Hz)(n) = 0 for
n ≤ N and so (H(x− y))(n) = 0 for n ≤ N by definition of z. Hence by linearity
(Hx)(n) − (Hy)(n) = 0 for n ≤ N and so we see that (Hx)(n) = (Hy)(n) for
n ≤ N and H is causal. 2

Proposition 2.1.5. If H : F (Z+, X) → F (Z+, X) is shift-invariant, then it is
weakly causal.

Proof. Suppose N ∈ Z+, x ∈ F (Z+, X) and that x(n) = 0 for all n ≤ N .
Define, y(n) = x(n + N) for all n ∈ Z+. Then it is clear by definition that
y ∈ F (Z+, X) and that, x = SN+1y. Since H is shift-invariant, it follows that,

Hx = HSN+1y = SN+1Hy.

By definition of S we see that, (Hx)(n) = (SN+1Hy)(n) = 0 whenever n ≤ N ,
so that H is weakly causal. 2

Combining Proposition 2.1.4 and 2.1.5, we have the following corollary.

Corollary 2.1.6. If H : F (Z+, X) → F (Z+, X) is linear and shift-invariant,
then it is causal.

A result on ω-limit sets

Definition. For x ∈ F (Z+, X), the ω-limit set Ω of x is defined to be

Ω := {ξ ∈ X | x(nj) → ξ for some sequence nj →∞}.

We shall require the following result.

Lemma 2.1.7. Let x ∈ F (Z+, X) and suppose that {x(n) | n ∈ Z+} is precom-
pact. If (40x)(n) → 0 as n→∞ then, the ω-limit set Ω of x is connected.

Proof. First note that since {x(n) | n ∈ Z+} is precompact, x has a convergent
subsequence. Consequently, we deduce that Ω is non-empty. It remains to show
that Ω is connected. Suppose that Ω is not connected. Then Ω is the union of
two disjoint closed non-empty sets Ω1 and Ω2. Since Ω is compact, so are Ω1 and
Ω2. Hence, there exist open neighbourhoods U1, U2 of Ω1, Ω2 in X, such that
U1 ∩ U2 = ∅ and

dist(U1, U2) > ε, (2.2)
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for some ε > 0. Furthermore, there exists sequences nj, n
′
j with nj →∞, n′j →∞

as j →∞ such that

x(nj) → ξ1 ∈ Ω1, j →∞,

x(n′j) → ξ2 ∈ Ω2, j →∞.

Hence for N , N ′ sufficiently large, x(nN+j) ∈ U1 and x(n′N ′+j) ∈ U2 for all j.
Now consider the sequence mj defined by

mj :=

{
nj, if j is even,

n′j, if j is odd.

By definition of mj, for M = max{N,N ′}, the sequence x(mM+j) jumps alter-
nately between the open sets U1 and U2. However, by assumption, (40x)(mj) →
0 as j →∞, contradicting (2.2). 2

Measure theory

The Borel σ-algebra on R+ is the σ-algebra generated by the family of open sets
in R+ and is denoted by BR+ . Its members are called Borel sets.

Definition. Let m,n ∈ N. We say that µ : BR+ → Cm×n is a Cm×n-valued Borel
measure on R+, if,

(i) µ(∅) = 0m×n,

(ii) for any sequence {Ej} of disjoint sets in BR+ ,

µ

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

µ(Ej), (2.3)

observe that the convergence of the series in (2.3) is part of the requirement.

If, in the above definition, m = n = 1 and µ(E) ∈ R for all E ∈ BR+ , then µ is
also called a finite signed Borel measure. If, in the above definition, m = n = 1
and µ(E) ∈ R+ for all E ∈ BR+ , then µ is also called a finite non-negative Borel
measure.

Let E be a set. We call {Ej}N
j=1 a partition of E if ∪N

j=1Ej = E and Ei ∩Ej = ∅
for all i 6= j.

Definition. Let µ be a Cm×n-valued Borel measure on R+. The total variation
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|µ|(E) of µ on a set E ∈ BR+ is given by

|µ|(E) = sup
N∑

j=1

‖µ(Ej)‖

where the supremum is taken over all N ∈ Z+ and over all partitions {Ej} of E
with Ej ∈ BR+ .

Theorem 2.1.8. Let µ be a Cm×n-valued Borel measure on R+. Then the total
variation |µ| of µ is a finite non-negative Borel measure on R+.

Proof. The proof of the non-negativity of |µ| is an exact copy of the proof of
the scalar case, see, for example, [51], Theorem 6.2. It remains to show that |µ|
is finite. Define µij : BR+ → C by

µij(E) := (µ(E))ij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, E ∈ BR+ .

Then µij defines a complex Borel measure for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Hence it
follows from [51], Theorem 6.4, that

|µij|(R+) <∞, 1 ≤ i ≤ m, 1 ≤ j ≤ n. (2.4)

Let {Ek}N
k=1 be a partition of R+. Now

N∑
k=1

‖µ(Ek)‖ ≤ α
N∑

k=1

∑
i,j

|µij(Ek)| = α
∑
i,j

N∑
k=1

|µij(Ek)| ≤ α
∑
i,j

|µij|(R+)

≤ αnm|µij|(R+), (2.5)

where α depends on the choice of norm in Cm×n. Defining γ := αnm|µij|(R+)
we see from (2.4) that γ <∞. Hence by (2.5),

|µ|(R+) = sup
N∑

k=1

‖µ(Ek)‖ ≤ γ,

showing that |µ| is finite. 2

Corollary 2.1.9. Let µ be a Cm×n-valued Borel measure on R+. Then

‖µ(E)‖ ≤ |µ|(R+) <∞, ∀ E ∈ BR+ ,

that is, µ is bounded.

Proof. Since |µ| is a non-negative measure, |µ|(E) ≤ |µ|(R+) for all E ∈ BR+
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and so
‖µ(E)‖ ≤ |µ|(E) ≤ |µ|(R+) <∞, ∀ E ∈ BR+ .

2

The following result will be required in Chapter 7.

Theorem 2.1.10. Let µ be a Cm×n-valued Borel measure on R+. Let p ∈ N and
ϕ be a Cn×p-valued |µ|-integrable function on R+. Then∥∥∥∥∫ ∞

0

µ(ds)ϕ(s)

∥∥∥∥ ≤ ∫ ∞

0

‖ϕ(s)‖|µ|(ds).

A proof of Theorem 2.1.10 can be found in [21], see Chapter 3, Theorem 5.6, of
[21].

Definition. The convolution µ ∗ v of a Cm×n-valued Borel measure µ on R+ and
v ∈ L1

loc(R+,Cn) is the function

(µ ∗ v)(t) =

∫ t

0

µ(ds)v(t− s),

defined for those t for which the function s 7→ v(t − s) is locally |µ|-integrable.
Note that it follows from [20] (see, [20], Proposition 2.12) that if v is Lebesgue
measurable, then without loss of generality, we may assume that v is Borel mea-
surable in the following sense: there exists Borel measurable ṽ such that v = ṽ
a.e. in the Lebesgue sense. Moreover, by Proposition 8.49 of [20], it follows that
s 7→ v(t − s) is locally |µ|-integrable for a.e. t (here a.e. refers to the Lebesgue
measure).

Limits of functions in L1
loc(R+, X)

Each element of L1
loc(R+, X) is an equivalence class of locally integrable functions

that coincide almost everywhere on R+. For later purposes we need to make sense
of the limit of ‘functions’ in L1

loc(R+, X). Let f : R+ → X be a locally integrable
function and let [f ] ∈ L1

loc(R+, X) be the corresponding equivalence class of all
measurable functions in F (R+, X) which coincide with f almost everywhere.

Definition. We say that [f ] ∈ L1
loc(R+, X) has a limit l ∈ X as t→∞ if, there

exists a representative g : R+ → X of [f ] such that limt→∞ g(t) = l (in the usual
sense) and we write limt→∞[f ](t) = l.

Remark 2.1.11. Note that this definition is independent of the choice of rep-
resentative from the equivalence class. If g1, g2 were two representatives of [f ] ∈
L1

loc(R+, X), such that, limt→∞ g1(t) 6= limt→∞ g2(t), then, g1 and g2 would differ
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on a set of positive measure contradicting the fact that g1 and g2 are representa-
tives of the same equivalence class. 3

Definition. We say that a measurable function f : R+ → X has an essential
limit at infinity if there exists l ∈ X such that ess supT≥t‖f(T )− l‖ tends to 0 as
t→∞ and we write ess limt→∞f(t) = l.

Proposition 2.1.12. Let f : R+ → X be a measurable function such that [f ] ∈
L1

loc(R+, X). Then limt→∞[f ](t) = l if and only if ess limt→∞f(t) = l.

Proof. (⇒) Suppose that limt→∞[f ](t) = l. Then, there exists a representative
g : R+ → X of [f ] such that limt→∞ g(t) = l. Hence, for all ε > 0, there exists
t0 ≥ 0 such that, whenever t ≥ t0,

‖g(t)− l‖ < ε.

Consequently,
sup
t≥t0

‖g(t)− l‖ ≤ ε,

showing that

lim
t0→∞

(
sup
t≥t0

‖g(t)− l‖
)

= 0.

Hence, ess limt→∞f(t) = l.

(⇐) Suppose that ess limt→∞f(t) = l. Then,

lim
t→∞

ess supT≥t‖f(T )− l‖ = 0.

Hence, for all ε > 0, there exists t0 ≥ 0 such that, whenever t ≥ t0

ess supT≥t‖f(T )− l‖ < ε.

That is,
‖f(T )− l‖ < ε, a.e. T ≥ t ≥ t0.

Consequently, there exists a sequence tn ↑ ∞ (n ∈ N) such that

‖f(t)− l‖ ≤ 1/n, a.e. t ≥ tn.

Define g : R+ → X by

g(t) :=


f(t), t ∈ [0, t1),

f(t), t ∈ [tn, tn+1) and ‖f(t)− l‖ ≤ 1/n,

l, t ∈ [tn, tn+1) and ‖f(t)− l‖ > 1/n.
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Then g(t) = f(t) a.e. and limt→∞ g(t) = l. Hence limt→∞[f ](t) = l. 2

Throughout the rest of the thesis we shall not use the notation [f ]: we simply
write f ∈ L1

loc(R+, X) with the understanding that f is the equivalence class of
all measurable functions which coincide with f almost everywhere.

In later chapters we require the following results.

Proposition 2.1.13. Let f ∈ Lp(R+, X) for some p ∈ [1,∞). Then for all
ε > 0, the Lebesgue measure of the set E := {t ≥ T | ‖f(t)‖ ≥ ε} tends to 0 as
T →∞.

Proof. Let m denote the Lebesgue measure. Since f ∈ Lp(R+, X) for some
p ∈ [1,∞) we have

γ(T ) :=

∫ ∞

T

‖f(t)‖p dt ≥
∫

E

‖f(t)‖p dt ≥ εpm(E), ∀ ε > 0.

Consequently, m(E) ≤ γ(T )ε−p for all ε > 0. Since limT→∞ γ(T ) = 0 it follows
that m(E) → 0 as T →∞. 2

Proposition 2.1.14. Let f, ḟ ∈ L2(R+, U) where U denotes a Hilbert space.
Then limt→∞ f(t) = 0.

Proof. Note that,

d

dt
(‖f(t)‖2) = 〈ḟ(t), f(t)〉+ 〈f(t), ḟ(t)〉 = 2Re 〈f(t), ḟ(t)〉.

Hence it follows that

‖f(t)‖2 − ‖f(0)‖2 = 2Re

∫ t

0

〈f(τ), ḟ(τ)〉 dτ. (2.6)

Since f, ḟ ∈ L2(R+, U) we have

2Re

∫ t

0

〈f(τ), ḟ(τ)〉 dτ → l, t→∞.

Consequently, by (2.6) we see that limt→∞ ‖f(t)‖ =: f∞ exists. Noting further
that f ∈ L2(R+, U), we deduce that f∞ = 0. 2
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Chapter 3

Convolutions of sequences,
Z -transforms and transfer
functions of discrete-time
operators

In this chapter we discuss three key notions; the convolution of two sequences,
the Z -transform of a sequence, and transfer functions of bounded linear shift-
invariant operators on l2(Z+, U). We introduce the concepts of asymptotic steady-
state gain, l2-steady-state gain and step error in discrete-time. This is done in
the general context of the algebra of all shift-invariant bounded linear input-
output operators on l2(Z+, U). We conclude this chapter by deriving existence
and uniqueness results for the discrete-time equations which are to be considered
in later chapters.

3.1 Convolutions of sequences

Definition. Suppose x ∈ F (Z+,B(X)) and y ∈ F (Z+, X). Then their convolu-
tion x ∗ y ∈ F (Z+, X) is defined by,

(x ∗ y)(n) =
n∑

j=0

x(n− j)y(j) =
n∑

j=0

x(j)y(n− j).

The convolution product in the space F (Z+) is commutative and the sequence δ
defined by

δ(n) :=

{
1 , n = 0,
0 , n ∈ N,
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is the unit element. A sequence a ∈ F (Z+) is invertible (that is, there exists
a−1 ∈ F (Z+) such that a ∗ a−1 = a−1 ∗ a = δ) if and only if a(0) 6= 0.

Note that J0x of x ∈ F (Z+, X) can be represented by convolution with ϑ:

(J0x)(n) :=
n∑

j=0

x(j) = (ϑ ∗ x)(n) .

The following result is a standard result on convolution of sequences.

Lemma 3.1.1. Assume that a ∈ l1(Z+) and let 1 ≤ p ≤ ∞. The following
statements hold:

(a) ‖a ∗ b‖lp ≤ ‖a‖l1‖b‖lp for all b ∈ lp(Z+, X).

(b) If b ∈ F (Z+, X), then

lim
n→∞

b(n) = 0 =⇒ lim
n→∞

(a ∗ b)(n) = 0 .

Proof. We refer to [15], p. 244, for the proof of part (a). To prove part (b),
assume that b(n) → 0 as n → ∞. For every n ∈ Z+, let mn denote the largest
integer less than or equal to n/2. Since

(a ∗ b)(n) =
mn∑
k=0

a(n− k)b(k) +
n∑

k=mn+1

a(n− k)b(k) ,

we obtain

‖(a ∗ b)(n)‖ ≤ ‖b‖l∞

∑
k≥n/2

|a(k)|+ ‖a‖l1 sup
k≥n/2

‖b(k)‖ .

By assumption b(k) → 0 as k →∞ and since a ∈ l1,

lim
n→∞

∑
k≥n/2

|a(k)| = 0.

Consequently, (a ∗ b)(n) → 0 as n→∞. 2

We now show that every linear shift-invariant operator on F (Z+, X) is a convo-
lution operator.

Proposition 3.1.2. Let H : F (Z+, X) → F (Z+, X) be linear and shift-invariant.
Then,

(Hy)(n) =
n∑

k=0

h(n− k)y(k), ∀ y ∈ F (Z+, X), n ∈ Z+,
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where, for each n ∈ Z+, h(n) : X → X is defined by

h(n)ξ := (H(ξδ))(n), ξ ∈ X.

Proof. Let y ∈ F (Z+, X). By causality of H,

(Hy)(n) =

(
H

( n∑
k=0

y(k)Skδ

))
(n), ∀ n ∈ Z+.

Using first the linearity of H, then the shift-invariance of H, and finally the
definition of h, we see that,

(Hy)(n) =

(
H

( n∑
k=0

y(k)Skδ

))
(n) =

n∑
k=0

(Hy(k)Skδ)(n)

=
n∑

k=0

(SkH(y(k)δ))(n)

=
n∑

k=0

(Hy(k)δ)(n− k)

=
n∑

k=0

h(n− k)y(k), ∀ n ∈ Z+.

2

Remark 3.1.3. Note that if dimX < ∞ and H ∈ B(l2(Z+, X)) is shift-
invariant, then the convolution kernel h of H, as defined in Proposition 3.1.2,
is in l2(Z+,B(X)). To see that this is not the case if X is infinite-dimensional,
we consider the following example. Let X = l2(Z+,R) and {ej}j∈Z+ be the stan-
dard orthonormal basis of X. Let v ∈ X. Then,

v =
∞∑

j=0

vje
j.

Define k(j) ∈ B(X) by

k(j)v := vje
j, v ∈ X.

Then, for each j ∈ Z+, ‖k(j)‖X = 1, so that k /∈ l2(Z+,B(X)). Define T :
F (Z+, X) → F (Z+, X) by

(Tu)(n) :=
n∑

j=0

k(n− j)u(j), ∀ u ∈ F (Z+, X).
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Let u ∈ l2(Z+, X). Then,

∞∑
n=0

‖(Tu)(n)‖2
X =

∞∑
n=0

∥∥∥∥ n∑
j=0

k(n− j)u(j)

∥∥∥∥2

X

=
∞∑

n=0

∥∥∥∥ n∑
j=0

un−j(j)e
j

∥∥∥∥2

X

. (3.1)

Since the {ej}j∈Z+ form an orthonormal basis of X, we have∥∥∥∥ n∑
j=0

un−j(j)e
j

∥∥∥∥2

X

=
n∑

j=0

(un−j(j))
2. (3.2)

Combining (3.1) and (3.2) we obtain,

∞∑
n=0

‖(Tu)(n)‖2
X =

∞∑
n=0

n∑
j=0

(un−j(j))
2.

Setting un−j(j) := 0 if j > n, we have,

∞∑
n=0

‖(Tu)(n)‖2
X =

∞∑
n=0

∞∑
j=0

(un−j(j))
2 =

∞∑
j=0

∞∑
n=0

(un−j(j))
2

=
∞∑

n=0

(un(0))2 +
∞∑

n=0

(un−1(1))
2 + . . .

= ‖u(0)‖2
X + ‖u(1)‖2

X + . . .

=
∞∑

n=0

‖u(n)‖2
X

= ‖u‖2
l2(Z+,X). (3.3)

Hence we see from (3.3) that, Tu ∈ l2(Z+, X) and ‖Tu‖l2(Z+,X) = ‖u‖l2(Z+,X), so
that T ∈ B(l2(Z+, X)). 3

Corollary 3.1.4. Let G, H : F (Z+) → F (Z+) be linear shift-invariant operators.
Then, GH = HG.

Proof. Let v ∈ F (Z+). Since G, H : F (Z+) → F (Z+) are linear and shift-
invariant it follows from Proposition 3.1.2 that there exists h, g ∈ F (Z+) such
that

(Hv)(n) = (h ∗ v)(n), ∀ v ∈ F (Z+),

and
(Gv)(n) = (g ∗ v)(n), ∀ v ∈ F (Z+).
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Noting that the convolution product in F (Z+) is commutative it follows that,

(HGv)(n) = (h ∗ g ∗ v)(n) = (g ∗ h ∗ v)(n) = (GHv)(n).

2

3.2 The Z -transform

Definition. The Z transform of a ∈ F (Z+, X) is defined by,

â(z) = (Z (a))(z) =
∞∑

j=0

a(j)z−j, (3.4)

where z is a complex variable. We say that a is Z -transformable if the series in
(3.4) converges for some z = z0 ∈ C \ {0}, in which case it converges absolutely
for all z ∈ C with |z| > |z0|.

Remark 3.2.1. It is an elementary fact from the theory of power series, (see e.g.
[2] p.31), that a is Z -transformable if and only if

ra := lim sup
n→∞

‖a(n)‖1/n <∞, (3.5)

in which case (3.4) converges absolutely if |z| > ra and diverges if |z| < ra. 3

For η > ra we have that

â(ηeiθ) =
∞∑

k=0

(a(k)η−k)e−ikθ , θ ∈ [0, 2π) ,

showing that the function θ 7→ â(ηeiθ) is the discrete Fourier transform of the
sequence (a(k)η−k)k∈Z+ . If a ∈ F (Z+, X) is Z -transformable, then, for every
η > ra, the function â is holomorphic and bounded on Eη. Conversely if η > 0
and A : Eη → X is holomorphic and bounded, then a ∈ F (Z+, X) defined by

a(n) :=
1

2πi

∫
|z|=ν

A(z)zn−1 dz =
νn

2π

∫ 2π

0

A(νeiθ)einθ dθ , where ν > η ,

is the unique Z -transformable sequence (with ra ≤ η) such that â(z) = A(z) for
all z ∈ Eη and we write a = Z −1(A).

Under the Z -transform, convolutions become multiplications, that is, if a ∈
F (Z+,B(X)) and b ∈ F (Z+, X) are Z -transformable, then a∗b is Z -transformable
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and
(̂a ∗ b)(z) = â(z)b̂(z), z ∈ C s.t. |z| > max{ra, rb} .

3.3 Transfer functions of discrete-time opera-

tors

In order to discuss transfer functions of bounded linear shift-invariant operators
on l2(Z+, U), we first need to define the Hardy-Lebesgue spaces H2 and H∞. To
this end, we have the following result; a proof of which can be found in [51] (see,
Theorem 17.6 in [51]).

Theorem 3.3.1. If f : C → X is holomorphic on E1 ∪ {∞}, and if

M2(f ; r) :=

(
1

2π

∫ π

−π

‖f(reiθ)‖2 dθ

)1/2

,

M∞(f ; r) := sup
θ∈[0,2π)

‖f(reiθ)‖,

then M2 and M∞ are monotonically decreasing functions of r for r > 1.

Definition. Let f : C → X be holomorphic on E1 ∪ {∞}. Setting,

‖f‖H2 := lim
r↓1

M2(f ; r), ‖f‖H∞ := lim
r↓1

M∞(f ; r),

the Hardy-Lebesgue spaces H2(E1, X) and H∞(E1, X) are defined to consist of
all f for which ‖f‖H2 < ∞ and ‖f‖H∞ < ∞, respectively. Note that if f ∈
H∞(E1, X), then ‖f‖H∞ = supz∈E1

‖f(z)‖. Moreover, H∞(E1, X) ⊆ H2(E1, X)
and ‖f‖H2 ≤ ‖f‖H∞ for every f ∈ H∞(E1, X).

The basic properties of H2(E1, X) are stated in the following theorem.

Theorem 3.3.2. (a) A function f : E1 → X is in H2(E1, X) if and only if there
exists x ∈ l2(Z+, X) such that x̂ = f . Moreover, ‖f‖H2 = ‖x‖l2.

(b) If f ∈ H2(E1, X), then f has radial limits f ∗(eiθ) at almost all points of T
and f ∗ ∈ L2(T, X). The nth Fourier coefficient of f ∗ is x(−n) if n ≤ 0 and 0 if
n > 0, where x ∈ l2(Z+, X) is such that x̂ = f .

(c)The mapping f → f ∗ is an isometry of H2(E1, X) onto the subspace of
L2(T, X) which consists of those g ∈ L2(T, X) which have g̃(n) = 0 for all n > 0
(where g̃(n) denote the Fourier coefficients of g).
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Proof. Using the fact that h ∈ H2(E1, X) if and only if the function g(z) :=
h(1/z) is in H2(B, X), for all z ∈ B, the proof of the scalar case, see, for example,
Theorem 17.10 of [51], carries over word for word to obtain the claim. 2

Now let u, v ∈ l2(Z+, U) with associated Z -transforms û, v̂. By Theorem 3.3.2
we know that û, v̂ ∈ H2(E1, U) and that the radial limits,

û(eiθ) := lim
r↓1

û(reiθ)

v̂(eiθ) := lim
r↓1

v̂(reiθ)

exist for almost all θ ∈ [0, 2π). We now state a theorem we shall require in
Chapter 4.

Theorem 3.3.3 (Parseval-Bessel). For u, v ∈ l2(Z+, U) we have that

∞∑
n=0

〈u(n), v(n)〉 =
1

2π

∫ 2π

0

〈û(eiθ), v̂(eiθ)〉 dθ.

Proof. A proof of the Parseval-Bessel Theorem can be found in [51], page 92.
The above statement is slightly different, but follows from the version in [51]
combined with Theorem 3.3.2 (a). 2

Let G ∈ B(l2(Z+, U)) be shift-invariant. Then G has a transfer function G ∈
H∞(E1,B(U)) in the sense that,

(Z (Gu))(z) = G(z)(Z (u))(z), ∀ u ∈ l2(Z+, U), z ∈ E1.

We see this from the following theorem.

Theorem 3.3.4. Let G ∈ B(l2(Z+, U)) be shift-invariant. Then there is a unique
G ∈ H∞(E1,B(U)) such that, for any u ∈ l2(Z+, U), denoting y = Gu,

ŷ(z) = G(z)û(z), ∀ z ∈ E1. (3.6)

Moreover, ‖G‖ = ‖G‖H∞.

Remark 3.3.5. A proof of Theorem 3.3.4 can be found in [50] (see [50], The-
orem B, p.15). The statement of the result in [50] is rather different to the
statement of Theorem 3.3.4 and requires the following translations. In the nota-
tion of [50], S, T and A are replaced by S, G and G, respectively. In [50], S is
given by multiplication by z on H2(B, U) and corresponds to S via the isomet-
ric isomorphism between H2(B, U) and l2(Z+, U). The bounded linear operator
T : H2(B, U) → H2(B, U) is assumed to be S-analytic, that is, S and T com-
mute. Again via the isometric isomorphism between H2(B, U) and l2(Z+, U) this
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is equivalent in our terms to G ∈ B(l2(Z+, U)) being shift-invariant. Finally,
noting that h ∈ H∞(E1,B(U)) if and only if the function g : z 7→ h(1/z) is
in H∞(B,B(U)), it follows that A in [50] represents the transfer function G as
defined in the statement of Theorem 3.3.4. 3

In the following set of examples we compute the transfer functions of the shift-
invariant operators S,40, J and J0.

Examples 3.3.6. (a) Let x ∈ F (Z+, U) and z ∈ E1. We compute the Z -
transform of Sx as follows

(Ŝx)(z) :=
∞∑

j=0

(Sx)(j)z−j =
∞∑

j=1

x(j − 1)z−j =
1

z

∞∑
j=1

x(j − 1)z−(j−1) =
1

z
x̂(z).

In particular we note that the transfer function of S is given by 1/z.

(b) Another routine calculation, using the fact that40 = I−S, shows the transfer
function of 40 is given by (z − 1)/z.

(c) Using the fact that by Lemma 2.1.2 part (a) 40J = S, and (a) and (b), we
conclude that the transfer function of J is given by 1/(z − 1).

(d) Using the fact that by Lemma 2.1.2 part (a) 40J0 = I, and (b), we conclude
that the transfer function of J0 is given by z/(z − 1). 3

3.4 Discrete-time steady-state gains and step

error

Let G ∈ H∞(E1,B(U)) denote the transfer function of a shift-invariant operator
G ∈ B(l2(Z+, U)). By shift-invariance, G is causal, and therefore G extends to a
shift-invariant operator from F (Z+, U) into itself as follows: Let u ∈ F (Z+, U).
We extend G to an operator F (Z+, U) → F (Z+, U) by setting

(Gu)(n) = (G(PNu))(n), n ∈ N,

where N := {0, 1, . . . , N} and N ∈ Z+. By causality of G this definition yields
a well-defined extension of G to F (Z+, U). We shall use the same symbol G
to denote the original operator on l2(Z+, U) and its shift-invariant extension to
F (Z+, U).

Definition. If there exists an operator Γ ∈ B(U) such that

lim
n→∞

(G(ϑξ))(n) = Γξ , ∀ ξ ∈ U ,
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then we say that Γ is the asymptotic steady-state gain of G. Moreover, if there
exists an operator Γ ∈ B(U) such that

G(ϑξ)− ϑΓξ ∈ l2(Z+, U) , ∀ ξ ∈ U ,

then Γ is said to be the l2-steady-state gain of G. If the asymptotic steady-state
gain or the l2-steady-state gain of G exist, then, for ξ ∈ U , the function

σξ := G(ϑξ)− ϑΓξ

is said to be the step error associated with ξ.

The asymptotic steady-state gain and the l2-steady-state gain may or may not
exist. The existence of the l2-steady-state gain implies the existence of the asymp-
totic steady-state gain. The converse is not true. If they both exist, then they
coincide.

Trivially, under the additional assumption that G is the input-output operator of
a finite-dimensional l2-stable state-space system (i.e., G is rational), the asymp-
totic steady-state gain and the l2-steady-state gain exist and are given by G(1);
furthermore, there exist M > 0 and β ∈ (0, 1) such that ‖σξ(n)‖ ≤ Mβn‖ξ‖ for
all n ∈ Z+ and for all ξ ∈ U = Rm.

Throughout the thesis we shall often impose the following assumption on G.

(A) There exists Γ ∈ B(U) such that

lim sup
z→1,z∈E1

∥∥∥∥ 1

z − 1
(G(z)− Γ)

∥∥∥∥ <∞. (3.7)

Remark 3.4.1. If G extends analytically into a neighbourhood of 1 (which in
particular is the case if G ∈ B(l2β(Z+, U)) for some β ∈ (0, 1)), then (A) holds
with Γ = G(1). Furthermore, if G is the transfer function of a strongly stable
discrete-time state-space system (see Chapter 6) with the additional property
that 1 is in the resolvent set of the generator of the discrete-time semigroup
(which is trivially true for power-stable systems), then (A) holds. 3

Note that, by assumption (A),

z 7→ σ̂ξ(z) =
z

z − 1
(G(z)− Γ)ξ ∈ H∞(E1,B(U)), ∀ ξ ∈ U.

Consequently, by Theorem 3.3.2 part (a),

‖σξ‖l2 = ‖σ̂ξ(z)‖H2 ≤ ‖σ̂ξ(z)‖H∞ ≤ γ‖ξ‖ , ∀ ξ ∈ U ,
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where γ := supz∈E1
‖(z/(z−1))(G(z)−Γ)‖, showing that the operator Σ : ξ 7→ σξ

is in B(U, l2(Z+, U)). In particular, if assumption (A) holds, then Γ is the l2-
steady-state gain of G. Using Remark 3.4.1, it can be easily shown that, if
G ∈ B(l2β(Z+, U)) for some β ∈ (0, 1), then Σ ∈ B(U, l2β(Z+, U)), in which case
we have

‖σξ(n)‖β−n ≤ ‖σξ‖l2β(Z+,U) = ‖Σξ‖l2β(Z+,U) ≤ ‖Σ‖‖ξ‖, ∀ n ∈ Z+, ∀ ξ ∈ U,

(where ‖Σ‖ denotes the operator norm of Σ), showing that

‖σξ(n)‖ ≤ ‖Σ‖βn‖ξ‖ , ∀ n ∈ Z+, ∀ ξ ∈ U .

The following result gives a time-domain characterization of assumption (A).

Lemma 3.4.2. Let G ∈ B(l2(Z+, U)) be shift-invariant with transfer function
G and let Γ ∈ B(U). Then (3.7) holds (i.e., G satisfies assumption (A)) if and
only if GJ − ΓJ ∈ B(l2(Z+, U)).

Proof. (⇒) Suppose that G satisfies assumption (A). Consider the operator
GJ−ΓJ . By shift-invariance of G and J it follows that GJ−ΓJ is shift-invariant
and its transfer function is given by

1

z − 1
(G(z)− Γ), z ∈ E1.

From assumption (A) and the fact that G ∈ H∞(E1,B(U)), we conclude that,
z 7→ (G(z)− Γ)/(z − 1) ∈ H∞(E1,B(U)) ⊆ H2(E1,B(U)) and so, by Theorem
3.3.2 (a), GJ − ΓJ ∈ B(l2(Z+, U)).

(⇐) Suppose GJ − ΓJ ∈ B(l2(Z+, U)). As before, since G and J are shift-
invariant, it follows that GJ − ΓJ is shift-invariant. Consequently, GJ − ΓJ has
a H∞(E1,B(U)) transfer function. Since this transfer function is given by

1

z − 1
(G(z)− Γ), z ∈ E1,

it follows that assumption (A) holds. 2

Remark 3.4.3. Note that Lemma 3.4.2 remains true if J is replaced by J0. 3

Furthermore, we have the following result on the behaviour of Gu for converging
inputs u.

Proposition 3.4.4. Let G ∈ B(l2(Z+, U)) be shift-invariant with transfer func-
tion G. Assume that (A) is satisfied.
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(a) If u ∈ F (Z+, U) is such that u − ϑu∞ ∈ l2(Z+, U) for some u∞ ∈ U , then
Gu− ϑΓu∞ ∈ l2(Z+, U).

(b) If u ∈ F (Z+, U) is such that 40u ∈ l2(Z+, U) and u∞ := limn→∞ u(n) exists,
then limn→∞(Gu)(n) = Γu∞.

Remarks 3.4.5. (i) Note that if u − ϑu∞ ∈ l2(Z+, U) for some u∞ ∈ U , then
limn→∞ u(n) = u∞ and 40u ∈ l2(Z+, U). Furthermore, it is easy to see that
there exist sequences u ∈ F (Z+, U) such that u∞ := limn→∞ u(n) exists and
40u ∈ l2(Z+, U), but u − ϑu∞ 6∈ l2(Z+, U), for example, with U = R, u(n) =
u∞+1/

√
n+ 1, for all n ∈ Z+ and some u∞ ∈ R. This shows that the hypothesis

on u in part (b) is ‘strictly weaker’ than that in part (a).

(ii) Noting that 40u = S4u + δu(0), Proposition 3.4.4 remains true with 40

replaced by 4. 3

Proof of Proposition 3.4.4. (a) Note that,

Gu− ϑΓu∞ = G(u− ϑu∞) +Gϑu∞ − ϑΓu∞. (3.8)

Since by assumption G ∈ B(l2(Z+, U)) and u− ϑu∞ ∈ l2(Z+, U) it follows that
G(u − ϑu∞) ∈ l2(Z+, U). Furthermore, since assumption (A) holds, Γ is the
l2-steady-state gain of G and so Gϑu∞ − ϑΓu∞ ∈ l2(Z+, U). Consequently, it
follows from (3.8) that Gu− ϑΓu∞ ∈ l2(Z+, U).

(b) Setting H := GJ0 − ΓJ0, it follows from the shift-invariance of G that,

H40u = Gu− Γu. (3.9)

By assumption (A) and Lemma 3.4.2 we have that H ∈ B(l2(Z+, U)). Conse-
quently, since by assumption 40u ∈ l2(Z+, U), we have

lim
n→∞

(H(40u))(n) = 0.

Hence it follows from (3.9) that

lim
n→∞

(Gu)(n) = lim
n→∞

Γu(n) = Γu∞.

2

Occasionally, it will also be necessary to impose the following assumption on G.

(A′) There exists Γ,Γ′ ∈ B(U) such that

lim sup
z→1,z∈E1

∥∥∥∥ 1

(z − 1)2
(G(z)− Γ− (z − 1)Γ′)

∥∥∥∥ <∞. (3.10)
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Remarks 3.4.6. (i) Note that if G satisfies assumption (A′) (i.e., (3.10) holds),
then G satisfies assumption (A) (i.e., (3.7) holds).

(ii) If G extends analytically into a neighbourhood of 1 (which in particular is the
case if G ∈ B(l2β(Z+, U)) for some β ∈ (0, 1)), then (A′) holds with Γ = G(1) and
Γ′ = G′(1) = limz→1(G(z) −G(1))/(z − 1). Consequently, if G is the transfer
function of a strongly stable discrete-time state-space system (see Chapter 6)
with the additional property that 1 is in the resolvent set of the generator of the
discrete-time semigroup (which is trivially true for power-stable systems), then
(A′) holds. 3

The following result gives a time-domain characterization of assumption (A′).

Lemma 3.4.7. Let G ∈ B(l2(Z+, U)) be shift-invariant with transfer function
G and let Γ,Γ′ ∈ B(U). Then (3.10) holds (i.e., G satisfies assumption (A′)) if
and only if (GJ − ΓJ)J − Γ′J ∈ B(l2(Z+, U)).

Proof. (⇒) Suppose that G satisfies assumption (A′). Consider the operator
(GJ−ΓJ)J−Γ′J . By shift-invariance of G and J it follows that (GJ−ΓJ)J−Γ′J
is shift-invariant and its transfer function is given by

1

(z − 1)2

(
G(z)− Γ− (z − 1)Γ′

)
, z ∈ E1. (3.11)

From assumption (A′) and the fact that G ∈ H∞(E1,B(U)), we conclude that,

z 7→ 1

(z − 1)2

(
G(z)− Γ− (z − 1)Γ′

)
∈ H∞(E1,B(U)) ⊆ H2(E1,B(U))

and so, by Theorem 3.3.2 (a), (GJ − ΓJ)J − Γ′J ∈ B(l2(Z+, U)).

(⇐) Suppose (GJ − ΓJ)J − Γ′J ∈ B(l2(Z+, U)). As before, since G and J are
shift-invariant, it follows that (GJ −ΓJ)J −Γ′J is shift-invariant. Consequently,
(GJ − ΓJ)J − Γ′J has a H∞(E1,B(U)) transfer function. Since this transfer
function is given by (3.11), it follows that assumption (A′) holds. 2

Remark 3.4.8. Note that Lemma 3.4.7 remains true if J is replaced by J0. 3

3.5 Existence and uniqueness results

In this section we discuss existence and uniqueness results for general discrete-
time equations with non-linearities. Consider the following equation

u = r − J(G(ϕ ◦ u)), (3.12)
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where r : Z+ → U is a given forcing function, G ∈ B(l2(Z+, U)) is shift-invariant,
ϕ : Z+×U → U is a time-dependent non-linearity and ϕ◦u denotes the function
n 7→ ϕ(n, u(n)). Recall that by shift-invariance, G is causal and therefore G
extends to a shift-invariant operator from F (Z+, U) into itself. A solution of
(3.12) is a function u ∈ F (Z+, U) satisfying (3.12). Recall the following notation:
for N ∈ Z+, let N := {0, 1, . . . , N}. We have the following result on existence
and uniqueness of solutions of (3.12).

Proposition 3.5.1. Let G ∈ B(l2(Z+, U)) be shift-invariant, ϕ : Z+ × U → U
be a time-dependent non-linearity and r : Z+ → U be a given forcing function.
Then (3.12) has a unique solution u : Z+ → U .

Proof. For N ∈ Z+ we define GN : F (N,U) → F (N,U) by

(GNv)(n) := (GvN)(n), n ∈ N, v ∈ F (N,U) (3.13)

where

vN(n) =

{
v(n), n ∈ N,
0, n > N.

(3.14)

Hence, by causality of G, for each N ∈ Z+ and v ∈ F (Z+, U),

(Gv)(n) = (GNv|N)(n), n ∈ N.

Define recursively,

u(0) := r(0)

u(1) := r(1)− (G0(ϕ ◦ u))(0)

u(2) := r(2)−
1∑

j=0

(G1(ϕ ◦ u))(j)

...

u(n+ 1) := r(n+ 1)−
n∑

j=0

(Gn(ϕ ◦ u))(j).

Then u solves (3.12). Furthermore, it is clear by the recursive construction that
u is unique: if v is a solution of (3.12), then v(0) = r(0) = u(0), hence,

v(1) = r(1)− (G0(ϕ ◦ v))(0) = r(1)− (G0(ϕ ◦ u))(0) = u(1)

and so on iteratively. 2

We now introduce a discrete-time integrator with direct feedthrough. Consider
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the following discrete-time equation,

u = r − J0(G(ϕ ◦ u)), (3.15)

where ϕ, G and r are as before. A solution of (3.15) is a function u ∈ F (Z+, X)
satisfying (3.15)

Example 3.5.2. The following example shows that an equation of the form
(3.15) does not always have a solution. Let U = R. Define ϕ : R → R by,

ϕ(ξ) :=


ξ + 1, if ξ < −1,

0, if ξ ∈ [−1, 1],

ξ − 1, if ξ > 1,

set G = −I and let r = 2ϑ. Then, by (3.15),

u(n) = 2 +
n∑

j=0

ϕ(u(j)), ∀ n ∈ Z+. (3.16)

Define f : R → R by f(ξ) := ξ − ϕ(ξ) for all ξ ∈ R, that is,

f(ξ) :=


−1, if ξ < −1,

ξ, if ξ ∈ [−1, 1],

1, if ξ > 1.

It follows from (3.16) that

f(u(0)) = u(0)− ϕ(u(0)) = 2.

Noting that 2 /∈ imf we see that (3.16) does not have a solution. 3

The following result gives a condition under which (3.15) has solutions and more-
over, provided it exists, when a solution is unique.

Proposition 3.5.3. Let G ∈ B(l2(Z+, U)) be shift-invariant, ϕ : Z+ × U → U
be a time-dependent non-linearity and r : Z+ → U be a given forcing function.
Define G(∞) := lim|z|→∞ G(z). Then, there exists at least one solution (a unique
solution, respectively) of (3.15) if, for every n ∈ Z+, the map fn : U → U defined
by

fn(ξ) := ξ + G(∞)ϕ(n, ξ), ∀ (n, ξ) ∈ Z+ × U, (3.17)

is surjective (bijective, respectively).

Remark 3.5.4. Note that if G(∞) = 0 then fn = I for all n ∈ Z+ and (3.15)
has a unique solution. 3
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Proof of Proposition 3.5.3. Define M : F (Z+, U) → F (Z+, U) by M := J0G.
It follows from (3.15) that

u+M(ϕ ◦ u) = r. (3.18)

By linearity and shift-invariance of G and J0, M is also linear and shift-invariant.
Consequently, by Proposition 3.1.2, M is a convolution operator with convolution
kernel k ∈ F (Z+,B(U)), that is,

(Mu)(n) = (k ∗ u)(n) =
n∑

j=0

k(n− j)u(j).

Defining M̃ := M − k(0)I, (which is also a convolution operator) from (3.18) we
have,

u(n) + k(0)(ϕ ◦ u)(n) = r(n)− (M̃(ϕ ◦ u))(n). (3.19)

Since r is given, the RHS of (3.19) can be determined by only knowing the values
u(0), . . . , u(n−1) but, u(n) could still explicitly occur in the term k(0)(ϕ◦u)(n).
Denoting the transfer function of M by M we have,

M(z) =
z

z − 1
G(z), z ∈ E1.

Clearly,
k(0) = lim

|z|→∞
M(z) = lim

|z|→∞
G(z) =: G(∞).

It follows from (3.19) that

fn(u(n)) = r(n)− (M̃(ϕ ◦ u))(n),

where fn is defined by (3.17). Suppose now that for all n ∈ Z+, the map fn is
surjective. Denoting the preimage of fn by f−1

n for all n ∈ Z+, we can construct
a solution of (3.15) as follows: We define u ∈ F (Z+, U) recursively by,

u(0) ∈ f−1
0 (r(0)− (M̃0(ϕ ◦ u))(0))

u(1) ∈ f−1
1 (r(1)− (M̃1(ϕ ◦ u))(1))

...

u(n) ∈ f−1
n (r(n)− (M̃n(ϕ ◦ u))(n))

where, for N ∈ Z+, M̃N : F (N,U) → F (N,U) is defined by

(M̃Nv)(n) := (M̃vN)(n), n ∈ N, v ∈ F (N,U),

and vN is given by (3.14). If, further, fn is injective for each n ∈ Z+ then the
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preimage of f−1
n (ξ), ξ ∈ U , consists of exactly one point and we see that the

solution constructed above is unique. 2

3.6 Notes and references

Most of the results in this chapter are well known. Whilst difficult to locate, the
proof of Lemma 3.1.1 is standard and included for completeness. Proposition
3.1.2 is well known, however, in many cases in the literature it is stated for the
special case X = R. A proof of Proposition 3.1.2 in the general Banach space
setting is difficult to locate in the available literature, consequently, we include
a proof for completeness. We remark that the existence of a transfer function
for a bounded linear shift-invariant operator on l2(Z+, U) (see Theorem 3.3.4),
is essential for the development of the thesis. We note that Lemma 3.4.2, which
gives a time-domain characterization of assumption (A), is a key observation
which will be required throughout the thesis. Proposition 3.4.4 is new and in
the context of this thesis is important in studying low-gain integral control of
discrete-time systems subject to input and output non-linearities, (see Chapter
5). The existence and uniqueness results in §3.5 seem to be new, the proofs of
which are fairly routine.
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Chapter 4

Absolute stability results for
infinite-dimensional discrete-time
systems

In this chapter we present input-output absolute stability results for discrete-time
systems. We derive stability results of Popov-type and circle-criterion type.

We begin by considering an absolute stability problem for the feedback system
shown in Figure 4.1. The input-output operator G is linear, shift-invariant and
bounded from l2(Z+, U) into itself, ϕ : Z+ × U → U is a time dependent non-
linearity and r : Z+ → U is the input of the feedback system (or forcing function).

From Figure 4.1 we can derive the following governing equations,

u = r − y, v = G(ϕ ◦ u), y = Jv,

where ϕ ◦ u denotes the function n 7→ ϕ(n, u(n)). Equivalently,

u = r − (JG)(ϕ ◦ u). (4.1)

It follows from Lemma 3.5.1 that there exists a unique solution u to (4.1).
Throughout this chapter we impose assumption (A) on G, the transfer func-
tion of G, with Γ = G(1) := limz→1,z∈E1 G(z). Note that the existence of
limz→1,z∈E1 G(z) is implied by imposing assumption (A).

4.1 Absolute stability results of Popov-type

We require the following lemma the proof of which can be found in Appendix 1.
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Figure 4.1: Discrete-time feedback system with J integrator

Lemma 4.1.1. For v ∈ F (Z+, U), we have the following formula,

Re
m∑

n=1

〈
v(n),

n−1∑
k=0

v(k)

〉
=

1

2

∥∥∥∥ m∑
k=0

v(k)

∥∥∥∥2

− 1

2

m∑
k=0

‖v(k)‖2, ∀ m ∈ N.

Throughout the rest of this section we assume that U = R, that ϕ is time-
independent and consider the absolute stability problem shown in Figure 4.1.
The following result is a stability criterion of Popov-type in an input-output
context.

Theorem 4.1.2. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G satisfying assumption (A) and let ϕ : R → R be a measurable non-
decreasing non-linearity. Assume that G(1) > 0 and there exists numbers q ≥ 0,
ε > 0 and a ∈ (0,∞) such that

ϕ(v)v ≥ 1

a
ϕ2(v), ∀ v ∈ R, (4.2)

and
1

a
+ Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
≥ ε, a.a. θ ∈ (0, 2π). (4.3)

Let r ∈ m2(Z+,R) and let u : Z+ → R be the unique solution of (4.1). Then the
following statements hold.

1. There exists a constant K (which depends only on q, ε, a and G, but not
on r) such that,

‖u‖l∞ + ‖40u‖l2 + ‖ϕ ◦ u‖l2 + (‖(ϕ ◦ u)u‖l1)
1/2

+ sup
n≥0

∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣ ≤ K‖r‖m2 . (4.4)
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2. The limits

u∞ := lim
n→∞

u(n), lim
n→∞

n∑
j=0

(ϕ ◦ u)(j), (4.5)

exist, are finite and, if ϕ is continuous, ϕ(u∞) = 0.

Proof. We have,
u+ (JG)(ϕ ◦ u) = r, (4.6)

or equivalently,
40u+ SG(ϕ ◦ u) = 40r. (4.7)

We now write (4.6) in a slightly more convenient form, namely,

u+H(ϕ ◦ u) + G(1)J(ϕ ◦ u) = r, (4.8)

where H := J ◦ G −G(1)J . It is clear that this operator is shift-invariant with
transfer function H given by,

H(z) =
1

z − 1
[G(z)−G(1)], z ∈ E1. (4.9)

From assumption (A) and from the fact that G ∈ H∞(E1), we conclude that
H ∈ H∞(E1), and hence H ∈ B(l2(Z+,R)).

We multiply (4.7) by q and to this add (4.8) to obtain

q(40u)(j) + u(j) + Gq(ϕ ◦ u)(j) + G(1)(J(ϕ ◦ u))(j)
= q(40r)(j) + r(j), ∀ j ∈ Z+, (4.10)

where we have defined the operator Gq by

Gq := qSG+H.

Invoking (4.9), we see that the transfer function Gq of Gq is given by

Gq(z) :=
q

z
G(z) +

1

z − 1
[G(z)−G(1)], z ∈ E1.
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Multiplying through by (ϕ ◦ u)(j) and summing from 0 to n in (4.10) yields,

q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j) +
n∑

j=0

(ϕ ◦ u)(j)u(j)

+
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j) + G(1)
n∑

j=1

(ϕ ◦ u)(j)
j−1∑
k=0

(ϕ ◦ u)(k)

= q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.11)

An application of Lemma 4.1.1 to the last term on the LHS of (4.11) yields,

G(1)
n∑

j=1

(ϕ ◦ u)(j)
j−1∑
k=0

(ϕ ◦ u)(k)

=
G(1)

2

[( n∑
j=0

(ϕ ◦ u)(j)
)2

−
n∑

j=0

(ϕ ◦ u)2(j)

]
. (4.12)

Combining (4.12) with (4.11) gives,

q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j) +
n∑

j=0

(ϕ ◦ u)(j)u(j) +
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

− G(1)

2

n∑
j=0

(ϕ ◦ u)2(j)

= q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.13)

We note that,

ReGq(z) = Re

(
q

z
G(z) +

1

z − 1
[G(z)−G(1)]

)
= Re

[(
q

z
+

1

z − 1

)
G(z)

]
−G(1)Re

1

z − 1
.
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Taking z = eiθ with θ ∈ (0, 2π),

Re
1

z − 1
= Re

(
z − 1

|z − 1|2

)
= Re

(
eiθ − 1

|eiθ − 1|2

)
=

cos θ − 1

(cos θ − 1)2 + sin2θ

=
cos θ − 1

2(1− cos θ)

= −1

2
,

and we obtain,

ReGq(e
iθ) = Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
+

G(1)

2
, a.a. θ ∈ (0, 2π). (4.14)

Combining (4.14) with (4.3) we see that,

ReGq(e
iθ) = Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
+

G(1)

2

≥ ε− 1

a
+

G(1)

2
. (4.15)

Define v : Z → R by

v(j) =

{
(ϕ ◦ u)(j), if 0 ≤ j ≤ n,

0, otherwise.
(4.16)

Applying Theorem 3.3.3 and taking real parts,

∞∑
j=0

v(j)(Gqv)(j) =
1

2π

∫ 2π

0

Re

[
v̂(eiθ)(Ĝqv)(eiθ)

]
dθ

=
1

2π

∫ 2π

0

|v̂(eiθ)|2ReGq(eiθ) dθ

=
1

2π

∫ 2π

0

|v̂(eiθ)|2ReGq(e
iθ) dθ. (4.17)

Using (4.15) and applying again Theorem 3.3.3, we obtain,

1

2π

∫ 2π

0

|v̂(eiθ)|2ReGq(e
iθ) dθ ≥ 1

2π

(
ε− 1

a
+

G(1)

2

)∫ 2π

0

|v̂(eiθ)|2 dθ

=

(
ε− 1

a
+

G(1)

2

) ∞∑
j=0

v2(j).
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Invoking (4.16) and (4.17), we conclude that,

n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j) ≥
(
ε− 1

a
+

G(1)

2

) n∑
j=0

(ϕ ◦ u)2(j). (4.18)

Applying (4.18) to (4.13) gives,

q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j) +
n∑

j=0

(ϕ ◦ u)(j)u(j)

+

(
ε− 1

a

) n∑
j=0

(ϕ ◦ u)2(j) +
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

≤ q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.19)

Define Φ(v) :=
∫ v

0
ϕ(σ) dσ for all v ∈ R. Using the fact that ϕ is non-decreasing

we can estimate the first term on the LHS of (4.19) as follows,

n∑
j=0

(ϕ ◦ u)(j)(40u)(j) ≥
n∑

j=1

∫ u(j)

u(j−1)

ϕ(σ) dσ +

∫ u(0)

0

ϕ(σ) dσ

=

∫ u(n)

0

ϕ(σ) dσ

= Φ(u(n)), ∀ n ∈ Z+.

Using this estimate in (4.19) we obtain,

qΦ(u(n)) +
n∑

j=0

(ϕ ◦ u)(j)u(j)

+

(
ε− 1

a

) n∑
j=0

(ϕ ◦ u)2(j) +
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

≤ q

n∑
j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.20)

By assumption r = r1 + r2ϑ, where r1 ∈ l2(Z+,R) and r2 ∈ R. Using this
decomposition of r we can write the last term on the RHS of (4.20) as,

n∑
j=0

(ϕ ◦ u)(j)r(j) =
n∑

j=0

(ϕ ◦ u)(j)r1(j) +
n∑

j=0

(ϕ ◦ u)(j)r2. (4.21)

45



Using (4.21) in (4.20) gives,

qΦ(u(n)) +
n∑

j=0

(ϕ ◦ u)(j)u(j) +

(
ε− 1

a

) n∑
j=0

(ϕ ◦ u)2(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

−
n∑

j=0

(ϕ ◦ u)(j)r2

≤ q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r1(j). (4.22)

Completing the square gives,

G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

−
n∑

j=0

(ϕ ◦ u)(j)r2

=
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

− 1

2
[G(1)]−1r2

2. (4.23)

So using (4.23) in (4.22) yields the following,

qΦ(u(n)) +
n∑

j=0

(ϕ ◦ u)(j)u(j) +

(
ε− 1

a

) n∑
j=0

(ϕ ◦ u)2(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

− 1

2
[G(1)]−1r2

2

≤ q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r1(j). (4.24)

Now the RHS of (4.24) can be estimated as follows (since ab ≤ 1
2
εa2 + b2/(2ε) for

non-negative numbers a and b)

n∑
j=0

|(ϕ ◦ u)(j)[q(40r)(j) + r1(j)]|

≤ 1

2
ε

n∑
j=0

(ϕ ◦ u)2(j) +
1

2ε

n∑
j=0

[q(40r)(j) + r1(j)]
2. (4.25)
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Combining (4.25) and (4.24) and simplifying we obtain,

qΦ(u(n)) +
n∑

j=0

(ϕ ◦ u)(j)u(j)− 1

a

n∑
j=0

(ϕ ◦ u)2(j) +
ε

2

n∑
j=0

(ϕ ◦ u)2(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

≤ 1

2ε

n∑
j=0

[q(40r)(j) + r1(j)]
2 +

1

2
[G(1)]−1r2

2. (4.26)

The RHS of (4.26) can be estimated as follows,

1

2ε

n∑
j=0

[q(40r)(j) + r1(j)]
2 +

1

2
[G(1)]−1r2

2

≤ 1

2ε

∞∑
j=0

[q(40r)(j) + r1(j)]
2 +

1

2
[G(1)]−1|r2|2

≤ 1

ε

∞∑
j=0

[q2(40r)
2(j) + r2

1(j)] +
1

2
[G(1)]−1|r2|2

=
q2

ε
‖40r‖2

l2 +
1

ε
‖r1‖2

l2 +
1

2
[G(1)]−1|r2|2

≤ q2

ε
(2‖r1‖l2 + |r2|)2 +

1

ε
‖r1‖2

l2 +
1

2
[G(1)]−1|r2|2

≤ 8q2

ε
‖r1‖2

l2 +
2q2

ε
|r2|2 +

1

ε
‖r1‖2

l2 +
1

2
[G(1)]−1|r2|2

≤ L‖r‖2
m2 , (4.27)

where L depends only on q, ε and G(1) and we have used the fact that 40r =
r1 − Sr1 + r2δ and so ‖40r‖l2 ≤ 2‖r1‖l2 + |r2|. Combining (4.27) with (4.26)
gives,

qΦ(u(n)) +
n∑

j=0

[
(ϕ ◦ u)(j)u(j)− 1

a
(ϕ ◦ u)2(j)

]
+
ε

2

n∑
j=0

(ϕ ◦ u)2(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

≤ L‖r‖2
m2 , ∀ n ∈ Z+. (4.28)
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By sector condition (4.2) we have that,

n∑
j=0

[
(ϕ ◦ u)(j)u(j)− 1

a
(ϕ ◦ u)2(j)

]
≥ 0.

We also note that, by (4.2), Φ is non-negative, as are all the other terms on the
LHS of (4.28). Furthermore, the RHS of this inequality is entirely dependent on
r and in particular does not depend on u. Inequality (4.28) is the key estimate
from which we shall derive the theorem.

Proof of Statement 1: In the following, K > 0 is a generic constant which will be
suitably adjusted in every step and depends only on q, ε, a and G, but not on n,
u or r. From (4.28) we obtain,

ε

2

n∑
j=0

(ϕ ◦ u)2(j) ≤ L‖r‖2
m2 , ∀ n ∈ Z+.

Hence,
‖ϕ ◦ u‖l2 ≤ K‖r‖m2 . (4.29)

Again, by (4.28),

G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

≤ L‖r‖2
m2 , ∀ n ∈ Z+.

Hence, ∣∣∣∣( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∣∣∣∣2 ≤ K‖r‖2
m2 .

Now this implies that,∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣− |[G(1)]−1r2| ≤ K‖r‖m2 , ∀ n ∈ Z+,

and so ∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣ ≤ K‖r‖m2 , ∀ n ∈ Z+.

Hence,

sup
n≥0

∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣ ≤ K‖r‖m2 . (4.30)
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Again starting with (4.28) we obtain the following inequality,

n∑
j=0

[
(ϕ ◦ u)(j)u(j)− 1

a
(ϕ ◦ u)2(j)

]
≤ L‖r‖2

m2 , ∀ n ∈ Z+.

It follows that

0 ≤
n∑

j=0

(ϕ ◦ u)(j)u(j) ≤ L‖r‖2
m2 +

1

a

∞∑
j=0

(ϕ ◦ u)2(j)

≤ K‖r‖2
m2 , ∀ n ∈ Z+,

where we have used (4.29). Consequently,

(‖(ϕ ◦ u)u‖l1)
1/2 ≤ K‖r‖m2 . (4.31)

Since H ∈ H∞(E1) ⊂ H2(E1), by Theorem 3.3.2, there exists h ∈ l2(Z+,R) such
that,

H(z) = ĥ(z) =
∞∑

k=0

h(k)z−k.

Hence,

|(Hv)(j)| = |
j∑

k=0

h(j − k)v(k)| ≤
( j∑

k=0

|h(k)|2
)1/2( j∑

k=0

|v(k)|2
)1/2

≤ ‖h‖l2‖v‖l2 . (4.32)

Applying (4.32) with v = ϕ ◦ u and using (4.29) gives,

|(H(ϕ ◦ u))(j)| ≤ ‖h‖l2‖ϕ ◦ u‖l2 ≤ K‖r‖m2 . (4.33)

Invoking (4.8) we have,

|u(j)| ≤ |(H(ϕ ◦ u))(j)|+ |G(1)||(J(ϕ ◦ u))(j)|+ |r(j)|
≤ |(H(ϕ ◦ u))(j)|+ |G(1)||(J(ϕ ◦ u))(j)|+ ‖r‖m2 . (4.34)

Taking the supremum and applying (4.30) combined with (4.33), we obtain from
(4.34),

‖u‖l∞ = sup
n≥0

|u(n)| ≤ K‖r‖m2 . (4.35)

By (4.7), we have that
40u = 40r − SG(ϕ ◦ u). (4.36)

Since ϕ ◦ u ∈ l2(Z+,R) by (4.29), G ∈ B(l2(Z+,R)) and 40r ∈ l2(Z+,R) we
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conclude that 40u ∈ l2(Z+,R). Furthermore, by (4.29) the l2-norm of the RHS
of (4.36) is bounded by K‖r‖m2 , and thus ‖40u‖l2 ≤ K‖r‖m2 . Combining this
with (4.29), (4.30), (4.31) and (4.35) it is clear that (4.4) holds.

Proof of Statement 2: We note that by (4.13)

G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

−
n∑

j=0

(ϕ ◦ u)(j)r2

=
G(1)

2

n∑
j=0

(ϕ ◦ u)2(j)− q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j)

−
n∑

j=0

(ϕ ◦ u)(j)u(j)−
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r1(j). (4.37)

Completing the square on the LHS of (4.37) as in (4.23) we obtain,

G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

=
1

2
[G(1)]−1r2

2 −
n∑

j=0

(ϕ ◦ u)(j)u(j)−
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+
n∑

j=0

(ϕ ◦ u)(j)r1(j) +
G(1)

2

n∑
j=0

(ϕ ◦ u)2(j)

+q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j)− q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j). (4.38)

By statement 1, ϕ◦u ∈ l2(Z+,R), 40u ∈ l2(Z+,R) and (ϕ◦u)u ∈ l1(Z+,R). Since
r1 ∈ l2(Z+,R) and Gq ∈ B(l2(Z+,R)) it follows that, (ϕ ◦ u)Gq(ϕ ◦ u), (ϕ ◦ u)r1,
(ϕ ◦ u)2, (ϕ ◦ u)(40r) and (ϕ ◦ u)(40u) are in l1(Z+,R), and the RHS of (4.38)
has a finite limit as n→∞. Hence,

λ := lim
n→∞

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)2

exists and is finite. The problem now is that as n→∞,
∑n

j=0(ϕ◦u)(j) could jump

between small neighbourhoods of the points [G(1)]−1r2 ±
√
λ and not converge

to either of them. To see that this is not the case, we set w(n) :=
∑n

j=0(ϕ◦u)(j).
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By statement 1, (ϕ ◦ u)(j) → 0 as j → ∞ since ϕ ◦ u ∈ l2(Z+,R). Hence,
(4w)(n) = (ϕ ◦ u)(n + 1) → 0 and we see that w(n) =

∑n
j=0(ϕ ◦ u)(j) must

converge to one of the points [G(1)]−1r2±
√
λ. To prove that limn→∞ u(n) exists,

it is sufficient to show that,

lim
n→∞

(
u(n) + G(1)(J(ϕ ◦ u))(n)

)
= r2. (4.39)

By (4.8), (4.39) is equivalent to the claim that limn→∞(H(ϕ ◦ u))(n) = 0. The
later follows from the fact that, H ∈ B(l2(Z+,R)) and ϕ◦u ∈ l2(Z+,R) by (4.4),
showing that H(ϕ ◦ u) ∈ l2(Z+,R). Consequently, H(ϕ ◦ u)(n) → 0 as n → ∞,
implying that (4.39) holds. Therefore, u∞ := limn→∞ u(n) exists and is finite.
Finally, noting that by statement 1, ϕ ◦ u ∈ l2(Z+,R) and assuming that ϕ is
continuous, it is clear that ϕ(u∞) = 0. 2

We now assume that ε = 0 in the positive-real condition (4.3) and consider the
absolute stability problem shown in Figure 4.1.

Theorem 4.1.3. Let G ∈ B(l∞(Z+,R)) be a shift-invariant operator with trans-
fer function G satisfying assumption (A) and let ϕ : R → R be a measurable
non-decreasing non-linearity. Assume that G(1) > 0 and there exists numbers
q ≥ 0 and a ∈ (0,∞) such that (4.2) holds and

1

a
+ Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
≥ 0, a.a. θ ∈ (0, 2π). (4.40)

Let r ∈ m1(Z+,R), and let u : Z+ → R be the unique solution of (4.1). Then
there exists a constant K > 0 (which depends only on q and G, but not on r)
such that,

‖u‖l∞ + sup
n≥0

∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣+ (‖(ϕ ◦ u)(u− 1

a
ϕ ◦ u)‖l1)

1/2 ≤ K‖r‖m1 . (4.41)

Remark 4.1.4. We claim that under the assumptions of Theorem 4.1.3, (4.40)
can not be satisfied for a = ∞. To this end consider the function Gq defined by,

Gq(z) =
q

z
G(z) +

1

z − 1
[G(z)−G(1)], z ∈ E1,

which has been used in the proof of Theorem 4.1.2. From assumption (A) and
the fact that G ∈ H∞(E1), we have that Gq ∈ H∞(E1). Since

lim
|z|→∞,z∈E1

Gq(z) = 0,

51



we see that by the property of z 7→ e−Gq(z) ∈ H∞(E1),

1 ≤ sup
z∈E1

|e−Gq(z)| = ess supθ∈(0,2π)|e−Gq(eiθ)| = e−
eGq ,

where G̃q := ess infθ∈(0,2π)ReGq(e
iθ). Hence G̃q ≤ 0 and, consequently,

ess infθ∈(0,2π)ReGq(e
iθ)

= ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)− 1

eiθ − 1
G(1)

]
= ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)]
+

G(1)

2
≤ 0. (4.42)

Since G(1) > 0, it follows from (4.42) that

ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
≤ −G(1)

2
.

This implies that if (4.40) holds, then a ≤ 2/G(1) <∞. 3

Proof of Theorem 4.1.3. Defining,

σ(n) :=
n∑

j=0

(ϕ ◦ u)(j), ∀ n ∈ Z+, σ(−1) := 0,

and setting ε = 0 in (4.20) we obtain,

qΦ(u(n)) +
n∑

j=0

[
(ϕ ◦ u)(j)(u(j)− 1

a
(ϕ ◦ u)(j))

]
+

G(1)

2
σ2(n)

≤ q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j), (4.43)

where Φ(v) :=
∫ v

0
ϕ(σ) dσ for all v ∈ R. By assumption r = r1 + r2ϑ, where

r1 ∈ l1(Z+,R) and r2 ∈ R. Using this decomposition of r we can write the RHS
of (4.43) as,

q

n∑
j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j)

=
n∑

j=0

[σ(j)− σ(j − 1)][q(40r)(j) + r1(j)] + σ(n)r2. (4.44)
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Partial summation yields the identities,

n∑
j=0

[σ(j)− σ(j − 1)](40r)(j) =
n∑

j=0

σ(j)((40r)(j)− (40r)(j + 1))

+σ(n)(40r)(n+ 1) (4.45)

and

n∑
j=0

[σ(j)− σ(j − 1)]r1(j) =
n∑

j=0

σ(j)[r1(j)− r1(j + 1)]

+σ(n)r1(n+ 1). (4.46)

Combining (4.46) and (4.45) with (4.44) we obtain, from (4.43),

qΦ(u(n)) +
n∑

j=0

[
(ϕ ◦ u)(j)(u(j)− 1

a
(ϕ ◦ u)(j))

]
+

G(1)

2
σ(n)2

≤ q
n∑

j=0

σ(j)((40r)(j)− (40r)(j + 1)) + qσ(n)(40r)(n+ 1)

+
n∑

j=0

σ(j)[r1(j)− r1(j + 1)] + σ(n)r1(n+ 1) + σ(n)r2. (4.47)

The RHS of (4.47) can be estimated as follows,

q
n∑

j=0

[σ(j)((40r)(j)− (40r)(j + 1))] + qσ(n)(40r)(n+ 1)

+
n∑

j=0

σ(j)[r1(j)− r1(j + 1)] + σ(n)r1(n+ 1) + σ(n)r2

≤ 2q‖40r‖l1 max
0≤j≤n

|σ(j)|+ q|σ(n)||40r(n+ 1)|+ 2‖r1‖l1 max
0≤j≤n

|σ(j)|

+|σ(n)||r1(n+ 1)|+ |σ(n)||r2|
≤ max

0≤j≤n
|σ(j)|(3q‖40r‖l1 + 3‖r1‖l1 + |r2|)

≤ max
0≤j≤n

|σ(j)|(3q(2‖r1‖l1 + |r2|) + 3‖r1‖l1 + |r2|)

≤ L max
0≤j≤n

|σ(j)|‖r‖m1 , (4.48)

where L > 0 is some constant depending only on q. Combining (4.48) with (4.47)
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gives,

qΦ(u(n)) +
n∑

j=0

[
(ϕ ◦ u)(j)(u(j)− 1

a
(ϕ ◦ u)(j))

]
+

G(1)

2
σ(n)2

≤ L max
0≤j≤n

|σ(j)|‖r‖m1 . (4.49)

In the following, K > 0 is a generic constant which will be suitably adjusted in
every step and depends only on q and G, but not on u, r or n.

Since Φ is non-negative, the first term on the LHS of this equation is non-negative
and by sector condition (4.2), the second term on the LHS of (4.49) is also non-
negative. Hence, from (4.49) we obtain,

|σ(n)| =
∣∣∣∣ n∑

j=0

(ϕ ◦ u)(j)
∣∣∣∣ ≤ K‖r‖m1 , ∀ n ∈ Z+,

which in turn implies that

‖σ‖l∞ = sup
n≥0

∣∣∣∣ n∑
j=0

(ϕ ◦ u)(j)
∣∣∣∣ ≤ K‖r‖m1 . (4.50)

Using (4.50) in (4.49) shows that,

(‖(ϕ ◦ u)(u− 1

a
(ϕ ◦ u))‖l1)

1/2 ≤ K‖r‖m1 . (4.51)

Since G is shift-invariant, it commutes with J , and hence, from (4.6),

|u(n)| = |r(n)− (J(G(ϕ ◦ u)))(n)|
≤ |r(n)|+ |(G(J(ϕ ◦ u)))(n)|
≤ ‖r‖m1 + ‖G‖‖σ‖l∞ .

Taking the supremum and applying (4.50) we obtain,

‖u‖l∞ = sup
n≥0

|u(n)| ≤ K‖r‖m1 .

Together with (4.51) and (4.50) it now follows that (4.41) holds. 2
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4.2 Absolute stability results of circle-criterion-

type

We now consider the absolute stability problem shown in Figure 4.1 where ϕ is
time-dependent. Recall that U denotes a (possibly complex) Hilbert space.

Theorem 4.2.1. Let G ∈ B(l2(Z+, U)) be a shift-invariant operator with transfer
function G satisfying assumption (A) with G(1) invertible, and let ϕ : Z+ ×
U → U be a time-varying non-linearity. Assume that there exist self-adjoint
P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a number
ε > 0 such that

Re 〈ϕ(n, v), Qv〉 ≥ 〈ϕ(n, v), Pϕ(n, v)〉, ∀ n ∈ Z+, v ∈ U, (4.52)

and

P +
1

2

[
1

eiθ − 1
QG(eiθ) +

1

e−iθ − 1
G∗(eiθ)Q∗

]
≥ εI, a.a. θ ∈ (0, 2π). (4.53)

Let r ∈ m2(Z+, U), that is, r = r1 + r2ϑ with r1 ∈ l2(Z+, U) and r2 ∈ U , and let
u : Z+ → U be the unique solution of (4.1). Then the following statements hold.

1. There exists a constant K (which depends only on ε, P , Q and G, but not
on r) such that,

‖u‖l∞ + ‖4u‖l2 + ‖ϕ ◦ u‖l2 + (‖Re 〈(ϕ ◦ u), Qu〉‖l1)
1/2

+ sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m2 . (4.54)

2. We have,

lim
n→∞

(
u(n) + G(1)

n∑
j=0

(ϕ ◦ u)(j)
)

= r2; (4.55)

in particular, limn→∞ u(n) exists if and only if limn→∞
∑n

j=0(ϕ◦u)(j) exists,
in which case

lim
n→∞

u(n) = r2 −G(1) lim
n→∞

n∑
j=0

(ϕ ◦ u)(j). (4.56)

3. There exists a sphere S ⊂ U centred at 0, such that

lim
n→∞

dist(u(n),G(1)[QG(1)]−1/2S) = 0, (4.57)

55



in particular, if dimU = 1, then limn→∞ u(n) and limn→∞
∑n

j=0(ϕ ◦ u)(j)
exist.

4. If we relax condition (4.52) and only require that for some n0 > 0,

Re 〈ϕ(n, v), Qv〉 ≥ 〈ϕ(n, v), Pϕ(n, v)〉 , ∀ n ≥ n0, v ∈ U, (4.58)

then the LHS of (4.54) is still finite (but no longer bounded in terms of
‖r‖m2) and statements 2 and 3 remain valid.

5. Under the additional assumptions

(B) ϕ does not depend on time,

(C) ϕ−1(0) ∩B is precompact for every bounded set B ⊂ U ,

(D) infv∈B ‖ϕ(v)‖ > 0 for every bounded, closed set B ⊂ U such that
ϕ−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), ϕ−1(0)) = 0.

6. If the additional assumptions (B)-(D) of statement 5 hold and if the in-
tersection cl(ϕ−1(0)) ∩G(1)[QG(1)]−1/2S is totally disconnected for every
sphere S ⊂ U centred at 0, then u(n) converges as n→∞.

Remark 4.2.2. Note that if dimU < ∞ then assumption (C) always holds. If
dimU <∞, ϕ is time-independent and ϕ is continuous, then assumption (D) is
satisfied. 3

Before proving Theorem 4.2.1, we state a slightly simplified version of this result
(where P and Q are scalars and P ≥ 0) in the form of a corollary which is
convenient in the context of applications of Theorem 4.2.1 to integral control
(see Chapter 5).

Corollary 4.2.3. Let G ∈ B(l2(Z+, U)) be a shift-invariant operator with trans-
fer function G satisfying assumption (A) with G(1) invertible, G(1) = G∗(1) ≥
0, and let ϕ : Z+ × U → U be a time-varying non-linearity. Assume that there
exists numbers ε > 0 and a ∈ (0,∞) such that

Re 〈ϕ(n, v), v〉 ≥ 1

a
‖ϕ(n, v)‖2, ∀ v ∈ U, (4.59)

and

1

a
I +

1

2

[
1

eiθ − 1
G(eiθ) +

1

e−iθ − 1
G∗(eiθ)

]
≥ εI, a.a. θ ∈ (0, 2π).

Then for all r ∈ m2(Z+, U), the conclusions of Theorem 4.2.1 hold with P =
(1/a)I and Q = I.
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Proof of Theorem 4.2.1. We have,

u+ (JG)(ϕ ◦ u) = r. (4.60)

We now write (4.60) in a slightly more convenient form, namely,

u+H(ϕ ◦ u) + G(1)J(ϕ ◦ u) = r, (4.61)

where H := J ◦ G −G(1)J . It is clear that this operator is shift-invariant with
transfer function H given by,

H(z) =
1

z − 1
[G(z)−G(1)], z ∈ E1. (4.62)

From assumption (A) and from the fact that G ∈ H∞(E1,B(U)), we conclude
that H ∈ H∞(E1,B(U)), and hence H ∈ B(l2(Z+, U)).

Applying Q to (4.61) we obtain,

Qu(j) + (GQ(ϕ ◦ u))(j) +QG(1)(J(ϕ ◦ u))(j) = Qr(j), ∀ j ∈ Z+, (4.63)

where we have defined the operator GQ by GQ := QH. Invoking (4.62) we see
that the transfer function GQ of GQ is given by

GQ :=
1

z − 1
Q[G(z)−G(1)], z ∈ E1.

Forming the inner product with (ϕ ◦ u)(j), taking real parts and summing from
0 to n in (4.63) yields,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 + Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

+ Re
n∑

j=1

〈(ϕ ◦ u)(j), QG(1)

j−1∑
k=0

(ϕ ◦ u)(k)〉

= Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.64)

Since, by assumption, QG(1) = [QG(1)]∗ ≥ 0, the square root [QG(1)]1/2 of
QG(1) exists and hence, an application of Lemma 4.1.1 to the last term on the
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LHS of (4.64) yields,

Re
n∑

j=1

〈(ϕ ◦ u)(j), QG(1)

j−1∑
k=0

(ϕ ◦ u)(k)〉

= Re
n∑

j=1

〈[QG(1)]1/2(ϕ ◦ u)(j),
j−1∑
k=0

[QG(1)]1/2(ϕ ◦ u)(k)〉

=
1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

− 1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (4.65)

Combining (4.65) with (4.64) gives,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 + Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

+
1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

− 1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2

= Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.66)

We note that,

GQ(z) + G∗
Q(z) =

1

z − 1
Q[G(z)−G(1)] +

(
1

z − 1
Q[G(z)−G(1)]

)∗
=

1

z − 1
QG(z) +

1

z − 1
G∗(z)Q∗ −

(
1

z − 1
+

1

z − 1

)
QG(1).

Taking z = eiθ with θ ∈ (0, 2π) yields,

1

eiθ − 1
+

1

e−iθ − 1
=

e−iθ − 1 + eiθ − 1

(eiθ − 1)(e−iθ − 1)
=
e−iθ + eiθ − 2

2− eiθ − e−iθ
= −1,

and we obtain,

GQ(eiθ) + G∗
Q(eiθ) =

1

eiθ − 1
QG(eiθ) +

1

e−iθ − 1
G∗(eiθ)Q∗

+ QG(1), a.a. θ ∈ (0, 2π). (4.67)
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Combining (4.67) with (4.53) we see that,

1

2
[GQ(eiθ) + G∗

Q(eiθ)] =
1

2

[
1

eiθ − 1
QG(eiθ) +

1

e−iθ − 1
G∗(eiθ)Q∗

]
+
QG(1)

2

≥ εI − P +
QG(1)

2
. (4.68)

Define v : Z → U by

v(j) =

{
(ϕ ◦ u)(j), if 0 ≤ j ≤ n,

0, otherwise.
(4.69)

By Theorem 3.3.3,

Re
∞∑

j=0

〈v(j), (GQv)(j)〉 =
1

2π

∫ 2π

0

Re 〈v̂(eiθ), (ĜQv)(e
iθ)〉 dθ

=
1

2π

∫ 2π

0

Re 〈v̂(eiθ),GQ(eiθ)v̂(eiθ)〉 dθ. (4.70)

Using (4.68), noting that QG(1) = [QG(1)]∗ ≥ 0 and applying again Theorem
3.3.3, we obtain,

1

2π

∫ 2π

0

Re 〈v̂(eiθ),GQ(eiθ)v̂(eiθ)〉 dθ

=
1

2π

∫ 2π

0

〈
v̂(eiθ),

1

2

(
GQ(eiθ) + G∗

Q(eiθ)

)
v̂(eiθ)

〉
dθ

≥ 1

2π

∫ 2π

0

〈
v̂(eiθ),

(
εI − P +

QG(1)

2

)
v̂(eiθ)

〉
dθ

=
1

2π

∫ 2π

0

ε‖v̂(eiθ)‖2 dθ − 1

2π

∫ 2π

0

〈v̂(eiθ), P v̂(eiθ)〉 dθ

+
1

4π

∫ 2π

0

‖[QG(1)]1/2v̂(eiθ)‖2 dθ

= ε
∞∑

j=0

‖v(j)‖2 −
∞∑

j=0

〈v(j), Pv(j)〉+
1

2

∞∑
j=0

‖[QG(1)]1/2v(j)‖2.
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Invoking (4.69) and (4.70), we conclude that,

Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

≥ ε
n∑

j=0

‖(ϕ ◦ u)(j)‖2 −
n∑

j=0

〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉

+
1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (4.71)

Applying (4.71) to (4.66) gives,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 −
n∑

j=0

〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉+ ε

n∑
j=0

‖(ϕ ◦ u)(j)‖2

+
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)
)∥∥∥∥2

≤ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.72)

By assumption r = r1 + r2ϑ, where r1 ∈ l2(Z+, U) and r2 ∈ U . Using this
decomposition of r we can write the term on the RHS of (4.72) as,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉 = Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr1(j)〉+ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr2〉.

(4.73)
Using (4.73) in (4.72) gives,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 −
n∑

j=0

〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉+ ε
n∑

j=0

‖(ϕ ◦ u)(j)‖2

+
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)
)∥∥∥∥2

≤ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr1(j)〉+ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr2〉. (4.74)

Completing the square on the expression,

1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

− Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr2〉,
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we obtain,

1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

− Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr2〉

=
1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

−Re

〈
[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j), [QG(1)]1/2[G(1)]−1r2

〉

=
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

−1

2
‖[QG(1)]1/2[G(1)]−1r2‖2. (4.75)

So using (4.75) in (4.74) yields the following,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 −
n∑

j=0

〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉+ ε
n∑

j=0

‖(ϕ ◦ u)(j)‖2

+
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

≤ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr1(j)〉+
1

2
‖[QG(1)]1/2[G(1)]−1r2‖2. (4.76)

Now the first term on the RHS of (4.76) can be estimated as follows (since
ab ≤ 1

2
εa2 + b2/(2ε) for non-negative numbers a and b)

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr1(j)〉 ≤
n∑

j=0

‖(ϕ ◦ u)(j)‖‖Qr1(j)‖

≤ 1

2
ε

n∑
j=0

‖(ϕ ◦ u)(j)‖2 +
1

2ε

n∑
j=0

‖Qr1(j)‖2. (4.77)
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Combining (4.77) and (4.76) and simplifying we obtain,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉 +
ε

2

n∑
j=0

‖(ϕ ◦ u)(j)‖2

+
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

≤ 1

2ε

∞∑
j=0

‖Qr1(j)‖2 +
1

2
‖[QG(1)]1/2[G(1)]−1r2‖2

≤ ‖Q‖2

2ε
‖r1‖2

l2 +
1

2
‖[QG(1)]1/2[G(1)]−1‖2‖r2‖2

≤ L‖r‖2
m2 , ∀ n ∈ Z+, (4.78)

where L depends only on ε, G and Q. By the sector condition (4.52) we have
that,

Re 〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉 ≥ 0, ∀ j ∈ Z+,

showing that the first term on the LHS of (4.78) is non-negative. We also note
that all the other terms on the LHS of (4.78) are non-negative. Inequality (4.78)
is the key estimate from which we will derive the theorem.

Proof of Statement 1: In the following, K > 0 is a generic constant which will be
suitably adjusted in every step and depends only on ε, P , Q and G, but not on
n or r. From (4.78) we obtain,

ε

2

n∑
j=0

‖(ϕ ◦ u)(j)‖2 ≤ L‖r‖2
m2 , ∀ n ∈ Z+.

Hence,
‖ϕ ◦ u‖l2 ≤ K‖r‖m2 . (4.79)

Again, by (4.78),

1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

≤ L‖r‖2
m2 , ∀ n ∈ Z+.

Since QG(1) is invertible (by assumption), [QG(1)]1/2 is invertible and therefore,∥∥∥∥( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

≤ K‖r‖2
m2 .
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Now this implies that,∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥− ‖[G(1)]−1r2‖ ≤ K‖r‖m2 , ∀ n ∈ Z+,

and so, ∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m2 , ∀ n ∈ Z+.

Hence,

sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m2 . (4.80)

Again starting with (4.78), we obtain the following inequality,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉 ≤ L‖r‖2
m2 , ∀ n ∈ Z+.

Since,

|Re 〈(ϕ ◦ u)(j), Qu(j)〉| ≤ |Re 〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉|
+ |Re 〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉|

it follows that,

n∑
j=0

|Re 〈(ϕ ◦ u)(j), Qu(j)〉| ≤ L‖r‖2
m2 + ‖P‖

∞∑
j=0

‖(ϕ ◦ u)2(j)‖

≤ K‖r‖2
m2 , ∀ n ∈ Z+,

where we have used (4.79). Consequently,

(‖Re 〈(ϕ ◦ u), Qu〉‖l1)
1/2 ≤ K‖r‖m2 . (4.81)

Since H ∈ B(l2(Z+, U)), we have that

‖(Hv)(j)‖ ≤ ‖Hv‖l2 ≤ ‖H‖‖v‖l2 , ∀ j ∈ Z+, v ∈ l2(Z+, U).

Combining this with (4.79) gives,

‖(H(ϕ ◦ u))(j)‖ ≤ ‖H‖‖ϕ ◦ u‖l2 ≤ K‖r‖m2 . (4.82)
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Invoking (4.61) we have,

‖u(j)‖ ≤ ‖(H(ϕ ◦ u))(j)‖+ ‖G(1)‖‖(J(ϕ ◦ u))(j)‖+ ‖r(j)‖
≤ ‖(H(ϕ ◦ u))(j)‖+ ‖G(1)‖‖(J(ϕ ◦ u))(j)‖+ ‖r‖m2 . (4.83)

Taking the supremum and applying (4.80) combined with (4.82), we obtain from
(4.83),

‖u‖l∞ = sup
n≥0

‖u(n)‖ ≤ K‖r‖m2 . (4.84)

By (4.60) we have that,
4u = 4r1 −G(ϕ ◦ u)

and since ϕ ◦ u ∈ l2(Z+, U) by (4.79), G ∈ B(l2(Z+, U)) and r1 ∈ l2(Z+, U)
we conclude that 4u ∈ l2(Z+, U). Furthermore, it follows from (4.79) that
‖4u‖l2 ≤ K‖r‖m2 . Combining this with, (4.84), (4.81), (4.80), (4.79), it is clear
that (4.54) holds.

Proof of Statement 2: By (4.61), equation (4.55) is equivalent to the claim that

lim
n→∞

(H(ϕ ◦ u))(n) = 0.

Since H ∈ B(l2(Z+, U)) and ϕ ◦ u ∈ l2(Z+, U), we conclude that H(ϕ ◦ u) ∈
l2(Z+, U). Thus H(ϕ ◦ u)(n) → 0 as n→∞. It is now clear that if limn→∞ u(n)
exists, then, by (4.55), limn→∞

∑n
j=0(ϕ ◦ u)(j) exists and (4.56) follows trivially.

Proof of Statement 3: From (4.66) and (4.75) we have,

1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

=
1

2
‖[QG(1)]1/2[G(1)]−1r2‖2 − Re

n∑
j=0

〈(ϕ ◦ u)(j), Qu(j)〉

−Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉+
1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2

+Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr1(j)〉. (4.85)

The RHS of (4.85) has a finite limit as n → ∞, since Re 〈(ϕ ◦ u), Qu〉, 〈(ϕ ◦
u), GQ(ϕ ◦ u)〉, 〈(ϕ ◦ u), Qr1〉 and ‖(ϕ ◦ u)‖2 are in l1(Z+). Hence we have that,

lim
n→∞

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥
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exists. Set

λ := lim
n→∞

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥. (4.86)

Now using (4.55) and writing f(n) :=
∑n

j=0(ϕ ◦ u)(j) we have,

lim
n→∞

(u(n)− r2 + G(1)f(n)) = 0. (4.87)

Let g(n) := [QG(1)]1/2(f(n)−[G(1)]−1r2). From (4.86) we have limn→∞ ‖g(n)‖ =
λ, that is, g(n) approaches the sphere S of radius λ centred at 0 as n → ∞. So
by (4.87),

0 = lim
n→∞

(u(n)− r2 + G(1)f(n)) = lim
n→∞

(u(n) + [G(1)][QG(1)]−1/2g(n))

and we see that u(n) approaches the set G(1)[QG(1)]−1/2S. Finally if dimU = 1,
then the sphere S consists of just one or two points. To see that the sequence
u(n) does not oscillate between small neighbourhoods of each of these two points,
we observe that (4u)(n) → 0 as n→∞ (since 4u ∈ l2(Z+, U) by statement 1).
Therefore we conclude limn→∞ u(n) exists. It is then clear from statement 2 that
limn→∞

∑n
j=0(ϕ ◦ u)(j) exists.

Proof of Statement 4: In proving statement 4, we use (4.78), the only problem
being that the sector condition now only holds whenever j ≥ n0. Hence the first
term on the LHS of (4.78) could have either sign. However, setting

Γ := Re

n0∑
j=0

∣∣∣∣〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉
∣∣∣∣

we see from (4.78) that for all n ≥ n0,

Re
n∑

j=n0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉+
ε

2

n∑
j=0

‖(ϕ ◦ u)(j)‖2

+
1

2

∥∥∥∥[QG(1)]1/2

( n∑
j=0

(ϕ ◦ u)(j)− [G(1)]−1r2

)∥∥∥∥2

≤ Γ +
1

2ε

n∑
j=0

‖Qr1(j)‖2 +
1

2
‖[QG(1)]1/2[G(1)]−1r2‖2. (4.88)

Now by (4.58), the first term on the LHS of (4.88) is non-negative. Statements
1-3 can be derived from (4.88) by arguments identical to those used previously in
this proof with no further changes, except that the RHS of (4.54) is now bounded
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in terms of ‖r‖m2 and Γ.

Proof of Statement 5: Assume that the additional assumptions (B), (C) and
(D) are satisfied. Since u is bounded, there exists a closed bounded set B ⊂ U
such that u(n) ∈ B for all n ∈ Z+. It follows from (C) that ϕ−1(0) ∩ B is
precompact. Let η > 0. Consequently, for given η > 0, ϕ−1(0) ∩ B is contained
in a finite union of open balls with radius η, each ball centred at some point
in cl(ϕ−1(0) ∩ B). Denoting this union by Bη, we claim that u(n) ∈ Bη for all
sufficiently large n. This is trivially true if B ⊂ Bη. If not, then the set C :=
B\Bη is non-empty. Moreover, C is bounded and closed with ϕ−1(0)∩C = ∅ and
so infv∈C ‖ϕ(v)‖ > 0 by (D). We know from statement 1 that ϕ ◦ u ∈ l2(Z+, U),
hence limn→∞(ϕ◦u)(n) = 0, and so also in this case u(n) ∈ Bη for all sufficiently
large n. This implies that

lim
n→∞

dist(u(n), ϕ−1(0) ∩B) = 0 (4.89)

and, a fortiori,
lim

n→∞
dist(u(n), ϕ−1(0)) = 0 , (4.90)

completing the proof of statement 5.

Proof of Statement 6: To verify statement 6, we note that, by (4.89) and precom-
pactness of ϕ−1(0)∩B, the set {u(n) : n ∈ Z+} is precompact. Consequently, the
ω-limit set Ω of u is non-empty, compact and is approached by u(n) as n→∞.
Invoking (4.90), we see that Ω ⊂ cl(ϕ−1(0)). Furthermore, by statement 3, we
know that u(n) approaches G(1)[QG(1)]−1/2S for some sphere S ⊂ U centred at
0, hence Ω ⊂ G(1)[QG(1)]−1/2S. Hence,

Ω ⊂ cl(ϕ−1(0)) ∩G(1)[QG(1)]−1/2S . (4.91)

Since, by statement 1, (4u)(n) → 0 as n→∞, it follows from Lemma 2.1.7 that
Ω is connected. On the other hand, by hypothesis, cl(ϕ−1(0))∩G(1)[QG(1)]−1/2S
is totally disconnected, implying via (4.91) that Ω is totally disconnected. As a
consequence, Ω must consist of exactly one point, or, equivalently, u(n) converges
as n→∞. 2

We now assume that ε = 0 in the positive-real condition (4.53) and consider the
absolute stability problem shown in Figure 4.1.

Theorem 4.2.4. Let G ∈ B(l2(Z+, U)) ∩ B(l∞(Z+, U)) be a shift-invariant
operator with transfer function G satisfying assumption (A) with G(1) invertible,
and let ϕ : Z+×U → U be a time-varying non-linearity. Assume that there exist
self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 such
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that (4.52) holds and

P +
1

2

[
1

eiθ − 1
QG(eiθ) +

1

e−iθ − 1
G∗(eiθ)Q∗

]
≥ 0, a.a. θ ∈ (0, 2π). (4.92)

Let r ∈ m1(Z+, U) and let u : Z+ → U be the unique solution of (4.1). Then the
following statements hold.

1. There exists a constant K > 0 (which depends only on P , Q and G, but
not on r) such that,

‖u‖l∞+(‖Re 〈(ϕ ◦ u), Qu− P (ϕ ◦ u)〉‖l1)
1/2

+ sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m1 . (4.93)

2. Under the additional assumptions (B), (C) (see Theorem 4.2.1) and

(E) infv∈B Re 〈ϕ(v), Qv − Pϕ(v)〉 > 0 for every bounded closed set B ⊂ U
such that ϕ−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), ϕ−1(0)) = 0.

3. If the additional assumptions of statement 2 hold and ϕ is continuous,
then limn→∞(4u)(n) = 0. If, further, ϕ−1(0) is totally disconnected, then
limn→∞ u(n) =: u∞ exists with u∞ ∈ ϕ−1(0).

Proof. Defining,

σ(n) :=
n∑

j=0

(ϕ ◦ u)(j), ∀ n ∈ Z+, σ(−1) := 0,

and setting ε = 0 in (4.72) we obtain,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉+
1

2

∥∥∥∥[QG(1)]1/2σ(n)

∥∥∥∥2

≤ Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.94)

By assumption r = r1 + r2ϑ, where r1 ∈ l1(Z+, U) and r2 ∈ U . Using this
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decomposition of r we can write the right-hand-side of (4.94) as,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉 = Re
n∑

j=0

〈σ(j)− σ(j − 1), Qr1(j)〉+ Re 〈σ(n), Qr2〉.

(4.95)
Partial summation yields the identity,

n∑
j=0

〈σ(j)− σ(j − 1), Qr1(j)〉 =
n∑

j=0

〈σ(j),Qr1(j)−Qr1(j + 1)〉

+〈σ(n), Qr1(n+ 1)〉. (4.96)

Combining (4.96) with (4.95) and (4.94) we obtain,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉+
1

2

∥∥∥∥[QG(1)]1/2σ(n)

∥∥∥∥2

≤ Re
n∑

j=0

〈σ(j), Qr1(j)−Qr1(j + 1)〉+ Re 〈σ(n), Qr1(n+ 1)〉

+Re 〈σ(n), Qr2〉. (4.97)

The RHS of (4.97) can be estimated as follows,

Re
n∑

j=0

〈σ(j), Qr1(j)−Qr1(j + 1)〉+ Re 〈σ(n), Qr1(n+ 1)〉+ Re 〈σ(n), Qr2〉

≤ 2‖Qr1‖l1 max
0≤j≤n

‖σ(j)‖+ ‖σ(n)‖‖Qr1(n+ 1)‖+ ‖σ(n)‖‖Qr2‖

≤ ‖Q‖ max
0≤j≤n

‖σ(j)‖(2‖r1‖l1 + ‖r1‖l1 + ‖r2‖)

≤ 3‖Q‖ max
0≤j≤n

‖σ(j)‖‖r‖m1 . (4.98)

Combining (4.98) with (4.97) gives,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)− P (ϕ ◦ u)(j)〉+
1

2

∥∥∥∥[QG(1)]1/2σ(n)

∥∥∥∥2

≤ 3‖Q‖ max
0≤j≤n

‖σ(j)‖‖r‖m1 . (4.99)

Proof of Statement 1: In the following, K > 0 is a generic constant which will be
suitably adjusted in every step and depends only on P , Q and G, but not on n
or r.

By sector condition (4.52), the first term on the LHS of (4.99) is non-negative
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and so, from (4.99) we obtain,

‖σ(n)‖ =

∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m1 , ∀ n ∈ Z+,

which in turn implies that,

‖σ‖l∞ = sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥ ≤ K‖r‖m1 . (4.100)

Therefore, using (4.100) in (4.99) shows that,

(‖Re 〈(ϕ ◦ u), Qu− P (ϕ ◦ u)〉‖l1)
1/2 ≤ K‖r‖m1 . (4.101)

Since G is shift-invariant it commutes with J , and hence from (4.60),

‖u(n)‖ = ‖r(n)− (J(G(ϕ ◦ u)))(n)‖
≤ ‖r(n)‖+ ‖(G(J(ϕ ◦ u)))(n)‖
≤ ‖r‖m1 + ‖G‖‖σ‖l∞ ,

where we have used the fact that G ∈ B(l∞(Z+, U)). Taking the supremum and
applying (4.100) we obtain,

‖u‖l∞ = sup
n≥0

‖u(n)‖ ≤ K‖r‖m1 .

Together with (4.101) and (4.100) it is clear that (4.93) holds.

Proof of Statement 2: To prove statement 2, assume that the additional assump-
tions (B), (C) and (E) are satisfied. Since u is bounded, there exists a closed
bounded set B ⊂ U such that u(n) ∈ B for all n ∈ Z+. It follows from (C) that
ϕ−1(0)∩B is precompact. Let η > 0. Consequently, for given η > 0, ϕ−1(0)∩B is
contained in a finite union of open balls with radius η, each ball centred at some
point in cl(ϕ−1(0) ∩ B). Denoting this union by Bη, we claim that u(n) ∈ Bη

for all sufficiently large n. This is trivially true if B ⊂ Bη. If not, then the set
C := B \Bη is non-empty. Define ψ : U → [0,∞) by

ψ(v) := Re 〈ϕ(v), Qv − Pϕ(v)〉 .

Since C is bounded and closed with ϕ−1(0) ∩ C = ∅, assumption (E) implies
that infv∈C ψ(v) > 0. We know from statement 1 that ψ ◦ u ∈ l1(Z+), hence
limn→∞(ψ ◦ u)(n) = 0, and so also in this case u(n) ∈ Bη for all sufficiently large
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n. This implies that

lim
n→∞

dist(u(n), ϕ−1(0) ∩B) = 0 , (4.102)

completing the proof of statement 2.

Proof of Statement 3: Finally, to prove statement 3, note that, by precompactness
of ϕ−1(0) ∩B and (4.102), the set {u(n) : n ∈ Z+} is precompact. This together
with (4.102) and the continuity of ϕ shows that

lim
n→∞

(ϕ ◦ u)(n) = 0 . (4.103)

Applying 4 to (4.60) yields

4u = 4r1 − (G(ϕ ◦ u)). (4.104)

To see that
lim

n→∞
(G(ϕ ◦ u))(n) = 0, (4.105)

we observe the following. Set v := ϕ ◦ u. Let ε > 0 and let N1 ∈ N be such that,

‖v(n)‖ ≤ ε

2‖G‖
, ∀ n ≥ N1,

where we have used (4.103) and the fact that G ∈ B(l∞(Z+, U)). Define v1 ∈
F (Z+, U) by

v1(n) =

{
0, 0 ≤ n < N1,

v(n), n ≥ N1,

so that ‖v1‖l∞ ≤ ε/(2‖G‖). Defining v2 := v − v1 we have trivially that v2 ∈
l2(Z+, U), so that Gv2 ∈ l2(Z+, U). Consequently, there exists N2 ∈ N such that,

‖(Gv2)(n)‖ ≤ ε

2
, ∀ n ≥ N2.

Finally, since Gv = Gv1 +Gv2, using the fact that G ∈ B(l∞(Z+, U)),

‖(Gv)(n)‖ ≤ ‖(Gv1)(n)‖+ ‖(Gv2)(n)‖ ≤ ‖Gv1‖l∞ + ‖(Gv2)(n)‖

≤ ε

2
+
ε

2
, ∀ n ≥ N2.

Hence we see that (4.105) holds. Furthermore, 4r1 ∈ l1(Z+, U), and so, by
(4.105) and (4.104),

lim
n→∞

(4u)(n) = 0 .

Consequently, by Lemma 2.1.7, the non-empty and compact ω-limit set Ω of u is
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connected. Since Ω ⊂ ϕ−1(0) and, by hypothesis, ϕ−1(0) is totally disconnected,
we obtain that Ω is a singleton, or, equivalently, u(n) converges as n→∞. 2

Taking P = (1/a)I (where a ∈ (0,∞)) and Q = I a result similar to Corollary
4.2.3 can also be obtained from Theorem 4.2.4.

4.3 The J0 integrator

We now change the integrator J to an integrator with direct feedthrough. In
this subsection we derive results analogous to those in §§4.1 and 4.2 for the J0

integrator (see, (2.1)). We consider an absolute stability problem for the feedback
system shown in Figure 4.2 where ϕ, G and r are as before.

- e
6

- ϕ - G - J0
r -

u yr v

−
+

Figure 4.2: Discrete-time feedback system with J0 integrator

From Figure 4.2 we can derive the following governing equations,

u = r − y, v = G(ϕ ◦ u), y = J0v.

Equivalently,
u = r − (J0G)(ϕ ◦ u). (4.106)

Lemma 3.5.3 provides a condition under which (4.106) has a solution.

Lemma 4.3.1. For v ∈ F (Z+, U), we have the following formula,

Re
m∑

n=0

〈
v(n),

n∑
k=0

v(k)

〉
=

1

2

∥∥∥∥ m∑
k=0

v(k)

∥∥∥∥2

+
1

2

m∑
k=0

‖v(k)‖2, ∀ m ∈ Z+.
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Proof. The case m = 0 is clear. For m ∈ N, noting that

Re
m∑

n=0

〈
v(n),

n∑
k=0

v(k)

〉
= Re

m∑
n=1

〈
v(n),

n−1∑
k=0

v(k)

〉
+

m∑
k=0

‖v(k)‖2,

the claim follows from Lemma 4.1.1. 2

We begin by deriving results analogous to those in §4.1. We assume that U = R,
that ϕ is time-independent and consider the absolute stability problem shown
in Figure 4.2. The following result is a stability criterion of Popov-type in an
input-output context.

Theorem 4.3.2. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G satisfying assumption (A) and let ϕ : R → R be a measurable non-
decreasing non-linearity. Assume that G(1) > 0 and there exists numbers q ≥ 0,
ε > 0 and a ∈ (0,∞] such that (4.2) holds and

1

a
+ Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
≥ ε, a.a. θ ∈ (0, 2π). (4.107)

Let r ∈ m2(Z+,R) and let u : Z+ → R be a solution of (4.106). Then the
conclusions of Theorem 4.1.2 hold.

Proof. We have,
u+ (J0G)(ϕ ◦ u) = r, (4.108)

or equivalently,
40u+G(ϕ ◦ u) = 40r. (4.109)

We now write (4.108) in a slightly more convenient form, namely,

u+H(ϕ ◦ u) + G(1)J0(ϕ ◦ u) = r, (4.110)

where H := J0 ◦G−G(1)J0. It is clear that this operator is shift-invariant with
transfer function H given by,

H(z) =
z

z − 1
[G(z)−G(1)], z ∈ E1. (4.111)

From assumption (A) and from the fact that G ∈ H∞(E1), we conclude that
H ∈ H∞(E1), and hence H ∈ B(l2(Z+,R)).

We multiply (4.109) by q and to this add (4.110) to obtain

q(40u)(j) + u(j) + Gq(ϕ ◦ u)(j) + G(1)(J0(ϕ ◦ u))(j)
= q(40r)(j) + r(j), ∀ j ∈ Z+, (4.112)
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where we have defined the operator Gq by

Gq := qG+H.

Invoking (4.111), we see that the transfer function Gq of Gq is given by

Gq(z) := qG(z) +
z

z − 1
[G(z)−G(1)], z ∈ E1.

Multiplying through by (ϕ ◦ u)(j) and summing from 0 to n in (4.112) yields,

q

n∑
j=0

(ϕ ◦ u)(j)(40u)(j) +
n∑

j=0

(ϕ ◦ u)(j)u(j)

+
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j) + G(1)
n∑

j=0

(ϕ ◦ u)(j)
j∑

k=0

(ϕ ◦ u)(k)

= q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.113)

An application of Lemma 4.3.1 to the last term on the LHS of (4.113) yields,

q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j) +
n∑

j=0

(ϕ ◦ u)(j)u(j) +
n∑

j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j)

+
G(1)

2

( n∑
j=0

(ϕ ◦ u)(j)
)2

+
G(1)

2

n∑
j=0

(ϕ ◦ u)2(j)

= q
n∑

j=0

(ϕ ◦ u)(j)(40r)(j) +
n∑

j=0

(ϕ ◦ u)(j)r(j). (4.114)

We note that,

ReGq(z) = Re

(
qG(z) +

z

z − 1
[G(z)−G(1)]

)
= Re

[(
q +

z

z − 1

)
G(z)

]
−G(1)Re

z

z − 1
.
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Taking z = eiθ with θ ∈ (0, 2π),

Re
z

z − 1
= Re

(
z(z − 1)

|z − 1|2

)
= Re

(
eiθ(eiθ − 1)

|eiθ − 1|2

)
=

cos θ(cos θ − 1) + sin2 θ

(cos θ − 1)2 + sin2θ

=
cos2 θ + sin2 θ − cos θ

2(1− cos θ)

=
1− cos θ

2(1− cos θ)

=
1

2
,

and we obtain,

ReGq(e
iθ) = Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
− G(1)

2
, a.a. θ ∈ (0, 2π). (4.115)

Combining (4.115) with (4.107) we see that,

ReGq(e
iθ) = Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
− G(1)

2

≥ ε− 1

a
− G(1)

2
. (4.116)

Using (4.116) and arguments similar to those used to derive (4.18) in the proof
of Theorem 4.1.2, it follows that,

n∑
j=0

(ϕ ◦ u)(j)(Gq(ϕ ◦ u))(j) ≥
(
ε− 1

a
− G(1)

2

) n∑
j=0

(ϕ ◦ u)2(j). (4.117)

Applying (4.117) to (4.114) we obtain (4.19). Arguments identical to those used
in the proof of Theorem 4.1.2 can now be invoked to complete the proof. 2

We now assume that ε = 0 in the positive-real condition (4.107) and consider the
absolute stability problem shown in Figure 4.2.

Theorem 4.3.3. Let G ∈ B(l∞(Z+,R)) be a shift-invariant operator with trans-
fer function G satisfying assumption (A) and let ϕ : R → R be a measurable
non-decreasing non-linearity. Assume that G(1) > 0 and there exists numbers
q ≥ 0 and a ∈ (0,∞] such that (4.2) holds and

1

a
+ Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
≥ 0, a.a. θ ∈ (0, 2π). (4.118)

Let r ∈ m1(Z+,R), and let u : Z+ → R be a solution of (4.106). Then the
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conclusion of Theorem 4.1.3 holds.

Proof. Obtaining (4.19) as in the proof of Theorem 4.3.2 and setting ε = 0 in
(4.19), the claim can be proved by invoking the same arguments used in the proof
of Theorem 4.1.3 with J replaced by J0. 2

We now derive results analogous to those in §4.2. We consider the absolute
stability problem in Figure 4.2 where ϕ is time-dependent.

Theorem 4.3.4. Let G ∈ B(l2(Z+, U)) be a shift-invariant operator with transfer
function G satisfying assumption (A) with G(1) invertible, and let ϕ : Z+ ×
U → U be a time-varying non-linearity. Assume that there exist self-adjoint
P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a number
ε > 0 such that (4.52) holds and

P +
1

2

[
eiθ

eiθ − 1
QG(eiθ) +

e−iθ

e−iθ − 1
G∗(eiθ)Q∗

]
≥ εI, a.a. θ ∈ (0, 2π). (4.119)

Let r ∈ m2(Z+, U), and let u : Z+ → U be a solution of (4.106). Then statements
1-6 of Theorem 4.2.1 hold.

Before proving Theorem 4.3.4, we state a slightly simplified version of this result
(where P and Q are scalars and P ≥ 0) in the form of a corollary which is
convenient in the context of applications of Theorem 4.3.4 to integral control
(see Chapter 5).

Corollary 4.3.5. Let G ∈ B(l2(Z+, U)) be a shift-invariant operator with trans-
fer function G satisfying assumption (A) with G(1) invertible, G(1) = G∗(1) ≥
0, and let ϕ : Z+ × U → U be a time-varying non-linearity satisfying (4.59) for
some a ∈ (0,∞]. Assume that there exists a number ε > 0 such that,

1

a
I +

1

2

[
eiθ

eiθ − 1
G(eiθ) +

e−iθ

e−iθ − 1
G∗(eiθ)

]
≥ εI, a.a. θ ∈ (0, 2π). (4.120)

Then for all r ∈ m2(Z+, U), the conclusions of Theorem 4.3.4 hold with P =
(1/a)I and Q = I.

Proof of Theorem 4.3.4. We have,

u+ (J0G)(ϕ ◦ u) = r. (4.121)

We now write (4.121) in a slightly more convenient form, namely,

u+H(ϕ ◦ u) + G(1)J0(ϕ ◦ u) = r, (4.122)
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where H := J0 ◦G−G(1)J0. It is clear that this operator is shift-invariant with
transfer function H given by,

H(z) =
z

z − 1
[G(z)−G(1)], z ∈ E1. (4.123)

From assumption (A) and from the fact that G ∈ H∞(E1,B(U)), we conclude
that H ∈ H∞(E1,B(U)), and hence H ∈ B(l2(Z+, U)).

Applying Q to (4.122) we obtain,

Qu(j) + (GQ(ϕ ◦ u))(j) +QG(1)(J0(ϕ ◦ u))(j) = Qr(j), ∀ j ∈ Z+, (4.124)

where we have defined the operator GQ by GQ := QH. Invoking (4.123) we see
that the transfer function GQ of GQ is given by

GQ :=
z

z − 1
Q[G(z)−G(1)], z ∈ E1.

Forming the inner product with (ϕ ◦ u)(j), taking real parts and summing from
0 to n in (4.124) yields,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 + Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

+ Re
n∑

j=0

〈(ϕ ◦ u)(j), QG(1)

j∑
k=0

(ϕ ◦ u)(k)〉

= Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.125)

Since, by assumption, QG(1) = [QG(1)]∗ ≥ 0, the square root [QG(1)]1/2 of
QG(1) exists and hence, an application of Lemma 4.3.1 to the last term on the
LHS of (4.125) yields,

Re
n∑

j=0

〈(ϕ ◦ u)(j), QG(1)

j∑
k=0

(ϕ ◦ u)(k)〉

= Re
n∑

j=0

〈[QG(1)]1/2(ϕ ◦ u)(j),
j∑

k=0

[QG(1)]1/2(ϕ ◦ u)(k)〉

=
1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

+
1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (4.126)
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Combining (4.126) with (4.125) gives,

Re
n∑

j=0

〈(ϕ ◦ u)(j), Qu(j)〉 + Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

+
1

2

∥∥∥∥[QG(1)]1/2

n∑
j=0

(ϕ ◦ u)(j)
∥∥∥∥2

+
1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2

= Re
n∑

j=0

〈(ϕ ◦ u)(j), Qr(j)〉. (4.127)

We note that,

GQ(z) + G∗
Q(z) =

z

z − 1
Q[G(z)−G(1)] +

(
z

z − 1
Q[G(z)−G(1)]

)∗
=

z

z − 1
QG(z) +

z

z − 1
G∗(z)Q∗ −

(
z

z − 1
+

z

z − 1

)
QG(1).

Taking z = eiθ with θ ∈ (0, 2π) yields,

eiθ

eiθ − 1
+

e−iθ

e−iθ − 1
=
eiθ(e−iθ − 1) + e−iθ(eiθ − 1)

(eiθ − 1)(e−iθ − 1)
=

2− e−iθ − eiθ

2− eiθ − e−iθ
= 1

and we obtain,

GQ(eiθ) + G∗
Q(eiθ) =

eiθ

eiθ − 1
QG(eiθ) +

e−iθ

e−iθ − 1
G∗(eiθ)Q∗

−QG(1), a.a. θ ∈ (0, 2π). (4.128)

Combining (4.128) with (4.119) we see that,

1

2
[GQ(eiθ) + G∗

Q(eiθ)] ≥ εI − P − QG(1)

2
. (4.129)

Using (4.129) and arguments similar to those used to derive (4.71) in the proof
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of Theorem 4.2.1, it follows that,

Re
n∑

j=0

〈(ϕ ◦ u)(j), (GQ(ϕ ◦ u))(j)〉

≥ ε
n∑

j=0

‖(ϕ ◦ u)(j)‖2 −
n∑

j=0

〈(ϕ ◦ u)(j), P (ϕ ◦ u)(j)〉

−1

2

n∑
j=0

‖[QG(1)]1/2(ϕ ◦ u)(j)‖2. (4.130)

Applying (4.130) to (4.127), we obtain (4.72). Arguments identical to those used
in the proof of Theorem 4.2.1 can now be invoked to complete the proof. 2

We now assume that ε = 0 in the positive-real condition (4.119) and consider the
absolute stability problem shown in Figure 4.2.

Theorem 4.3.6. Let G ∈ B(l2(Z+, U)) ∩ B(l∞(Z+, U)) be a shift-invariant
operator with transfer function G satisfying assumption (A) with G(1) invertible,
and let ϕ : Z+×U → U be a time-varying non-linearity. Assume that there exist
self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 such
that (4.52) holds and

P +
1

2

[
eiθ

eiθ − 1
QG(eiθ) +

e−iθ

e−iθ − 1
G∗(eiθ)Q∗

]
≥ 0, a.a. θ ∈ (0, 2π). (4.131)

Let r ∈ m1(Z+, U), and let u : Z+ → U be a solution of (4.106). Then the
conclusions of Theorem 4.2.4 hold.

Proof. Obtaining (4.72) as in the proof of Theorem 4.3.4 and setting ε = 0 in
(4.72), the claim can be proved by invoking the same arguments used in the proof
of Theorem 4.2.4 with J replaced by J0. 2

As before taking P = (1/a)I (where a ∈ (0,∞]) and Q = I a result similar to
Corollary 4.3.5 can also be obtained from Theorem 4.3.6.

4.4 Incremental sector conditions

For ease of application (see Chapter 10), the results in this section are stated for
the J0 integrator.

In this section we derive versions of Theorems 4.3.4 and 4.3.6 which yield stabil-
ity properties of the difference of two solutions of (4.106). In this context, the
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following incremental sector condition

Re 〈ϕ(n, ξ1)− ϕ(n, ξ2), Q(ξ1 − ξ2)〉
≥ 〈ϕ(n, ξ1)− ϕ(n, ξ2), P (ϕ(n, ξ1)− ϕ(n, ξ2))〉, ∀ n ∈ Z+, ξ1, ξ2 ∈ U (4.132)

is relevant. Note that if ϕ is unbiased, that is,

ϕ(n, 0) = 0, n ∈ Z+,

then trivially (4.52) is implied by (4.132).

Corollary 4.4.1. Let G ∈ B(l2(Z+, U)) be a shift-invariant operator with trans-
fer function G satisfying assumption (A) with G(1) invertible and let ϕ : Z+ ×
U → U be a time-varying non-linearity. Assume that there exist self-adjoint
P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a number
ε > 0 such that (4.132) and (4.53) hold. Let r1, r2 ∈ F (Z+, U) and suppose that
r1 − r2 ∈ m2(Z+, U), that is, r1 − r2 = v1 + v2ϑ with v1 ∈ l2(Z+, U) and v2 ∈ U .
Let u1 : Z+ → U , u2 : Z+ → U be solutions of (4.106) corresponding to forcing
functions r1 and r2, respectively. Then the following statements hold.

1. There exists a constant K (which depends only on ε, P , Q and G, but not
on r1 or r2) such that,

‖u1 − u2‖l∞ + ‖4(u1 − u2)‖l2 + ‖ϕ ◦ u1 − ϕ ◦ u2‖l2

+(‖Re 〈ϕ ◦ u1 − ϕ ◦ u2, Q(u1 − u2)〉‖l1)
1/2

+ sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u1)(j)− (ϕ ◦ u2)(j)

∥∥∥∥ ≤ K‖r1 − r2‖m2 . (4.133)

2. We have,

lim
n→∞

(
u1(n)− u2(n) + G(1)

n∑
j=0

((ϕ ◦ u1)(j)− (ϕ ◦ u2)(j))

)
= v2;

in particular, limn→∞(u1(n)− u2(n)) exists if and only if

lim
n→∞

n∑
j=0

((ϕ ◦ u1)(j)− (ϕ ◦ u2)(j))

exists, in which case

lim
n→∞

(u1(n)− u2(n)) = v2 −G(1) lim
n→∞

n∑
j=0

((ϕ ◦ u1)(j)− (ϕ ◦ u2)(j)).
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3. There exists a sphere S ⊂ U centred at 0, such that

lim
n→∞

dist(u1(n)− u2(n),G(1)[QG(1)]−1/2S) = 0,

in particular, if dimU = 1, then limn→∞(u1(n)− u2(n)) exists.

4. If we relax condition (4.132) and only require that for some n0 > 0,

Re 〈ϕ(n, ξ1)− ϕ(n, ξ2), Q(ξ1 − ξ2)〉
≥ 〈ϕ(n, ξ1)− ϕ(n, ξ2), P (ϕ(n, ξ1)− ϕ(n, ξ2))〉, ∀ n ≥ n0, ξ1, ξ2 ∈ U,

then the LHS of (4.133) is still finite (but no longer bounded in terms of
‖r1 − r2‖m2) and statements 2 and 3 remain valid.

Proof. By (4.106)

u1 − u2 = r1 − r2 − (J0G)(ϕ ◦ u1 − ϕ ◦ u2). (4.134)

Define ψ : Z+ × U → U by

ψ(n, ξ) := ϕ(n, ξ + u2(n))− ϕ(n, u2(n)), (n, ξ) ∈ Z+ × U. (4.135)

Then ψ is unbiased,

ψ(n, u1(n)− u2(n)) = ϕ(n, u1(n))− ϕ(n, u2(n)), ∀ n ∈ Z+,

and it follows from (4.132) that,

Re 〈ψ(n, ξ), Qξ〉
= Re 〈ϕ(n, ξ + u2(n))− ϕ(n, u2(n)), Qξ〉
≥ 〈ϕ(n, ξ + u2(n))− ϕ(n, u2(n)), P (ϕ(n, ξ + u2(n))− ϕ(n, u2(n)))〉
= 〈ψ(n, ξ), Pψ(n, ξ)〉, (n, ξ) ∈ Z+ × U. (4.136)

It now follows from (4.134), with r := r1 − r2 that,

u1 − u2 = r − (J0G)(ψ ◦ (u1 − u2)). (4.137)

Since by assumption r = r1 − r2 ∈ m2(Z+, U) and, by (4.136), ψ satisfies (4.52)
and, all the other assumptions of Theorem 4.3.4 are satisfied, we may apply
Theorem 4.3.4 to equation (4.137). Statements 1-4 now follow from statements
1-4 of Theorem 4.3.4. 2

Corollary 4.4.2. Let G ∈ B(l2(Z+, U)) ∩ B(l∞(Z+, U)) be a shift-invariant
operator with transfer function G satisfying assumption (A) with G(1) invertible
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and let ϕ : Z+ × U → U be a time-varying non-linearity. Assume that there
exist self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0
such that (4.132) and (4.131) hold. Let r1, r2 ∈ F (Z+, U) and suppose that
r1 − r2 ∈ m1(Z+, U). Let u1 : Z+ → U , u2 : Z+ → U be solutions of (4.106)
corresponding to forcing functions r1 and r2, respectively. Then, there exists a
constant K (which depends only on P , Q and G, but not on r1 or r2) such that,

‖u1 − u2‖l∞+(‖Re 〈ϕ ◦ u1 − ϕ ◦ u2, Q(u1 − u2)− P (ϕ ◦ u1 − ϕ ◦ u2)〉‖l1)
1/2

+ sup
n≥0

∥∥∥∥ n∑
j=0

(ϕ ◦ u1)(j)− (ϕ ◦ u2)(j)

∥∥∥∥ ≤ K‖r1 − r2‖m1 . (4.138)

Proof. By assumption r = r1 − r2 ∈ m1(Z+, U). Consequently, ψ (as defined
by (4.135)) satisfies (4.52) and, all the other assumptions of Theorem 4.3.6 are
satisfied. Applying Theorem 4.3.6 to (4.137), we obtain (4.138). 2

Remarks 4.4.3. (a) It is also possible to obtain versions of Theorems 4.2.1 and
4.2.4 with incremental sector conditions.

(b) Suppose that ϕ is time-independent. Then ψ given by (4.135) is time-varying.
Consequently, using the approach in this section, it seems difficult to obtain ver-
sions of Theorems 4.1.2, 4.1.3, 4.3.2 and 4.3.3 with incremental sector conditions.

3

4.5 Notes and references

While most of the available absolute-stability literature is devoted to continuous-
time systems, there are still a considerable number of references which treat
discrete-time systems; see, for example, [15], [23], [28], [58] and [62].

In the finite-dimensional case there are a number of results available in the lit-
erature, many of which have been obtained by Lyapunov techniques applied to
state-space models with the positive real lemma playing a crucial role, see, for ex-
ample, [23], [28] and [58]. In the infinite-dimensional case, often an input-output
approach is taken. There are several distinguishing features of the stability re-
sults in this chapter. Firstly, the linear system is the series interconnection of
an input-output stable linear system and an integrator (meaning, in particular,
that the linear system is not input-output stable), such systems are often referred
to as ‘marginally stable’. Furthermore, the non-linearities in this chapter satisfy
a sector condition with lower-gain possibly zero, which, in particular, allows for
saturation and deadzone effects. By contrast, in the discrete-time input-output
absolute stability results contained in [15] and [62], if the lower-gain is allowed
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to be zero, the linear part is assumed to be input-output stable (in particular, it
is not allowed to contain an integrator); see, for example, [15], pp. 99-108, 191-
194, and [62], pp. 370-371 . Furthermore, we remark that in the discrete-time
input-output absolute stability results available in the literature the assumptions
imposed on the impulse response of the linear system (where it is usually assumed
that the convolution kernel of G is in l1) are more restrictive than in most of the
results in this chapter the only exceptions being Theorems 4.1.3 and 4.3.3. We
note that in particular, small-gain arguments can not be used to prove the results
in §§4.1-4.4.

The results in §§4.1-4.3 form the discrete-time analogues of the continuous-time
absolute stability results contained in [9] and [10]. Note that in contrast to the
continuous-time Popov-type results of [9] and [10], which were obtained in an
infinite-dimensional Hilbert space setting, the results in §4.1 are only stated for
the special case U = R. The reason for this restriction is we need to obtain a
positive lower bound for the term

∑n
j=0(ϕ◦u)(j)(40u)(j), (see proof of Theorem

4.1.2). To obtain this bound we assume that ϕ is measurable, so that ϕ is
integrable, and non-decreasing and make use of the intermediate-value theorem.
Consequently, it seems difficult to extend such an approach to a general Hilbert
space setting. As a relatively minor point, the circle-criterion-type results in
§4.2 are obtained in an infinite-dimensional complex Hilbert space setting, the
analogous continuous-time results of [9] and [10] only being obtained for real
Hilbert spaces. We observe that with q = 0 in the circle-criterion-type results we
can consider time-varying non-linearities whereas, in the Popov-type results only
time-independent non-linearities can be considered.

We now make some further comments on the results in §§4.1-4.3. The stability
results in §§4.1-4.3 which impose a strict positive real condition (that is, ε > 0)
allow us to choose reference values r from the spacem2(Z+, U). In contrast to this,
the stability results in §§4.1-4.3 which impose a non-strict positive real condition
(that is, ε = 0) only allow us to choose reference values r from m1(Z+, U), a
smaller space than m2(Z+, U).

In contrast to the results in §§4.1 and 4.2, the results in §4.3 (that is, results
containing an integrator with direct feedthrough) hold for a larger class of sector
bounded non-linearities. In particular, the Popov-type results in §4.3 hold for
sector bounded non-linearities with upper sector bound a = ∞, allowing us to
consider cubic non-linearities, a situation which was not possible in §4.1.

The results in §4.4 provide us with versions of Theorems 4.3.4 and 4.3.6 with
incremental sector conditions, yielding stability properties of the difference of
two solutions of (4.106). In particular, if we consider the linear system in Figure
4.2 as an operator r 7→ u, the results in §4.4 give us some kind of global continuity
property of the system. The corresponding results in §4.3 only give us a continuity
property at 0.
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The results in §§4.1-4.3 with strict positive real condition form the basis of §2 of
[5].
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Chapter 5

Low-gain integral control of
infinite-dimensional discrete-time
systems in the presence of
input/output non-linearities

In this chapter we apply Theorem 4.1.2, Theorem 4.3.2, Corollary 4.2.3 and Corol-
lary 4.3.5 to derive results on low-gain integral control with output disturbances
in the single-input-single-output setting.

5.1 Integral control in the presence of input non-

linearities

Consider the feedback system shown in Figure 5.1, where ρ ∈ R is a constant
reference value, k ∈ R is a gain parameter, u0 ∈ R is the initial state of the
integrator (or, equivalently, the initial value of u), ϕ : R → R is a static input
non-linearity and G ∈ B(l2(Z+,R)) is a shift-invariant operator with transfer
function denoted by G. The function g models the effect of non-zero initial
conditions of the system with input-output operator G and the function d is an
external disturbance.
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Figure 5.1: Low-gain control problem with constant gain and J integrator

From Figure 5.1 we can derive the following governing equations,

y = g + d+G(ϕ ◦ u), e = ρϑ− y, u = u0ϑ+ kJe,

or, equivalently
u = u0ϑ+ kJ(ρϑ− g − d−G(ϕ ◦ u)). (5.1)

Since u0, k, ρ, g and d are given, it is clear from Proposition 3.5.1 that (5.1) has
a unique solution. Trivially, (5.1) can be written as an initial-value problem,

(4u)(n) = k[ρ− (g(n) + d(n) + (G(ϕ ◦ u))(n))], n ≥ 1, u(0) = u0 ∈ R.

The aim in this section is to choose the gain parameter k such that the tracking
error,

e(n) := ρ− y(n) = ρ− (g(n) + d(n) + (G(ϕ ◦ u))(n)) = (4u)(n)/k

converges to 0 as n→∞. We define,

fJ(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
. (5.2)

If the transfer function G of G satisfies assumption (A), then −∞ < fJ(G) ≤
−G(1)/2 (see Appendix 2, Proposition 12.1.3 (i), for more details).

For a ∈ (0,∞) we let S (a) denote the set of all functions ϕ : R → R satisfying
the sector condition

0 ≤ ϕ(v)v ≤ av2, ∀ v ∈ R.

We denote by S (∞) the set of all functions ϕ : R → R satisfying,

0 ≤ ϕ(v)v, ∀ v ∈ R.
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Lemma 5.1.1. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing.
Let ξ ∈ R and define ϕ̃ : R → R by

ϕ̃(w) := ϕ(w + ξ)− ϕ(ξ), ∀ w ∈ R.

Then ϕ̃ ∈ S (∞) and, if ϕ− ϕ(0) ∈ S (a) for some a ∈ (0,∞), then there exists
b ∈ (0,∞) such that ϕ̃ ∈ S (b).

Proof. It follows easily from the fact that ϕ is non-decreasing that

ϕ̃(w)w ≥ 0, ∀ w ∈ R,

showing in particular that ϕ̃ ∈ S (∞). Assume now that ϕ − ϕ(0) ∈ S (a) for
some a ∈ (0,∞). Write

ϕ̃(w)w = ϕ(w + ξ)w − ϕ(ξ)w

= (ϕ(w + ξ)− ϕ(0))(w + ξ) + ϕ(0)(w + ξ)

− ϕ(w + ξ)ξ − ϕ(ξ)w, w ∈ R.

It follows that

ϕ̃(w)w ≤ a(w + ξ)2 + ϕ(0)(w + ξ)− ϕ(w + ξ)ξ − ϕ(ξ)w, w ∈ R.

Consequently,

ϕ̃(w)w ≤
(
a+

2aξ

w
+
aξ2

w2
+
ϕ(0)

w
+
ϕ(0)ξ

w2
− ϕ(w + ξ)ξ

w2
− ϕ(ξ)

w

)
w2, w ∈ R.

Noting that ϕ is linearly bounded, it follows that for all δ > 0 there exists R > 0
such that

ϕ̃(w)w ≤ (a+ δ)w2, |w| ≥ R. (5.3)

Now suppose that |w| < R. Since ϕ is locally Lipschitz continuous and non-
decreasing it follows that there exists λ > 0 such that,

0 ≤ ϕ̃(w)w = |ϕ̃(w)w| ≤ |ϕ(w + ξ)− ϕ(ξ)||w|
≤ λ|w|2 = λw2, |w| < R. (5.4)

Combining (5.3) and (5.4) we see that there exists b ∈ (0,∞) such that,

ϕ̃(w)w ≤ bw2, ∀ w ∈ R,

showing that ϕ̃ ∈ S (b) for some b ∈ (0,∞). 2

Theorem 5.1.2. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G. Assume that assumption (A′) holds with G(1) > 0, that Jg ∈
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m2(Z+,R), d = d1 + d2ϑ with Jd1 ∈ m2(Z+,R) and d2 ∈ R. Let ϕ : R →
R be locally Lipschitz continuous and non-decreasing. Let ρ ∈ R, assume that
(ρ − d2)/G(1) ∈ imϕ and let u be the solution of (5.1). Under these conditions
the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists a
constant k∗ ∈ (0,∞) (depending on G,ϕ and ρ) such that for all k ∈ (0, k∗),
the limit limn→∞ u(n) =: u∞ exists and satisfies ϕ(u∞) = (ρ− d2)/G(1),

e = 4u/k ∈ l2(Z+,R) and ϕ ◦ u− ϕ(u∞)ϑ ∈ l2(Z+,R).

In particular, limn→∞ e(n) = 0.

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ(G)|.

Remarks 5.1.3. (i) Theorem 5.1.2 ensures that the tracking error is in l2(Z+,R)
and consequently, e(n) converges to 0 as n→∞.

(ii) Note that in statement 2 of Theorem 5.1.2 the constant k∗ depends only on
G and the Lipschitz constant of ϕ, but not on ρ.

(iii) Let f ∈ F (Z+,R). Then Jf ∈ m2(Z+,R) if and only if (Jf)(n) converges
to a finite limit as n → ∞ and n 7→

∑∞
k=n f(k) is in l2(Z+,R) (see Appendix 3

Proposition 12.1.5 for more details). Hence sufficient conditions for g and d1 to
satisfy the assumptions in Theorem 5.1.2 are that (Jg)(n), (Jd1)(n) converge to
finite limits as n → ∞ and the functions n 7→

∑∞
k=n g(k), n 7→

∑∞
k=n d1(k) are

in l2(Z+,R).

(iv) If f ∈ F (Z+,R) is such that j 7→ f(j)jα is in l2(Z+,R) for some α > 1 then
f ∈ l1(Z+,R) and n 7→

∑∞
j=n |f(j)| ∈ l2(Z+,R) (see Appendix 3, Proposition

12.1.6 for more details). Hence sufficient conditions for g and d1 to satisfy the
assumptions in Theorem 5.1.2 are that, j 7→ g(j)jβ is in l2(Z+,R) and j 7→
d1(j)j

γ is in l2(Z+,R) for some β, γ > 1.

(v) In general d2 is unknown, but it is reasonable to assume that d2 ∈ [a, b], where
a and b are known constants. The condition

(ρ− a)/G(1), (ρ− b)/G(1) ∈ imϕ

does not involve d2 and is sufficient for (ρ−d2)/G(1) to be in imϕ. Furthermore,
if ϕ is continuous, limξ→∞ ϕ(ξ) = ∞ and limξ→−∞ ϕ(ξ) = −∞, the assumption
(ρ− d2)/G(1) ∈ imϕ is automatically satisfied. 3

Theorem 5.1.2 gives an input-output point of view of the low-gain integral control
problem with input non-linearities and output disturbances. We emphasize that
Theorem 5.1.2 applies to strongly stable state-space systems (see Chapter 6).

87



Proof of Theorem 5.1.2. Chose some uρ ∈ R such that ϕ(uρ) = (ρ−d2)/G(1)
(such a uρ exists, since, by assumption, (ρ − d2)/G(1) ∈ imϕ). For any k ∈ R
we know that (5.1) has a unique solution u defined on Z+. We define a function
v : Z+ → R by,

v := u− uρϑ. (5.5)

Moreover, we define ϕ̃ : R → R by,

ϕ̃(ξ) := ϕ(ξ + uρ)− ϕ(uρ), ∀ ξ ∈ R. (5.6)

Then by (5.1),

v = u0ϑ− uρϑ+ kJ(ρϑ− g − d)− kJ(G(ϕ(u− uρ + uρ))

= u0ϑ− uρϑ+ kJ(ρϑ− g − d)− kJ(G(ϕ(v + uρ)))

= u0ϑ− uρϑ+ kJ(ρϑ− g − d)− kJϕ(uρ)Gϑ− kJ(G(ϕ̃ ◦ v)).

Hence it follows that,
v = r − kJ(G(ϕ̃ ◦ v)), (5.7)

where the function r is given by

r = u0ϑ− uρϑ− kJ(g + d1 + ϕ(uρ)Gϑ− (ρ− d2)ϑ). (5.8)

In order to apply Theorem 4.1.2 to equation (5.7), we first show that r ∈
m2(Z+,R), that is, r satisfies the relevant assumption in Theorem 4.1.2. Since
by assumption Jg, Jd1 ∈ m2(Z+,R), we immediately see that

u0ϑ− uρϑ− kJ(g + d1) ∈ m2(Z+,R).

Therefore by (5.8) it is sufficient to show that the function

n 7→ (J(ϕ(uρ)Gϑ− (ρ− d2)ϑ))(n) = ϕ(uρ)(J(Gϑ−G(1)ϑ))(n)

belongs to m2(Z+,R), where we have used that ϕ(uρ) = (ρ − d2)/G(1). Note
that

J(Gϑ−G(1)ϑ) = J(Gϑ−G(1)ϑ)−G′(1)ϑ+ G′(1)ϑ. (5.9)

By assumption (A′), J(Gϑ−G(1)ϑ)−G′(1)ϑ ∈ l2(Z+,R). Hence it follows from
(5.9) that J(Gϑ−G(1)ϑ) ∈ m2(Z+,R).

Proof of Statement 1: Since ϕ is non-decreasing and ϕ − ϕ(0) ∈ S (a) for some
a ∈ (0,∞), it follows from Lemma 5.1.1 that there exists b ∈ (0,∞) such that
ϕ̃ ∈ S (b). Define k∗ := 1/|bfJ(G)|, let k ∈ (0, k∗) and set ε := 1

2
(1/b+ kfJ(G)).
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Then ε > 0 and we can choose some q > 0 such that

ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
≥ fJ(G)− ε

k
=

(ε− 1
b
)

k
. (5.10)

Thus
1

b
+ Re

[(
q

eiθ
+

1

eiθ − 1

)
kG(eiθ)

]
≥ ε, a.a. θ ∈ (0, 2π),

and (4.3) holds with a replaced by b and G replaced by kG. An application of
Theorem 4.1.2 to (5.7) now yields that limn→∞ v(n) exists and is finite, ϕ̃ ◦ v ∈
l2(Z+,R) and 40v ∈ l2(Z+,R). Consequently, we have limn→∞ u(n) =: u∞ exists
and is finite,

ϕ(u∞) = ϕ(uρ) = (ρ− d2)/G(1),

and
ϕ ◦ u− ϕ(u∞) ∈ l2(Z+,R).

We note that 4v = 4u and since 40v ∈ l2(Z+,R) we have 4u ∈ l2(Z+,R). It
now follows that e = 4u/k ∈ l2(Z+,R) and hence, limn→∞ e(n) = 0.

Proof of Statement 2: By hypothesis ϕ is globally Lipschitz. Denoting the Lips-
chitz constant of ϕ by λ > 0, it follows that

ϕ̃(v)v = [ϕ(v + uρ)− ϕ(uρ)]v ≤ λ|(v + uρ)− uρ||v| = λv2, ∀ v ∈ R.

Since ϕ is non-decreasing it is also clear that ϕ̃(v)v ≥ 0. Consequently, it follows
that ϕ̃ ∈ S (λ). Now the arguments in the proof of statement 1 apply with b
replaced by λ. 2

We now change the integrator J to J0 and consider the feedback system shown in
Figure 5.2, where the function g models the effect of non-zero initial conditions
of the system with input-output operator G and c ∈ R is the initial state of the
integrator.

- e
6

- kJ0
- e? ϕ - G - e? -r+

+

cϑ

+

+

g + d

e yρ u

−
+

Figure 5.2: Low-gain control problem with constant gain and J0 integrator
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From Figure 5.2 we can derive the following governing equations,

y = g + d+G(ϕ ◦ u), e = ρϑ− y, u = cϑ+ kJ0e,

or, equivalently
u = cϑ+ kJ0(ρϑ− (g + d+G(ϕ ◦ u)). (5.11)

For given c, k, ρ, g and d, it follows from Proposition 3.5.3 that (5.11) has at
least one solution (a unique solution, respectively) if the map f : R → R defined
by

f(ξ) := ξ + kG(∞)ϕ(ξ), ξ ∈ R,

is surjective (bijective, respectively). Since40J0 = J040 = I, (5.11) is equivalent
to

40u = cδ + k[ρϑ− (g + d+G(ϕ ◦ u))].

We define,

fJ0(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]}
. (5.12)

If the transfer function G of G satisfies assumption (A), then −∞ < fJ0(G) ≤ ∞
(see Appendix 2, Proposition 12.1.4 (ii), for more details).

Theorem 5.1.4. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G. Assume that assumption (A′) holds with G(1) > 0, that J0g ∈
m2(Z+,R), d = d1 + d2ϑ with J0d1 ∈ m2(Z+,R) and d2 ∈ R. Let ϕ : R →
R be locally Lipschitz continuous and non-decreasing. Let ρ ∈ R, assume that
(ρ − d2)/G(1) ∈ imϕ and let u be a solution of (5.11). Under these conditions
the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists a
constant k∗ ∈ (0,∞] (depending on G,ϕ and ρ) such that for all k ∈ (0, k∗),
the limit limn→∞ u(n) =: u∞ exists and satisfies ϕ(u∞) = (ρ− d2)/G(1),

e =
1

k
(40u− cδ) ∈ l2(Z+,R) and ϕ ◦ u− ϕ(u∞)ϑ ∈ l2(Z+,R).

In particular, limn→∞ e(n) = 0. If fJ0(G) = 0, then the above conclusions
are valid with k∗ = ∞.

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ0(G)|,
where 1/0 := ∞.

3. Under the assumption that fJ0(G) > 0, the conclusions of statement 1 are
valid with k∗ = ∞.
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Remark 5.1.5. Note that the range of gains guaranteed to achieve tracking
(specified by k∗) is potentially larger than in Theorem 5.1.2. In particular, k∗ =
∞ is feasible if fJ0(G) ≥ 0. 3

Proof of Theorem 5.1.4. Chose some uρ ∈ R such that ϕ(uρ) = (ρ−d2)/G(1)
(such a uρ exists, since, by assumption, (ρ−d2)/G(1) ∈ imϕ). Let u be a solution
of (5.11). Let v : Z+ → R and ϕ̃ : R → R be as defined in (5.5) and (5.6). A
straightforward calculation invoking (5.11) and similar to the argument leading
to (5.7) in the proof of Theorem 5.1.2, shows that v satisfies

v = r − kJ0(G(ϕ̃ ◦ v)) (5.13)

where the function r is given by,

r = cϑ− uρϑ− k(J0(g + d1 + ϕ(uρ)Gϑ− (ρ− d2)ϑ). (5.14)

In order to apply Theorem 4.3.2 to equation (5.13) we first show that r ∈
m2(Z+,R) that is, r satisfies the relevant assumption in Theorem 4.3.2. This
can been shown in a similar way to the corresponding argument in the proof of
Theorem 5.1.2.

Proof of Statement 1: Since ϕ is non-decreasing and ϕ − ϕ(0) ∈ S (a) for some
a ∈ (0,∞), it follows from Lemma 5.1.1 that there exists b ∈ (0,∞) such that
ϕ̃ ∈ S (b). Define

k∗ :=

{
1/|bfJ0(G)|, if fJ0(G) < 0,

∞, if fJ0(G) ≥ 0.

We may assume that fJ0(G) < ∞ because the case fJ0(G) = ∞ is included in
statement 3. Therefore k∗ ∈ (0,∞]. Let k ∈ (0, k∗) and set ε := 1

2
(1/b+kfJ0(G)).

Then ε > 0 and we can choose some q > 0 such that

ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
≥ fJ0(G)− ε

k
=

(ε− 1
b
)

k
. (5.15)

Thus
1

b
+ Re

[(
q +

eiθ

eiθ − 1

)
kG(eiθ)

]
≥ ε, a.a. θ ∈ (0, 2π),

and (4.107) holds with a replaced by b and G replaced by kG. An application of
Theorem 4.3.2 to (5.13) now yields that limn→∞ v(n) exists and is finite, ϕ̃ ◦ v ∈
l2(Z+,R) and 40v ∈ l2(Z+,R). Consequently, we have limn→∞ u(n) =: u∞ exists
and is finite,

ϕ(u∞) = ϕ(uρ) = (ρ− d2)/G(1),
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and
ϕ ◦ u− ϕ(u∞) ∈ l2(Z+,R).

We note that 4v = 4u and since 40v ∈ l2(Z+,R) we have 4v ∈ l2(Z+,R) and
hence 4u ∈ l2(Z+,R). It is then clear that 40u ∈ l2(Z+,R) and so

e =
1

k
(40u− cδ) ∈ l2(Z+,R),

and hence, limn→∞ e(n) = 0. It remains to show that if fJ0(G) = 0, then the
above conclusions are valid with k∗ = ∞. If fJ0(G) = 0, then for every k > 0
there exists q > 0 such that (5.15) holds.

Proof of Statement 2: As in the proof of statement 2 of Theorem 5.1.2, we can
show that ϕ ∈ S (λ). Now the arguments in the proof of statement 1 apply with
b replaced by λ.

Proof of Statement 3: It is clear by the non-decreasing property of ϕ that ϕ̃(v)v ≥
0 for all v ∈ R and so ϕ̃ ∈ S (∞). Since fJ0(G) > 0, we can choose some q ≥ 0
such that

ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]
≥ 1

2
fJ0(G).

This implies that, for any k > 0,

Re

[(
q +

eiθ

eiθ − 1

)
kG(eiθ)

]
≥ 1

2
fJ0(G), a.a. θ ∈ (0, 2π).

Therefore (4.107) holds with a = ∞, G replaced by kG and ε replaced by
1
2
kfJ0(G). As in the proof of statement 1, the claim now follows from Theorem

4.3.2. 2

5.2 Integral control in the presence of input and

output non-linearities

In this subsection we generalise the feedback scheme in § 5.1 to allow for a time-
varying gain and non-linearities in the output as well as in the input.

Consider the feedback system shown in Figure 5.3, where κ : Z+ → R is a
time-varying gain, the operator G ∈ B(l2(Z+,R)) is shift-invariant with transfer
function denoted by G, ϕ : R → R and ψ : R → R are static input and output
non-linearities, respectively, ρ ∈ R is a constant reference value, u0 ∈ R is the
initial state of the integrator (or, equivalently, the initial value of u), the function
g models the effect of non-zero initial conditions of the system with input-output
operator G and the function d is an external disturbance.
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Figure 5.3: Low-gain control problem with time-varying gain and J integrator

From Figure 5.3 we can derive the following governing equations,

w = g +G(ϕ ◦ u), y = ψ(w) + d, u = u0ϑ+ J(κ(ρϑ− y)),

or, equivalently

u = u0ϑ+ J(κ(ρϑ− d− ψ(g +G(ϕ ◦ u)))). (5.16)

Since u0, κ, ρ, g, d and ψ are given, it is clear from Proposition 3.5.1 that (5.16)
has a unique solution. Trivially, (5.16) can be written as an initial-value problem,

(4u)(n) = κ(n)(ρ− d(n)− ψ(g(n) + (G(ϕ ◦ u))(n))), n ≥ 1,
u(0) = u0 ∈ R.

}
(5.17)

The objective is to determine gain functions κ such that the tracking error

e(n) := ρ− y(n) = ρ− d(n)− ψ(g(n) + (G(ϕ ◦ u))(n))

converges to 0 as n→∞. We introduce the set of feasible reference values

R(G,ϕ, ψ) := {ψ(G(1)v) | v ∈ imϕ}.

It is clear that R(G,ϕ, ψ) is an interval provided that ϕ and ψ are continuous.

The following result shows that if ϕ is continuous and ψ is continuous and mono-
tone, then ρ ∈ R(G,ϕ, ψ) is close to being a necessary condition for tracking
insofar as, if tracking of ρ is achievable, whilst maintaining boundedness of ϕ ◦ u
and w, then ρ ∈ R(G,ϕ, ψ).

Anticipating the treatment in Chapter 6 we obtain the following proposition.

Proposition 5.2.1. Let G ∈ B(l2(Z+,R)) be shift-invariant with transfer func-
tion G satisfying assumption (A). Assume further, that G has a power stable
state-space realisation. Let ϕ : R → R be continuous and ψ : R → R be con-
tinuous and monotone. Let u ∈ F (Z+,R) be such that ϕ ◦ u ∈ l∞(Z+,R) and
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g ∈ F (Z+,R) be such that g(n) → 0 as n → ∞. If w ∈ F (Z+,R) given by
w = g +G(ϕ ◦ u) is such that

lim
n→∞

ψ(w(n)) = ρ, (5.18)

then ρ ∈ R(G,ϕ, ψ).

The proof of Proposition 5.2.1 can be found in Appendix 4.

We define,

f0,J(G) := ess infθ∈(0,2π)Re

[
G(eiθ)

eiθ − 1

]
. (5.19)

If the transfer function G of G satisfies assumption (A), then −∞ < f0,J(G) ≤
−G(1)/2 (see Appendix 2, Proposition 12.1.3 (ii), for more details).

Theorem 5.2.2. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G. Assume that assumption (A) holds with G(1) > 0, g ∈ l2(Z+,R),
d = d1 + d2ϑ with d1 ∈ l1(Z+,R), d2 ∈ R and n 7→

∑∞
j=n |d1(j)| ∈ l2(Z+,R),

ϕ : R → R and ψ : R → R are non-decreasing and globally Lipschitz continuous
with Lipschitz constants λ1 > 0 and λ2 > 0, ρ− d2 ∈ R(G,ϕ, ψ) and κ : Z+ → R
is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0,J(G)|. (5.20)

Let u : Z+ → R be the unique solution of (5.16). Then the following statements
hold.

1. The limit (ϕ ◦ u)∞ := limn→∞ ϕ(u(n)) exists and is finite and

4(ϕ ◦ u) ∈ l2(Z+,R).

2. The signals w = g+G(ϕ ◦u) and y = ψ ◦w+ d have finite limits satisfying

lim
n→∞

w(n) = G(1)(ϕ ◦ u)∞, lim
n→∞

y(n) = ψ(G(1)(ϕ ◦ u)∞) + d2.

3. If κ /∈ l1(Z+,R), then limn→∞ y(n) = ρ, or equivalently, limn→∞ e(n) = 0.

4. If ρ− d2 is an interior point of R(G,ϕ, ψ), then u is bounded.

Remarks 5.2.3. (i) A sufficient condition for d1 to satisfy the assumptions in
Theorem 5.2.2 is given in Remark 5.1.3 (iv).

(ii) Note that it is not necessary to know f0,J(G) or the constant λ in order
to apply Theorem 5.2.2. If κ is chosen such that κ(n) → 0 as n → ∞ and
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κ /∈ l1(Z+,R) (e.g. κ(n) = (1 + n)−p with p ∈ (0, 1]), then the conclusions of
statement 3 hold. However, from a practical point of view, gain functions κ with
limn→∞ κ(n) = 0 might not be appropriate, since the system essentially operates
in open loop as n→∞.

(iii) In general d2 is unknown, but it is reasonable to assume that d2 ∈ [a, b],
where a and b are known constants. The condition

ρ− a, ρ− b ∈ R(G,ϕ, ψ)

does not involve d2 and is sufficient for ρ−d2 to be in R(G,ϕ, ψ). Furthermore, if
ϕ and ψ are continuous, limξ→∞ ϕ(ξ) = ∞, limξ→−∞ ϕ(ξ) = −∞, limξ→∞ ψ(ξ) =
∞ and limξ→−∞ ψ(ξ) = −∞, R(G,ϕ, ψ) is the whole real line and it is clear that
ρ− d2 ∈ R(G,ϕ, ψ). 3

Theorem 5.2.2 gives an input-output point of view of the low-gain integral control
problem with input and output non-linearities as well as output disturbances. We
emphasize that Theorem 5.2.2 applies to strongly stable state-space systems (see
Chapter 6).

Proof of Theorem 5.2.2. Let u : Z+ → R be the unique solution of (5.16). We
shall prove Theorem 5.2.2 by applying Corollary 4.2.3 to the equation satisfied
by the input signal

w = g +G(ϕ ◦ u)

of the output non-linearity ψ, modified with an offset which depends on ρ and
d2. Since ρ− d2 ∈ R(G,ϕ, ψ), there exists ϕρ ∈ imϕ satisfying

ψ(G(1)ϕρ) = ρ− d2.

We define
w̃ := w −G(1)ϕρϑ = g +G(ϕ ◦ u)−G(1)ϕρϑ,

ψ̃(ξ) := ψ(ξ + G(1)ϕρ)− ρ+ d2, ∀ ξ ∈ R.
(5.21)

Note that ψ̃(0) = 0. We observe that,

ψ̃(ξ)ξ = [ψ(ξ + G(1)ϕρ)− ρ+ d2]ξ

= [ψ(ξ + G(1)ϕρ)− ψ(G(1)ϕρ)]ξ, ∀ ξ ∈ R.

By the non-decreasing property of ψ we see that [ψ(ξ+G(1)ϕρ)−ψ(G(1)ϕρ)]ξ ≥ 0

and hence ψ̃(ξ)ξ ≥ 0 for all ξ ∈ R. Since ψ is globally Lipschitz with Lipschitz
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constant λ2,

ψ̃(ξ)ξ = [ψ(ξ + G(1)ϕρ)− ψ(G(1)ϕρ)]ξ

≤ λ2|ξ + G(1)ϕρ −G(1)ϕρ||ξ|
= λ2ξ

2, ∀ ξ ∈ R.

Hence we obtain,
0 ≤ ψ̃(ξ)ξ ≤ λ2ξ

2, ∀ ξ ∈ R. (5.22)

Using (5.17),

4u = κ(ρϑ−d−ψ(g+G(ϕ◦u))) = κ(ρϑ−d−ψ(w̃+G(1)ϕρ)) = −κ(d1 + ψ̃◦ w̃).

Defining

bu(n) :=

{
(4(ϕ◦u))(n)

(4u)(n)
, if (4u)(n) 6= 0,

0, if (4u)(n) = 0,

it follows that,

(4(ϕ ◦ u))(n) = bu(n)(4u)(n) = −bu(n)κ(n)d1(n)− bu(n)κ(n)ψ̃(w̃(n))

= −d̃1(n)− (N ◦ w̃)(n), ∀ n ∈ Z+, (5.23)

where the function N : Z+ × R → R is defined by

N(n, ξ) := bu(n)κ(n)ψ̃(ξ), ∀ (n, ξ) ∈ Z+ × R

and d̃1 : Z+ → R is defined by

d̃1(n) := bu(n)κ(n)d1(n), ∀ n ∈ Z+.

Since ϕ is non-decreasing and globally Lipschitz with Lipschitz constant λ1, we
see that 0 ≤ bu(n) ≤ λ1. Combining this with (5.22) yields

0 ≤ N(n, ξ)ξ ≤ λ1λ2κ(n)ξ2, ∀ (n, ξ) ∈ Z+ × R. (5.24)

It follows from (5.23) that,

ϕ ◦ u = ϕ(u0)ϑ− Jd̃1 − J(N ◦ w̃). (5.25)

Applying G to both sides of (5.25), and using the fact that by shift-invariance,
G commutes with J we obtain

G(ϕ ◦ u) = ϕ(u0)Gϑ−GJd̃1 − J(G(N ◦ w̃)).
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Invoking (5.21) yields
w̃ = r − J(G(N ◦ w̃)), (5.26)

where
r := g −G(1)ϕρϑ+ ϕ(u0)Gϑ−GJd̃1.

Proof of Statement 1: Clearly, (5.26) is of the form (4.1) with u and ϕ replaced
by w̃ and N , respectively. Therefore we may apply Corollary 4.2.3, provided the
relevant assumptions are satisfied. By (5.20) there exists a > 0 satisfying

λ1λ2 lim sup
n→∞

κ(n) < a < 1/|f0,J(G)|. (5.27)

By the definition of f0,J(G), there exists ε > 0 such that

1

a
+ Re

G(eiθ)

eiθ − 1
≥ ε, a.a. θ ∈ (0, 2π).

Moreover, it follows from (5.24) and (5.27) that there exists n0 ≥ 0 such that

0 ≤ N(n, ξ)ξ ≤ aξ2, ∀ n ∈ [n0,∞) ∩ Z+, ∀ ξ ∈ R.

The above two inequalities show that (4.53) and (4.58) hold with ϕ, Q, and P
replaced by N , I, and 1/a, respectively. In order to apply Corollary 4.2.3, it
remains to verify that r ∈ m2(Z+,R). To this end note that

r = g + G(1)(ϕ(u0)ϑ− ϕρϑ) + ϕ(u0)(Gϑ−G(1)ϑ)−GJd̃1. (5.28)

Since bu, κ are bounded and non-negative, d1 ∈ l1(Z+,R) and by assumption

n 7→
∑∞

j=n |d1(j)| ∈ l2(Z+,R), we deduce that d̃1 = buκd1 ∈ l1(Z+,R) and

n 7→
∞∑

j=n

|d̃1(j)| ∈ l2(Z+,R). (5.29)

Now since d̃1 ∈ l1(Z+,R) there exists σ ∈ R such that,

lim
n→∞

(Jd̃1)(n) = σ.

From (5.29) we deduce that Jd̃1 − σϑ ∈ l2(Z+,R). We have,

GJd̃1 = G(Jd̃1 − σϑ) + σGϑ. (5.30)

By assumption (A), G(1) is the l2-steady-state gain of G and so (Gϑ−G(1)ϑ) ∈
l2(Z+,R). Consequently, Gϑ ∈ m2(Z+,R). Using this, the fact that G ∈
B(l2(Z+,R)) and Jd̃1 − σϑ ∈ l2(Z+,R), we deduce from (5.30) that GJd̃1 ∈
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m2(Z+,R). Furthermore, since (Gϑ − G(1)ϑ) ∈ l2(Z+,R) and by assumption
g ∈ l2(Z+,R), we conclude from (5.28) that r ∈ m2(Z+,R). An application of
statement 4 of Theorem 4.2.1 to (5.26) combined with (5.23) now yields that

4(ϕ ◦ u) = −d̃1 − (N ◦ w̃) ∈ l2(Z+,R).

Furthermore, by the same theorem and (5.25),

lim
n→∞

(ϕ ◦ u)(n) = ϕ(u0)− σ − lim
n→∞

(J(N ◦ w̃))(n)

exists and is finite, completing the proof of statement 1.

Proof of Statement 2: By statement 1, 4(ϕ ◦ u) ∈ l2(Z+,R) and (ϕ ◦ u)∞ =
limn→∞(ϕ ◦ u)(n) exists and is finite. Hence an application of Proposition 3.4.4
(b) yields,

lim
n→∞

(G(ϕ ◦ u))(n) = G(1)(ϕ ◦ u)∞.

Since w = g +G(ϕ ◦ u) and g ∈ l2(Z+,R) we obtain,

lim
n→∞

w(n) = G(1)(ϕ ◦ u)∞.

Consequently,

y∞ := lim
n→∞

y(n) = lim
n→∞

(ψ ◦ w)(n) + d2 = ψ(G(1)(ϕ ◦ u)∞) + d2,

where we have used that d1 ∈ l1(Z+,R).

Proof of Statement 3: We know by statement 2 that y(n) → y∞ as n → ∞.
Seeking a contradiction, suppose that y∞ < ρ (the case y∞ > ρ can be treated in
an analogous way). Setting ε := ρ− y∞ > 0 and taking n0 ≥ 0 large enough, we
have ρ− y(n) ≥ ε/2 whenever n ≥ n0. Hence we see that,

(4u)(n) = κ(n)(ρ− y(n)) ≥ κ(n)
ε

2
, ∀ n ≥ n0.

Summing the above inequality from n0 to m− 1 gives

u(m) ≥ u(n0) +
ε

2

m−1∑
k=n0

κ(k) →∞, m→∞.

Consequently, since ϕ is non-decreasing,

ϕ := sup
v∈R

ϕ(v) = (ϕ ◦ u)∞.

Hence, by statement 2, y∞ = ψ(G(1)ϕ) + d2. Since ρ − d2 ∈ R(G,ϕ, ψ) (by
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assumption) and using the fact that ψ is non-decreasing and G(1) > 0, we obtain

ρ ≤ sup R(G,ϕ, ψ) + d2 = ψ(G(1)ϕ) + d2 = y∞,

contradicting the supposition that y∞ < ρ. Setting ϕ := infv∈R ϕ(v), an anal-
ogous argument shows that if y∞ > ρ, then necessarily y∞ = ψ(G(1)ϕ) + d2,
which likewise leads to a contradiction since ρ ≥ ψ(G(1)ϕ) + d2.

Proof of Statement 4: By statement 1, the limit (ϕ ◦ u)∞ = limn→∞(ϕ ◦ u)(n)
exists and is finite. We consider the following cases:
CASE 1: κ /∈ l1(Z+,R).
If κ /∈ l1(Z+,R), then by statements 2 and 3, ρ−d2 = ψ(G(1)(ϕ◦u)∞). Unbound-
edness of u would imply that there exists a sequence (vn) with limn→∞ |vn| = ∞
and such that,

ρ− d2 = lim
n→∞

ψ(G(1)ϕ(vn)).

Since the function v 7→ ψ(G(1)ϕ(v)) is non-decreasing, this would in turn yield
ρ − d2 = sup R(G,ϕ, ψ) or ρ − d2 = inf R(G,ϕ, ψ), showing that u must be
bounded if ρ− d2 is an interior point of R(G,ϕ, ψ).
CASE 2: κ ∈ l1(Z+,R).
By statement 2 we know that ρϑ − y is bounded. With κ ∈ l1(Z+,R) it now
follows that κ(ρϑ− y) ∈ l1(Z+,R). Since 4u = κ(ρϑ− y), we conclude that u is
bounded. 2

We now change the integrator J to J0 and consider the feedback system shown
in Figure 5.4, where c ∈ R is the initial state of the integrator.

- d
6

- κ - J0
- d? - ϕ - G - d? - ψ - d? -qρϑ e u

cϑ

+

+

w

g

+

+

+

+

d

y

+
−

Figure 5.4: Low-gain control problem with time-varying gain and J0 integrator

From Figure 5.4 we can derive the following governing equations,

w = g +G(ϕ ◦ u), y = ψ(w) + d, u = cϑ+ J0(κ(ρϑ− y)),

or, equivalently

u = cϑ+ J0(κ(ρϑ− d− ψ(g +G(ϕ ◦ u)))). (5.31)
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Note that if G(∞) = 0, then (5.31) has a unique solution. Since 40J0 = J040 =
I, (5.31) is equivalent to

40u = cδ + κ(ρϑ− d− ψ(g +G(ϕ ◦ u))). (5.32)

We define,

f0,J0(G) := ess infθ∈(0,2π)Re

[
G(eiθ)eiθ

eiθ − 1

]
. (5.33)

If the transfer function G of G satisfies assumption (A), then −∞ < f0,J0(G) ≤
G(∞)−G(1)/2, where G(∞) := lim|z|→∞,z∈E1 G(z) (see Appendix 2, Proposition
12.1.4 (ii), for more details).

Theorem 5.2.4. Let G ∈ B(l2(Z+,R)) be a shift-invariant operator with transfer
function G. Assume that assumption (A) holds with G(1) > 0, g ∈ l2(Z+,R),
d = d1 + d2ϑ with d1 ∈ l1(Z+,R), d2 ∈ R and n 7→

∑∞
j=n |d1(j)| ∈ l2(Z+,R),

ϕ : R → R and ψ : R → R are non-decreasing and globally Lipschitz continuous
with Lipschitz constants λ1 > 0 and λ2 > 0, ρ− d2 ∈ R(G,ϕ, ψ) and κ : Z+ → R
is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0,J0(G)|, (5.34)

if f0,J0(G) ≤ 0, where 1/0 := ∞. Let u : Z+ → R be a solution of (5.31). Then
the conclusions of Theorem 5.2.2 hold.

Remark 5.2.5. Note that the range of gains guaranteed to achieve tracking
(specified by (5.34)) is potentially larger than in Theorem 5.2.2. In particular, if
f0,J0(G) > 0 then condition (5.34) need no longer be imposed on the gain κ. 3

Proof of Theorem 5.2.4. Let u : Z+ → R be a solution of (5.31). We shall
prove Theorem 5.2.4 by applying Corollary 4.3.5 to the equation satisfied by the
input signal

w = g +G(ϕ ◦ u)

of the output non-linearity ψ, modified with an offset which depends on ρ and
d2. We invoke arguments identical to those leading up to (5.22) in the proof of
Theorem 5.2.2. Using (5.32),

40u = cδ + κ(ρϑ− d− ψ(g + (G(ϕ ◦ u)))
= cδ + κ(ρϑ− d− ψ(w̃ + G(1)ϕρ))

= cδ − κ(d1 + ψ̃ ◦ w̃),
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where w̃, ψ̃ are given by (5.21). Defining,

bu(n) :=

{
(40(ϕ◦u))(n)

(40u)(n)
, if (40u)(n) 6= 0,

0, if (40u)(n) = 0,

it follows that,

(40(ϕ ◦ u))(n) = bu(n)(40u)(n)

= cbu(n)δ(n)− bu(n)κ(n)d1(n)− bu(n)κ(n)ψ̃(w̃(n))

= cbu(n)δ(n)− d̃1(n)− (N ◦ w̃)(n), ∀ n ∈ Z+, (5.35)

where the function N : Z+ × R → R is defined by

N(n, ξ) := bu(n)κ(n)ψ̃(ξ), ∀ (n, ξ) ∈ Z+ × R

and d̃1 : Z+ → R is defined by

d̃1(n) := bu(n)κ(n)d1(n), ∀ n ∈ Z+.

Since ϕ is non-decreasing and globally Lipschitz with Lipschitz constant λ1, we
see that 0 ≤ bu(n) ≤ λ1 for all n ≥ 1. Combining this with (5.22) yields

0 ≤ N(n, ξ)ξ ≤ λ1λ2κ(n)ξ2, ∀ (n, ξ) ∈ N× R. (5.36)

It follows from (5.35) that,

ϕ ◦ u = cbu(0)ϑ− J0d̃1 − J0(N ◦ w̃). (5.37)

Applying G to both sides of (5.37), and using the fact that by shift-invariance,
G commutes with J0 we obtain

G(ϕ ◦ u) = cbu(0)Gϑ−GJ0d̃1 − J0(G(N ◦ w̃)).

Invoking (5.21) yields
w̃ = r − J0(G(N ◦ w̃)), (5.38)

where
r := g −G(1)ϕρϑ+ cbu(0)Gϑ−GJ0d̃1.

Proof of Statement 1: Clearly, (5.38) is of the form (4.106) with u and ϕ replaced
by w̃ and N , respectively. Therefore we may apply Corollary 4.3.5, provided the
relevant assumptions are satisfied. We first assume that f0,J0(G) ≤ 0. By (5.34)
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there exists a > 0 satisfying

λ1λ2 lim sup
n→∞

κ(n) < a < 1/|f0,J0(G)|. (5.39)

By the definition of f0,J0(G), there exists ε > 0 such that

1

a
+ Re

G(eiθ)eiθ

eiθ − 1
≥ ε, a.a. θ ∈ (0, 2π).

Moreover, it follows from (5.36) and (5.39) that there exists n0 ≥ 1 such that

0 ≤ N(n, ξ)ξ ≤ aξ2, ∀ n ∈ [n0,∞) ∩ Z+, ∀ ξ ∈ R.

The above two inequalities show that (4.119) and (4.58) hold with ϕ, Q, and P
replaced by N , I, and 1/a, respectively. Note that if f0,J0(G) > 0, it immediately
follows that there exists ε > 0 such that

Re
G(eiθ)eiθ

eiθ − 1
≥ ε, a.a. θ ∈ (0, 2π).

Moreover, it follows from (5.36) that

0 ≤ N(n, ξ)ξ ∀ (n, ξ) ∈ N× R.

The above two inequalities show that for the case f0,J0(G) > 0, (4.119) and (4.58)
hold with ϕ and Q replaced by N and I, respectively, and a = ∞. In order to
apply Corollary 4.3.5, it remains to verify that r ∈ m2(Z+,R). To this end note
that

r = g + G(1)(cbu(0)ϑ− ϕρϑ) + cbu(0)(Gϑ−G(1)ϑ)−GJ0d̃1. (5.40)

A similar argument to that in the proof of Theorem 5.2.2 showsGJ0d̃1 ∈ m2(Z+,R).
By assumption (A), G(1) is the l2-steady-state gain of G and so (Gϑ−G(1)ϑ) ∈
l2(Z+,R). Consequently, since by assumption g ∈ l2(Z+,R), we conclude from
(5.40) that r ∈ m2(Z+,R). An application of statement 4 of Theorem 4.3.4 to
(5.38) combined with (5.35) now yields that

40(ϕ ◦ u) = cbuδ − d̃1 − (N ◦ w̃) ∈ l2(Z+,R).

Hence it in turn follows that 4(ϕ ◦ u) ∈ l2(Z+,R). Now since d̃1 ∈ l1(Z+,R)
there exists σ ∈ R such that,

lim
n→∞

(Jd̃1)(n) = σ.
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Furthermore, by Theorem 4.3.4 and (5.37),

lim
n→∞

(ϕ ◦ u)(n) = cbu(0)− σ − lim
n→∞

n∑
k=0

(N ◦ w̃)(k)

exists and is finite, completing the proof of statement 1.

The proof of statements 2, 3 and 4 are similar to the proofs of statements 2, 3
and 4 of Theorem 5.2.2 and therefore are omitted. 2

5.3 Notes and references

The main results in this chapter, Theorems 5.1.2, 5.1.4, 5.2.2 and 5.2.4, form
the basis of §4 of [5]. The aforementioned results are the discrete-time ana-
logues of results in [9]. We emphasize that the main results in this chapter apply
to strongly-stable discrete-time state-space systems (see Chapter 6). Previous
results on discrete-time integral control, see [17], [34], [37], [42], are obtained
only for power stable discrete-time state-space systems using state-space meth-
ods. In this Chapter we adopt an input-output approach to the low-gain in-
tegral control problem. Note that in [42] results are obtained for power-stable
infinite-dimensional state-space systems and in particular, tracking of vector-
valued reference signals is considered. However, [42] only treats the linear case
not allowing non-linearities in the input or output channel. Moreover, in [34]
and [37] only input non-linearities are considered, although in [34] the emphasis
is slightly different and the input non-linearity is of hysteresis-type. Whilst the
results in [17] allow for input and output non-linearities, these results only apply
to finite-dimensional, power-stable state-space systems. We note that Theorems
5.2.2 and 5.2.4 allow for both input and output non-linearities. Note that in the
main results of this chapter, tracking of feasible reference values is still achieved
in the presence of a large class of output disturbances. Proposition 5.2.1 is new as
stated in the input-output setting, but is similar to the discrete-time state-space
version contained in [34], (see [34], Proposition 3.2).
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Chapter 6

Absolute stability results for
infinite-dimensional discrete-time
state-space systems with
application to low-gain integral
control

This chapter is devoted to applications of the results in Chapters 4 and 5 to
infinite-dimensional discrete-time state-space systems.

6.1 Power stable and strongly stable discrete-

time state-space systems

Consider the discrete-time system

x(n+ 1) = Ax(n) +Bv(n), x(0) = x0 ∈ X, (6.1a)

w(n) = Cx(n) +Dv(n), (6.1b)

with state-space X, input space U , and output space Y = U and generating
operators (A,B,C,D). Here X and U are Hilbert spaces, A ∈ B(X), B ∈
B(U,X), C ∈ B(X,U), and D ∈ B(U).

We shall use the following notation. We write ‖ · ‖lp := ‖ · ‖lp(Z+,U) and ‖ · ‖lp :=
‖ · ‖lp(Z+,X) for the lp-norm of X-valued sequences, where 1 ≤ p ≤ ∞. We denote
the spectrum and the spectral radius of A by spec (A) and r(A), respectively. It
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is well known that
r(A) = lim

n→∞
‖An‖1/n.

As usual the resolvent set of A is defined by res(A) := C \ spec (A).

From (6.1a) we obtain for the solution x of (6.1a),

x(n) =

{
Anx0 +

∑n−1
j=0 A

(n−1)−jBv(j), n ≥ 1,

x0, n = 0.
(6.2)

Note that (6.1b) and (6.2) yield the following formula for the input-output oper-
ator G:

(Gv)(n) =

{∑n−1
j=0 CA

(n−1)−jBv(j) +Dv(n), n ≥ 1,

Dv(0), n = 0,
∀ v ∈ F (Z+, U). (6.3)

We denote by G the transfer function of the system (6.1), which, for |z| > r(A),
is given by

G(z) = C(zI − A)−1B +D.

We say that A ∈ B(X) is power stable if there exists an M ≥ 1 and γ ∈ (0, 1)
such that

‖An‖ ≤Mγn, ∀ n ∈ Z+.

We say that A ∈ B(X) is strongly stable if limn→∞Anx = 0 for all x ∈ X.

The following lemma gives two simple characterisations of power stability.

Lemma 6.1.1. The following statements are equivalent:

(i) A ∈ B(X) is power stable;

(ii) r(A) < 1;

(iii) z 7→ (zI − A)−1 ∈ H∞(E1,B(X)).

A proof of Lemma 6.1.1 can be found in [32] (see, Lemma 1 in [32]).

It is clear that if A is power stable then A is strongly stable, however, the converse
is not true as seen from the following example.

Example 6.1.2. Let X = l2(Z+,R) and define A ∈ B(l2(Z+,R)) by

A := diagn∈Z+
(λn),

where λn ∈ (0, 1), n ∈ Z+, with λn → 1 as n→∞. We claim that A is strongly
stable, but not power stable. We have,

Ak = diagn∈Z+
(λn)k
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and r(A) = 1. Hence by Lemma 6.1.1, we see that A is not power stable. Let
x ∈ l2(Z+,R). Then,

(Akx)(n) = λk
nx(n), n ∈ Z+ and ‖Akx‖2

l2 =
∞∑

n=0

λ2k
n x

2(n).

Let ε > 0 be given. Then there exists N ∈ N such that,
∑∞

n=N x
2(n) ≤ ε/2 and

so,
∞∑

n=N

λ2k
n x

2(n) ≤ ε

2
, ∀ k ∈ N.

Clearly there exists k0 > 0 such that

N∑
n=0

λ2k
n x

2(n) ≤ ε

2
, ∀ k ≥ k0.

Hence,

‖Akx‖2
l2 =

∞∑
n=0

λ2k
n x

2(n) ≤ ε, ∀ k ≥ k0,

showing that A is strongly stable. 3

We say that system (6.1) is strongly stable if the following four conditions are
satisfied:

(i) G is l2-stable, that is, G ∈ B(l2(Z+, U)), or, equivalently, the transfer
function G ∈ H∞(E1,B(U)).

(ii) A is strongly stable.

(iii) There exists α ≥ 0 such that,∥∥∥∥ ∞∑
j=0

AjBv(j)

∥∥∥∥ ≤ α‖v‖l2 , ∀ v ∈ l2(Z+, U). (6.4)

(iv) There exists β ≥ 0 such that,( ∞∑
j=0

‖CAjx‖2

)1/2

≤ β‖x‖, ∀ x ∈ X. (6.5)

The system (6.1) is called power stable if A is power stable. It is easy to check
that if system (6.1) is power stable, then system (6.1) is strongly stable. It is
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also clear that the converse is not true (trivial counterexample: A as defined in
Example 6.1.2, B = 0, C = 0 and D = 0). Non-trivial counterexamples also exist
as seen from the following example.

Example 6.1.3. We give a non-trivial example of a strongly stable system which
is not a power stable system. Let X = l2(Z+,R) and let A ∈ B(l2(Z+,R)) be
given by

A = diagn∈Z+
(λn)

for some λn ∈ (0, 1), n ∈ Z+, with λn → 1 as n → ∞. Let B ∈ B(R, l2(Z+,R))
be given by

ξ 7→ ξb = ξ

 b(0)
b(1)

...

 , ∀ ξ ∈ R,

where
b(n) := (1− λn)γ(n+ 1)−δ, ∀ n ∈ Z+,

and γ ≥ 1/2 and δ > 1/2. Define C ∈ B(l2(Z+,R),R) by

Cx := 〈b, x〉 =
(
b(0) b(1) . . .

)x(0)
x(1)

...

 , ∀ x ∈ l2(Z+,R),

and set D = 0. Then for z ∈ E1,

(zI − A)−1 = diagn∈Z+

(
1

z − λn

)
and so

G(z) = C(zI − A)−1B +D =
∞∑

n=0

(
1

z − λn

b2(n)

)
.

We first show that G is in H∞(E1). Let z ∈ E1. We have,

|G(z)| ≤
∞∑

n=0

(
1

|z − λn|
b2(n)

)
.

Note that since z ∈ E1 and λn ∈ (0, 1) for all n ∈ Z+,

|z − λn| ≥ |z| − λn > 1− λn > 0, ∀ n ∈ Z+.

Consequently,
1

|z − λn|
<

1

1− λn

, ∀ n ∈ Z+. (6.6)
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Hence it follows that

|G(z)| ≤
∞∑

n=0

(
1

|z − λn|
b2(n)

)
<

∞∑
n=0

(
1

1− λn

b2(n)

)
=

∞∑
n=0

((1− λn)2γ−1(n+ 1)−2δ).

Note that since γ ≥ 1/2 and λn ∈ (0, 1) for all n ∈ Z+, the function n 7→
(1− λn)2γ−1 is bounded, taking values in (0, 1]. Consequently, since δ > 1/2

|G(z)| <
∞∑

n=0

(n+ 1)−2δ <∞.

Since z ∈ E1 was arbitrary it follows that

sup
z∈E1

|G(z)| <∞,

showing that G is convergent and bounded for each z ∈ E1. It remains to show
that G is holomorphic on E1. Define fn : E1 → C by

fn(z) :=
1

z − λn

b2(n), ∀ z ∈ E1, n ∈ Z+.

Using the definition of b and (6.6), it follows that

0 ≤ |fn(z)| < (1− λn)2γ−1(n+ 1)−2δ, ∀ z ∈ E1, n ∈ Z+.

As before, since γ ≥ 1/2 and λn ∈ (0, 1) for all n ∈ Z+, the function n 7→
(1 − λn)2γ−1 is bounded, taking values in (0, 1]. Consequently, since δ > 1/2 it
follows that

∞∑
n=0

(1− λn)2γ−1(n+ 1)−2δ <∞.

An application of the Weierstrass M -test now shows that

∞∑
n=0

fn(z) =
∞∑

n=0

1

z − λn

b2(n) = G(z),

converges uniformly on E1 to G. Noting that for each n ∈ Z+, fn is holomorphic
on E1, it follows that the uniform limit of the fn’s, that is G, is holomorphic on E1.
Combining this with the fact that G is bounded on E1 we see that G ∈ H∞(E1).

Note that it follows from Example 6.1.2 that A is strongly stable, but not power
stable.
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To see that (6.4) holds, we observe the following. Let v ∈ l2(Z+,R). Then,∥∥∥∥ ∞∑
j=0

AjBv(j)

∥∥∥∥2

X

=
∞∑

k=0

∣∣∣∣( ∞∑
j=0

λj
kb(k)v(j)

)∣∣∣∣2 ≤ ∞∑
k=0

|b(k)|2
( ∞∑

j=0

|λj
kv(j)|

)2

.

(6.7)
Note that (for fixed k) by Hölders inequality,

∞∑
j=0

|λj
kv(j)| ≤

( ∞∑
j=0

|λj
k|

2

)1/2( ∞∑
j=0

|v(j)|2
)1/2

=

(
1

1− λ2
k

)1/2

‖v‖X . (6.8)

Combining (6.7) and (6.8) we obtain,∥∥∥∥ ∞∑
j=0

AjBv(j)

∥∥∥∥2

X

≤
∞∑

k=0

b2(k)

1− λ2
k

‖v‖2
X . (6.9)

Using the definition of b, it follows that

∞∑
k=0

b2(k)

1− λ2
k

=
∞∑

k=0

b2(k)

(1− λk)(1 + λk)
=

∞∑
k=0

(1− λk)
2γ−1(1 + λk)

−1(k + 1)−2δ.

Since γ ≥ 1/2 and λk ∈ (0, 1) for all k ∈ Z+, it follows that (1−λk)
2γ−1/(1+λk) ∈

(0, 1). Consequently, noting that δ > 1/2,

∞∑
k=0

b2(k)

1− λ2
k

<
∞∑

k=0

(k + 1)−2δ <∞. (6.10)

Combining (6.9) and (6.10) we obtain,∥∥∥∥ ∞∑
j=0

AjBv(j)

∥∥∥∥
X

≤ α‖v‖X = α‖v‖l2

with α = (
∑∞

k=0(k + 1)−2δ)1/2. Hence, (6.4) holds.

Finally we show that (6.5) holds. Let x ∈ X = l2(Z+,R). Then,

∞∑
j=0

|CAjx|2 =
∞∑

j=0

∣∣∣∣ ∞∑
k=0

λj
kb(k)x(k)

∣∣∣∣2 ≤ ∞∑
j=0

( ∞∑
k=0

|λj
kb(k)x(k)|

)2

. (6.11)

Again (for fixed j) by Hölders inequality,

∞∑
k=0

|λj
kb(k)x(k)| ≤

( ∞∑
k=0

|λj
kb(k)|

2

)1/2

‖x‖l2 =

( ∞∑
k=0

|λj
kb(k)|

2

)1/2

‖x‖X .
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Combining this with (6.11) yields

∞∑
j=0

|CAjx|2 ≤
∞∑

j=0

( ∞∑
k=0

|λj
kb(k)|

2

)
‖x‖2

X . (6.12)

Note that

∞∑
j=0

( ∞∑
k=0

|λj
kb(k)|

2

)
=

∞∑
k=0

∞∑
j=0

λ2j
k b

2(k) =
∞∑

k=0

b2(k)

1− λ2
k

.

Using this in (6.12), it follows from (6.10) that( ∞∑
j=0

|CAjx|2
)1/2

≤
( ∞∑

k=0

b2(k)

1− λ2
k

)1/2

‖x‖X ≤ β‖x‖X ,

with β = α ≥ 0. Hence, (6.5) holds.

With (A,B,C,D) as defined above we have seen that system (6.1) is a strongly
stable discrete-time system but not a power stable system. 3

Remark 6.1.4. Let Λ := {λn}n∈Z+ ∪{1}, where the {λn}n∈Z+ are as in Example
6.1.3. We remark that the transfer function G constructed in Example 6.1.3 is
holomorphic on C \ Λ. To see this, let K ⊂ C \ Λ be non-empty and compact.
Then there exists ε > 0 such that dist(K,Λ) > ε. Consequently, for z ∈ K we
have |z − λn| > ε. Hence it follows that |G(z)| < (1/ε)

∑∞
n=0 b

2(n). Arguments
similar to those in Example 6.1.3 show that G is holomorphic on K. Hence,
we deduce that G is holomorphic on C \ Λ. Moreover, G has poles at each λn,
n ∈ Z+, an essential singularity at the point 1 and is uniformly bounded on the
exterior of the closed unit disc. 3

To obtain state-space versions of the results in Chapters 4 and 5, we require
the following lemmas. The proofs of the following three results can be found in
Appendix 5.

Lemma 6.1.5. Assume that A is strongly stable and (6.4) holds. Then there
exists K ≥ 0 such that, for all x0 ∈ X and v ∈ l2(Z+, U), the solution x of
(6.1a) satisfies

‖x‖l∞ ≤ K(‖x0‖+ ‖v‖l2).

Moreover, limn→∞ x(n) = 0.

Lemma 6.1.6. Assume that A is strongly stable, 1 ∈ res(A) and (6.4) holds. Let
v ∈ F (Z+, U) be such that 4v ∈ l2(Z+, U). Then for all x0 ∈ X, the solution x
of (6.1a) satisfies

lim
n→∞

(x(n)− (I − A)−1Bv(n)) = 0.
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Lemma 6.1.7. Assume that A is power stable. Then there exists K ≥ 0 such
that, for all x0 ∈ X and v ∈ l∞(Z+, U), the solution x of (6.1a) satisfies

‖x‖l∞ ≤ K(‖x0‖+ ‖v‖l∞).

Moreover, if limn→∞ v(n) =: v∞ exists then

lim
n→∞

x(n) = (I − A)−1Bv∞.

6.2 Absolute stability results for discrete-time

state-space systems

This section is devoted to applications of the results in Chapter 4 to discrete-time
state-space systems.

Let ϕ : Z+ × U → U be a (time-dependent) static non-linearity and consider
system (6.1), with input non-linearity v = ϕ◦u (where, slightly abusing notation,
ϕ ◦ u denotes the function n 7→ ϕ(n, u(n))), in feedback interconnection with the
integrator 4u = −w, that is,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (6.13a)

u(n+ 1) = u(n)− Cx(n)−D(ϕ ◦ u)(n), u(0) = u0 ∈ U. (6.13b)

Then it is clear by iterating (6.13b), that

u = u0ϑ− J(Cx+D(ϕ ◦ u)). (6.14)

We have the following lemma.

Lemma 6.2.1. Define r ∈ F (Z+, U) by

r(n) :=

{
u0 −

∑n−1
j=0 CA

jx0, n ≥ 1,

u0, n = 0.
(6.15)

Then for u given by (6.13b),

u = r − J(G(ϕ ◦ u)). (6.16)
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Proof. We have by (6.2) and (6.3),

Cx(n) +D(ϕ ◦ u)(n)

=

{
CAnx0 +

∑n−1
j=0 CA

(n−1)−jB(ϕ ◦ u)(j) +D(ϕ ◦ u)(n), n ≥ 1,

Cx0 +D(ϕ ◦ u)(0), n = 0,

= CAnx0 + (G(ϕ ◦ u))(n), ∀ n ∈ Z+.

Therefore by (6.14),

u(n) =

{
u0 −

∑n−1
j=0 [CAjx0 − (G(ϕ ◦ u))(j)], n ≥ 1,

u0, n = 0.

Hence with r as defined in (6.15), it is clear that (6.16) holds. 2

Remark 6.2.2. Before stating the main results of this section, we remark that if
system (6.1) is strongly stable, then G ∈ H∞(E1,B(U)) and hence G is analytic
on E1. If additionally 1 ∈ res(A), then G extends analytically to a neighbourhood
of 1, so that

lim
z→1

1

z − 1
(G(z)−G(1)) = G′(1) = −C(I − A)−2B,

and thus

lim
z→1

G(z)−G(1)− (z − 1)G′(1)

(z − 1)2
=

1

2
G′′(1),

showing that G satisfies assumption (A′) and hence, in particular, assumption
(A). 3

In the next two results we assume that ϕ is time-independent and that U = R.

Theorem 6.2.3. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) > 0. Let ϕ : R → R be a measurable non-decreasing non-linearity and let
(x, u) be the unique solution of (6.13). If there exist numbers q ≥ 0, ε > 0 and
a ∈ (0,∞) such that (4.2) and (4.3) hold, then there exists a constant K ≥ 0
(which depends only on (A,B,C,D), q, ε, a and G, but not on u0 and x0) such
that

‖x‖l∞ + ‖u‖l∞ + ‖40u‖l2 + ‖ϕ ◦ u‖l2 ≤ K(‖x0‖+ |u0|).

Moreover, limn→∞ x(n) = 0.

The proof of Theorem 6.2.3 follows from an application of Theorem 4.1.2. The ar-
guments used to prove Theorem 6.2.3 are similar to those used to prove Theorem
6.2.5 and so we omit the proof of Theorem 6.2.3.
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Theorem 6.2.4. Assume that system (6.1) is power stable and G(1) > 0. Let
ϕ : R → R be measurable, locally Lipschitz and non-decreasing and let (x, u) be
the unique solution of (6.13). If there exist numbers q ≥ 0 and a ∈ (0,∞) such
that (4.2) and (4.40) hold, then, for each R > 0, there exists a constant KR ≥ 0
(which depends only on R, (A,B,C,D), q, a and G, but not on u0 and x0) such
that

‖x‖l∞ + ‖u‖l∞ ≤ KR(‖x0‖+ |u0|), (6.17)

for all (x0, u0) ∈ X × R with ‖x0‖+ |u0| ≤ R.

The proof of Theorem 6.2.4 follows from an application of Theorem 4.1.3. The ar-
guments used to prove Theorem 6.2.4 are similar to those used to prove Theorem
6.2.6 and so we omit the proof of Theorem 6.2.4.

Theorem 6.2.5. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) is invertible. Let ϕ : Z+ × U → U be a non-linearity. Suppose there exist
self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and a
number ε > 0 such that (4.52) and (4.53) hold. Let (x, u) be the unique solution of
(6.13). Then there exists a constant K ≥ 0 (which depends only on (A,B,C,D),
G, Q, P and ε, but not on u0 and x0) such that

‖x‖l∞ + ‖u‖l∞ + ‖4u‖l2 + ‖ϕ ◦ u‖l2 ≤ K(‖x0‖+ ‖u0‖). (6.18)

Moreover, limn→∞ x(n) = 0.

Proof. Let (x, u) be the unique solution of (6.13). By Lemma 6.2.1, u satisfies
(6.16) with r given by (6.15). In order to apply Theorem 4.2.1 to (6.16), we need
to verify the relevant assumptions. It is clear (see Remark 6.2.2), that G satisfies
assumption (A). To show that r ∈ m2(Z+, U), we first note that,

n−1∑
j=0

CAjx0 = C(I − A)−1x0 − CAn(I − A)−1x0, ∀ n ≥ 1.

Hence

r(n) = u0 − CA(I − A)−1x0 + CAn(I − A)−1x0, ∀ n ∈ Z+.

We remark that since 1 ∈ res(A), we have that (I −A)−1 ∈ B(X). By (6.5), the
function n 7→ CAn(I − A)−1x0 ∈ l2(Z+, U). Consequently, r ∈ m2(Z+, U).

An application of Theorem 4.2.1 shows that there exists a constant K1 ≥ 0 (not
depending on r) such that

‖u‖l∞ + ‖4u‖l2 + ‖ϕ ◦ u‖l2 ≤ K1‖r‖m2 . (6.19)
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Since ϕ ◦ u ∈ l2(Z+, U), it follows from Lemma 6.1.5 that x ∈ l∞(Z+, U),
limn→∞ x(n) = 0 and

‖x‖l∞ ≤ K2(‖x0‖+ ‖ϕ ◦ u‖l2), (6.20)

for some suitable constant K2 ≥ 0 (not depending on x0 and u).

Using (6.5) we have

‖r‖m2 =

( ∞∑
j=0

‖CAj(I − A)−1x0‖2

)1/2

+ ‖u0 − CA(I − A)−1x0‖

≤ β‖(I − A)−1x0‖+ ‖u0 − CA(I − A)−1x0‖,

for some β ≥ 0. Therefore,

‖r‖m2 ≤ K3(‖x0‖+ ‖u0‖) (6.21)

for suitable constant K3 ≥ 0 (not depending on x0 and u0). Combining (6.19)-
(6.21) shows that there exists a constant K ≥ 0 (not depending on x0 and u0),
such that (6.18) holds. 2

If ϕ(n, 0) = 0 for all n ∈ Z+, then for x0 = 0 and u0 = 0, the trivial function
n 7→ (0, 0) is the unique solution of (6.13), called the zero solution.

Theorem 6.2.6. Assume that system (6.1) is power stable and G(1) is invertible.
Let ϕ : Z+ × U → U be a non-linearity and (x, u) be the unique solution of
(6.13). If there exist self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) =
[QG(1)]∗ ≥ 0 such that (4.52) and (4.92) hold, then the following statements
hold.

1. We have x ∈ l∞(Z+, X) and u ∈ l∞(Z+, U). Furthermore, assume that
ϕ : Z+ × U → U is such that (n, v) 7→ ϕ(n, v) is locally Lipschitz in v,
uniformly in n. Then, for each R > 0, there exists a constant KR ≥ 0
(which depends only on R, (A,B,C,D), G, Q and P , but not on u0 and
x0) such that

‖x‖l∞ + ‖u‖l∞ ≤ KR(‖x0‖+ ‖u0‖), (6.22)

for all (x0, u0) ∈ X × U with ‖x0‖+ ‖u0‖ ≤ R.

2. If ϕ satisfies assumptions (B), (C) (see Theorem 4.2.1) and (E) (see Theo-
rem 4.2.4) and, additionally, ϕ is continuous and ϕ−1(0) is totally discon-
nected, then

lim
n→∞

u(n) ∈ ϕ−1(0) and lim
n→∞

x(n) = 0.

114



If further ϕ−1(0) = {0}, then the zero solution of (6.13) is globally attrac-
tive, that is

lim
n→∞

u(n) = 0 and lim
n→∞

x(n) = 0,

for all (x0, u0) ∈ X × U .

Proof. Let (x, u) be the unique solution of (6.13). By Lemma 6.2.1, u satisfies
(6.16) with r given by (6.15). In order to apply Theorem 4.2.4 to (6.16), we need
to verify the relevant assumptions. Since system (6.1) is power stable we have
G ∈ H∞(Eα,B(U)) for some α ∈ (0, 1) and hence G satisfies assumption (A).
To see that r ∈ m1(Z+, U), note that, as in the proof of Theorem 6.2.5, we have

r(n) = u0 − C(I − A)−1x0 + CAn(I − A)−1x0, ∀ n ∈ Z+. (6.23)

It follows from the power stability of A that n 7→ CAn(I−A)−1x0 is in l1(Z+, U)
and hence r ∈ m1(Z+, U).

Proof of statement 1: An application of Theorem 4.2.4 now yields u ∈ l∞(Z+, U)
and that there exists a constant K1 ≥ 0 (not depending on r), such that

‖u‖l∞ ≤ K1‖r‖m1 . (6.24)

Note that by power stability of A, it follows from (6.23) that

‖r‖m1 ≤ K2(‖x0‖+ ‖u0‖) (6.25)

for some constant K2 ≥ 0 (not depending on x0 or u0). Combining (6.24) and
(6.25) yields

‖u‖l∞ ≤ K3(‖x0‖+ ‖u0‖), (6.26)

for some constant K3 ≥ 0 (not depending on x0 or u0).

Since u ∈ l∞(Z+, U) and ϕ is locally Lipschitz, it follows that ϕ ◦ u ∈ l∞(Z+, U).
Consequently, by Lemma 6.1.7, x ∈ l∞(Z+, X) and there exists a constantK4 ≥ 0
(not depending on x0 and n) such that

‖x‖l∞ ≤ K4(‖x0‖+ ‖ϕ ◦ u‖l∞). (6.27)

Let R > 0 and assume that ‖x0‖+‖u0‖ ≤ R. By (4.52), ϕ(n, 0) = 0 (that is, ϕ is
unbiased). Combining the fact that ϕ is locally Lipschitz with its unbiasedness,
there exists a constant K5 ≥ 0 such that

‖ϕ(n, ξ)‖ ≤ K5‖ξ‖, ∀ n ∈ Z+, ‖ξ‖ < R.

Consequently, by (6.26), there exists a constant K6 ≥ 0 (not depending on x0 or
u0) such that

‖(ϕ ◦ u)(n)‖ ≤ K6(‖x0‖+ ‖u0‖). (6.28)
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By (6.28), together with (6.27) and (6.26), it follows that there exists a constant
KR ≥ 0 such that (6.22) holds.

Proof of Statement 2: If ϕ satisfies assumptions (B), (C) and (E), ϕ is continuous
and ϕ−1(0) is totally disconnected, an application of Theorem 4.2.4 shows that
limn→∞ u(n) ∈ ϕ−1(0). Therefore, limn→∞(ϕ ◦ u)(n) = 0 and so by Lemma 6.1.7
we see that limn→∞ x(n) = 0. It is clear that if ϕ−1(0) = {0}, then limn→∞ u(n) =
0 and the last part of statement 2 follows. 2

We now consider system (6.1) with input non-linearity v = ϕ ◦ u in feedback
interconnection with the integrator

z(n+ 1) = z(n)− Cx(n)−D(ϕ ◦ u)(n), z(0) = z0 ∈ U,
u(n) = z(n)− Cx(n)−D(ϕ ◦ u)(n),

where z denotes the integrator state. Equivalently,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (6.29a)

z(n+ 1) = z(n)− Cx(n)−D(ϕ ◦ u)(n), z(0) = z0 ∈ U, (6.29b)

u(n) = z(n)− Cx(n)−D(ϕ ◦ u)(n), u(0) = u0 ∈ U. (6.29c)

Then it is clear by (6.29b) and (6.29c), that,

u = z0ϑ− J0(Cx+D(ϕ ◦ u)). (6.30)

It can easily be seen that (6.29) has at least one solution (x, u) (a unique solution,
respectively) if, for every n ∈ Z+, the map fn : U → U defined by

fn(ξ) := ξ +Dϕ(n, ξ), ∀ (n, ξ) ∈ Z+ × U,

is surjective (bijective, respectively).

We have the following lemma.

Lemma 6.2.7. Define r ∈ F (Z+, U) by

r(n) := z0 −
n∑

j=0

CAjx0, ∀ n ∈ Z+.

Then,
u = r − J0(G(ϕ ◦ u)). (6.31)

Proof. The proof of Lemma 6.2.7 is similar to the proof of Lemma 6.2.1. 2

In the next two results we assume that ϕ is time-independent and that U = R.
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Theorem 6.2.8. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) > 0. Let ϕ : R → R be a measurable non-decreasing non-linearity and let
(x, u) be a solution of (6.29). If there exist numbers q ≥ 0, ε > 0 and a ∈ (0,∞]
such that (4.2) and (4.107) hold then the conclusions of Theorem 6.2.3 hold.

Proof. The proof of Theorem 6.2.8 is similar to the proof of Theorem 6.2.3, but
in this case an application of Theorem 4.3.2 to (6.31) is required. 2

Theorem 6.2.9. Assume that system (6.1) is power stable and G(1) > 0. Let
ϕ : R → R be measurable, locally Lipschitz and non-decreasing. Suppose there
exist numbers q ≥ 0 and a ∈ (0,∞] such that (4.2) and (4.118) hold. Let (x, u)
be a solution of (6.29). Then the conclusions of Theorem 6.2.4 hold.

Proof. The proof of Theorem 6.2.9 is similar to the proof of Theorem 6.2.4, but
in this case an application of Theorem 4.3.3 to (6.31) is required. 2

Theorem 6.2.10. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) is invertible. Let ϕ : Z+ × U → U be a non-linearity. Suppose there exist
self-adjoint P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 and
a number ε > 0 such that (4.52) and (4.119) hold. Let (x, u) be a solution of
(6.29). Then the conclusions of Theorem 6.2.5 hold.

Proof. The proof of Theorem 6.2.10 is similar to the proof of Theorem 6.2.5,
but in this case an application of Theorem 4.3.4 to (6.31) is required. 2

Theorem 6.2.11. Assume that system (6.1) is power stable and G(1) is invert-
ible. Let ϕ : Z+ × U → U be a non-linearity. Suppose there exist self-adjoint
P ∈ B(U), invertible Q ∈ B(U) with QG(1) = [QG(1)]∗ ≥ 0 such that, (4.52)
and (4.131) hold. Let (x, u) be a solution of (6.29). Then the conclusions of
Theorem 6.2.6 hold.

Proof. The proof of Theorem 6.2.11 is similar to the proof of Theorem 6.2.6,
but in this case an application of Theorem 4.3.6 to (6.31) is required. 2

6.3 Low-gain integral control of discrete-time

state-space systems subject to input/output

non-linearities

In this section we present ‘state-space’ versions of the results in Chapter 5. We
assume throughout this section that U = R. Let ϕ : R → R be a static non-
linearity, ρ , k ∈ R and d be an external disturbance. Consider the discrete-time
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system (6.1), with input non-linearity v = ϕ ◦u in feedback interconnection with
the integrator 4u = k(ρϑ− d− w), that is,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (6.32a)

u(n+ 1) = u(n) + k(ρ− d(n)− Cx(n)−D(ϕ ◦ u)(n)), u(0) = u0 ∈ R.
(6.32b)

Then it is clear by (6.32b) that

u = u0ϑ+ kJ(ρϑ− d− Cx−D(ϕ ◦ u)). (6.33)

We now have the following lemma.

Lemma 6.3.1. Define g ∈ F (Z+,R) by g(n) := CAnx0 for all n ∈ Z+. Then for
u given by (6.32b),

u = u0ϑ+ kJ(ρϑ− (g + d+G(ϕ ◦ u))). (6.34)

Proof. With g(n) := CAnx0 we have by (6.2) and (6.3),

Cx(n) +D(ϕ ◦ u)(n)

=

{
CAnx0 +

∑n−1
j=0 CA

(n−1)−jB(ϕ ◦ u)(j) +D(ϕ ◦ u)(n), n ≥ 1,

Cx0 +D(ϕ ◦ u)(0), n = 0,

= CAnx0 + (G(ϕ ◦ u))(n)

= g(n) + (G(ϕ ◦ u))(n), ∀ n ∈ Z+.

Therefore by (6.33),

u(n) =

{
u0 + k

∑n−1
j=0 [ρ− (g(j) + d(j) + (G(ϕ ◦ u))(j)], n ≥ 1,

u0, n = 0,

or equivalently, (6.34) holds. 2

Theorem 6.3.2. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) > 0. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing.
Suppose that d = d1 + d2ϑ with Jd1 ∈ m2(Z+,R) and d2 ∈ R. Let ρ ∈ R, assume
that (ρ− d2)/G(1) ∈ imϕ and let (x, u) be the unique solution of (6.32). Under
these conditions the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists a
constant k∗ ∈ (0,∞) (depending on G, ϕ and ρ) such that for all k ∈ (0, k∗),
the limits limn→∞ x(n) =: x∞ and limn→∞ u(n) =: u∞ exist and satisfy
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x∞ = ((ρ− d2)/G(1))(I − A)−1B and ϕ(u∞) = (ρ− d2)/G(1),

e = 4u/k ∈ l2(Z+,R) and ϕ ◦ u− ϕ(u∞) ∈ l2(Z+,R).

In particular, limn→∞ e(n) = 0.

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ(G)|,
where fJ(G) is given by (5.2).

Proof. By Lemma 6.3.1, u satisfies

u = u0ϑ+ kJ(ρϑ− (g + d+G(ϕ ◦ u))). (6.35)

where g(n) := CAnx0.

Proof of Statement 1: In order to apply Theorem 5.1.2 to (6.35), we need to
verify the relevant assumptions. It is clear (see Remark 6.2.2) that G satisfies
assumption (A′). By an argument identical to that in the proof of Theorem 6.2.5,
the function n 7→ (Jg)(n) is in m2(Z+,R).

An application of Theorem 5.1.2 shows that there exists k∗ > 0 (not depending
on x0 and u0) such that if k ∈ (0, k∗) then limn→∞ u(n) =: u∞ exists and satisfies
ϕ(u∞) = (ρ − d2)/G(1), e ∈ l2(Z+,R) and ϕ ◦ u − ϕ(u∞) ∈ l2(Z+,R). For
the rest of the proof of statement 1, let k ∈ (0, k∗). To prove the remaining
assertions in statement 1, let uρ ∈ R be such that ϕ(uρ) = (ρ− d2)/G(1). Define
z(·) := x(·)− x∞ and v(·) := u(·)− uρ and set

ϕ̃(ξ) := ϕ(ξ + uρ)− ϕ(uρ), ∀ ξ ∈ R.

Noting that

B(ϕ̃ ◦ v)(n) = Bϕ(v + uρ)(n)−Bϕ(uρ) = B(ϕ ◦ u)(n)−B(ρ− d2)/G(1),

and
z(n+ 1)− Az(n) = x(n+ 1)− Ax(n)− (I − A)x∞,

it follows easily from (6.32a) that

z(n+ 1) = Az(n) +B(ϕ̃ ◦ v)(n). (6.36)

Since,
ϕ̃ ◦ v = ϕ ◦ u− ϕ(uρ) = ϕ ◦ u− ϕ(u∞) ∈ l2(Z+,R),

it follows from Lemma 6.1.5 applied to (6.36) that limn→∞ ‖z(n)‖ = 0 showing
that x(n) converges to x∞ as n→∞.
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Proof of Statement 2: It follows immediately from Theorem 5.1.2 and the proof of
statement 1, that the conclusions of statement 1 are valid with k∗ = 1/|λfJ(G)|.

2

We now consider the discrete-time system (6.1) with input non-linearity ϕ ◦ u in
feedback interconnection with the integrator

z(n+ 1) = z(n)− Cx(n)−D(ϕ ◦ u)(n), z(0) = z0 ∈ R,
u(n) = z(n)− Cx(n)−D(ϕ ◦ u)(n),

where z denotes the integrator state. Equivalently,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (6.37a)

z(n+ 1) = z(n) + k(ρ− d(n)− Cx(n)−D(ϕ ◦ u)(n)), z(0) = z0 ∈ R,
(6.37b)

u(n) = z(n) + k(ρ− d(n)− Cx(n)−D(ϕ ◦ u)(n)), u(0) = u0 ∈ R.
(6.37c)

Theorem 6.3.3. Assume that system (6.1) is strongly stable, 1 ∈ res(A) and
G(1) > 0. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing.
Suppose that d = d1 +d2ϑ with J0d1 ∈ m2(Z+,R) and d2 ∈ R. Let ρ ∈ R, assume
that (ρ − d2)/G(1) ∈ imϕ and let (x, u) be a solution of (6.37). Under these
conditions the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists a
constant k∗ ∈ (0,∞] (depending on G, ϕ and ρ) such that for all k ∈ (0, k∗),
the limits limn→∞ x(n) =: x∞ and limn→∞ u(n) =: u∞ exist and satisfy
x∞ = ((ρ− d2)/G(1))(I−A)−1B and ϕ(u∞) = (ρ− d2)/G(1), respectively,

e =
1

k
(40u− z0δ) ∈ l2(Z+,R) and ϕ ◦ u− ϕ(u∞) ∈ l2(Z+,R).

In particular, limn→∞ e(n) = 0. If fJ0(G) = 0 (where fJ0(G) is given by
(5.12)), then the above conclusions are valid with k∗ = ∞.

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ0(G)|
(where 1/0 := ∞).

3. Under the assumption that fJ0(G) > 0, the conclusions of statement 1 are
valid with k∗ = ∞.

Proof. The proof of statements 1 and 2 of Theorem 6.3.3 follow in a similar way
to the proof of Theorem 6.3.2 but in this case an application of Theorem 5.1.4 is
required.
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Proof of Statement 3: Statement 3 follows from statement 3 of Theorem 5.1.4
and arguments similar to those in the proof of statement 1. 2

We now consider a discrete-time system with input and output non-linearities.
Let ϕ : R → R and ψ : R → R be static input and output non-linearities,
respectively, let ρ ∈ R, κ : Z+ → R be a time-varying gain, d an external
disturbance, and consider the discrete-time system (6.1), with input non-linearity
v = ϕ ◦ u in feedback interconnection with the integrator 4u = κ(ρϑ − d − y)
(where y = ψ ◦ w), that is,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = x0 ∈ X, (6.38a)

u(n+ 1) = u(n) + κ(n)(ρ− d(n)− (ψ ◦ (Cx+D(ϕ ◦ u))(n))), (6.38b)

u(0) = u0 ∈ R.

Then it is clear by iterating (6.38a) that

u = u0ϑ+ J(κ(ρϑ− d− ψ ◦ (Cx+D(ϕ ◦ u)))). (6.39)

We define the tracking error e(n) := ρ− d(n)− y(n) for all n ∈ Z+.

Theorem 6.3.4. Assume that system (6.1) is strongly stable, 1 ∈ res(A), and
G(1) > 0. Let ϕ : R → R and ψ : R → R be non-decreasing and globally
Lipschitz continuous with Lipschitz constants λ1 > 0 and λ2 > 0. Suppose that
d = d1 + d2ϑ with d1 ∈ l1(Z+,R), d2 ∈ R and n 7→

∑∞
j=n |d1(j)| ∈ l2(Z+,R),

ρ− d2 ∈ R(G,ϕ, ψ) and κ : Z+ → R is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0,J(G)|,

where f0,J(G) is given by (5.19). Let (x, u) be the unique solution of (6.38). Then
the following statements hold.

1. The limit (ϕ ◦ u)∞ := limn→∞ ϕ(u(n)) exists and is finite, 4(ϕ ◦ u) ∈
l2(Z+,R) and limn→∞ x(n) = (I − A)−1B(ϕ ◦ u)∞.

2. If κ /∈ l1(Z+,R), then limn→∞(d(n) + (ψ ◦ y)(n)) = ρ, or equivalently,

lim
n→∞

e(n) = 0.

3. If ρ− d2 is an interior point of R(G,ϕ, ψ), then u is bounded.

Proof. Let (x, u) be the unique solution of (6.38). Using (6.39), and invoking
(6.2) and (6.3), a routine calculation, using arguments similar to those used to
prove Lemma 6.3.1, shows that for u given by (6.38b),

u = u0ϑ+ J(κ(ρϑ− d− ψ(g + (G(ϕ ◦ u))))), (6.40)
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where g(n) := CAnx0. In order to apply Theorem 5.2.2 to (6.40), we need to
verify the relevant assumptions. It is clear (see Remark 6.2.2) that G satisfies
assumption (A). By (6.5),( ∞∑

j=0

‖CAjx0‖2

)1/2

≤ β‖x0‖,

for some β ≥ 0, hence g ∈ l2(Z+,R). Statements 2 and 3 now follow immediately
from the application of Theorem 5.2.2 to (6.40). It remains to show statement
1 holds. Again applying Theorem 5.2.2 to (6.40), we immediately obtain that
(ϕ ◦u)∞ := limn→∞ ϕ(u(n)) exists and is finite and 4(ϕ ◦u) ∈ l2(Z+,R). It then
follows from Lemma 6.1.6 that limn→∞ x(n) = (I − A)−1B(ϕ ◦ u)∞. 2

Remark 6.3.5. Note that it is also possible to obtain a state-space version of
Theorem 5.2.4 under similar assumptions to those in Theorem 6.3.4. 3

6.4 Notes and references

The (non-trivial) example of a strongly stable discrete-time system which is not
a power stable system (see Example 6.1.3), is new. Lemmas 6.1.5, 6.1.6 and
6.1.7, which give asymptotic properties of the state x, are new for discrete-time
systems but analogous results for continuous-time systems are well-known. The
results in §6.2 give state-space versions of the absolute stability theory developed
in Chapter 4. We remark that the absolute stability results in Chapter 4 which
assume a strict positive real condition (that is, ε > 0) apply to strongly stable
state-space systems with 1 ∈ res(A), whereas, those absolute stability results in
Chapter 4 with non-strict positive real condition (that is, ε = 0) apply to power
stable state-space systems. This mimics the continuous-time absolute stability
theory developed in [9] and [10]; the absolute stability results in [9] being applied
to strongly stable state-space systems with 0 in the resolvent set of the semigroup
generator, and the absolute stability results in [10] being applied to exponentially
stable state-space systems. The results in §6.3 form state-space versions of the
low-gain integral control results in Chapter 5. The results in §6.3 significantly
improve on results in the existing literature in the sense that here the underlying
state-space system is assumed to be strongly stable (a larger class of systems than
power-stable systems, see Example 6.1.3) whereas, the results in [17], [34], [37]
and [42] assume that the underlying state-space system is power-stable. Further-
more, note that the results in [17] are obtained in a finite-dimensional setting, the
results in [34] and [37] do not allow for output non- linearities, and the results
in [42] do not consider any non-linearities. The absolute stability results with
non-strict positive real condition, together with the results in §6.2 and Example
6.1.3, form the basis of §4 of [5].
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Chapter 7

Steady-state gains and
sample-hold discretisations of
continuous-time
infinite-dimensional linear
systems

In this chapter we begin by discussing transfer functions of bounded linear shift-
invariant operators on L2(R+, U). We next introduce the concepts of asymptotic
steady-state gain, L2-steady-state gain and step error in continuous time. Analo-
gous concepts in discrete time were introduced in Chapter 3. Next we introduce
the ideal sampling, generalised sampling and zero-order hold operators and state
basic boundedness properties of each operator. Finally, under a mild assumption
on the continuous-time system it is shown that the existence of the (continuous-
time) L2-steady-state gain implies the existence of the l2-steady-state gain of the
sample-hold discretisation. Moreover, (under a further natural assumption in the
case of sample-hold discretisation with generalised sampling) we see that these
two gains coincide.

7.1 Transfer functions of continuous-time oper-

ators

Recall that X denotes a Banach space, U denotes a Hilbert space and for α ∈ R,
we have Cα := {s ∈ C | Re s > α}.
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Definition. Let f : C0 → X be holomorphic. Setting

‖f‖H2 :=

(
sup
x>0

∫ ∞

−∞
‖f(x+ iy)‖2 dy

)1/2

and
‖f‖H∞ := sup

z∈C0

‖f(z)‖,

the Hardy-Lebesgue spaces H2(C0, X) and H∞(C0, X) are defined to consist of
all f for which ‖f‖H2 <∞ and ‖f‖H∞ <∞, respectively.

Let f ∈ H2(C0, U). Then f has boundary values f ∗(iy) := limx→0+ f(x + iy) at
almost all points y ∈ R (see [50], Theorem B, p. 85). Moreover, f ∗ ∈ L2(iR, U)
and ‖f ∗‖L2 = ‖f‖H2 .

Theorem 7.1.1 (Paley-Wiener). Let f ∈ H2(C0, U). Then, there exists g ∈
L2(R+, U) such that L g = f and ‖f‖H2 =

√
2π‖g‖L2.

Let Gc ∈ B(L2(R+, U)) be shift-invariant. As is well known (see, for example,
[64], Theorem 2.3), Gc has a transfer function Gc ∈ H∞(C0,B(U)) in the sense
that

(L (Gcu))(s) = Gc(s)(L (u))(s), ∀ u ∈ L2(R+, U), s ∈ C0.

By shift-invariance, Gc is causal, and therefore Gc extends to a shift-invariant op-
erator from L2

loc(R+, U) into itself. We shall use the same symbol Gc to denote the
original operator on L2(R+, U) and its shift-invariant extension to L2

loc(R+, U).

7.2 Continuous-time steady-state gains and step

error

Let Gc ∈ B(L2(R+, U)) be shift-invariant.

Definition. If there exists an operator Γc ∈ B(U) such that

lim
t→∞

(Gc(ϑcξ))(t) = Γcξ , ∀ ξ ∈ U ,

then we say that Γc is the asymptotic steady-state gain of Gc. Moreover, if there
exists an operator Γc ∈ B(U) such that

Gc(ϑcξ)− ϑcΓcξ ∈ L2(R+, U) , ∀ ξ ∈ U ,
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then Γc is said to be the L2-steady-state gain of Gc. If the asymptotic steady-state
gain or the L2-steady-state gain of Gc exist, then, for ξ ∈ U , the function

σξ
c := Gc(ϑcξ)− ϑcΓcξ

is said to be the step error associated with ξ.

The asymptotic steady-state gain and the L2-steady-state gain may or may not
exist. In contrast to the discrete-time case (see Chapter 3), the existence of one
does not imply the existence of the other. Trivially, if they both exist, then they
coincide. If Γc is the L2-steady-state gain of Gc, then it is not guaranteed that
σξ

c(t) → 0 as t→∞. However, since σξ
c ∈ L2(R+, U), it follows from Proposition

2.1.13 that σξ
c(t) converges to 0 in measure as t→∞ in the sense that, for every

ε > 0,
lim

T→∞
m
(
{t ≥ T : ‖σξ

c(t)‖ ≥ ε}
)

= 0 ,

where m denotes the Lebesgue measure.

Of course, under the additonal assumption that Gc is the input-output operator
of a finite-dimensional state-space system (i.e., Gc is rational), the asymptotic
steady-state gain and the L2-steady-state gain exist and are given by Gc(0);
furthermore, there exist M > 0 and α < 0 such that ‖σξ

c(t)‖ ≤ Meαt‖ξ‖ for all
t ∈ R+ and for all ξ ∈ U = Rm.

We introduce the following assumption on the transfer function Gc of Gc.

(Ac) There exists Γc ∈ B(U) such that

lim sup
s→0,s∈C0

∥∥∥∥1

s
(Gc(s)− Γc)

∥∥∥∥ <∞ . (7.1)

Remark 7.2.1. If Gc extends analytically into a neighbourhood of 0 (which in
particular is the case if Gc ∈ B(L2

α(R+, U)) for some α < 0), then (Ac) holds with
Γc = Gc(0). Furthermore, if Gc is the transfer function of a strongly stable well-
posed state-space system (see Lemma 9.1.6 for more details) with the additional
property that 0 is in the resolvent set of the semigroup generator (which is trivially
true for exponentially stable well-posed systems), then (Ac) holds. 3

Note that if Gc satisfies assumption (Ac), then it follows easily from Theorem
7.1.1 that there exists a constant γ > 0 such that

‖σξ
c‖L2 ≤ γ‖ξ‖ , ∀ ξ ∈ U ,

showing that the operator Σc : ξ 7→ σξ
c is in B(U,L2(R+, U)). In particular, if

assumption (Ac) holds, then Γc is the L2-steady-state gain of Gc. Using Remark
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7.2.1, it can be easily shown that, if Gc ∈ B(L2
α(R+, U)) for some α < 0, then

Σc ∈ B(U,L2
α(R+, U)).

The next result gives a time-domain characterization of assumption (Ac).

Lemma 7.2.2. Let Gc ∈ B(L2(R+, U)) be shift-invariant with transfer function
Gc and let Γc ∈ B(U). Then (7.1) holds (i.e., Gc satisfies assumption (Ac)) if
and only if GcI − ΓcI ∈ B(L2(R+, U)).

Proof. (⇒) Suppose that Gc satisfies assumption (Ac). Consider the operator
GcI − ΓcI . By shift-invariance of Gc and I it follows that GcI − ΓcI is
shift-invariant and its transfer function is given by

(Gc(s)− Γc)/s, s ∈ C0.

From assumption (Ac) and the fact that Gc ∈ H∞(C0,B(U)), we conclude that,
s 7→ (Gc(s)− Γc)/s ∈ H∞(C0,B(U)) and so GcI − ΓcI ∈ B(L2(R+, U)).
(⇐) Suppose GcI −ΓcI ∈ B(L2(R+, U)). As before, since Gc and I are shift-
invariant, it follows that GcI −ΓcI is shift-invariant. Consequently, GcI −ΓcI
has a H∞(C0,B(U)) transfer function. Since this transfer function is given by

(Gc(s)− Γc)/s, s ∈ C0,

it follows that assumption (Ac) holds. 2

We emphasize that assumption (Ac) does not guarantee that Γc is the asymptotic
steady-state gain of Gc (or, equivalently, that σξ

c(t) → 0 as t → ∞ for every
ξ ∈ U). However, the following result holds.

Proposition 7.2.3. Let Gc ∈ B(L2(R+, U)) be shift-invariant with transfer
function Gc. If assumption (Ac) holds and if limt→∞(Gcu)(t) = 0 for all u ∈
C∞(R+, U) with compact support, then

lim
t→∞

σξ
c(t) = 0 , ∀ ξ ∈ U .

Proof. Let ξ ∈ U be arbitrary. Choose ϑ1 in C∞(R+,R) such that

ϑ1(0) = 0 , ϑ1(t) = 1 , ∀ t ≥ 1 .

Moreover, define ϑ2 := ϑc − ϑ1. Setting Hc := GcI − ΓcI , we have that

Gc(ϑcξ) = Gc(ϑ1ξ) +Gc(ϑ2ξ) = Hc(ϑ̇1ξ) + ϑ1Γcξ +Gc(ϑ2ξ) .

Obviously, ϑ2 is in C∞(R+,R) and has compact support. Therefore, by hypoth-
esis, limt→∞(Gc(ϑ2ξ))(t) = 0. Hence, by choice of ϑ1,

lim
t→∞

(ϑ1(t)Γcξ + (Gc(ϑ2ξ))(t)) = Γcξ .
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Therefore it remains to show that

lim
t→∞

(Hc(ϑ̇1ξ))(t) = 0 . (7.2)

It follows from assumption (Ac) and Lemma 7.2.2 that Hc ∈ B(L2(R+, U)).
Clearly, ϑ̇1 ∈ L2(R+,R) and so

Hc(ϑ̇1ξ) ∈ L2(R+, U) . (7.3)

By shift-invariance, Gc commutes with I , and so

d

dt
(Hc(ϑ̇1ξ)) = Gc(ϑ̇1ξ)− ϑ̇1Γcξ ∈ L2(R+, U) .

Combining this with (7.3), we conclude from Proposition 2.1.14 that (7.2) holds.
2

Furthermore, we have the following result on the behaviour of Gcu for converging
inputs u.

Proposition 7.2.4. Let Gc ∈ B(L2(R+, U)) be shift-invariant with transfer func-
tion Gc. Assume that (Ac) is satisfied.

(a) If u ∈ L2
loc(R+, U) is such that u∞ := limt→∞ u(t) exists and u − ϑcu

∞ ∈
L2(R+, U), then Gcu− ϑcΓcu

∞ ∈ L2(R+, U).

(b) Assume that Gc has the additional property that limt→∞(Gcu)(t) = 0 for all
u ∈ C∞(R+, U) with compact support. If u ∈ W 1,1

loc (R+, U) is such that u̇ ∈
L2(R+, U) and u∞ := limt→∞ u(t) exists, then limt→∞(Gcu)(t) = Γcu

∞.

Proof. (a) Note that,

Gcu− ϑcΓcu
∞ = Gc(u− ϑcu

∞) +Gcϑcu
∞ − ϑcΓcu

∞. (7.4)

Since by assumptionGc ∈ B(L2(R+, U)) and u−ϑcu
∞ ∈ L2(R+, U) it follows that

Gc(u− ϑcu
∞) ∈ L2(R+, U). Furthermore, since assumption (Ac) holds, Γc is the

L2-steady-state gain of Gc and so Gcϑcu
∞−ϑcΓcu

∞ ∈ L2(R+, U). Consequently,
it follows from (7.4) that Gcu− ϑcΓcu

∞ ∈ L2(R+, U).

(b) Setting Hc := GcI − ΓcI , it follows that,

Hcu̇ = Gcu− Γcu− (Gcϑcu(0)− Γcϑcu(0)) = Gcu− Γcu− σu(0)
c . (7.5)

It follows from assumption (Ac) and Lemma 7.2.2 that Hc ∈ B(L2(R+, U)). By
assumption u̇ ∈ L2(R+, U) and so

Hcu̇ ∈ L2(R+, U). (7.6)
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By shift-invariance Gc commutes with I , and so

d

dt
(Hu̇) = Gcu̇− Γcu̇ ∈ L2(R+, U). (7.7)

Combining (7.6) and (7.7), we see from Proposition 2.1.14 that limt→∞(Hu̇)(t) =
0. Consequently, it follows from (7.5) that

lim
t→∞

((Gcu)(t)− Γcu(t)− σu(0)
c (t)) = 0. (7.8)

Invoking Proposition 7.2.3 with ξ = u(0) we see that limt→∞ σ
u(0)
c (t) = 0 and so,

from (7.8) we have

lim
t→∞

(Gcu)(t) = lim
t→∞

Γcu(t) = Γcu
∞.

2

7.3 Hold and sample operators

We begin this section by introducing the notion of a hold operator, an ideal
sampling operator and a generalised sampling operator. Let τ > 0 denote the
sampling period.

Definition. The hold operator H : F (Z+, U) → L2
loc(R+, U) is given by

(Hu)(t) := u(n), t ∈ [nτ, (n+ 1)τ).

The operator H is also known as zero-order hold. We define the ideal-sampling
operator, SI : F (R+, U) → F (Z+, U) by

(SIy)(n) := y(nτ), ∀ n ∈ Z+.

For a given function w ∈ L2(0, τ) (said to be the weighting function) with the
property

w(s) ≥ 0, a.e. s ∈ [0, τ ],

the generalised sampling operator S : L2
loc(R+, U) → F (Z+, U) is defined by

(Sy)(n) :=

{
0, if n = 0,∫ τ

0
w(s)y((n− 1)τ + s) ds , if n ≥ 1.

Remark 7.3.1. It is also possible to define a generalised sampling operator
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S̃ : L2
loc(R+, U) → F (Z+, U) by

(S̃y)(n) :=

∫ τ

0

w(s)y(nτ + s) ds, ∀ n ∈ Z+.

We note that all the results in this chapter remain true if S is replaced by S̃.
However, if generalised sampler S̃ is used in sampled-data control (see Figure
7.1), then the output of the discrete-time controller K (a causal operator from

F (Z+, U) into itself) is given by the sequence K(S̃(y)), where y is the continuous-
time plant output. In combination with zero-order hold this leads to a continuous-
time control signal u of the form

u = f +HK(S̃y) ,

for some given f ∈ L2
loc(R+, U). To compute u(t) for t ∈ [nτ, (n+1)τ), knowledge

of (K(S̃y))(n) is required at time t = nτ . However, whilst (S̃y)(n) is available at

time t = (n+ 1)τ , it is not known at time t = nτ . Therefore (K(S̃y))(n) should

only depend on (S̃y)(j) for 0 ≤ j ≤ n − 1, but not on (S̃y)(n). We conclude
that K needs to be strictly causal for the sampled-data system to be well-defined.
With generalised sampler given by S, the assumption of strict causality of the
discrete-time controller K is not required. 3

- H - e+

+
?

f

u
- G -r y

� S̃K

Figure 7.1: Sampled-data feedback system

Proposition 7.3.2. Let α ∈ R and set β := eατ . Then the hold and sampling
operators have the following properties:

(i) H ∈ B(l2β(Z+, U), L2
α(R+, U));

(ii) S ∈ B(L2
α(R+, U), l2β(Z+, U));

(iii) SI ∈ B(W 1,2(R+, U), l2(Z+, U)).

Proof. (i) The linearity of H is clear from the definition of H. Let α ∈ R and
set β := eατ . Let u ∈ l2β(Z+, U). First note that,

‖(Hu)(t)e−αt‖2 = ‖u(n)e−αt‖2, ∀ t ∈ [nτ, (n+ 1)τ).
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Using the estimate e−αt ≤ e|α|τe−αnτ for all t ∈ [nτ, (n+ 1)τ), we obtain

‖(Hu)(t)e−αt‖2 ≤ e2|α|τ‖u(n)e−αnτ‖2 = e2|α|τ‖u(n)β−n‖2, ∀ t ∈ [nτ, (n+1)τ).

Hence it follows that∫ ∞

0

‖(Hu)(t)e−αt‖2 dt ≤ τe2|α|τ
∞∑

j=0

‖u(j)β−j‖2

and so, ‖Hu‖L2
α
≤
√
τe|α|τ‖u‖l2β

and H ∈ B(l2β(Z+, U), L2
α(R+, U)).

(ii) Linearity of S is clear by the definition of S. Let y ∈ L2
α(R+, U) and set

β := eατ . For n ≥ 1,

‖(Sy)(n)β−n‖ =

∥∥∥∥(∫ τ

0

w(s)y((n− 1)τ + s) ds

)
e−αnτ

∥∥∥∥
=

∥∥∥∥(∫ τ

0

w(s)y((n− 1)τ + s) ds

)
e−α(n−1)τe−ατ

∥∥∥∥
≤ e|α|τ

∥∥∥∥∫ τ

0

w(s)y((n− 1)τ + s)e−α((n−1)τ+s) ds

∥∥∥∥
≤ e|α|τ

∫ τ

0

‖w(s)y((n− 1)τ + s)e−α((n−1)τ+s)‖ ds

≤ e|α|τ‖w‖L2(0,τ)

(∫ τ

0

‖y((n− 1)τ + s)e−α((n−1)τ+s)‖2 ds

)1/2

= e|α|τ‖w‖L2(0,τ)

(∫ nτ

(n−1)τ

‖y(s)e−αs‖2 ds

)1/2

where, the first inequality follows from the estimate e−ατ ≤ e|α|τe−αs, for all
s ∈ [0, τ ] and the third inequality follows from the fact that w ∈ L2(0, τ), y ∈
L2

α(R+, U) and Hölder’s inequality. Hence it follows that

∞∑
n=0

‖(Sy)(n)β−n‖2 =
∞∑

n=1

‖(Sy)(n)β−n‖2

≤ e|α|τ‖w‖2
L2(0,τ)

∞∑
n=1

∫ nτ

(n−1)τ

‖y(s)e−αs‖2 ds

= e|α|τ‖w‖2
L2(0,τ)

∫ ∞

0

‖y(s)e−αs‖2 ds.

Consequently,

‖Sy‖l2β
≤ e

|α|τ
2 ‖w‖L2(0,τ)‖y‖L2

α
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and we see that S ∈ B(L2
α(R+, U), l2β(Z+, U)).

(iii) Let f ∈ W 1,2(R+, U). We define an extension g of f in the following way,

g(t) :=

{
f(t), t ≥ 0,

f(−t), t < 0.

Then g is an even function, g ∈ W 1,2(R, U) and ‖g‖W 1,2(R,U) = 2‖f‖W 1,2(R+,U).
Applying Proposition 2.1 of [30] (with s = 1 in the notation of [30]), we deduce
that

‖SIg‖l2(Z,U) ≤ γ‖g‖W 1,2(R,U), (7.9)

for some γ > 0. Since g is even, SIg is even and ‖SIg‖l2(Z,U) = 2‖SIf‖l2(Z,U).
Consequently, it follows from (7.9) that

‖SIf‖l2(Z+,U) ≤ γ‖f‖W 1,2(R+,U),

that is, SI ∈ B(W 1,2(R+, U), l2(Z+, U)). 2

Where appropriate, we shall impose the following assumption on the shift-invariant
operator Gc ∈ B(L2(R+, U)).

(Bc)

lim
t→∞

(Gcv)(t) = 0, ∀ v ∈ PC(R+, U) ∩ L2(R+, U) with v(t) → 0 as t→∞.

(7.10)
It will be explicitly stated when we assume assumption (Bc) holds.

Remark 7.3.3. If U = Rm for some m ∈ N, a sufficient condition for assumption
(Bc) to hold is that the convolution kernel of Gc is a Rm×m-valued Borel measure
on R+ (see, for example, [21], Theorem 6.1 part (ii), p. 96). 3

We require the following notation. Recall that τ > 0 denotes the sampling period.
Suppose that t ∈ R+. Then t ∈ [ntτ, (nt + 1)τ), where

nt := bt/τc (7.11)

is the integer part of t/τ , that is, the greatest integer m such that m ≤ t/τ .

We have the following result on the behaviour of GcHv for converging sequences
v.

Proposition 7.3.4. Let Gc ∈ B(L2(R+, U)) be shift-invariant with transfer func-
tion Gc satisfying assumption (Ac). If v ∈ F (Z+, U) is such that 4v ∈ l2(Z+, U)
and v∞ := limn→∞ v(n) exists, then

GcHv = kc1 + kc2
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with limt→∞ kc1(t) = Γcv
∞ and kc2 ∈ L2(R+, U). If additionally (Bc) holds then,

limt→∞ kc2(t) = 0 and
lim
t→∞

(Gc(Hv))(t) = Γcv
∞.

Proof. Note that for all t ∈ R+

(I (H(4v)))(t) = τ(J(4v))(nt) + (t− ntτ)(H(4v))(t)
= τv(nt − 1)− τϑc(t)v(0) + (t− ntτ)(H(4v))(t)
= τ(Hv)(t)− τϑc(t)v(0) + (t− ntτ)(H(4v))(t), (7.12)

where nt is given by (7.11). Set hc(t) := (t − ntτ)(H(4v))(t) for all t ∈ R+.
Using (7.12) it follows that, for t ∈ R+,

(Gc(I (H(4v))))(t) = τ(Gc(Hv))(t)− τ(Gc(ϑcv(0)))(t) + (Gchc)(t). (7.13)

Setting Hc := GcI −ΓcI , it follows from (7.12) and (7.13), with rearrangement,
that

Gc(Hv) =
1

τ
Hc(H(4v)) +

1

τ
Γchc + ΓcHv

+Gc(ϑcv(0))− Γcv(0)ϑc −
1

τ
Gchc. (7.14)

With

kc1 :=
1

τ
Hc(H(4v)) +

1

τ
Γchc + ΓcHv

and

kc2 := Gc(ϑcv(0))− Γcv(0)ϑc −
1

τ
Gchc,

it is clear from (7.14) that Gc(Hv) = kc1 + kc2. We claim that

lim
t→∞

kc1(t) = Γcv
∞. (7.15)

To this end note that since 4v ∈ l2(Z+, U), it follows that H(4v) ∈ L2(R+, U)
and (H(4v))(t) → 0 as t→∞. Noting that the function

t 7→ t− ntτ = t− τbt/τc, t ∈ R+

is bounded (it takes values in [0, τ)), it follows that hc ∈ L2(R+, U) and moreover,

lim
t→∞

hc(t) = 0. (7.16)

It follows from assumption (Ac) and Lemma 7.2.2 that Hc ∈ B(L2(R+, U)) and
so Hc(H(4v)) ∈ L2(R+, U). Furthermore, the derivative of Hc(H(4v)), namely
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GcH4v − ΓcH4v, is in L2(R+, U) and we deduce that

lim
t→∞

(Hc(H(4v)))(t) = 0. (7.17)

Combining (7.16), (7.17) with the fact that v∞ := limn→∞ v(n) exists, it fol-
lows that (7.15) holds. It remains to show that kc2 ∈ L2(R+, U). Since Gc ∈
B(L2(R+, U)) and hc ∈ L2(R+, U) it is clear that Gchc ∈ L2(R+, U). Further-
more,

Gc(ϑcv(0))− Γcv(0)ϑc = σv(0)
c

and, by assumption (Ac), σ
v(0)
c ∈ L2(R+, U). Consequently, kc2 ∈ L2(R+, U). If

additionally (Bc) holds, replacing ξ by v(0) in Proposition 7.2.3, it follows that

lim
t→∞

σv(0)
c (t) = lim

t→∞
[(Gc(ϑcv(0)))(t)− Γcv(0)ϑc(t)] = 0. (7.18)

Using (7.16) and the fact that hc ∈ PC(R+, U) ∩ L2(R+, U), we obtain

lim
t→∞

(Gchc)(t) = 0.

Consequently, it is clear that given (Bc) holds, limt→∞ kc2(t) = 0 and

lim
t→∞

(Gc(Hv))(t) = lim
t→∞

kc1(t) = Γcv
∞.

2

7.4 Sample-hold discretisations

Sample-hold discretisation with generalised sampling

Let Gc ∈ B(L2(R+, U)) be shift-invariant and let u ∈ L2(R+, U). Due to the
potential irregularity of Gcu, ideal sampling of Gcu is meaningless. Therefore we
consider generalised sampling of Gcu. The sample-hold discretisation G of Gc is
defined by

G := SGcH. (7.19)

Proposition 7.4.1. Let Gc ∈ B(L2(R+, U)) be shift-invariant. Then for G given
by (7.19), G ∈ B(l2(Z+, U)) and is shift-invariant.

Proof. Boundedness and linearity of G follow immediately from Proposition
7.3.2. Let u ∈ l2(Z+, U). To see that G is shift-invariant we must show that

(SGu)(n) = (GSu)(n), ∀ n ∈ Z+.
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We consider the following cases.
CASE 1: n = 0. It is clear by the definition of S and G that

0 = ((SG)u)(0) = ((GS)u)(0).

CASE 2: n = 1. First note that

(S(Gu))(1) = (Gu)(0) = (S(GcHu))(0) = 0.

By definition of G,

(G(Su))(1) =

∫ τ

0

w(s)(GcHSu)(s) ds.

Noting that
(HSu)(s) = (Su)(0) = 0, ∀ s ∈ [0, τ),

it follows from causality of Gc that (GcHSu)(s) = 0 for all s ∈ [0, τ). Hence we
see that (SGu)(1) = (GSu)(1) = 0.
CASE 3: n ≥ 2. We note that

(S(Gu))(n) = (Gu)(n− 1) =

∫ τ

0

w(s)(GcHu)((n− 2)τ + s) ds

=

∫ τ

0

w(s)(SτGcHu)((n− 1)τ + s) ds.

Consequently, by shift-invariance of Gc it follows that

(S(Gu))(n) =

∫ τ

0

w(s)(GcSτHu)((n− 1)τ + s) ds.

Noting that

(G(Su))(n) =

∫ τ

0

w(s)(GcHSu)((n− 1)τ + s) ds,

it remains to show that GcSτH = GcHS. Let t ≥ τ . Then t ∈ [ntτ, (nt + 1)τ),
where nt ≥ 1 is given by (7.11). By definition of H, S and Sτ ,

(HSu)(t) = (Su)(nt) = u(nt − 1),

and
(SτHu)(t) = (Hu)(t− τ) = u(nt − 1).

So we have that
(SτHu)(t) = (HSu)(t), ∀ t ≥ τ.
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Furthermore, if t ∈ [0, τ), then

(SτHu)(t) = 0 = (HSu)(t).

Consequently,
(SτHu)(t) = (HSu)(t), ∀ t ∈ R+

and so we see that

(Gc(SτHu))(t) = (Gc(HSu))(t), ∀ t ∈ R+.

Hence ((SG)u)(n) = ((GS)u)(n) for all u ∈ l2(Z+, U), n ∈ Z+ and we see that G
is shift-invariant. 2

We require some preliminary results.

Lemma 7.4.2. IH− τHJ0 ∈ B(l2(Z+, U), L2(R+, U)).

Proof. Let t ∈ R+ and u ∈ l2(Z+, U). Then by definition of H,

(I (Hu))(t) =

∫ ntτ

0

(Hu)(s) ds+

∫ t

ntτ

(Hu)(s) ds = τ(Ju)(nt) + (t− ntτ)u(nt)

and
(H(J0u))(t) = (J0u)(nt),

where nt is given by (7.11). Hence it follows that

‖((IH− τHJ0)u)(t)‖ = ‖τ(Ju)(nt) + (t− ntτ)u(nt)− τ(J0u)(nt)‖
= ‖(t− ntτ)u(nt)− τu(nt)‖
≤ (t− ntτ)‖u(nt)‖+ τ‖u(nt)‖
≤ 2τ‖u(nt)‖, ∀ t ∈ R+. (7.20)

By (7.20) ∫ ∞

0

‖((IH− τHJ0)u)(t)‖2 dt ≤ 4τ 3

∞∑
n=0

‖u(n)‖2.

Hence it follows that

‖(IH− τHJ0)u‖L2 ≤ 2τ 3/2‖u‖l2

and we see that IH− τHJ0 ∈ B(l2(Z+, U), L2(R+, U)). 2

Lemma 7.4.3. Let w ∈ L2(0, τ). Then(∫ τ

0

w(s) ds

)
S = SH.
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Proof. Let u ∈ l2(Z+, U). We shall show that(∫ τ

0

w(s) ds

)
(Su)(n) = (SHu)(n) ∀ n ∈ Z+.

CASE 1: n = 0.
Clearly (S(Hu))(0) = 0 by the definition of S and also (

∫ τ

0
w(s) ds)(Su)(0) = 0

by definition of S.
CASE 2: n ≥ 1.
We have

(S(Hu))(n) =

∫ τ

0

w(s)(Hu)((n− 1)τ + s) ds. (7.21)

Consider (Hu)((n − 1)τ + s) where 0 ≤ s < τ . Set t = (n − 1)τ + s. Then
t ∈ [(n− 1)τ, nτ) and by definition of H,

(Hu)(t) = u(n− 1).

Hence from (7.21) we see that

(S(Hu))(n) =

∫ τ

0

w(s)u(n− 1) ds =

(∫ τ

0

w(s) ds

)
u(n− 1)

=

(∫ τ

0

w(s) ds

)
(Su)(n)

which shows (
∫ τ

0
w(s) ds)S = SH. 2

The following result is the key result of this subsection and shows that if assump-
tion (Ac) holds for Gc, then G given by (7.19) satisfies assumption (A).

Theorem 7.4.4. Let Gc ∈ B(L2(R+, U)) be shift-invariant and suppose that
G ∈ B(l2(Z+, U)) is given by (7.19). If the transfer function Gc of Gc satisfies
assumption (Ac), then the transfer function G of G satisfies assumption (A) with
Γ = (

∫ τ

0
w(s) ds)Γc.

Remark 7.4.5. If additionally ∫ τ

0

w(s) ds = 1,

it follows from Theorem 7.4.4 that the L2-steady-state gain of Gc and l2-steady-
state gain of G coincide. 3

Proof of Theorem 7.4.4. By Lemma 3.4.2 it is sufficient to show that

GJ0 − ΓJ0 ∈ B(l2(Z+, U)). (7.22)
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Since (Ac) holds, it follows from Lemma 7.2.2 and Proposition 7.3.2 that

S(GcI − ΓcI )H ∈ B(l2(Z+, U)).

Therefore, (7.22) is equivalent to the claim

GJ0 − ΓJ0 −
1

τ
S(GcI − ΓcI )H ∈ B(l2(Z+, U)). (7.23)

Using (7.19) we have,

GJ0 − ΓJ0 −
1

τ
S(GcI − ΓcI )H

= SGcHJ0 − ΓJ0 −
1

τ
SGcIH +

1

τ
ΓcSIH

=
1

τ
SGc(τHJ0 −IH)− ΓJ0 +

1

τ
ΓcSIH. (7.24)

By Lemma 7.4.2, Proposition 7.3.2 and the fact that Gc ∈ B(L2(R+, U)), we
have

1

τ
SGc(τHJ0 −IH) ∈ B(l2(Z+, U)).

Combining this with (7.24), we see that, in order to verify (7.23) (and hence
(7.22)), it is sufficient to prove that

−ΓJ0 +
1

τ
ΓcSIH ∈ B(l2(Z+, U)). (7.25)

To this end note that by Lemma 7.4.3 and the definition of Γ it follows that,

−ΓJ0 +
1

τ
ΓcSIH =

Γc

τ
(S(IH− τHJ0))− ΓJ0 + ΓcSHJ0

=
Γc

τ
(S(IH− τHJ0))− ΓJ0 +

(∫ τ

0

w(s) ds

)
ΓcSJ0

=
Γc

τ
(S(IH− τHJ0))− ΓI. (7.26)

Consequently, by Lemma 7.4.2 and Proposition 7.3.2, it follows from (7.26) that
(7.25) holds. 2

Sample-hold discretisation with ideal sampling

We assume throughout this subsection that U = Rm for some m ∈ N and the
operator Gc is given by convolution with a Rm×m-valued Borel measure µ on R+,

137



that is,
Gcu = µ ∗ u, ∀ u ∈ L1

loc(R+,Rm). (7.27)

We note that by standard properties of convolution of a measure and an Lp

function (see, for example, [20], p. 271), Gc ∈ B(Lp(R+,Rm)) for 1 ≤ p ≤
∞. The transfer function Gc ∈ H∞(C0,Cm×m) of Gc is given by the Laplace
transform of µ, that is

Gc(s) = (L (µ))(s) =

∫ ∞

0

e−stµ(dt), ∀ s ∈ C0.

In fact, L (µ) is defined and continuous on C0. Therefore Gc extends to a con-
tinuous function on C0. It is clear that Gc has an asymptotic steady-state gain
Γc ∈ Rm×m which is given by

Γc = Gc(0) = (L (µ)(0)) = µ(R+).

Remark 7.4.6. The specific example of the measure µ given by

µ(dt) =
dt

(1 + t)1+ε
, ε ∈ (0, 1/2),

shows that Gc given by (7.27) does in general not have a L2-steady-state gain.
To see this we observe the following:

(µ ∗ ϑc)(t)− Γcϑc(t) =

∫ t

0

1

(1 + s)1+ε
ds− Γcϑc(t)

= −1

ε

1

(1 + t)ε
+

1

ε
− Γc.

Since ε ∈ (0, 1/2), it follows that

t 7→ 1

(1 + t)ε
/∈ L2(R+,Rm).

Consequently,
µ ∗ ϑc − Γcϑc /∈ L2(R+,Rm)

for any choice of Γc. 3

The sample-hold discretisation G of Gc is now defined by

G := SIGcH. (7.28)
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Let {Ek}k∈Z+ be the family of subsets of R+ given by

E0 := {0}, Ek := ((k − 1)τ, kτ ], k ∈ N.

The following result shows that G is shift-invariant and G ∈ B(lp(Z+,Rm)), for
1 ≤ p ≤ ∞.

Proposition 7.4.7. Let Gc be given by (7.27), where µ is a Rm×m-valued Borel
measure on R+. Then the sequence g ∈ F (Z+,Rm×m) given by

g(k) := µ(Ek), k ∈ Z+,

is in l1(Z+,Rm×m), and moreover, the operator G defined by (7.28) satisfies

Gu = g ∗ u , ∀u ∈ F (Z+,Rm).

Consequently, G is shift-invariant and G ∈ B(lp(Z+,Rm)) for 1 ≤ p ≤ ∞.

Proof. By direct substitution we have

(Gu)(k) = ((SIGcH)u)(k) = (GcHu)(kτ)
= (µ ∗ Hu)(kτ)

=

∫ kτ

0

µ(ds)(Hu)(kτ − s)

=
k∑

j=0

∫
Ej

µ(ds)u(k − j)

=
k∑

j=0

g(k)u(k − j).

To see that g ∈ l1(Z+,Rm×m), observe that by the finiteness of |µ|

∞∑
k=0

‖g(k)‖ =
∞∑

k=0

‖µ(Ek)‖ ≤
∞∑

k=0

|µ|(Ek) =

∫ ∞

0

|µ|(ds) ≤ |µ|(R+) <∞.

Hence with u ∈ lp(Z+,Rm) for 1 ≤ p ≤ ∞, it follows that,

‖Gu‖lp = ‖g ∗ u‖lp ≤ ‖g‖l1‖u‖lp

and we see that G ∈ B(lp(Z+,Rm)). 2

Note that by Proposition 7.4.7 the convolution kernel of G is summable, that
is Gu = g ∗ u, where g ∈ l1(Z+,Rm×m). Consequently, the transfer function
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G ∈ H∞(E1,Cm×m) is given by

G(z) = (Z (g))(z) =
∞∑

n=0

g(n)z−n, ∀ z ∈ E1.

In fact Z (g) is defined on and continuous on E1. Therefore, G extends to a
continuous function on E1. It is clear that G has an asymptotic steady-state gain
Γ which is given by

Γ = G(1) = (Z (g))(1) =
∞∑

n=0

g(n).

Similar to the continuous-time case (see Remark 7.4.6), G does in general not
have a l2-steady-state gain.

We require the following preliminary result.

Lemma 7.4.8. (1/τ)SIIH = J.

Proof. Let u ∈ F (Z+,Rm). Then,

(SI(I (Hu)))(n) = (I (Hu))(nτ) =

∫ nτ

0

(Hu)(s) ds.

It follows from the definition of H that,∫ nτ

0

(Hu)(s) ds =

{
0, if n = 0,

τ
∑n−1

j=0 u(j), if n ≥ 1,

= τ(Ju)(n).

It is then clear that (1/τ)SIIH = J . 2

The following result is the ideal sampling counterpart of Theorem 7.4.4 and shows
that if assumption (Ac) holds for Gc given by (7.27), then G given by (7.28)
satisfies assumption (A).

Theorem 7.4.9. Let Gc be given by (7.27), where µ is a Rm×m-valued Borel
measure on R+, and let G be given by (7.28). If the transfer function Gc of Gc

satisfies assumption (Ac), then the transfer function G of G satisfies assumption
(A) and Γ = G(1) = Gc(0) = Γc.

Remark 7.4.10. It follows from Theorem 7.4.9 that the L2-steady-state gain of
Gc and l2-steady-state gain of G coincide. 3

Proof of Theorem 7.4.9. By Lemma 3.4.2 it is sufficient to show that

GJ0 − ΓcJ0 ∈ B(l2(Z+,Rm)). (7.29)
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We first show that

SI(GcI − ΓcI )H ∈ B(l2(Z+,Rm)). (7.30)

For the remainder of this proof let u ∈ l2(Z+,Rm). Define f := (GcI −ΓcI )Hu.
Since (Ac) holds, it follows from Lemma 7.2.2 and Proposition 7.3.2 (i) that
f ∈ L2(R+,Rm). Furthermore, f(0) = 0 and, using the fact that by shift-
invariance Gc and I commute,

f(t)− f(0) =

∫ t

0

(GcHu)(s) ds− Γc

∫ t

0

(Hu)(s) ds

=

∫ t

0

(((Gc − ΓcI)H)u)(s) ds.

SinceGc ∈ B(L2(R+,Rm)), invoking Proposition 7.3.2 (i), we have (Gc−ΓcI)Hu ∈
L2(R+,Rm). Thus f ∈ W 1,2(R+,Rm) and so, by Proposition 7.3.2 (iii), SIf ∈
l2(Z+,Rm). Again since (Ac) holds, it follows from Lemma 7.2.2, the fact that
Gc ∈ B(L2(R+,Rm)) and Proposition 7.3.2 (i) that

‖SI(GcI − ΓcI )Hu‖l2 = ‖SIf‖l2

≤ ‖SI‖‖f‖W 1,2

= ‖SI‖(‖(GcI − ΓcI )Hu‖L2 + ‖GcHu− ΓcHu‖L2)

≤ α‖u‖l2

where α := ‖SI‖‖H‖(‖GcI − ΓcI ‖ + ‖Gc‖ + ‖Γc‖). Hence we see that (7.30)
holds. Therefore, it follows from (7.30) that (7.29) is equivalent to the claim

GJ0 − ΓcJ0 −
1

τ
SI(GcI − ΓcI )H ∈ B(l2(Z+,Rm)). (7.31)

Using (7.28) we have,

GJ0 − ΓcJ0 −
1

τ
SI(GcI − ΓcI )H =

1

τ
SIGc(τHJ0 −IH)− ΓcJ0 +

1

τ
ΓcSIIH.

(7.32)
Applying Lemma 7.4.8 to (7.32) and simplifying we obtain

GJ0 − ΓcJ0 −
1

τ
SI(GcI − ΓcI )H =

1

τ
SIGc(τHJ0 −IH)− ΓcI. (7.33)

Hence from (7.33) we see that in order to verify (7.31) (and hence (7.29)) it is
sufficient to prove that

SIGc(τHJ0 −IH) ∈ B(l2(Z+,Rm)). (7.34)
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To this end note that for all n ∈ Z+,

(SI(Gc(τHJ0 −IH))u)(n) =

∫ nτ

0

µ(ds)((τHJ0 −IH)u)(nτ − s)

=
n∑

k=0

∫
Ek

µ(ds)((τHJ0 −IH)u)(nτ − s).

It follows from the definition of Ek that, for s ∈ Ek, nτ−s ∈ [(n−k)τ, (n−k+1)τ).
Consequently,

((τHJ0 −IH)u)(nτ − s) = τ(J0u)(n− k)− τ(Ju)(n− k) + (s− kτ)u(n− k)

= (s− (k − 1)τ)u(n− k).

Hence defining fk : Ek → R by s 7→ s− (k − 1)τ , it follows that

(SI(Gc(τHJ0 −IH))u)(n) =
n∑

k=0

∫
Ek

µ(ds)fk(s)u(n− k)

Since 0 ≤ fk(s) ≤ τ for all k ∈ Z+, we have

‖(SI(Gc(τHJ0 −IH))u)(n)‖ ≤
n∑

k=0

∥∥∥∥∫
Ek

µ(ds)fk(s)u(n− k)

∥∥∥∥
≤ τ

n∑
k=0

∫
Ek

|µ|(ds)‖u(n− k)‖

= τ
n∑

k=0

|µ|(Ek)‖u(n− k)‖

= τ
n∑

k=0

η(k)‖u(n− k)‖

= τ(η ∗ v)(n), (7.35)

where η(k) := |µ|(Ek) and v ∈ F (Z+,R) is defined by v(n) := ‖u(n)‖ for all
n ∈ Z+. Noting that

∑∞
k=0 ‖η(k)‖ = |µ|(R+) <∞ and so η ∈ l1(R+,Rm×m), we

obtain from (7.35),

‖(SI(Gc(τHJ0 −IH)))u‖l2 ≤ τ‖η ∗ v‖l2 ≤ τ‖η‖l1‖u‖l2

showing that (7.34) holds. 2
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7.5 Notes and references

The results in this chapter are similar in spirit to [24, 25], where sample-hold
discretisations of distributed parameter systems belonging to the Callier-Desoer
algebra were studied using an input-output approach. In particular, Theorems
7.4.4 and 7.4.9 provide considerably more general results than those in [24, 25].

In Theorem 7.4.4 we consider the large class of continuous-time input-output
operators from the algebra of shift-invariant bounded linear operators on L2(R+),
together with a discretisation formed by generalised sampling combined with zero-
order hold. Generalised sampling is not considered in [24, 25]. In Theorem 7.4.9
we consider continuous-time systems given by convolution with matrix-valued
Borel measures defined on R+. This general class of measure kernels contains
measures which may have singular part, a situation not considered in [24, 25].
We note that Proposition 7.3.4, Theorem 7.4.4 and Theorem 7.4.9 are particularly
important in low-gain sampled-data integral control of linear infinite-dimensional
systems subject to actuator and sensor non-linearities (see Chapter 8).

Statements (a) and (b) of Proposition 7.2.4, whilst not directly relevant to this
thesis, are of importance in terms of analysing the behaviour of continuous-time
systems subject to converging inputs.

The results in this chapter form the basis of [8] and some of [6].
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Chapter 8

Sampled-data low-gain integral
control in the presence of
input/output non-linearities

In this chapter we apply the results from Chapter 5 to obtain sampled-data
low-gain integral control results in the single-input-single-output setting. In the
presence of input non-linearities we form the sample-hold discretisation of the
continuous-time system with generalised sampling and zero-order hold. We then
derive results on low-gain integral control for both constant and time-varying
gain. In the presence of input and output non-linearities we restrict to continuous-
time systems whose convolution kernel is a finite Borel measure on R+ and form
the sample-hold discretisation of the continuous-time system with idealised sam-
pling and zero-order hold. We then derive results on low-gain integral control
with time-varying gain. The main results in this chapter are also restated for the
J0 integrator.

8.1 Sampled-data low-gain integral control in

the presence of input non-linearities

In the presence of input non-linearities we distinguish two cases: constant gain
and time-varying gain.

Constant gain

Consider the feedback system shown in Figure 8.1, where k is a gain parameter,
the operator Gc ∈ B(L2

α(R+,R)) for some α < 0, is shift-invariant with transfer
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function denoted by Gc, ϕ : R → R is a static input non-linearity, ρ ∈ R
is a constant reference value, u0 ∈ R is the initial state of the integrator (or,
equivalently, the initial value of u), the function gc models the effect of non-zero
initial conditions of the system with input-output operator Gc, the operators H
and S are as defined in §7.3 and the function dc is an external disturbance.

- d
6

- k - J - d? - H - ϕ Gc
- d?- -q

�S
y

ρϑ e ucu

u0ϑ

+

+

gc + dc

+

+ yc

+
−

Figure 8.1: Sampled-data low-gain integral control with J integrator

From Figure 8.1 we can derive the following governing equations,

yc = dc + gc +Gc(ϕ ◦ uc), y = Syc, uc = u0ϑc + kHJ(ρϑ− y),

or, equivalently

uc = u0ϑc + kHJ(ρϑ− S(dc + gc +Gc(ϕ ◦ uc))). (8.1)

Using the linearity of S and forming the sample-hold discretisation ofGc with gen-
eralised sampling, G := SGcH, we obtain from (8.1) the corresponding discrete-
time equation,

u = u0ϑ+ kJ(ρϑ− (d+ g +G(ϕ ◦ u))), (8.2)

where g := Sgc and d := Sdc. Equation (8.1) has the unique solution uc = Hu,
where u ∈ F (Z+,R) is the unique solution of the discrete-time equation (8.2).

The objective in this subsection is to determine gain parameters k such that the
tracking error

ec(t) := ρ− yc(t) = ρ− (dc(t) + gc(t) + (Gc(ϕ ◦ uc))(t)) (8.3)

becomes small in a certain sense as t → ∞. For example, we might want to
achieve ‘tracking in measure’, that is, for all ε > 0, the Lebesgue measure of the
set {t ≥ T | |ec(t)| ≥ ε} tends to 0 as T → ∞, or the aim might be ‘asymptotic
tracking’, that is, limt→∞ ec(t) = 0. Tracking in measure is guaranteed if ec ∈
Lp(R+,R) for some p ∈ [1,∞) as seen from Proposition 2.1.13.
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Recall that associated with generalised sampling operator S we have a weighting
function w ∈ L2(0, τ) with the property

w(s) ≥ 0, a.e. s ∈ [0, τ ],

where τ > 0 denotes the sampling period. Throughout the remainder of this
section we additionally assume that,∫ τ

0

w(s) ds = 1.

From Theorem 7.4.4, imposing this additional assumption, we obtain

Gc(0) = G(1), (8.4)

where G denotes the transfer function of G := SGcH.

Recall from (5.2) that,

fJ(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
and, assuming that assumption (A) holds for the transfer function G of G, we
have −∞ < fJ(G) < −G(1)/2 (see Appendix 2, Proposition 12.1.3 (i), for more
details).

Theorem 8.1.1. Let Gc ∈ B(L2
α(R+,R)), for some α < 0, be a shift-invariant

operator with transfer function Gc. Assume that Gc(0) > 0, that gc ∈ L2
β(R+,R)

for some β < 0, dc = dc1 + dc2ϑc with dc1 ∈ L2
γ(R+,R) for some γ < 0 and

dc2 ∈ R. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing. Let
ρ ∈ R, assume that (ρ − dc2)/Gc(0) ∈ imϕ and let uc : R+ → R be the solution
of (8.1). Under these conditions the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists a
constant k∗ ∈ (0,∞) (depending on Gc, ϕ and ρ) such that for all k ∈
(0, k∗), the limit limt→∞ uc(t) =: u∞ exists and satisfies ϕ(u∞) = (ρ −
dc2)/Gc(0),

ec ∈ L2(R+,R) and ϕ ◦ uc − ϕ(u∞)ϑc ∈ L2(R+,R).

Moreover,
lim
t→∞

ec(t) = 0,

provided that limt→∞ gc(t) = 0, limt→∞ dc1(t) = 0 and Gc satisfies assump-
tion (Bc).
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2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ(G)|.

Remarks 8.1.2. (a) Theorem 8.1.1 ensures that the tracking error is square-
integrable and hence we have tracking in measure (see Proposition 2.1.13). If
limt→∞ gc(t) = 0, limt→∞ dc1(t) = 0 and Gc satisfies assumption (Bc), then The-
orem 8.1.1 guarantees asymptotic tracking.

(b) Note that in statement 2 of Theorem 8.1.1 the constant k∗ depends only on
G and the Lipschitz constant of ϕ, but not on ρ.

(c) A similar comment to Remark 5.1.3 (iv) holds with regard to the assumption
(ρ− dc2)/Gc(0) ∈ imϕ. 3

Proof of Theorem 8.1.1. We shall prove Theorem 8.1.1 by applying Theorem
5.1.2 to (8.2). In order to apply Theorem 5.1.2 we need to check that the relevant
assumptions are satisfied.

We first note that by Proposition 7.3.2, G = SGcH ∈ B(l2η(Z+,R)), for some η ∈
(0, 1). Consequently, the transfer function G of G = SGcH satisfies assumption
(A′), see Remark 3.4.6 (ii). To see that g := Sgc satisfies the relevant assumptions
we note the following.

Since gc ∈ L2
β(R+,R) for some β < 0, Proposition 7.3.2 (ii) yields Sgc ∈ l2

eβ
(Z+,R)

for β̃ = eβτ ∈ (0, 1). So by Remark 5.1.3 (iv) we see that the function n 7→∑∞
j=n(Sgc)(j), is in l2(Z+,R). Furthermore, we have Sgc ∈ l1(Z+,R) implying

that (JSgc)(n) converges to a finite limit as n → ∞. Hence it follows from
Proposition 12.1.5 that JSgc ∈ m2(Z+,R).

To see that d := Sdc satisfies the relevant assumptions we note the following.
A routine calculation shows that Sϑc = ϑ − δ. Define d1 := Sdc1 − dc2δ and
d2 := dc2, then clearly d = d1 + d2ϑ = Sdc. Using an argument similar to that
which showed g = Sgc satisfies the relevant assumptions in Theorem 5.1.2, we can
also show that d1 satisfies the required assumptions in Theorem 5.1.2. Finally,
note that by (8.4), (ρ − d2)/G(1) = (ρ − dc2)/Gc(0) ∈ imϕ. Hence the relevant
assumptions are satisfied and we may apply Theorem 5.1.2 to (8.2).

Proof of statement 1: With uc = Hu, where u ∈ F (Z+,R) is the unique solution
of the discrete-time equation (8.2), an application of Theorem 5.1.2 to (8.2) im-
mediately yields limt→∞ uc(t) =: u∞ exists and satisfies ϕ(u∞) = (ρ−dc2)/Gc(0).
Furthermore, we have that

ϕ ◦ u− ϕ(u∞)ϑ ∈ l2(Z+,R).

Consequently, by Proposition 7.3.2 (i),

H((ϕ ◦ u)− ϕ(u∞)ϑ) = H(ϕ ◦ u)− ϕ(u∞)Hϑ = ϕ ◦ uc − ϕ(u∞)ϑc ∈ L2(R+,R).
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Since Gc ∈ B(L2
α(R+,R)), for some α < 0, we have

Gc((ϕ ◦ uc)− ϕ(u∞)ϑc) ∈ L2(R+,R).

Note that gc ∈ L2
β(R+,R) for some β < 0 and dc1 ∈ L2

γ(R+,R) for some γ < 0,
hence gc, dc1 ∈ L2(R+,R) and

gc + dc1 +Gc((ϕ ◦ uc)− ϕ(u∞)ϑc) ∈ L2(R+,R).

Using the linearity of Gc,

gc + dc1 +Gc(ϕ ◦ uc)− ϕ(u∞)Gcϑc ∈ L2(R+,R),

or, equivalently,
yc − dc2ϑc − ϕ(u∞)Gcϑc ∈ L2(R+,R). (8.5)

Using the fact that ϕ(u∞) = (ρ− dc2)/Gc(0) it follows from (8.5) that

Gc(0)yc − dc2Gc(0)ϑc − (ρ− dc2)Gcϑc ∈ L2(R+,R). (8.6)

Noting that,

Gc(0)yc − ρGcϑc = Gc(0)(yc − ρϑc)− ρ(Gcϑc −Gc(0)ϑc),

it follows from (8.6) that

Gc(0)yc − dc2Gc(0)ϑc − (ρ− dc2)Gcϑc

= Gc(0)(yc − ρϑc) + (dc2 − ρ)(Gcϑc −Gc(0)ϑc) ∈ L2(R+,R). (8.7)

Since Gc ∈ B(L2
α(R+,R)), assumption (Ac) holds with Γc = Gc(0) and Gcϑc −

Gc(0)ϑc, the convolution kernel of the operator GcI −Gc(0)I ∈ B(L2(R+,R)),
is in L2(R+,R). Hence from (8.7) we deduce that

Gc(0)(yc − ρϑc) ∈ L2(R+,R)

or, equivalently,
ec = yc − ρϑc ∈ L2(R+,R).

Assume now that limt→∞ gc(t) = 0, limt→∞ dc1(t) = 0 and that (Bc) holds. To
see that limt→∞ ec(t) = 0, we first observe that by Lemma 7.2.3,

lim
t→∞

(Gcϑc)(t) = Gc(0). (8.8)
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Noting that ϕ ◦ u− ϕ(u∞)ϑ ∈ l2(Z+,R), we have

lim
t→∞

((ϕ ◦ uc)(t)− ϕ(u∞)ϑc(t)) = 0.

Since ϕ ◦ uc − ϕ(u∞)ϑc ∈ PC(R+,R)∩L2(R+,R), invoking assumption (Bc), we
obtain

lim
t→∞

((Gc(ϕ ◦ uc))(t)− ϕ(u∞)(Gcϑc)(t)) = 0. (8.9)

Combining (8.9), (8.8) and noting that ϕ(u∞) = (ρ− dc2)/Gc(0) we have,

lim
t→∞

(Gc(ϕ ◦ uc))(t) =
(ρ− dc2)

Gc(0)
Gc(0) = ρ− dc2. (8.10)

Combining (8.10) with the additional assumptions

lim
t→∞

gc(t) = 0, lim
t→∞

dc1(t) = 0,

it is clear that,

lim
t→∞

ec(t) = lim
t→∞

yc(t)− ρ = lim
t→∞

(gc(t) + dc(t) + (Gc(ϕ ◦ uc))(t))− ρ

= ρ− ρ

= 0.

Proof of statement 2: This follows as in the proof of statement 2 of Theorem
5.1.2. 2

We now change the integrator J to J0 and consider the feedback system shown
in Figure 8.2, where ξ ∈ R is the initial state of the integrator.
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Figure 8.2: Sampled-data low-gain integral control with J0 integrator

From Figure 8.2 we can derive the following governing equations,

yc = dc + gc +Gc(ϕ ◦ uc), y = Syc, uc = ξϑc + kHJ0(ρϑ− y),
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or, equivalently

uc = ξϑc + kHJ0(ρϑ− S(dc + gc +Gc(ϕ ◦ uc))). (8.11)

Using the linearity of S and forming the sample-hold discretisation of Gc with
generalised sampling, G := SGcH, we obtain from (8.11), the corresponding
discrete-time equation,

u = ξϑ+ kJ0(ρϑ− (d+ g +G(ϕ ◦ u))) (8.12)

where g := Sgc and d := Sdc. If uc ∈ F (R+,R) is a solution of (8.11), then
u(n) := uc(nτ) for all n ∈ Z+, is a solution of (8.12). Conversely, if u ∈ F (Z+,R)
is a solution of (8.12), then uc = Hu is a solution of (8.11).

Recall from (5.12) that,

fJ0(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ−1

)
G(eiθ)

]}
and, assuming that assumption (A) holds for the transfer function G of G, we
have −∞ < fJ0(G) ≤ ∞ (see Appendix 2, Proposition 12.1.4 (ii), for more
details).

Theorem 8.1.3. Let Gc ∈ B(L2
α(R+,R)), for some α < 0, be a shift-invariant

operator with transfer function Gc. Assume that Gc(0) > 0, that gc ∈ L2
β(R+,R)

for some β < 0, dc = dc1 + dc2ϑc with dc1 ∈ L2
γ(R+,R) for some γ < 0 and

dc2 ∈ R. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing. Let
ρ ∈ R, assume that (ρ− dc2)/Gc(0) ∈ imϕ and let uc : R+ → R be a solution of
(8.11). Under these conditions the following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists
a constant k∗ ∈ (0,∞] (depending on Gc, ϕ and ρ) such that for all k ∈
(0, k∗), the limit limt→∞ uc(t) =: u∞ exists and satisfies ϕ(u∞) = (ρ −
dc2)/Gc(0),

ec ∈ L2(R+,R) and ϕ ◦ uc − ϕ(u∞)ϑc ∈ L2(R+,R).

Moreover,
lim
t→∞

ec(t) = 0,

provided that limt→∞ gc(t) = 0, limt→∞ dc1(t) = 0 and Gc satisfies assump-
tion (Bc). If fJ0(G) = 0, then the above conclusions are valid with k∗ = ∞.

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ0(G)|,
where 1/0 := ∞.
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3. Under the assumption fJ0(G) > 0, the conclusions of statement 1 are valid
with k∗ = ∞.

Proof. We prove Theorem 8.1.3 by applying Theorem 5.1.4 to (8.12). In order to
apply Theorem 5.1.4 we need to check that the relevant assumptions are satisfied.
Arguments identical to those in the proof of Theorem 8.1.1 show that the relevant
assumptions are satisfied. Statements 1 and 2 follow from the application of
Theorem 5.1.4 and the arguments used to prove statements 1 and 2 of Theorem
8.1.1. Statement 3 follows immediately from the application of Theorem 5.1.4.

2

Conditions on the weighting function of the generalised
sampling operator

We recall that the assumptions made on the weighting function w are

w ∈ L2(0, τ) and

∫ τ

0

w(s) ds = 1.

In this subsection we show that if we impose various extra assumptions on w
then, the conditions on gc and dc in Theorems 8.1.1 and 8.1.3 can be weakened.

Define w̃, a periodic extension of w to R+, by

w̃(s) := w(s− nτ), s ∈ [nτ, (n+ 1)τ), ∀ n ∈ Z+.

Proposition 8.1.4. If f ∈ L2(R+,R) is such that I (w̃f) ∈ L2(R+,R) + Rϑc,
then J0Sf ∈ m2(Z+,R).

Proof. Since I (w̃f) ∈ L2(R+,R) + Rϑc, we have I (w̃f)− γϑc ∈ L2(R+,R) for
some γ ∈ R. Then,

(J0Sf)(n)− γ =
n∑

j=1

∫ τ

0

w̃(s)f((j − 1)τ + s) ds− γ

=
n∑

j=1

∫ jτ

(j−1)τ

w̃(s)f(s) ds− γ

=

∫ nτ

0

w̃(s)f(s) ds− γ

= h(nτ)

= (SIh)(n), ∀ n ≥ 1,
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where h := I (w̃f) − γ. Furthermore, noting that (Sf)(0) = 0, it follows
that J0Sf − γϑ = SIh. By assumption h ∈ L2(R+,R), clearly ḣ = w̃f ∈
L2(R+,R) and so h ∈ W 1,2(R+,R). An application of Proposition 7.3.2 (iii)
yields SIh ∈ l2(Z+,R). Consequently, J0Sf − γϑ ∈ l2(Z+,R) and we see that
J0Sf ∈ m2(Z+,R). 2

Remark 8.1.5. By Proposition 8.1.4 it follows that the conclusions of Theorems
8.1.1 and 8.1.3 hold under the following assumption on gc, namely, gc ∈ L2(R+,R)
and t 7→

∫ t

0
w̃(s)gc(s) ds ∈ L2(R+,R) + Rϑc. Furthermore, again by Proposi-

tion 8.1.4, the conclusions of Theorems 8.1.1 and 8.1.3 hold under the follow-
ing assumption on dc, namely, there exists a splitting dc = dc1 + dc2ϑc with
dc1 ∈ L2(R+,R) and dc2 ∈ R such that t 7→

∫ t

0
w̃(s)dc1(s) ds ∈ L2(R+,R) + Rϑc.

3

For the special case w ≡ 1/τ we have the following corollary, a trivial consequence
of Proposition 8.1.4.

Corollary 8.1.6. Let w ≡ 1/τ . If f ∈ L2(R+,R) is such that I f ∈ L2(R+,R)+
Rϑc, then J0Sf ∈ m2(Z+,R).

Remark 8.1.7. (a) Let w ≡ 1/τ . Then, by Corollary 8.1.6 Theorems 8.1.1
and 8.1.3 hold under the following assumption on gc, namely, gc ∈ L2(R+,R)
and t 7→

∫ t

0
gc(s) ds ∈ L2(R+,R) + Rϑc. Furthermore, again by Corollary 8.1.6

Theorems 8.1.1 and 8.1.3 hold under the following assumption on dc, namely,
there exists a splitting dc = dc1 + dc2ϑc with dc1 ∈ L2(R+,R) and dc2 ∈ R such
that t 7→

∫ t

0
dc1(s) ds ∈ L2(R+,R) + Rϑc.

(b) We remark that if w ≡ 1/τ the conditions on gc and dc in (a) are less restrictive
than the corresponding conditions imposed in Theorems 8.1.1 and 8.1.3. To see
this, we note that, if f ∈ L2

α(R+,R) for some α < 0, then f ∈ L2(R+,R) and∫ t

0
f(s) ds converges exponentially fast to

∫∞
0
f(s) ds as t→∞. Consequently,

t 7→
∫ t

0

f(s) ds ∈ L2(R+,R) + Rϑc.

3

Time-varying gain

Consider the feedback system shown in Figure 8.3, where κ : Z+ → R is a time-
varying gain, Gc ∈ B(L2(R+,R)) is shift-invariant and ϕ, ρ, u0, gc, dc are as
before.
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Figure 8.3: Sampled-data time-varying low-gain integral control with J integrator

From Figure 8.3 we can derive the following governing equations,

yc = dc + gc +Gc(ϕ ◦ uc), y = Syc, uc = u0ϑc +HJ(κ(ρϑ− y)),

or, equivalently

uc = u0ϑc +HJ(κ(ρϑ− S(dc + gc +Gc(ϕ ◦ uc)))). (8.13)

Using the linearity of S and forming the sample-hold discretisation of Gc with
generalised sampling, G := SGcH, we obtain from (8.13), the corresponding
discrete-time equation,

u = u0ϑ+ J(κ(ρϑ− (d+ g +G(ϕ ◦ u)))) (8.14)

where g := Sgc and d := Sdc. Equation (8.13) has the unique solution uc = Hu,
where u ∈ F (Z+,R) is the unique solution of the discrete-time equation (8.14).

The objective in this subsection is to determine gain functions κ such that the
tracking error e(t), defined by (8.3), becomes small in a certain sense as t→∞.

We impose assumption (Ac) on Gc, the transfer function of Gc, with Γc =
Gc(0) := lims→0, s∈C0 Gc(s). Note that the existence of lims→0, s∈C0 Gc(s) is im-
plied by imposing assumption (Ac).

We introduce the set of feasible reference values

R(Gc, ϕ) := {Gc(0)v | v ∈ imϕ}.

It is clear that R(Gc, ϕ) is an interval provided that ϕ is continuous. The mo-
tivation for the introduction of R(Gc, ϕ) is as follows. If asymptotic tracking
occurs, we would expect that (ϕ ◦ uc)

∞ := limt→∞(ϕ ◦ uc)(t) exists. Assuming
that (ϕ◦uc)

∞ is finite and that the final-value theorem holds for the linear system
with input-output operator Gc, we may conclude that limt→∞(Gc(ϕ ◦ uc))(t) =
Gc(0)(ϕ ◦ uc)

∞. If additionally, limt→∞ gc(t) = 0, limt→∞ dc(t) = 0, it follows
from (8.3) that ρ = Gc(0)(ϕ ◦ uc)

∞ ∈ R(Gc, ϕ).
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Recall from (5.19) that,

f0,J(G) := ess infθ∈(0,2π)Re

[
G(eiθ)

eiθ − 1

]
and, assuming that assumption (A) holds for the transfer function G of G, we
have −∞ < f0,J(G) ≤ −G(1)/2 (see Appendix 2, Proposition 12.1.3 (ii), for
more details).

Theorem 8.1.8. Let Gc ∈ B(L2(R+,R)) be a shift-invariant operator with
transfer function Gc. Assume that assumption (Ac) holds with Gc(0) > 0,
gc ∈ L2(R+,R), dc = dc1 + dc2ϑc with dc1 ∈ L2

α(R+,R) for some α < 0 and
dc2 ∈ R, ϕ : R → R is non-decreasing and globally Lipschitz continuous with
Lipschitz constant λ > 0, ρ − dc2 ∈ R(Gc, ϕ) and κ : Z+ → R is bounded and
non-negative with

lim sup
n→∞

κ(n) < 1/|λf0,J(G)|.

Let uc : R+ → R be the unique solution of (8.13). Then the following statements
hold.

1. The limit (ϕ ◦ uc)
∞ := limt→∞ ϕ(uc(t)) exists and is finite and

4(ϕ ◦ u) ∈ l2(Z+,R).

2. The signal yc = dc + gc +Gc(ϕ ◦ uc) can be split into yc = yc1 + yc2, where
yc1 has a finite limit satisfying

lim
t→∞

yc1(t) = Gc(0)(ϕ ◦ uc)
∞ + dc2,

and yc2 ∈ L2(R+,R). Under the additional assumptions that

lim
t→∞

gc(t) = 0, lim
t→∞

dc1(t) = 0

and Gc satisfies assumption (Bc), we have

lim
t→∞

yc2(t) = 0.

3. If κ /∈ l1(Z+,R), then limt→∞ yc1(t) = ρ and the error signal ec can be split
into ec = ec1 + ec2, where limt→∞ ec1(t) = 0 and ec2 ∈ L2(R+,R).

4. If κ /∈ l1(Z+,R),
lim
t→∞

gc(t) = 0, lim
t→∞

dc1(t) = 0
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and Gc satisfies assumption (Bc), then

lim
t→∞

ec(t) = 0.

5. If ρ− dc2 is an interior point of R(Gc, ϕ), then uc is bounded.

Remarks 8.1.9. (a) It follows from Proposition 2.1.13 that statement 3 of The-
orem 8.1.8 implies tracking in measure. Under the additional assumptions in
statement 4 of Theorem 8.1.8 we have asymptotic tracking.

(b) Note that it is not necessary to know f0,J(G) or the constant λ in order
to apply Theorem 8.1.8. If κ is chosen such that κ(n) → 0 as n → ∞ and
κ /∈ l1(Z+,R) (e.g., κ(n) = (1 + n)−p with p ∈ (0, 1]), then the conclusions of
statements 3 and 4 hold. However, from a practical point of view, gain functions
κ with limn→∞ κ(n) = 0 might not be appropriate, since the system essentially
operates in open loop as n→∞.

(c) If ρ − dc2 is not an interior point of R(Gc, ϕ) then uc might be unbounded.
A trivial example is given by ϕ = arctan, ρ = (1/2)Gc(0)π, dc2 = 0 and κ /∈
l1(Z+,R), in which case it follows from statement 3 that (1/2)π = (ϕ ◦ uc)

∞ and
hence limt→∞ uc(t) = ∞.

(d) A similar comment to Remark 5.2.3 (iii) holds with regard to the assumption
ρ− dc2 ∈ R(Gc, ϕ). 3

Proof of Theorem 8.1.8. We shall prove Theorem 8.1.8 by applying Theorem
5.2.2, with ψ = id, to (8.14). In order to apply Theorem 5.2.2 we need to check
that the relevant assumptions are satisfied.

We first note that if Gc satisfies assumption (Ac) then, by Theorem 7.4.4, G,
the transfer function of G = SGcH, satisfies assumption (A). Furthermore, by
(8.4), R(G,ϕ) = R(Gc, ϕ). Since by assumption gc ∈ L2(R+,R), it follows
from Proposition 7.3.2 (ii) that g := Sgc ∈ l2(Z+,R). To see that d := Sdc

satisfies the relevant assumptions we note the following. A routine calculation
shows that Sϑc = ϑ − δ. Define d1 := Sdc1 − dc2δ and d2 := dc2, then clearly
d = d1 + d2ϑ = Sdc. Since dc1 ∈ L2

α(R+,R) for some α < 0, Proposition 7.3.2 (ii)
yields Sdc1 ∈ l2β(Z+,R) for β = eατ ∈ (0, 1) and consequently d1 ∈ l2β(Z+,R). So
by Remark 5.1.3 (iv) we see that the function n 7→

∑∞
j=n |d1(n)| is in l2(Z+,R).

Furthermore, since dc1 ∈ L2
α(R+,R) for some α < 0, Sdc1 ∈ l1(Z+,R) and it

follows from the definition of δ that d1 ∈ l1(Z+,R) and hence d1 satisfies the
required assumptions. Hence the relevant assumptions are satisfied and we may
apply Theorem 5.2.2 to (8.14).

Statements 1 and 5 follow immediately from the application of Theorem 5.2.2
and the fact that uc = Hu.
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Proof of Statement 2: Note that

yc = dc + gc +Gc(ϕ ◦ uc).

By statement 1, it follows from Proposition 7.3.4, with v = ϕ ◦ u, that

Gc(H(ϕ ◦ u)) = Gc(ϕ ◦ uc) = kc1 + kc2

where limt→∞ kc1(t) = Gc(0)(ϕ ◦ uc)
∞ and kc2 ∈ L2(R+,R). Consequently, set-

ting yc1 := dc2ϑc + kc1 and yc2 := dc1 + gc + kc2, it follows that yc = yc1 + yc2 and
limt→∞ yc1(t) = Gc(0)(ϕ ◦ uc)

∞ + dc2. Since, by assumption dc1 ∈ L2
α(R+,R) ⊂

L2(R+,R) and gc ∈ L2(R+,R), we have yc2 ∈ L2(R+,R). Under the additional
assumptions, limt→∞ gc(t) = 0, limt→∞ dc1(t) = 0 and (Bc), it is clear from Propo-
sition 7.3.4 that limt→∞ yc2(t) = 0.

Proof of Statement 3: By statements 2 and 3 of Theorem 5.2.2 we have that

ρ = lim
n→∞

y(n) = G(1)(ϕ ◦ u)∞ + d2, (8.15)

where y = Syc. Using statement 2, the fact that uc = Hu, (8.4) and (8.15), we
obtain

lim
t→∞

yc1(t) = Gc(0) lim
t→∞

(ϕ ◦ uc)(t) + dc2

= Gc(0)(ϕ ◦ uc)
∞ + dc2

= G(1)(ϕ ◦ u)∞ + d2

= ρ. (8.16)

Finally, setting ec1 = ρ− yc1 and ec2 = −yc2, we obtain the splitting

ec = ρ− yc = ec1 + ec2.

It follows immediately from (8.16) that limt→∞ ec1(t) = 0 and by statement 2
that ec2 ∈ L2(R+,R).

Proof of Statement 4: If it is additionally assumed that (Bc) holds, limt→∞ gc(t) =
0 and limt→∞ dc1(t) = 0, it follows from statement 2 that limt→∞ ec2(t) = 0,
implying that limt→∞ ec(t) = 0. 2

We now change the integrator J to J0 and consider the feedback system shown
in Figure 8.4 where ξ ∈ R is the initial state of the integrator.
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Figure 8.4: Sampled-data time-varying low-gain integral control with J0 integra-
tor

From Figure 8.4 we can derive the following governing equations,

yc = dc + gc +Gc(ϕ ◦ uc), y = Syc, uc = ξϑc +HJ0(κ(ρϑ− y)),

or, equivalently

uc = ξϑc +HJ0(κ(ρϑ− S(dc + gc +Gc(ϕ ◦ uc)))). (8.17)

Using the linearity of S and forming the sample-hold discretisation of Gc with
generalised sampling, G := SGcH, we obtain from (8.17), the corresponding
discrete-time equation,

u = ξϑ+ J0(κ(ρϑ− (d+ g +G(ϕ ◦ u)))) (8.18)

where g := Sgc and d := Sdc. If uc ∈ F (R+,R) is a solution of (8.17), then
u(n) := uc(nτ) for all n ∈ Z+, is a solution of (8.18). Conversely, if u ∈ F (Z+,R)
is a solution of (8.18), then uc = Hu is a solution of (8.17).

Recall from (5.33) that,

f0,J0(G) := ess infθ∈(0,2π)Re

[
G(eiθ)eiθ

eiθ − 1

]
and, assuming that assumption (A) holds for the transfer function G of G, we
have −∞ < f0,J0(G) ≤ G(∞)−G(1)/2, where G(∞) := lim|z|→∞, z∈E1 G(z) (see
Appendix 2, Proposition 12.1.4 (ii), for more details).

Theorem 8.1.10. Let Gc ∈ B(L2(R+,R)) be a shift-invariant operator with
transfer function Gc. Assume that assumption (Ac) holds with Gc(0) > 0, gc ∈
L2(R+,R), dc = dc1 + dc2ϑc with dc1 ∈ L2

α(R+,R) for some α < 0 and dc2 ∈ R,
ϕ : R → R is non-decreasing and globally Lipschitz continuous with Lipschitz
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constant λ > 0, ρ− dc2 ∈ R(Gc, ϕ) and κ : Z+ → R is bounded and non-negative
with

lim sup
n→∞

κ(n) < 1/|λf0,J0(G)|,

if f0,J0(G) ≤ 0, where 1/0 := ∞. Let uc : R+ → R be a solution of (8.17). Then
statements 1-5 of Theorem 8.1.8 hold.

Proof. We prove Theorem 8.1.10 by applying Theorem 5.2.4, with ψ = id,
to (8.18). In order to apply Theorem 5.2.4 we need to check that the relevant
assumptions are satisfied. Arguments identical to those in the proof of Theorem
8.1.8 show that the relevant assumptions are satisfied. Statements 1-5 now follow
from the application of Theorem 5.2.4 and arguments identical to those used to
prove Theorem 8.1.8. 2

8.2 Sampled-data low-gain integral control in

the presence of input and output nonlinear-

ities

Consider the feedback system shown in Figure 8.5, where κ, Gc, ϕ, ρ, u0, gc, dc

are as before and additionally ψ : R → R is an output non-linearity.
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Figure 8.5: Sampled-data time-varying low-gain integral control with input and
output non-linearities and J integrator

In §8.1 we only considered feedback systems with input non-linearities. In the gen-
eral setting, where the shift-invariant input-output operator Gc ∈ B(L2(R+,R)),
it seems difficult to obtain generalisations of the time-varying gain results in §8.1
which encompass static output non-linearities ψ. The reason for this is that, in
general, the operator S does not commute with non-linearities. If however, we
restrict to considering input-output operators Gc whose impulse response is a
finite Borel measure and replace S with SI , then the inclusion of static output
non-linearities is feasible as seen from the following proposition.

158



Proposition 8.2.1. Let ψ : R → R be a continuous static non-linearity. Then,

ψ ◦ (SIu) = SI(ψ ◦ u), ∀ u ∈ F (R+,R).

Proof. Let u ∈ F (R+,R). Then,

ψ((SIu)(n)) = ψ(u(nτ)) = (ψ ◦ u)(nτ) = (SI(ψ ◦ u))(n), ∀ n ∈ Z+.

2

From Figure 8.5 we can derive the following governing equations,

wc = gc +Gc(ϕ◦uc), yc = ψ ◦wc +dc, y = SIyc, uc = u0ϑc +HJ(κ(ρϑ−y)),

or, equivalently

uc = u0ϑc +HJ(κ(ρϑ− SI(dc + ψ(gc +Gc(ϕ ◦ uc))))). (8.19)

Using the linearity of SI , invoking Proposition 8.2.1 and forming the sample-hold
discretisation of Gc with idealised sampling, G := SIGcH, we obtain from (8.19),
the corresponding discrete-time equation,

u = u0ϑ+ J(κ(ρϑ− d− ψ(g +G(ϕ ◦ u)))) (8.20)

where g := SIgc and d := SIdc. Equation (8.19) has the unique solution uc = Hu,
where u ∈ F (Z+,R) is the unique solution of the discrete-time equation (8.20).

The objective in this section is to determine gain functions κ such that the track-
ing error

ec(t) := ρ− yc(t) = ρ− dc(t)− ψ(gc(t) + (Gc(ϕ ◦ uc))(t)),

becomes small in a certain sense as t → ∞. The set of feasible reference values
is now defined by

R(Gc, ϕ, ψ) := {ψ(Gc(0)v) | v ∈ imϕ}.

It is clear that R(Gc, ϕ, ψ) is an interval provided that ϕ and ψ are continuous.

Theorem 8.2.2. Let Gc be a convolution operator, the kernel of which is a finite
Borel measure on R+. Denote the transfer function of Gc by Gc. Assume that,
assumption (Ac) holds with Gc(0) > 0, the function gc ∈ L2(R+,R) is such that
SIgc ∈ l2(Z+,R), dc = dc1 + dc2ϑc with dc1 ∈ L2(R+,R), SIdc1 ∈ l1(Z+,R),
n 7→

∑∞
j=n |dc1(jτ)| ∈ l2(Z+,R) and dc2 ∈ R, ϕ : R → R and ψ : R → R are

non-decreasing and globally Lipschitz continuous with Lipschitz constants λ1 > 0
and λ2 > 0, ρ− dc2 ∈ R(Gc, ϕ, ψ) and κ : Z+ → R is bounded and non-negative

159



with
lim sup

n→∞
κ(n) < 1/|λ1λ2f0,J(G)|.

Let uc : R+ → R be the unique solution of (8.19). Then the following statements
hold.

1. The limit (ϕ ◦ uc)
∞ := limt→∞ ϕ(uc(t)) exists and is finite and

4(ϕ ◦ u) ∈ l2(Z+,R).

2. The signals wc = gc + Gc(ϕ ◦ uc) and yc = ψ ◦ wc + dc can be split into
wc = wc1 + wc2 and yc = yc1 + yc2, where wc1 and yc1 have finite limits
satisfying

lim
t→∞

wc1(t) = Gc(0)(ϕ ◦ uc)
∞, lim

t→∞
yc1(t) = ψ(Gc(0)(ϕ ◦ uc)

∞) + dc2,

and wc2, yc2 ∈ L2(R+,R).
Under the additional assumption that limt→∞ gc(t) = 0 we have

lim
t→∞

wc2(t) = 0.

If further, limt→∞ dc1(t) = 0 then, limt→∞ yc2(t) = 0.

3. If κ /∈ l1(Z+,R), then limt→∞ yc1(t) = ρ and the error signal ec can be split
into ec = ec1 + ec2, where limt→∞ e1(t) = 0 and ec2 ∈ L2(R+,R).

4. If κ /∈ l1(Z+,R) and

lim
t→∞

gc(t) = 0, lim
t→∞

dc1(t) = 0,

we have
lim
t→∞

ec(t) = 0.

5. If ρ− dc2 is an interior point of R(Gc, ϕ, ψ), then uc is bounded.

Remarks 8.2.3. (a) Statements (a)-(c) of Remarks 8.1.9 (or suitable modifica-
tions thereof) remain valid in the context of Theorem 8.2.2.

(b) Assume additionally that gc is bounded. Then the assumption that SIgc ∈
l2(Z+,R) is satisfied if there exists ε > 0 such that gc(t) = O(e−εt) as t→∞, or,
if there exists T ≥ 0 such that gc ∈ W 1,2([T,∞),R). 3

Proof of Theorem 8.2.2. We shall prove Theorem 8.2.2 by applying Theorem
5.2.2 to (8.20). In order to apply Theorem 5.2.2 we need to check that the relevant
assumptions are satisfied.

160



We first note that if Gc satisfies assumption (Ac), then by Theorem 7.4.9, G
the transfer function of G = SIGcH satisfies assumption (A). Furthermore, by
Theorem 7.4.9, R(G,ϕ, ψ) = R(Gc, ϕ, ψ). It is clear that g := SIgc and d := SIdc

satisfy the relevant assumptions in Theorem 5.2.2. Hence we may apply Theorem
5.2.2 to (8.20).

Statements 1 and 5 follow immediately from the application of Theorem 5.2.2
and the fact that uc = Hu.

Proof of Statement 2: Note that

wc = gc +Gc(ϕ ◦ uc).

By statement 1, it follows from Proposition 7.3.4, with v = ϕ ◦ u, that

Gc(H(ϕ ◦ u)) = Gc(ϕ ◦ uc) = kc1 + kc2

where limt→∞ kc1(t) = Gc(0)(ϕ◦uc)
∞ and kc2 ∈ L2(R+,R). Consequently, setting

wc1 := kc1 and wc2 := gc + kc2 it follows that wc = wc1 +wc2 and limt→∞wc1(t) =
Gc(0)(ϕ ◦ uc)

∞. Since, by assumption, gc ∈ L2(R+,R) we have wc2 ∈ L2(R+,R).
Setting yc1 := ψ ◦wc1 + dc2 and yc2 := yc− yc1 = ψ ◦wc −ψ ◦wc1, we obtain yc =
yc1 + yc2 and yc1 has limit limt→∞ yc1(t) = ψ(Gc(0)(ϕ ◦ u)∞) + dc2. Furthermore,
yc2 ∈ L2(R+,R) because of the global Lipschitz continuity of ψ and the facts
that wc2 ∈ L2(R+,R) and dc1 ∈ L2(R+,R). Under the additional assumption
that limt→∞ gc(t) = 0 and noting that assumption (Bc) holds for Gc, (see Remark
7.3.3), it follows from Proposition 7.3.4 that limt→∞wc2(t) = 0. Consequently, if
we further assume that limt→∞ dc1(t) = 0, we may conclude that limt→∞ yc2(t) =
0, completing the proof of statement 2.

Proof of Statement 3: By statements 2 and 3 of Theorem 5.2.2 we have that

ρ = lim
n→∞

y(n) = ψ(G(1)(ϕ ◦ u)∞) + dc2. (8.21)

Using statement 2, Theorem 7.4.9 and (8.21), we obtain

lim
t→∞

yc1(t) = ψ(Gc(0)(ϕ ◦ uc)
∞) + dc2

= ψ(G(1)(ϕ ◦ u)∞) + dc2

= ρ. (8.22)

Finally, setting ec1 = ρ− yc1 and ec2 = −yc2, we obtain the splitting

ec = ρ− yc = ec1 + ec2.

It follows immediately from (8.22) that limt→∞ ec1(t) = 0 and by statement 2
that ec2 ∈ L2(R+,R).
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Figure 8.6: Sampled-data time-varying low-gain integral control with input and
output non-linearities and J0 integrator

Proof of Statement 4: Under the additional assumptions limt→∞ gc(t) = 0 and
limt→∞ dc1(t) = 0, it follows from statement 2 that limt→∞ ec2(t) = 0, implying
that limt→∞ ec(t) = 0. 2

We now change the integrator J to J0 and consider the feedback system shown
in Figure 8.6 where ξ ∈ R is the initial state of the integrator. From Figure 8.6
we can derive the following governing equations,

wc = gc +Gc(ϕ◦uc), yc = ψ ◦wc +dc, y = SIyc, uc = ξϑc +HJ0(κ(ρϑ−y)),

or, equivalently

uc = ξϑc +HJ0(κ(ρϑ− SI(dc + ψ(gc +Gc(ϕ ◦ uc))))). (8.23)

Using the linearity of SI , Proposition 8.2.1 and forming the sample-hold discreti-
sation of Gc with idealised sampling, G := SIGcH, we obtain from (8.23), the
corresponding discrete-time equation,

u = ξϑ+ J0(κ(ρϑ− d− ψ(g +G(ϕ ◦ u)))) (8.24)

where g := SIgc and d := SIdc. If uc ∈ F (R+,R) is a solution of (8.23), then
u(n) := uc(nτ) for all n ∈ Z+, is a solution of (8.24). Conversely, if u ∈ F (Z+,R)
is a solution of (8.24), then uc = Hu is a solution of (8.23).

Theorem 8.2.4. Let Gc be a convolution operator, the kernel of which is a finite
Borel measure on R+. Denote the transfer function of Gc by Gc. Assume that,
assumption (Ac) holds with Gc(0) > 0, the function gc ∈ L2(R+,R) is such that
SIgc ∈ l2(Z+,R), dc = dc1 + dc2ϑc with dc1 ∈ L2(R+,R), SIdc1 ∈ l1(Z+,R),
n 7→

∑∞
j=n |dc1(jτ)| ∈ l2(Z+,R) and dc2 ∈ R, ϕ : R → R and ψ : R → R are

non-decreasing and globally Lipschitz continuous with Lipschitz constants λ1 > 0
and λ2 > 0, ρ− dc2 ∈ R(Gc, ϕ, ψ) and κ : Z+ → R is bounded and non-negative
with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0,J0(G)|,
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if f0,J0(G) ≤ 0, where 1/0 := ∞. Let uc : R+ → R be a solution of (8.23). Then
statements 1-5 of Theorem 8.2.2 hold.

Proof. We prove Theorem 8.2.4 by applying Theorem 5.2.4 to (8.24). In order to
apply Theorem 5.2.4 we need to check that the relevant assumptions are satisfied.
Arguments identical to those in the proof of Theorem 8.2.2 show that the relevant
assumptions are satisfied. Statements 1-5 now follow from the application of
Theorem 5.2.4 and arguments identical to those used to prove Theorem 8.2.2. 2

8.3 Notes and references

In the recent paper [9] an input-output approach to continuous-time low-gain in-
tegral control of L2 stable linear infinite-dimensional systems subject to actuator
and sensor non-linearities was developed. In this chapter we have extended the
approach in [9] to the sampled-data integral control schemes shown in Figures
8.1-8.6. In particular, the results in this chapter can be considered as substan-
tial and far reaching generalisations of the results in [17] which were obtained
in a finite-dimensional state-space setting. The main results on integral control,
Theorems 8.1.1, 8.1.3, 8.1.8, 8.1.10, 8.2.2 and 8.2.4, are new and form the ba-
sis of [6] and [7]. Note that the results in this chapter on integral control show
that tracking of feasible constant reference values is still achievable even in the
presence of certain output disturbances. We emphasize that in contrast to the
results in [17], which were obtained for finite-dimensional exponentially stable
state-space systems, Theorems 8.1.1, 8.1.3, 8.1.8, 8.1.10, 8.2.2 and 8.2.4 apply to
infinite-dimensional well-posed state-space systems (see Chapter 9).
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Chapter 9

Sampled-data control of
infinite-dimensional well-posed
state-space systems

9.1 Well-posed state-space systems

In this chapter we apply the results in Chapter 8 to well-posed state-space sys-
tems. There are a number of equivalent definitions of well-posed systems, see
[12], [52], [53], [54], [55], [56], [57], [60], [63] and [65]. We will be brief in the fol-
lowing and refer the reader to the above references for more details. Throughout
this chapter, we shall be considering a well-posed system Σ with state-space X,
input space R and output space R, generating operators (A,B,C), input-output
operator Gc and transfer function Gc. Here X is a real Hilbert space with norm
denoted by ‖·‖, A is the generator of a strongly continuous semigroup T = (Tt)t≥0

on X, B ∈ B(R, X−1) and C ∈ B(X1,R), where X1 denotes the space dom(A)
endowed with the norm ‖x‖1 := ‖x‖+ ‖Ax‖ (the graph norm of A), whilst X−1

denotes the completion of X with respect to the norm ‖x‖−1 = ‖(αI − A)−1x‖,
where α ∈ res(A) (different choices of α lead to equivalent norms). Clearly,
X1 ⊂ X ⊂ X−1 and the canonical injections are bounded and dense. The semi-
group T restricts to a strongly continuous semigroup on X1 and extends to a
strongly continuous semigroup on X−1 with the exponential growth constant be-
ing the same on all three spaces. Correspondingly, A restricts to a generator on
X1 and extends to a generator on X−1. We shall use the same symbol T (respec-
tively, A) for the original semigroup (respectively, generator) and the associated
restrictions and extensions: with this convention, we may write A ∈ B(X,X1)
(considered as a generator on X−1, the domain of A is X). Moreover, B is an
admissible control operator for T and C is an admissible observation operator for
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T, that is, for each t ∈ R+ there exist αt ≥ 0 and βt ≥ 0 such that∥∥∥∥∫ t

0

Tt−sBv(s) ds

∥∥∥∥ ≤ αt‖v‖L2([0,t]) , ∀ v ∈ L2([0, t])

and (∫ t

0

‖CTsz‖2 ds

)1/2

≤ βt‖z‖, ∀ z ∈ X1.

The control operator B is said to be bounded if it is so as a map from the
input space R to the state-space X, otherwise B is said to be unbounded . The
observation operator C is said to be bounded if it can be extended continuously
to X, otherwise, C is said to be unbounded .

The so-called Λ-extension CΛ of C is defined by

CΛz := lim
s→∞,s∈R

Cs(sI − A)−1z ,

with dom(CΛ) consisting of all z ∈ X for which the above limit exists. For
every z ∈ X, Ttz ∈ dom(CΛ) for a.a. t ∈ R+ and, if ω > ω(T), then CΛTz ∈
L2

ω(R+,R), where

ω(T) := lim
t→∞

1

t
ln‖Tt‖

denotes the exponential growth constant of T. The transfer function Gc satisfies

1

s− s0

(Gc(s)−Gc(s0)) = −C(sI − A)−1(s0I − A)−1B,

∀ s, s0 ∈ Cω(T) , s 6= s0, (9.1)

and Gc ∈ H∞(Cω) for every ω > ω(T). The input-output operator Gc :
L2

loc(R+,R) → L2
loc(R+,R) is continuous and shift-invariant; moreover, for ev-

ery ω > ω(T), Gc ∈ B(L2
ω(R+,R)) and

(L (Gcv))(s) = Gc(s)(L (v))(s), ∀ s ∈ Cω, v ∈ L2
ω(R+,R).

In the remainder of this chapter, let s0 ∈ Cω(T) be fixed, but arbitrary. For
x0 ∈ X and v ∈ L2

loc(R+,R), let x and wc denote the state and output functions
of Σ, respectively, corresponding to the initial condition x(0) = x0 ∈ X and the
input function v. Then,

x(t) = Ttx
0 +

∫ t

0

Tt−sBv(s) ds, ∀ t ∈ R+, (9.2)

x(t)− (s0I − A)−1Bv(t) ∈ dom(CΛ), a.a. t ∈ R+,
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and

ẋ(t) = Ax(t) +Bv(t) , x(0) = x0, a.a. t ∈ R+, (9.3a)

wc(t) = CΛ(x(t)− (s0I − A)−1Bv(t)) + G(s0)v(t), a.a. t ∈ R+. (9.3b)

The differential equation (9.3a) has to be interpreted in X−1. Note that (9.3b)
yields the following formula for the input-output operator Gc:

(Gcv)(t) = CΛ

[ ∫ t

0

Tt−sBv(s) ds− (s0I − A)−1Bv(t)

]
+ Gc(s0)v(t),

∀ v ∈ L2
loc(R+,R), a.a. t ∈ R+. (9.4)

In the following, we identify Σ and (9.3) and refer to (9.3) as a well-posed system.

Remark 9.1.1. The class of well-posed linear infinite-dimensional systems is
rather general: it includes many distributed parameter systems and all time-
delay systems (retarded and neutral) which are of interest in applications. 3

The above formulas for the output, the input-output operator and the transfer
function reduce to a more recognizable form for the subclass of regular systems.
The well-posed system (9.3) is called regular if

lim
s→∞,s∈R

Gc(s) = D,

exists and is finite. In this case, x(t) ∈ dom(CΛ) for a.a. t ∈ R+, the output
equation (9.3a) and the formula (9.4) for the input-output operator simplify to

wc(t) = CΛx(t) +Dv(t), a.a. t ∈ R+,

and

(Gcv)(t) = CΛ

∫ t

0

Tt−sBv(s) ds+Dv(t), ∀ v ∈ L2
loc(R+,R), a.a. t ∈ R+,

respectively; moreover, (sI −A)−1BR ⊂ dom(CΛ) for all s ∈ res(A) and we have

Gc(s) = CΛ(sI − A)−1B +D, ∀ s ∈ Cω(T).

The number D is called the feedthrough of (9.3).

Definition. The well-posed system (9.3) is called strongly stable if the following
four conditions are satisfied:

(i) Gc is L2-stable, that is, Gc ∈ B(L2(R+,R)), or, equivalently, Gc ∈ H∞(C0);

(ii) T is strongly stable, that is, limt→∞ Ttz = 0 for all z ∈ X;
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(iii) B is an infinite-time admissible control operator, that is, there exists α ≥ 0
such that ∥∥∥∥∫ ∞

0

TsBv(s) ds

∥∥∥∥ ≤ α‖v‖L2(R+,R), ∀ v ∈ L2(R+,R);

(iv) C is an infinite-time admissible observation operator, that is, there exists
β ≥ 0 such that (∫ ∞

0

‖CTsz‖2 ds

)1/2

≤ β‖z‖ , ∀ z ∈ X1.

The system (9.3) is called exponentially stable if ω(T) < 0. It is clear that
exponential stability implies strong stability, however, the converse is not true;
for an example of a partial differential equation system which is strongly, but not
exponentially stable, see [59].

Finally, for the application of the results in Chapter 8 to well-posed systems, we
require several technical results.

Lemma 9.1.2. Assume the the control operator B or the observation operator C
is bounded. Then system (9.3) is regular. Moreover, the inverse Laplace trans-
form of the transfer function Gc, or, equivalently, the impulse response of (9.3),
is in L2

ω(R+,R) + Rδ0 for any ω > ω(T), where δ0 denotes the unit mass at 0.

A proof of Lemma 9.1.2 can be found in [36] (see [36], Lemma 2.3).

Remark 9.1.3. Note that in particular, if B or C is bounded, it follows from
Lemma 9.1.2 that the impulse response of system (9.3) (that is, the convolution
kernel of Gc) is a finite (signed) Borel measure on R+. 3

Lemma 9.1.4. Assume that T is strongly stable, 0 ∈ res(A) and B is infinite-
time admissible. Let v ∈ L2

loc(R+,R) and v∞ ∈ R be such that v − v∞ϑc ∈
L2(R+,R). Then for all x0 ∈ X, the solution x of (9.3a) satisfies

lim
t→∞

‖x(t) + A−1Bv∞‖ = 0.

If v∞ = 0, then the conclusion remains true even if 0 /∈ res(A).

The proof of Lemma 9.1.4 can be found in Appendix 6.

Lemma 9.1.5. Assume that T is strongly stable, 0 ∈ res(A) and B is infinite-
time admissible. Let the input v ∈ L2

loc(R+,R) of (9.3a) be given by v = Hw,
where w ∈ F (Z+,R) is such that 4w ∈ l2(Z+,R). Then, for all x0 ∈ X, the
solution x of (9.3a) satisfies

lim
t→∞

‖x(t) + A−1Bv(t)‖ = 0.
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The proof of Lemma 9.1.5 can be found in Appendix 6.

Lemma 9.1.6. Assume that the well-posed system (9.3) is strongly stable and
0 ∈ res(A). Then Gc satisfies assumption (Ac).

Proof. If (9.3) is strongly stable, then Gc ∈ H∞(C0) and hence Gc is analytic
on C0. If additionally 0 ∈ res(A), then Gc can be analytically extended to a
neighbourhood of 0. Hence the evaluation Gc(0) of Gc(s) at s = 0 is meaningful,
and (9.1) holds for s0 = 0 and for s ∈ Cω(T), that is,

(Gc(s)−Gc(0))/s = C(sI − A)−1A−1B, ∀ s ∈ Cω(T).

Hence we see that

lim sup
s→∞,s∈C0

∣∣∣∣1s (Gc(s)−Gc(0))

∣∣∣∣ <∞

and assumption (Ac) holds. 2

9.2 Sampled-data low-gain integral control of

well-posed state-space systems

Throughout this section let u ∈ F (Z+,R). Let ϕ : R → R be a static non-
linearity, let k, ρ ∈ R, dc be an external disturbance and consider the well-posed
system (9.3), with input non-linearity v = ϕ ◦ uc, that is,

ẋ = Ax+B(ϕ ◦ uc), x(0) = x0 ∈ X, (9.5a)

wc = CΛ(x− (s0I − A)−1B(ϕ ◦ uc)) + Gc(s0)(ϕ ◦ uc), (9.5b)

controlled by the sampled-data integrator

uc(t) = (Hu)(t), t ∈ R+, (9.6a)

(4u)(n) = k(ρ− (S(dc + wc))(n)), u(0) = u0 ∈ R, n ∈ Z+. (9.6b)

From (9.5b), (9.2) and (9.4) we have,

wc(t) = CΛ(x(t)− (s0I − A)−1B(ϕ ◦ uc)(t)) + Gc(s0)(ϕ ◦ uc)(t)

= CΛ

[
Ttx

0 +

∫ t

0

Tt−sB(ϕ ◦ uc)(s) ds

−(s0I − A)−1B(ϕ ◦ uc)(t)

]
+ Gc(s0)(ϕ ◦ uc)(t)

= CΛTtx
0 + (Gc(ϕ ◦ uc))(t).
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Consequently, with gc(t) := CΛTtx
0, it follows from (9.6a) that

Swc = Sgc + S(Gc(H(ϕ ◦ u))). (9.7)

Setting g := Sgc, d := Sdc and G := SGcH, it follows from (9.6b) and (9.7) that
u satisfies

u = u0ϑ+ kJ(ρϑ− d− (g +G(ϕ ◦ u))). (9.8)

Theorem 9.2.1. Assume that the well-posed system (9.3) is exponentially stable
and Gc(0) > 0. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing.
Suppose that dc = dc1 + dc2ϑc with dc1 ∈ L2

α(R+,R) for some α < 0 and dc2 ∈ R.
Let ρ ∈ R and assume that (ρ − dc2)/Gc(0) ∈ imϕ. Under these conditions the
following statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists
a constant k∗ ∈ (0,∞) (depending on Gc, ϕ and ρ) such that for all
k ∈ (0, k∗), the unique solution (x, uc) of the feedback system given by
(9.5) and (9.6) is defined on R+, the limits limt→∞ x(t) =: x∞ (in X)
and limt→∞ uc(t) =: u∞ exist and satisfy x∞ = −((ρ − dc2)/Gc(0))A

−1B
and ϕ(u∞) = (ρ− dc2)/Gc(0),

ec = ρ− dc − wc ∈ L2(R+,R) and ϕ ◦ uc − ϕ(u∞)ϑc ∈ L2(R+,R).

Moreover,
lim
t→∞

ec(t) = 0,

provided that Tt0x
0 ∈ X1 for some t0 ≥ 0, limt→∞ dc1(t) = 0 and Gc satisfies

assumption (Bc) (see (7.10)).

2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ(G)|
(where fJ(G) is given by (5.2)).

Proof. Let (x, uc) be the unique solution of the feedback system given by (9.5)
and (9.6). By (9.8), uc satisfies

uc = u0ϑc + kHJ(ρϑ− S(dc + gc +Gc(ϕ ◦ uc))) (9.9)

where gc(t) = CΛTtx
0. In order to apply Theorem 8.1.1 to (9.9) we need to verify

the relevant assumptions. By exponential stability, Gc ∈ B(L2
α(R+,R)) for some

α < 0. It remains to show that gc ∈ L2
β(R+,R) for some β < 0. To this end note

that if β ∈ (ω(T), 0) then, by exponential stability, gc ∈ L2
β(R+,R).

Proof of Statement 1: An application of Theorem 8.1.1 shows that there exists
a constant k∗ ∈ (0,∞) such that if k ∈ (0, k∗), limt→∞ uc(t) =: u∞ exists and
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satisfies ϕ(u∞) = (ρ − dc2)/Gc(0), ec ∈ L2(R+,R) and ϕ ◦ uc − ϕ(u∞)ϑc ∈
L2(R+,R). For the rest of the proof of statement 1, let k ∈ (0, k∗). If Tt0x

0 ∈ X1

for some t0 ≥ 0, it follows from the exponential stability of T that

lim
t→∞

gc(t) = lim
t→∞

CTt−t0(Tt0x
0) = 0.

Hence, if Tt0x
0 ∈ X1 for some t0 ≥ 0, limt→∞ dc1(t) = 0 and Gc satisfies assump-

tion (Bc), then Theorem 8.1.1 guarantees that limt→∞ ec(t) = 0. By Lemma
9.1.4, x(t) → −A−1Bϕ(u∞) (in X) as t → ∞, showing that x(t) converges to
x∞ := −((ρ− dc2)/Gc(0))A−1B as t→∞.

Proof of Statement 2: This follows immediately from the application of Theorem
8.1.1. 2

We now consider system (9.5) controlled by the sampled-data integrator

uc(t) = (Hu)(t), t ∈ R+, (9.10a)

ξ(n+ 1) = ξ(n) + k(ρ− (S(dc + wc))(n)), ξ(0) = ξ0, (9.10b)

u(n) = ξ(n) + k(ρ− (S(dc + wc))(n)), (9.10c)

where ξ denotes the integrator state. Again setting g := Sgc, d := Sdc and
G := SGcH, it follows from (9.10b), (9.10c) and (9.7) that u satisfies

u = ξ0 + kJ0(ρϑ− d− (g +G(ϕ ◦ u))). (9.11)

Theorem 9.2.2. Assume that the well-posed system (9.3) is exponentially stable
and Gc(0) > 0. Let ϕ : R → R be locally Lipschitz continuous and non-decreasing.
Suppose that dc = dc1 + dc2ϑc with dc1 ∈ L2

α(R+,R) for some α < 0 and dc2 ∈ R.
Let ρ ∈ R and assume that (ρ−dc2)/Gc(0) ∈ imϕ. Let (x, uc) be a solution of the
feedback system given by (9.5) and (9.10). Under these conditions the following
statements hold.

1. Assume that ϕ − ϕ(0) ∈ S (a) for some a ∈ (0,∞). Then there exists
a constant k∗ ∈ (0,∞] (depending on Gc, ϕ and ρ) such that for all k ∈
(0, k∗), the limits limt→∞ x(t) =: x∞ (in X) and limt→∞ uc(t) =: u∞ exist
and satisfy x∞ = −((ρ− dc2)/Gc(0))A

−1B and ϕ(u∞) = (ρ− dc2)/Gc(0),

ec = ρ− dc − wc ∈ L2(R+,R) and ϕ ◦ uc − ϕ(u∞)ϑc ∈ L2(R+,R).

Moreover,
lim
t→∞

ec(t) = 0,

provided that Tt0x
0 ∈ X1 for some t0 ≥ 0, limt→∞ dc1(t) = 0 and Gc satisfies

assumption (Bc). If fJ0(G) = 0, then the above conclusions are valid with
k∗ = ∞ (where fJ0(G) is given by (5.12)).
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2. Assume that ϕ is globally Lipschitz continuous with Lipschitz constant λ >
0. Then the conclusions of statement 1 are valid with k∗ = 1/|λfJ0(G)|,
where 1/0 := ∞.

3. Under the assumption fJ0(G) > 0, the conclusions of statement 1 are valid
with k∗ = ∞.

Proof. Let (x, uc) be a solution of the feedback system given by (9.5) and (9.10).
By (9.11), uc satisfies

uc = ξ0ϑc + kHJ0(ρϑ− S(dc + gc +Gc(ϕ ◦ uc))) (9.12)

where gc(t) = CΛTtx
0. In order to apply Theorem 8.1.3 to (9.12) we need to

verify the relevant assumptions. Arguments identical to those in the proof of
Theorem 9.2.1 show that the relevant assumptions are satisfied. Statements 1
and 2 follow from the application of Theorem 8.1.3 and the arguments used to
prove statements 1 and 2 of Theorem 9.2.1. Statement 3 follows immediately
from the application of Theorem 8.1.3. 2

Let ϕ, ρ and dc be as before and let κ : Z+ → R be a time-varying gain. As
previously, we consider system (9.5) but now controlled by the sampled-data
integrator

uc(t) = (Hu)(t), t ∈ R+, (9.13a)

(4u)(n) = κ(n)(ρ− (S(dc + wc))(n)), u(0) = u0 ∈ R, n ∈ Z+. (9.13b)

Again setting g := Sgc, d := Sdc and G := SGcH, it follows from (9.13b) and
(9.7) that u satisfies

u = u0ϑ+ J(κ(ρϑ− d− (g + (G(ϕ ◦ u))))). (9.14)

Theorem 9.2.3. Assume that the well-posed system (9.3) is strongly stable, 0 ∈
res(A) and Gc(0) > 0. Let ϕ : R → R be non-decreasing and globally Lipschitz
continuous with Lipschitz constant λ > 0, dc = dc1 + dc2ϑc with dc1 ∈ L2

α(R+,R)
for some α < 0 and dc2 ∈ R, ρ− dc2 ∈ R(Gc, ϕ) and κ : Z+ → R is bounded and
non-negative with

lim sup
n→∞

κ(n) < 1/|λf0,J(G)|,

where f0,J(G) is given by (5.12). Then, for (x, uc) the solution of the feedback sys-
tem given by (9.5), (9.6a) and (9.13b), and all x0 ∈ X, the following statements
hold.

1. The limit (ϕ ◦ uc)
∞ := limt→∞ ϕ(uc(t)) exists and is finite and

lim
t→∞

‖x(t) + A−1B(ϕ ◦ uc)
∞‖ = 0,

171



and 4(ϕ ◦ u) ∈ l2(Z+,R).

2. If κ /∈ l1(Z+,R), then the error signal ec := ρϑc − dc − wc can be split into
ec = ec1 + ec2, where limt→∞ ec1(t) = 0 and ec2 ∈ L2(R+,R). Moreover,

lim
t→∞

ec(t) = 0,

provided that Tt0x
0 ∈ X1 for some t0 ≥ 0, limt→∞ dc1(t) = 0 and Gc satisfies

assumption (Bc) (see (7.10)).

3. If ρ− dc2 is an interior point of R(Gc, ϕ), then uc is bounded.

Proof. Let (x, uc) be the unique solution of the feedback system given by (9.5)
and (9.13). By (9.14), uc satisfies,

uc = u0ϑc +HJ(κ(ρϑ− S(dc + gc +Gc(ϕ ◦ uc)))) (9.15)

where gc(t) := CΛTtx
0. In order to apply Theorem 8.1.8 to (9.15), we need to

verify the relevant assumptions. By strong stability and the fact that 0 ∈ res(A),
it is clear from Lemma 9.1.6 that Gc satisfies assumption (Ac). By the infinite-
time admissibility of C we have gc ∈ L2(R+,R). We are now in a position to
apply Theorem 8.1.8 to (9.15).

Proof of Statement 1: The fact that, limt→∞ ϕ(uc(t)) =: (ϕ ◦ uc)
∞ exists and

is finite follows immediately from the application of Theorem 8.1.8. To see that
limt→∞ ‖x(t)+A−1B(ϕ◦uc)

∞‖ = 0 (in X), we apply Lemma 9.1.5 with w = ϕ◦u
(noting that 4w = 4(ϕ ◦ u) ∈ l2(Z+,R) and limt→∞ v(t) = limt→∞(Hw)(t) =
limt→∞ ϕ(uc(t)) =: (ϕ ◦ uc)

∞).

Proof of Statement 2: If Tt0x
0 ∈ X1 for some t0 ≥ 0, then, as in the proof of

Theorem 9.2.1, limt→∞ gc(t) = 0. Statement 2 now follows from the application
of Theorem 8.1.8.

Proof of Statement 3: This follows immediately from the application of Theorem
8.1.8. 2

Let ϕ, ρ, κ and dc be as before and let ψ : R → R be a static non-linearity. We
now consider system (9.5) with bounded observation operator C (in particular,
if C is bounded, C = CΛ) . Note that, by Lemma 9.1.2, this means system (9.5)
is now regular, that is,

ẋ = Ax+B(ϕ ◦ uc), x(0) = x0, (9.16a)

wc = Cx+D(ϕ ◦ uc). (9.16b)

Boundedness of C implies that the impulse response ofGc is a finite Borel measure
on R+, see Remark 9.1.3. Consequently, we can ideally sample the output ψ ◦
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wc+dc. Hence we consider system (9.16), but now controlled by the sampled-data
integrator

uc(t) =(Hu)(t), t ∈ R+, (9.17a)

(4u)(n) =κ(n)(ρ− (SI(dc + ψ ◦ wc))(n)), u(0) = u0 ∈ R, n ∈ Z+. (9.17b)

From (9.16b), (9.2) and (9.4) we have,

wc(t) = Cx(t) +D(ϕ ◦ uc)(t)

= C

(
Ttx

0 +

∫ t

0

Tt−sB(ϕ ◦ uc)(s) ds

)
+D(ϕ ◦ uc)(t)

= CTtx
0 + (Gc(ϕ ◦ uc))(t).

Consequently, with gc(t) := CTtx
0, it follows that

SIwc = SIgc + SI(Gc(H(ϕ ◦ u))). (9.18)

Setting g := SIgc, d := SIdc, noting that by Proposition 8.2.1, ψ and SI commute
and defining G := SIGcH, it follows from (9.17b) and (9.18) that u satisfies

u = u0ϑ+ J(κ(ρϑ− d− ψ(g + (G(ϕ ◦ u))))). (9.19)

Theorem 9.2.4. Assume that the well-posed system (9.3) is exponentially sta-
ble, that C is bounded (hence system (9.3) is regular, by Lemma 9.1.2) and that
Gc(0) > 0. Let ϕ : R → R and ψ : R → R be non-decreasing and globally Lip-
schitz continuous with Lipschitz constants λ1 > 0 and λ2 > 0, dc = dc1 + dc2ϑc

with dc1 ∈ L2(R+,R), SIdc1 ∈ l2(Z+,R), n 7→
∑∞

j=n |dc1(jτ)| ∈ l2(Z+,R) and
dc2 ∈ R, ρ− dc2 ∈ R(Gc, ϕ, ψ) and κ : Z+ → R is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λ1λ2f0,J(G)|,

where f0,J(G) is given by (5.12). Then, for (x, uc) the solution of the feedback
system given by (9.16) and (9.17), and all x0 ∈ X, the following statements hold.

1. The limit (ϕ ◦ uc)
∞ := limt→∞ ϕ(uc(t)) exists and is finite and

lim
t→∞

‖x(t) + A−1B(ϕ ◦ uc)
∞‖ = 0,

and 4(ϕ ◦ u) ∈ l2(Z+,R).

2. If κ /∈ l1(Z+,R), then the error signal ec := ρϑc − dc − ψ ◦ wc can be split
into ec = ec1 +ec2, where limt→∞ ec1(t) = 0 and ec2 ∈ L2(R+,R). Moreover,

lim
t→∞

ec(t) = 0,
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provided that limt→∞ dc1(t) = 0.

3. If ρ− dc2 is an interior point of R(Gc, ϕ, ψ), then uc is bounded.

Proof. Let (x, uc) be the unique solution of the feedback system given by (9.16)
and (9.17). By (9.19), uc satisfies,

uc = u0ϑc +HJ(κ(ρϑ− SI(dc + ψ(gc +Gc(ϕ ◦ uc))))) (9.20)

where gc(t) := CTtx
0. In order to apply Theorem 8.2.2 to (9.20), we need to

verify the relevant assumptions. Since C is bounded the impulse response of
Gc is a finite Borel measure on R+ (see Remark 9.1.3). Using the exponential
stability of system (9.3), we see that Gc is analytic in a neighbourhood of 0 and
hence, Gc satisfies assumption (Ac). It is clear by exponential stability that there
exists a β < 0 such that gc ∈ L2

β(R+,R) ⊂ L2(R+,R). It remains to show that
SIgc ∈ l2(Z+,R). We first note that, by exponential stability of the semigroup
T, there exist constants M, ε > 0 such that

‖Tt‖ ≤Me−εt, ∀ t ∈ R+.

Consequently, by boundedness of C,

|gc(t)| ≤ M̃e−εt, ∀ t ∈ R+ (9.21)

for some constant M̃ ≥ 0, that is, gc(t) = O(e−εt) as t → ∞. Hence, SIgc ∈
l2(Z+,R) as required (see Remarks 8.2.3 (b)). We are now in a position to apply
Theorem 8.2.2 to (9.20).

Proof of Statement 1: This follows in the same way as the proof of statement 1
of Theorem 9.2.3, but applying Theorem 8.2.2 instead of Theorem 8.1.8.

Proof of Statement 2: Trivially by (9.21),

lim
t→∞

gc(t) = 0.

The conclusions of statement 2 now follow from the application of Theorem 8.2.2.

Proof of Statement 3: This follows immediately from the application of Theorem
8.2.2. 2

Remark 9.2.5. Note that it is also possible to obtain state-space versions of The-
orems 8.1.10 and 8.2.4 under similar assumptions to those imposed in Theorems
9.2.3 and 9.2.4. 3
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9.3 Notes and references

The results in this chapter form state-space versions of the input-output results
obtained in Chapter 8. Note that, for constant gain with input non-linearity
the results from Chapter 8 apply to exponentially stable well-posed state-space
systems (see Theorems 9.2.1 and 9.2.2); for time-varying gain with input non-
linearity the results from Chapter 8 apply to strongly stable state-space systems
with 0 ∈ res(A) (see Theorem 9.2.3); for time-varying gain with input as well as
output non-linearities the results from Chapter 8 apply to exponentially stable
systems with bounded observation operator (see Theorem 9.2.4). We remark
that the results in this chapter improve on the sampled-data results in [37] and
[42] in the sense that, the results in [37] and [42] were obtained for exponentially
stable regular systems whereas, Theorems 9.2.1, 9.2.2, 9.2.3 and 9.2.4 apply to
the larger class of exponentially stable well-posed systems, in some cases (see
above) even to strongly stable well-posed systems with 0 ∈ res(A). The results
in this chapter form the basis for some of [6].
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Chapter 10

Discrete-time absolute stability
theory and stability of linear
multistep methods

An important aspect of numerical analysis is the study of the long term behaviour
of solutions of numerical methods. In this chapter we show how special cases of
some of the discrete-time absolute theory contained in Chapter 4 can be applied
to linear multistep methods. Consequently, we derive results on stability of linear
multistep methods.

10.1 An introduction to linear multistep meth-

ods

Much of the material in this section is standard. For a more detailed introduction
to linear multistep methods see, for example, [1], [26], [27] and [29].

In this chapter we consider the initial-value problem,

dy

dt
(t) = f(t, y(t)), t ∈ R+, y(0) = y0, (10.1)

defined on a possibly infinite-dimensional Hilbert space U . Here f : R+×U → U
satisfies suitable regularity conditions (in the least we assume that f is Lipschitz
with respect to the norm in U), so that (10.1) has a unique solution. In numerical
analysis solutions of (10.1) can be approximated from so called linear multistep
methods defined below.
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Definition. A general q-step linear multistep method (LMM) is defined by the
equation,

q∑
j=0

αju(n+ j) = h

q∑
j=0

βjf((n+ j)h, u(n+ j)), n ∈ Z+, (10.2)

with fixed time-step h > 0, constants αj, βj ∈ R (j = 0, 1, . . . , q) independent of
h, n and the underlying differential equation, with αq > 0 and given initial data
u(0), . . . , u(q − 1).

We shall often refer to equation (10.2) simply as method (10.2) or, LMM (10.2).
When βq = 0, LMM (10.2) is said to be explicit ; otherwise it is implicit.

We define the polynomials ρ, σ by,

ρ(z) :=

q∑
j=0

αjz
j, σ(z) :=

q∑
j=0

βjz
j.

We assume throughout this chapter that ρ and σ are coprime. The LMM (10.2)
is completely specified by the two polynomials ρ and σ in the sense that, given
polynomials ρ, σ we can determine a LMM of the form (10.2) and conversely
given a LMM of the form (10.2) we can define polynomials ρ and σ.

We now give some examples of linear multistep methods.

Example 10.1.1. The backward differentiation formulae (BDFs) are given by,

σ(z) = zq, and ρ(z) =

q∑
k=1

1

k
zq−k(z − 1)k.

Given expressions for ρ and σ, we now determine expressions for LMM (10.2) for
given values of q.

1. q = 1 : Then σ(z) = z and ρ(z) = z − 1. This gives coefficients, α0 =
−1, α1 = 1, β0 = 0, β1 = 1. Hence from (10.2) we obtain the method,

u(n+ 1)− u(n) = hf((n+ 1)h, u(n+ 1)).

This is the well-known Euler method.

2. q = 2 : Then σ(z) = z2 and ρ(z) = (3/2)z2−2z+1/2. This gives coefficients,
α0 = 1/2, α1 = −2, α2 = 3/2, β0 = 0, β1 = 0, β2 = 1. Hence from (10.2)
we obtain the method,

3

2
u(n+ 2)− 2u(n+ 1) +

1

2
u(n) = hf((n+ 2)h, u(n+ 2)).
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3

We shall now discuss zero-stability of solutions of (10.2) and in so doing, introduce
some key definitions.

We begin by considering the case f ≡ 0. From (10.2) we now have the linear
difference equation,

q∑
j=0

αju(n+ j) = 0, n ∈ Z+. (10.3)

Proposition 10.1.2. Let z ∈ C. If ρ(z) = 0, then u(n) = zn is a solution of
(10.3). If, additionally, ρ′(z) = 0, then u(n) = nzn is also a solution of (10.3).

Proof. Assume that ρ(z) = 0 for some z ∈ C. With u(n) = zn it follows from
(10.3) that

q∑
j=0

αju(n+ j) =

q∑
j=0

αjz
n+j = zn

( q∑
j=0

αjz
j

)
= znρ(z) = 0.

Hence u(n) = zn is a solution of (10.3). Suppose further, ρ′(z) = 0. With
u(n) = nzn it follows from (10.3) that

q∑
j=0

αju(n+ j) =

q∑
j=0

αj(n+ j)zn+j = zn

(
n

q∑
j=0

αjz
j +

q∑
j=1

αjjz
j

)
= zn(nρ(z) + zρ′(z)) = 0.

Hence u(n) = nzn is a solution of (10.3). 2

Definition. A polynomial p(z) satisfies the root condition if

p(z) = 0 implies either |z| < 1, or |z| = 1 and p′(z) 6= 0.

Proposition 10.1.2 motivates the definition of the following notions of zero-stability
of method (10.2).

Definition. The method (10.2) is said to be zero-stable if ρ satisfies the root
condition. The method (10.2) is strictly zero-stable if it is zero-stable and z = 1
is the only root of ρ on the complex unit circle.

For a “good” LMM we expect that the values u(n) generated by (10.2) tend to
the value of the desired exact solution of (10.1) at time t as h → 0. This gives
an intuitive notion of convergence of an LMM which we now make more precise.
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We assume that, for T > 0, f : R+ × U → U satisfies the following condition,

‖f(t, x)− f(t, z)‖ ≤ L‖x− z‖, ∀ t ∈ [0, T ], x, z ∈ U.

We introduce the following notation. For h > 0, we define Nh := {n ∈ Z+ | nh ∈
[0, T ]}.

Definition. We say that method (10.2) is convergent if the following is true for
all y0 ∈ U . Let η0, η1, . . . , ηq−1 be q functions from (0, h0) to U where 0 ≤ h <
h0 = αqβ

−1
q L−1 (so that method (10.2) has a unique solution) such that

lim
h→0

ηj(h) = y0, j = 0, 1, . . . , q − 1,

and denote by u the solution of (10.2) having the starting values

u(j) = ηj(h), j = 0, 1, . . . , q − 1.

Then,
max
n∈Nh

‖u(n)− y(nh)‖ → 0, h→ 0,

where y denotes the solution of the initial-value problem (10.1). Note that if
βq = 0, then h0 := ∞.

Convergence of a LMM is an essential property for computation of numerical
solutions of initial-value problems of the form (10.1). Without convergence a
method is of no practical use.

The condition of zero-stability of method (10.2) has the purpose of preventing
a small initial error in the computation of solutions of the initial-value problem
(10.1) from growing at such a rate that convergence of (10.2) is no longer guar-
anteed. However, zero-stability alone does not guarantee convergence. A further
condition must be added which ensures that LMM (10.2) is a good approximation
to the initial-value problem (10.1).

If LMM (10.2) is to define a “good” method, we expect the difference between
the two sides of LMM (10.2) to be small if h is small and if the values {u(n)}n∈Z+

are replaced by y(nh), where y is an exact solution of the initial-value problem
(10.1). To this end we now define the concept of consistency of method (10.2).

Definition. Let y be the solution of the initial-value problem (10.1). We say
that method (10.2) is consistent if,

max
n∈Nh

∥∥∥∥ q∑
j=0

αjy((n+ j)h)− h

q∑
j=0

βjf((n+ j)h, y((n+ j)h))

∥∥∥∥ = o(h),

as h→ 0.
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The consistency of method (10.2) is equivalent to a purely algebraic condition
on the polynomials ρ and σ as seen in the following result. The proof of the
following theorem can be found in [27] (see Theorem 3.4 in [27])

Theorem 10.1.3. The method (10.2) is consistent if and only if the polynomials
ρ and σ satisfy the conditions

ρ(1) = 0, ρ′(1) = σ(1).

Finally we state a necessary and sufficient condition for the convergence of method
(10.2) the proof of which can be found in [27] (see Theorem 3.1 in [27]).

Theorem 10.1.4. The method (10.2) is convergent if and only if it is both zero-
stable and consistent.

In order to apply transform methods, we first write (10.2) as a convolution iden-
tity. To this end associated with the two polynomials ρ and σ we define sequences
r, s ∈ F (Z+,R), such that

r(n) :=

{
αq−n, 0 ≤ n ≤ q,
0, n > q,

s(n) :=

{
βq−n, 0 ≤ n ≤ q,
0, n > q.

(10.4)

We observe that

r̂(z) = z−qρ(z), ŝ(z) = z−qσ(z) ; z ∈ C , (10.5)

In applications, the boundedness of several related quantities is considered: the
numerical solution, the numerical error and the difference between two numerical
solutions. The following lemma is applicable in all these cases.

Lemma 10.1.5. Suppose that D(n) ∈ U for n ≥ q, and that ϕ : Z+ × U → U .
Suppose also that x : Z+ → U satisfies

q∑
j=0

αjx(n+ j) =

q∑
j=0

βjϕ(n+ j, x(n+ j)) +D(n+ q), n ∈ Z+.

Then, for r, s ∈ F (Z+,R) as defined in (10.4),

r ∗ x = s ∗ (ϕ ◦ x) + v, (10.6)

where v is given by

v(n) :=

{
(r ∗ x)(n)− (s ∗ (ϕ ◦ x))(n), 0 ≤ n ≤ q − 1,
D(n), n ≥ q.
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Proof. Considering the LHS of (10.6), the finite support of r implies that

(r ∗ x)(n+ q) =

n+q∑
k=0

r(n+ q − k)x(k) =

q∑
j=0

r(q − j)x(n+ j)

=

q∑
j=0

αjx(n+ j), n ∈ Z+.

Similarly, considering the RHS of (10.6),

(s ∗ (ϕ ◦ x))(n+ q) + v(n+ q) =

n+q∑
k=0

s(n+ q − k)(ϕ ◦ x)(k) +D(n+ q)

=

q∑
j=0

s(q − j)(ϕ ◦ x)(n+ j) =

q∑
j=0

βjϕ(n+ j, x(n+ j)) +D(n+ q), n ∈ Z+.

This implies that, for n ≥ q,

(r ∗ x)(n) = (s ∗ (ϕ ◦ x))(n) + v(n). (10.7)

By the construction of v, (10.7) also holds for 0 ≤ n ≤ q− 1. Thus, the sequence
identity (10.6) is true. 2

We recall that ultimately, we are considering the initial-value problem (10.1)
where f : R+×U → U satisfies suitable regularity conditions. We describe three
situations in numerical analysis to which Lemma 10.1.5 applies.

Case 1: The numerical solution. For the method given by (10.2), Lemma
10.1.5 may be applied with

x(n) := u(n); ϕ(n, ξ) := hf(nh, ξ), ξ ∈ U ; D(n+ q) := 0, n ∈ Z+.

Case 2: The numerical error. Let y be the solution of (10.1). The truncation
error T (n+ q) ∈ U , n ∈ Z+, is defined by

q∑
j=0

αjy((n+ j)h) = h

q∑
j=0

βjf((n+ j)h, y((n+ j)h)) + hT (n+ q), n ∈ Z+.

Lemma 10.1.5 may be applied with

x(n) := y(nh)− u(n), n ∈ Z+,
ϕ(n, ξ) := hf(nh, y(nh))− hf(nh, y(nh)− ξ), n ∈ Z+, ξ ∈ U,
D(n) := hT (n), n ≥ q,
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where u : Z+ → U is the solution of (10.2).

Case 3: Difference of two numerical solutions. If u1 : Z+ → U, u2 : Z+ →
U, are two solutions of (10.2), then Lemma 10.1.5 may be applied with

x(n) := u1(n)− u2(n), n ∈ Z+,
ϕ(n, ξ) := hf(nh, u1(n))− hf(nh, u1(n)− ξ), n ∈ Z+, ξ ∈ U,
D(n) := 0, n ∈ Z+.

10.2 Control theoretic absolute stability results

We consider an absolute stability problem for the feedback system shown in
Figure 10.1. The convolution kernel g : Z+ → C, the time-dependent non-
linearity ϕ : Z+ × U → U and the forcing function w : Z+ → U are given.

- f
6

- ϕ - g∗ -r -
u yw

+
+

Figure 10.1: Feedback system with non-linearity

From Figure 10.1 we can derive the following governing equations

u = y + w, y = g ∗ (ϕ ◦ u),

or, equivalently,
u = g ∗ (ϕ ◦ u) + w. (10.8)

The latter equation can be written as the nonlinear discrete-time Volterra equa-
tion,

u(n) =
n∑

j=0

g(n− j)ϕ(j, u(j)) + w(n).

A solution of (10.8) is a U -valued function u defined on Z+ satisfying (10.8).
Trivially, there exists at least one solution (a unique solution, respectively) of
(10.8) if, for every n ∈ Z+, the map

U → U, ξ 7→ ξ − g(0)ϕ(n, ξ)
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is surjective (bijective, respectively).

In the following result, part (A) is a special case of Theorem 4.3.4 and part (B)
is a special case of Theorem 4.3.6.

Theorem 10.2.1. Let g = g0ϑ+ g1, where g0 ∈ (0,∞) and g1 ∈ l1(Z+), let ϕ be
sector-bounded in the sense that there exists a ∈ (0,∞] such that

Re 〈ϕ(n, ξ), ξ〉 ≤ −‖ϕ(n, ξ)‖2/a , ∀ (n, ξ) ∈ Z+ × U (10.9)

and assume that there exists ε ≥ 0 such that

1/a+ Re ĝ(eiθ) ≥ ε , ∀ θ ∈ (0, 2π) . (10.10)

(A) If ε > 0 and w ∈ m2(Z+, U), then every solution u of (10.8) has the following
properties.

(A1) There exists a constant K > 0 (depending only on ε, a and g, but not on
w) such that

‖u‖l∞ + ‖40u‖l2 + ‖ϕ ◦ u‖l2 + (‖Re 〈ϕ ◦ u, u〉‖l1)
1/2

+ ‖J0(ϕ ◦ u)‖l∞ ≤ K‖w‖m2 .

(A2) The limit limn→∞ ‖u(n)‖ exists and is finite; in particular, if dimU = 1,
then limn→∞ u(n) exists.

(A3) Under the additional assumptions

(A3.1) ϕ does not depend on time,

(A3.2) ϕ−1(0) ∩B is precompact for every bounded set B ⊂ U ,

(A3.3) infξ∈B ‖ϕ(ξ)‖ > 0 for every bounded closed set B ⊂ U such that
ϕ−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), ϕ−1(0)) = 0.

(A4) If (A3.1)-(A3.3) and the additional assumption,

(A4.1) cl(ϕ−1(0)) ∩ S is totally disconnected for every sphere S ⊂ U centred
at 0,

hold, then u(n) converges as n→∞.

(B) If ε = 0 and w ∈ m1(Z+, U), then every solution u of (10.8) has the following
properties.
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(B1) There exists a constant K > 0 (depending only on a and g, but not on w)
such that

‖u‖l∞ + (‖Re 〈ϕ ◦ u, u+
1

a
(ϕ ◦ u)〉‖l1)

1/2 + ‖J0(ϕ ◦ u)‖l∞ ≤ K‖w‖m1 .

(B2) Under the assumptions (A3.1), (A3.2) and the additional assumption

(B2.1) supξ∈B Re 〈ϕ(ξ), ξ + ϕ(ξ)/a〉 < 0 for every bounded closed set B ⊂ U
such that ϕ−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), ϕ−1(0)) = 0.

(B3) If (A3.1), (A3.2), (B2.1) and the additional assumption,

(B3.1) ϕ is continuous,

hold, then limn→∞(40u)(n) = 0. If further,

(B3.2) ϕ−1(0) is totally disconnected,

then limn→∞ u(n) =: u∞ exists with u∞ ∈ ϕ−1(0).

A complete proof of Theorem 10.2.1 (which does not refer to Theorems 4.3.4 and
4.3.6) can be found in [4] (see, Theorem 5.1 in [4]).

Next, we derive a version of Theorem 10.2.1 which yields stability properties of
the difference of two solutions of (10.8). In this context, the following incremental
sector condition

Re 〈ϕ(n, ξ1)− ϕ(n, ξ2), ξ1 − ξ2〉 ≤ −‖ϕ(n, ξ1)− ϕ(n, ξ2)‖2/a , (10.11)

n ∈ Z+, ξ1, ξ2 ∈ U

is relevant. Let w1, w2 be forcing functions and let u1 and u2 be corresponding
solutions of (10.8), that is, ui = g ∗ (ϕ ◦ ui) + wi for i = 1, 2. The difference
u1 − u2 satisfies the Volterra equation

u1 − u2 = g ∗ (ψ ◦ (u1 − u2)) + w1 − w2 .

In the following result, part (A) is a special case of Corollary 4.4.1 and part (B)
is a special case of Corollary 4.4.2.

Corollary 10.2.2. Let g = g0θ + g1, where g0 ∈ (0,∞) and g1 ∈ l1, let ϕ be
incrementally sector-bounded in the sense that (10.11) holds for some a ∈ (0,∞]
and assume that there exists ε ≥ 0 such that (10.10) is satisfied. Let u1 and u2

be solutions of (10.8) corresponding to forcing functions w1 and w2, respectively.

(A) If ε > 0 and w1 − w2 ∈ m2(Z+, U), then the following statements hold:
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(A1) There exists a constant K > 0 (depending only on ε, a and g, but not on
w1 and w2) such that

‖u1 − u2‖l∞ + ‖40(u1 − u2)‖l2 + (‖Re 〈ϕ ◦ u1 − ϕ ◦ u2, u1 − u2〉‖l1)
1/2

+ ‖ϕ ◦ u1 − ϕ ◦ u2‖l2 + ‖J0(ϕ ◦ u1 − ϕ ◦ u2)‖l∞ ≤ K‖w1 − w2‖m2 .

(A2) The limit limn→∞ ‖u1(n) − u2(n)‖ exists and is finite; in particular, if
dimU = 1, then limn→∞(u1(n)− u2(n)) exists.

(B) If ε = 0 and w1 − w2 ∈ m1(Z+, U), then there exists a constant K > 0
(depending only on a and g, but not on w1 and w2) such that

‖u1 − u2‖l∞ + (‖Re 〈ϕ ◦ u1 − ϕ ◦ u2, u1 − u2 +
1

a
(ϕ ◦ u1 − ϕ ◦ u2)〉‖l1)

1/2

+ ‖J0(ϕ ◦ u1 − ϕ ◦ u2)‖l∞ ≤ K‖w1 − w2‖m1 .

10.3 An application of Section 10.2 to linear

multistep stability

In this section we apply Theorem 10.2.1 and Corollary 10.2.2 to derive results on
the asymptotic behaviour of the solutions of (10.2).

We begin by defining the notion of a positive rational function.

Definition. A function f : C → C is said to be a rational function if it can be
expressed as the quotient of two polynomials with possibly complex coefficients.
We further say that a rational function is proper if lim|z|→∞ |f(z)|< ∞ for all
z ∈ C. A rational function f (with possibly complex coefficients) is called positive
if

Re f(z) ≥ 0 , for all z ∈ C with |z| > 1 and such that z is not a pole of f .

The following lemma lists some simple (and well-known) properties of positive
rational functions which will be required throughout this section, we include a
proof for completeness.

Lemma 10.3.1. Let f be a rational function such that f(z) 6≡ 0. If f is positive,
then the following statements hold:

(a) If z ∈ C is a zero of f , then |z| ≤ 1.

(b) If z ∈ C is a pole of f , then |z| ≤ 1.
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(c) lim|z|→∞ f(z) exists, is finite and not equal to zero.

(d) If eiν is a zero of f for some ν ∈ [0, 2π), then it is simple (that is f ′(eiν) 6=
0).

(e) If eiν is a pole of f for some ν ∈ [0, 2π), then it is simple (that is (1/f)′(eiν) 6=
0) and e−iνRes (f, eiν) > 0, where Res (f, eiν) denotes the residue of f at
z = eiν.

Note that part (c) says that a non-trivial positive rational function has no zeros
or poles at ∞.

Proof of Lemma 10.3.1. (a) Let |z0| > 1 and assume that f(z0) = 0. Then

f(z) = (z − z0)
mg(z),

where m ∈ N and g is a rational function which is holomorphic at z = z0 and
g(z0) 6= 0. Let ρ > 0 be sufficiently small such that |z0 + ρeiθ| > 1 for all
θ ∈ [0, 2π). Then

f(z0 + ρeiθ) = g(z0 + ρeiθ)ρmeimθ.

Hence,

0 ≤ ρ−mRe f(z0 + ρeiθ)

= cos(mθ)Re (g(z0 + ρeiθ))− sin(mθ)Im (g(z0 + ρeiθ)). (10.12)

Since g(z0 + ρeiθ)) → g(z0) 6= 0 as ρ → 0 (uniformly in θ), it follows that there
exists ρ > 0 and θ ∈ [0, 2π) such that the RHS of (10.12) is negative, contradicting
the fact that Re f(z0 + ρeiθ) ≥ 0.
(b) If z ∈ C is a pole of f , then z is a zero of the positive rational function 1/f .
Hence, by (a), it follows that |z| ≤ 1.
(c) By (a) and (b) all poles and zeros of f are in B. Define a rational function

g(z) := f(1/z).

Then since f is positive, Re g(z) ≥ 0 for all z ∈ B such that z is not a pole of g.
It suffices to show that limz→0 g(z) exists, is finite and not equal to zero. Let

g(z) = zmh(z),

where m ∈ Z and h is a rational function which is holomorphic at z = 0 and
h(0) 6= 0. Let ρ < 1. Then, for all θ ∈ [0, 2π),

g(ρeiθ) = h(ρeiθ)ρmeimθ.
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Hence,

0 ≤ ρ−mRe g(ρeiθ) = cos(mθ)Re (h(ρeiθ))− sin(mθ)Im (h(ρeiθ)). (10.13)

Since h(ρeiθ)) → h(0) 6= 0 as ρ→ 0 (uniformly in θ), it follows that there exists
ρ < 1 and θ ∈ [0, 2π) such that the RHS of (10.13) is negative, contradicting the
fact that Re g(ρeiθ) ≥ 0.
(d) Assume that eiν is a zero of f . Then

f(z) = (z − eiν)mg(z) , (10.14)

where m ∈ N and g is a rational function which is holomorphic at z = eiν and
g(eiν) 6= 0. For ε > 0 and θ ∈ [−π/2, π/2], we define

zε,θ := eiν(1 + εeiθ) .

It is clear that |zε,θ| > 1 and so, for ε > 0 and θ ∈ [−π/2, π/2],

0 ≤ ε−mRe f(zε,θ)

= cos(mθ)Re (eimνg(zε,θ))− sin(mθ)Im (eimνg(zε,θ)) . (10.15)

Since g(zε,θ) → g(eiν) 6= 0 as ε→ 0 (uniformly in θ), it follows from (10.15) that
m = 1 (because otherwise there would exist ε > 0 and θ ∈ [−π/2, π/2] such that
the RHS of (10.15) is negative). Consequently, the zero at z = eiν is simple.
(e) Assume that eiν is a pole of f . Replacing m by −m in (10.14), an argument
identical to that in the proof of (d) shows that the pole at z = eiν is simple.
Considering (10.15) when m = −1, choosing θ to be −π/2, 0 and π/2 and letting
ε → 0, shows that Im (e−iνg(eiν)) = 0 and Re (e−iνg(eiν)) ≥ 0. Since g(eiν) 6= 0,
we conclude that Re (e−iνg(eiν)) > 0. The claim now follows from the fact that
Res (f, eiν) = g(eiν). 2

Definition. A sequence a ∈ F (Z+) is said to be exponentially decaying if there
exists η ∈ (0, 1) and M > 0 such that

|a(n)| ≤Mηn , n ∈ Z+.

Note that a ∈ F (Z+) is exponentially decaying if and only if ra < 1 (where ra is
given by (3.5)).

In the following, if a ∈ F (Z+) and k ∈ N, then

ak := a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
k factors

.
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For ξ ∈ C, define
ψξ := (0, 1, ξ, ξ2, ξ3, . . .).

Note that ψ̂ξ(z) = 1/(z − ξ).

Lemma 10.3.2. Let A be a proper rational function. Then there exists a Z -
transformable sequence a ∈ F (Z+) such that a = Z −1(A) and a is of the form

a = γδ +
m∑

k=1

mk∑
j=1

γkjψ
j
zk
, (10.16)

where γ, γkj ∈ C are suitable coefficients, the zk are the poles of A and mk denotes
the multiplicity of zk.

Proof. If pk is the principal part of the Laurent expansion of A at zk, then

pk(z) =

mk∑
j=1

γkj

(z − zk)j
,

where the γkj are suitable constants. The function B := A−
∑m

k=1 pk is a rational
function without any poles, and hence B must be a polynomial. Since A is proper,
it follows that B is a constant polynomial equal to some γ ∈ C. Therefore,
A = γ +

∑m
k=1 pk, and thus a := Z −1(A) is of the form (10.16). 2

The following corollary is an immediate consequence of Lemma 10.3.2.

Corollary 10.3.3. For a proper rational function A, the following statements
hold:

(a) If A is holomorphic in E1, then Z −1(A) is exponentially decaying; in par-
ticular, Z −1(A) ∈ l1(Z+).

(b) If A is holomorphic in E1 and has only simple poles {zk}m
k=1 on the complex

unit circle, then

Z −1(A) = a0 +
m∑

k=1

γkψzk
,

where a0 ∈ F (Z+) is exponentially decaying and γk denotes the residue of
A at zk.

We shall require the following key definition.

Definition. The linear stability domain S for method (10.2) is the set

S := {ζ ∈ C : ρ(z)− ζσ(z) satisfies the root condition}.
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To apply Theorem 10.2.1 and Corollary 10.2.2 to method (10.2), we first require
some preliminary results.

Lemma 10.3.4. For c ∈ C and R > 0, the following equivalences hold for method
(10.2):

B(c, R) ⊂ S ⇐⇒ inf
|z|≥1

|ρ(z)/σ(z)− c| ≥ R

⇐⇒ sup
|z|≥1

|σ(z)/(ρ(z)− cσ(z))| ≤ 1/R.

Proof. Assuming B(c, R) ⊂ S, we deduce that B(c, R) ⊂ int(S). Hence, if
ζ ∈ B(c, R), then ρ(z)− ζσ(z) = 0 implies that |z| < 1. Thus,

inf
|z|≥1

|ρ(z)/σ(z)− c| ≥ R, (10.17)

or, equivalently,
sup
|z|≥1

|σ(z)/(ρ(z)− cσ(z))| ≤ 1/R. (10.18)

Conversely, assume (10.18) or, equivalently, (10.17) holds. For ζ ∈ C \ S, there
exists z0 ∈ C with |z0| ≥ 1 and such that ρ(z0) − ζσ(z0) = 0. Thus, by (10.17),
|ζ − c| ≥ R, which implies ζ ∈ C \ B(c, R). We deduce that B(c, R) ⊂ S. 2

The following result shows that the inclusion of a disc of the form B(−c, c) (where
c > 0) in the linear stability domain of (10.2) is equivalent to the positivity of
the rational function 1/(2c) + σ/ρ.

Lemma 10.3.5. Let S denote the linear stability domain of (10.2) and let c > 0.
Then

B(−c, c) ⊂ S ⇐⇒ 1/(2c) + σ/ρ is positive .

Moreover, if B(−c, c) ⊂ S, then the following statements hold:

(a) Method (10.2) is zero-stable.

(b) If ρ(eiν) = 0 for some ν ∈ [0, 2π), then e−iνσ(eiν)/ρ′(eiν) > 0.

Proof. A straightforward calculation shows that, for all z ∈ C such that ρ(z) 6= 0,
the following equivalences hold

|ρ(z)/σ(z) + c| ≥ c ⇔ (1/c2)|ρ(z)|2 |1 + cσ(z)/ρ(z)|2 ≥ |σ(z)|2

⇔ 1/(2c) + Re (σ(z)/ρ(z)) ≥ 0 .

Now, by Lemma 10.3.4, B(−c, c) ⊂ S if and only if inf |z|≥1 |ρ(z)/σ(z) + c| ≥
c, showing that the inclusion B(−c, c) ⊂ S is equivalent to the positivity of
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1/(2c)+σ/ρ. Statements (a) and (b) are now immediate consequences of Lemma
10.3.1. 2

The following proposition shows that if B(−c, c) ⊂ S, then B(−c, c) ⊂ S.

Proposition 10.3.6. Let S denote the linear stability domain of (10.2) and let
c > 0. If B(−c, c) ⊂ S, then B(−c, c) ⊂ S.

Proof. Let ζ be on the boundary of B(−c, c), that is |ζ + c| = c. We have to
show that ζ ∈ S. To this end let z0 ∈ C be such that

ρ(z0)− ζσ(z0) = 0 . (10.19)

Since B(−c, c) ⊂ S, it is clear that |z0| ≤ 1. Therefore, it is sufficient to prove
that if |z0| = 1, then

ρ′(z0)− ζσ′(z0) 6= 0 . (10.20)

So let us assume that |z0| = 1. If ζ = 0, then ρ(z0) = 0. By part (b) of Lemma
10.3.5, ρ′(z0)− ζσ′(z0) = ρ′(z0) 6= 0, and so (10.20) holds. Hence, w.l.o.g. we may
assume that ζ 6= 0. Using that |ζ + c| = c,

Re

(
1

ζ

)
=

Re ζ

|ζ|2
=

α

α2 + β2
(10.21)

where α := Re ζ and β := Im β. Then,

(α+ c)2 + β2 = |ζ + c|2 = c2 ⇒ α2 + β2 = −2cα

and so we see from (10.21)

Re (1/ζ) = α/(−2cα) = −1/(2c) .

Invoking part (a) of Lemma 10.3.5, we see that the rational function A := σ/ρ−
1/ζ is positive. It follows from (10.19) that A(z0) = 0. By part (d) of Lemma
10.3.1, A′(z0) 6= 0 and so

0 6= A′(z0) =
(ρ(z0)− ζσ(z0))σ

′(z0)− (ρ′(z0)− ζσ′(z0))σ(z0)

ρ2(z0)

= −(ρ′(z0)− ζσ′(z0))σ(z0)

ρ2(z0)
,

showing that (10.20) holds. 2

We are now in the position to formulate the main result of this section. In order
to do this we first define the function fh : Z+ × U → U by

fh(n, ξ) := hf(nh, ξ) , (n, ξ) ∈ Z+ × U.
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Theorem 10.3.7. Assume that method (10.2) satisfies the following two condi-
tions: ρ(1) = 0 and ρ(eiθ) 6= 0 for all θ ∈ (0, 2π).

(A) Assume that there exists 0 < c <∞ such that

‖hf(nh, ξ) + cξ‖ ≤ c‖ξ‖ , (n, ξ) ∈ Z+ × U , (10.22)

and further that B(−c0, c0) ⊂ S for some c0 > c. Under these conditions, for
every solution u : Z+ → U of (10.2), the following statements hold:

(A1) There exists a constant K > 0 (depending only on c0, c and (ρ, σ)) such
that,

‖u‖l∞ + ‖40u‖l2 + ‖fh ◦ u‖l2 + (‖Re 〈fh ◦ u, u〉‖l1)
1/2

+ ‖J0(fh ◦ u)‖l∞ ≤ K

(
q−1∑
k=0

‖u(k)‖2

)1/2

.

(A2) The limit limn→∞ ‖u(n)‖ exists and is finite (in particular, if dimU = 1,
then limn→∞ u(n) exists).

(A3) Under the additional assumptions

(A3.1) f does not depend on time,

(A3.2) f−1(0) ∩B is precompact for every bounded set B ⊂ U ,

(A3.3) infξ∈B ‖f(ξ)‖ > 0 for every bounded closed set B ⊂ U such that
f−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), f−1(0)) = 0.

(A4) If (A3.1)-(A3.3) and

(A4.1) cl (f−1(0)) ∩ S is totally disconnected for every sphere S ⊂ U centred
at 0,

hold, then u(n) converges as n→∞.

(B) Assume that there exists 0 < c <∞ such that (10.22) holds and further that
B(−c, c) ⊂ S. Under these conditions, for every solution u : Z+ → U of (10.2),
the following statements hold:

(B1) There exists a constant K > 0 (depending only on c and (ρ, σ)) such that,

‖u‖l∞ +(‖Re 〈fh ◦u, u+
1

2c
(fh ◦u)〉‖l1)

1/2 +‖J0(fh ◦u)‖l∞ ≤ K

q−1∑
k=0

‖u(k)‖ .
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(B2) Under the assumptions (A3.1), (A3.2) and the additional assumption

(B2.1) supξ∈B Re 〈f(ξ), ξ+f(ξ)/(2c)〉 < 0 for every bounded closed set B ⊂ U
such that ϕ−1(0) ∩B = ∅,

we have that limn→∞ dist(u(n), f−1(0)) = 0.

(B3) If assumptions (A3.1), (A3.2), (B2.1) and the additional assumption,

(B3.1) f is continuous,

hold, then limn→∞(40u)(n) = 0. If further,

(B3.2) f−1(0) is totally disconnected,

then limn→∞ u(n) =: u∞ exists with u∞ ∈ f−1(0).

(C) Assume that

Re 〈f(nh, ξ), ξ〉 ≤ 0 , (n, ξ) ∈ Z+ × U . (10.23)

If {z ∈ C : Re z < 0} ⊂ S, then there exists a constant K > 0 (depending only
on (ρ, σ)) such that, for every solution u : Z+ → U of (10.2),

‖u‖l∞ +(‖Re 〈fh ◦u, u〉‖l1)
1/2 +‖J0(fh ◦u)‖l∞ ≤ K

q−1∑
k=0

(‖u(k)‖+‖hf(kh, u(k))‖) ,

and the conclusions of statements (B2) and (B3) hold.

Remark 10.3.8. (a) In the scalar case (that is, U = C) the inequality (10.22)
is equivalent to the condition that hf(nh, ξ)/ξ ∈ B(−c, c) for all (n, ξ) ∈ Z+ ×C
with ξ 6= 0.

(b) Assume that there exist c1, h1 > 0 such that

‖h1f(t, ξ) + c1ξ‖ ≤ c1‖ξ‖ , (t, ξ) ∈ R+ × U (10.24)

and B(−c1, c1) ⊂ S, so that the conclusions of part (B) hold for c = c1 and
h = h1. Letting h2 ∈ (0, h1) and setting c2 := c1h2/h1 < c1, it follows trivially
from (10.24) that

‖h2f(t, ξ) + c2ξ‖ ≤ c2‖ξ‖ , (t, ξ) ∈ R+ × U ,

showing that the conclusions of part (A) hold for c = c2, h = h2 and c0 = c1.

(c) We emphasize that the assumptions in Theorem 10.3.7 allow for a large class
of bounded functions f . 3
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Proof of Theorem 10.3.7. It follows from Section 10.1 that

u = g ∗ (fh ◦ u) + r−1 ∗ v , (10.25)

where g := r−1 ∗ s and

v(n) :=

{
(r ∗ u)(n)− (s ∗ (fh ◦ u))(n) , 0 ≤ n ≤ q − 1 ,

0 , n ≥ q .

Clearly, (10.25) is of the form (10.8) : in order to apply Theorem 10.2.1 (with
g = r−1 ∗ s, ϕ = fh, w = r−1 ∗ v and a = 2c), we need to verify the relevant
assumptions. It follows from the hypotheses on ρ and S, via part (a) of Lemma
10.3.5 that (10.2) is strictly zero-stable. The residue of ĝ at z = 1 is given by
g0 := σ(1)/ρ′(1) and, by part (b) of Lemma 10.3.5, g0 > 0. Invoking part (b) of
Corollary 10.3.3, we obtain that g1 := g − g0ϑ ∈ l1(Z+). Consequently, g is of
the form required for an application of Theorem 10.2.1. Furthermore, by Lemma
10.3.5

1/(2c) + Re ĝ(eiθ) = 1/(2c) + Re (σ(eiθ)/ρ(eiθ)) ≥ ε , θ ∈ (0, 2π) , (10.26)

with ε > 0 under the assumptions of (A) and with ε = 0 under the assumptions
of (B). Also note that under the assumptions of (C), (10.26) remains true with
ε = 0 and c = ∞. Consequently, (10.10) in Theorem 10.2.1 holds under the
assumptions of part (A), part (B) and part (C). Next we observe that (10.22) is
equivalent to

Re 〈fh(n, ξ), ξ〉 ≤ −1/(2c)‖fh(n, ξ)‖2 , (n, ξ) ∈ Z+ × U . (10.27)

Note that for c = ∞, inequality (10.27) is equivalent to (10.23). Therefore, ϕ = fh

satisfies the sector condition (10.9) in Theorem 10.2.1. To show that w = r−1 ∗ v
satisfies the required assumption, we note that by strict zero-stability, combined
with statement (b) of Corollary 10.3.3, there exists r1 ∈ l1(Z+) such that

r−1 = γϑ+ r1 , where γ := 1/ρ′(1) .

Hence
w = r−1 ∗ v = γϑ ∗ v + r1 ∗ v = γJ0v + r1 ∗ v .

Setting

w2 := γ

q−1∑
k=0

v(k) , w1 := w − w2ϑ

it is clear that w1 ∈ l1(Z+, U) ⊂ l2(Z+, U). Consequently, w ∈ m1(Z+, U) ⊂
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m2(Z+, U), so that w satisfies the requirement of Theorem 10.2.1. Furthermore,

‖w2‖ ≤ |γ|‖v‖l1 ≤ |γ|√q‖v‖l2 (10.28)

and

‖γϑ ∗ v − w2ϑ‖l1 ≤ |γ|(q − 1)‖v‖l1 , ‖γϑ ∗ v − w2ϑ‖l2 ≤ |γ|(q − 1)‖v‖l2 .

The last two inequalities imply

‖w1‖l1 ≤ (‖r1‖l1 + |γ|(q − 1))‖v‖l1 , ‖w1‖l2 ≤ ( max
θ∈[0,2π)

|r̂1(eiθ)|+ |γ|(q − 1))‖v‖l2 .

(10.29)
To estimate ‖w‖mp in terms of u(0), u(1), . . . , u(q − 1), we consider firstly parts
(A) and (B), then part (C).

To prove parts (A) and (B), we use (10.22) to obtain

‖v‖lp ≤ Lp

(
q−1∑
k=0

‖u(k)‖p

)1/p

, p = 1, 2 , (10.30)

where L1 := ‖r‖l1 + 2c‖s‖l1 and

L2 := max
θ∈[0,2π)

|ρ(eiθ)|+ 2c max
θ∈[0,2π)

|σ(eiθ)| .

Inequality (10.30) together with (10.28) yields

‖w2‖ ≤ L1|γ|
q−1∑
k=0

‖u(k)‖ , ‖w2‖ ≤ L2|γ|
√
q

(
q−1∑
k=0

‖u(k)‖2

)1/2

. (10.31)

Furthermore, by (10.29)–(10.31),

‖w‖mp ≤Mp

(
q−1∑
k=0

‖u(k)‖p

)1/p

, p = 1, 2 ,

for suitable Mp > 0. Parts (A) and (B) follow now from Theorem 10.2.1.

To prove part (C), we estimate

‖v‖l1 ≤ L

q−1∑
k=0

(‖u(k)‖+ ‖hf(kh, u(k))‖) , (10.32)
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where L := max(‖r‖l1 , ‖s‖l1). Therefore, by (10.28),

‖w2‖ ≤ L|γ|
q−1∑
k=0

(‖u(k)‖+ ‖hf(kh, u(k))‖) . (10.33)

Furthermore, by (10.29), (10.32) and (10.33),

‖w‖m1 ≤M

q−1∑
k=0

(‖u(k)‖+ ‖hf(kh, u(k))‖) ,

for some suitable M > 0. Part (C) follows now from Theorem 10.2.1. 2

Example 10.3.9. (a) Let ρ and σ be given by ρ(z) = z−1 and σ(z) = 1 (Euler’s
method). It is clear that S = B(−1, 1). Define f : R → R by

f(ξ) :=

{
−2ξ , ξ ≥ −2 ,
4 , ξ < −2 ,

so that f(ξ)/ξ ∈ B(−1, 1) for all ξ 6= 0. It follows from part (a) of Remark 10.3.8
that the conclusions of statements (A) of Theorem 10.3.7 hold if h ∈ (0, 1), whilst
statements (B) of the same theorem applies if h = 1. In particular, the numerical
solution u : Z+ → U converges to 0 as n → ∞ for every choice of h ∈ (0, 1). If
h = 1, then u : Z+ → U does not converge in general as n→∞ (for example, if
u(0) = 2, then u(n) = (−1)n2 for all n ∈ Z+).
(b) Let ρ and σ be given by ρ(z) = (3/2)z2 − 2z + 1/2 and σ(z) = z2 (two-step
BDF method). Define f : R2 → R2 by

f(ξ1, ξ2) := (−2ξ3
1 + ξ2,−ξ1 − ξ3

2) .

Then {z ∈ C : Re z < 0} ⊂ S and 〈f(ξ), ξ〉 < 0 for all ξ ∈ R2 \ {0}. Hence,
the conclusions of statement (C) of Theorem 10.3.7 hold for every h > 0. In
particular, the numerical solution u : Z+ → U converges to 0 as n→∞ for every
h > 0. 3

Whilst Theorem 10.3.7 has some overlap with results by Nevanlinna [47, 48], there
are also considerable differences: Theorem 10.3.7 assumes ρ to be strictly zero-
stable, rather than merely zero-stable as in [47, 48]; on the other hand, numerous
aspects of Theorem 10.3.7 are more general than in [47, 48], the assumptions
in Theorem 10.3.7 are easier to check than those in [47, 48] and some of the
conclusions are stronger as compared to [47, 48]. The following remark gives
more details.

Remark 10.3.10. (a) The approach adopted in [47] (with θ < 1) considers f
which are independent of t and requires that the map I − ahf is bijective and its
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inverse is globally Lipschitz 1, where a is a constant which appears in a frequency
domain condition involving ρ and σ (in particular 1/a ∈ int(S)), making the
application of the main result in [47] potentially awkward if a 6= 0 (which, for
example, is the case if S is bounded).

(b) The situation considered in part (C) of Theorem 10.3.7 is dealt with in [47]
under the additional assumption that the method is strictly stable at infinity,
that is, the roots of σ are contained in the open unit disk B(0, 1).

(c) The constant K in Theorem 10.3.7 does not depend on h in contrast to
Theorem 3.1 in [47] (see Remark 3.1 in [47]). Moreover, Theorem 3.1 in [47] does
not give estimates for ‖40u‖l2 , ‖fh ◦ u‖l2 , ‖Re 〈fh ◦ u, u〉‖l1 and ‖

∑
(fh ◦ u)‖l∞ .

(d) Let ρ, σ and f be as in part (a) of Example 10.3.9. Let a ∈ R be such that
1/a ∈ int(S), which holds if and only if a ∈ (−∞,−1/2). A routine calculation
shows that for every a ∈ (−∞,−1/2)

b := − inf
|z|≥1

ρ(z)

σ(z)− aρ(z)
= 0 .

Set c := −1/(2a). Then, using the notation of [47], D(a, b) = D(a, 0) = B(−c, c).
For given a ∈ (−∞,−1/2), Theorem 3.1 in [47] applies for all 0 < h < −1/(2a).
Note that if h = −1/(2a), then

(I − ahf)(ξ) = ξ + f(ξ)/2 = 0 , ξ ≥ −2 ,

so that (I − ahf) is not invertible. Consequently, Theorem 3.1 in [47] does not
apply in this case (see part (a) of this remark). Furthermore, if a = −1/2, then
1/a = −2 6∈ int(S). It follows that Theorem 3.1 in [47] is not applicable (see
pp. 60 in [47]). In particular, Theorem 3.1 in [47] does not give a result for the
stepsize h = 1.

(e) Using Theorem 10.3.7, it was shown in Example 10.3.9 that (for certain values
of h) the numerical solution u : Z+ → U converges to 0 as n → ∞. It seems to
be difficult to obtain these convergence properties by applying the results in [48]
on the behaviour of u at infinity. In part (a) of Example 10.3.9 the method is
not A-stable, whilst A-stability is assumed throughout in [48]. Furthermore, in
part (b) of Example 10.3.9 the non-linearity f is not a gradient field, and hence
Corollary 2 in [48] (which assumes that the non-linearity is a gradient mapping)
cannot be used. 3

We conclude this chapter by presenting a version of Theorem 10.3.7 which yields

1 An inspection of the proof of Theorem 3.1 in [47] shows that, if it is the aim to obtain
bounds on the numerical solution rather than the error, then the global Lipschitz assumption
on (I−ahf)−1 can be replaced by a global linear boundedness condition, that is, supξ∈U (‖(I−
ahf)−1ξ‖/‖ξ‖) < ∞.
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stability properties of the difference of two solutions of method (10.2).

Corollary 10.3.11. Assume that method (10.2) satisfies the following two con-
ditions: ρ(1) = 0 and ρ(eiω) 6= 0 for all ω ∈ (0, 2π).

(A) Assume that there exists 0 < c <∞ such that

‖hf(nh, ξ1)− hf(nh, ξ2) + c(ξ1 − ξ2)‖ ≤c‖ξ1 − ξ2‖ , (10.34)

n ∈ Z+, ξ1, ξ2 ∈ U .

Let u1 : Z+ → U and u2 : Z+ → U be solutions of (10.2). If B(−c0, c0) ⊂ S for
some c0 > c, then there exists a constant K > 0 (depending only on c0, c and
(ρ, σ)) such that,

‖u1 − u2‖l∞ + ‖40(u1 − u2)‖l2

+ ‖fh ◦ u1 − fh ◦ u2‖l2 + ‖J0(fh ◦ u1 − fh ◦ u2)‖l∞

+ (‖Re 〈fh ◦ u1 − fh ◦ u2, u1 − u2〉‖l1)
1/2 ≤ K

(
q−1∑
k=0

‖u1(k)− u2(k)‖2

)1/2

.

Furthermore, the limit limn→∞ ‖u1(n)− u2(n)‖ exists and is finite; in particular,
if dimU = 1, then limn→∞(u1(n)− u2(n)) exists.

(B) Assume that there exists 0 < c <∞ such that (10.34) holds and further that
B(−c, c) ⊂ S. Let u1 : Z+ → U and u2 : Z+ → U be solutions of (10.2). Then,
there exists a constant K > 0 (depending only on c and (ρ, σ)) such that,

‖u1 − u2‖l∞ + (‖Re 〈fh ◦ u1 − fh ◦ u2, u1 − u2 +
1

2c
(fh ◦ u1 − fh ◦ u2)〉‖l1)

1/2

+ ‖J0(fh ◦ u1 − fh ◦ u2)‖l∞ ≤ K

q−1∑
k=0

‖u1(k)− u2(k)‖ .

(C) Assume that

Re 〈f(nh, ξ1)− f(nh, ξ2), ξ1 − ξ2〉 ≤ 0 , n ∈ Z+, ξ1, ξ2 ∈ U .

Let u1 : Z+ → U and u2 : Z+ → U be solutions of (10.2). If {z ∈ C : Re z <
0} ⊂ S, then there exists a constant K > 0 (depending only on (ρ, σ)) such that,

‖u1 − u2‖l∞ + |J0(fh ◦ u1 − fh ◦ u2)‖l∞

+ (‖Re 〈fh ◦ u1 − fh ◦ u2, u1 − u2〉‖l1)
1/2

≤ K

q−1∑
k=0

(‖u1(k)− u2(k)‖+ ‖hf(kh, u1(k))− hf(kh, u2(k))‖) .
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Corollary 10.3.11 follows from an application of Corollary 10.2.2 and arguments
similar to those used in the proof of Theorem 10.3.7.

Finally, noting that for f in part (a) of Example 10.3.9, (f(ξ1)−f(ξ2))/(ξ1−ξ2) ∈
B(−1, 1) for all ξ1, ξ2 ∈ R, ξ1 6= ξ2, and, for f in part (b) of Example 10.3.9,
〈f(ξ1) − f(ξ2), ξ1 − ξ2〉 < 0 for all ξ1, ξ2 ∈ R2, ξ1 6= ξ2, it follows that a suitably
modified version of Remark 10.3.10 holds for Corollary 10.3.11.

10.4 Notes and references

The results in Sections 10.2 and 10.3 together with Lemma 10.1.5 form the basis
of [4]. As previously mentioned, Theorem 10.3.7 has some overlap with results
by Nevanlinna [47, 48], however, there are considerable differences. One class
of new results in this chapter are bounds on ‖u1(n) − u2(n)‖ purely in terms
of the initial data; i.e. bounds independent of hf . Additionally, we prove new
results on the behaviour of (u1(n) − u2(n)) as n → ∞ and bounds are obtained
for some classes of methods not considered in [47, 48]. For precise details on the
differences between Theorem 10.3.7 as compared with the results of [47, 48], see
Remark 10.3.10.
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Chapter 11

Future work

In this chapter we briefly outline some future research topics related to this thesis.

Consider the discrete-time equation

u = r − J0(G(ϕ ◦ u)), (11.1)

where r : Z+ → U is a given forcing function, G ∈ B(l2(Z+, U)) is shift-invariant,
ϕ : Z+×U → U is a time-dependent non-linearity and ϕ◦u denotes the function
n 7→ ϕ(n, u(n)). Proposition 3.5.3 gives a condition under which (11.1) has at
least one solution (a unique solution, respectively), namely, for every n ∈ Z+, the
map fn : U → U defined by

fn(ξ) = ξ + G(∞)ϕ(n, ξ), ∀ (n, ξ) ∈ Z+ × U

is surjective (bijective, respectively) where G(∞) := lim|z|→∞ G(z). Whilst this
is a satisfactory condition for the thesis, one possible future research topic is to
determine (if possible) sufficient conditions on G and ϕ which guarantee that the
map fn is surjective (bijective) for every n ∈ Z+.

In [9] and [10] continuous-time absolute stability results of Popov-type were
obtained in a general Hilbert space setting. In Chapter 4, the corresponding
discrete-time absolute stability results of Popov-type are only stated in the spe-
cial case U = R, this is due to limitations within the proofs of these results, in
particular, obtaining a positive lower bound for the term

q
n∑

j=0

(ϕ ◦ u)(j)(40u)(j).

Consequently, another future research topic is to attempt to extend the Popov-
type absolute stability results in Chapter 4 to a possibly infinite-dimensional
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Hilbert space setting in line with the continuous-time results in [9] and [10].
Firstly, it is unclear if the Popov-type results in Chapter 4 can be extended
to such generality and secondly, to extend these results may require a different
approach than the arguments used in Chapter 4.

Another possible extension of the Popov-type absolute stability results in Chapter
4 is to attempt to derive Popov-type results for non-linear operators. A Popov-
type result in [15] (see, Theorem on p.192 of [15]), suggests it should be possible
to obtain Popov results, with conclusions similar to those in Chapter 4, for causal
input-output operators G : l2(Z+,R) → l2(Z+,R) that need no longer be linear or
shift-invariant. In particular, such input-output operators do not have transfer
functions. Consequently, in order to obtain Popov-type results for such non-
linear operators we would need to replace the frequency-domain positive real
conditions in Chapter 4 with suitable passivity conditions in the time-domain.
It is also possible that additional assumptions may need to be imposed on the
input-output operator G.

In Theorem 8.1.8 we impose the following assumptions on the time-varying gain
κ : Z+ → R, namely that κ is bounded and non-negative with

lim sup
n→∞

κ(n) < 1/|λf0,J(G)| (11.2)

where

f0,J(G) := ess infθ∈(0,2π)Re

[
G(eiθ)

eiθ − 1

]
and λ > 0 denotes a constant related to a static input non-linearity. Here
G := SGcH where Gc ∈ B(L2(R+,R)) is shift-invariant with transfer function Gc

satisfying assumption (Ac) and Gc(0) > 0. One future research task would be to
find an easily computable estimate of the quantity f0,J(G). Moreover, since G is
a discrete-time input-output operator, condition (11.2) is not entirely satisfactory
in the context of a continuous-time result such as Theorem 8.1.8. An interesting
research problem would be to obtain an upper bound C for |f0,J(G)| in terms of
Gc and/or Gc. Similar problems, of obtaining easily computable estimates and
upper bounds in terms of continuous-time data, can also be considered for the
quantities fJ(G), fJ0(G) and f0,J0(G) (see Chapter 8). Such bounds for the max-
imal regulating gain have previously been studied for continuous-time systems in
[41] and, regular sampled-data systems in [45] (see, Chapter 8, Proposition 8.1.3
of [45]).

Consider the continuous-time low-gain integral control problem shown in Figure
11.1, where Gc ∈ B(L2(R+,R)) is shift-invariant with transfer function denoted
by Gc, ϕ : R → R is a static input non-linearity, ρ ∈ R denotes a constant
reference value, gc models the effect of non-zero initial conditions of the system
with input-output operator Gc and κc : R+ → R is a time-varying gain. In

200



- e
6

- κc - I - ϕ - Gc
- e? -r+

+

gc

ec ycρ uc

−
+

Figure 11.1: Continuous-time low-gain integral control problem

Chapter 8 we introduced the set of feasible reference values

R(Gc, ϕ) := {Gc(0)v | v ∈ imϕ}.

It has been shown in [16] (see, Proposition 3.4 in [16] with ψ ≡ id) that ρ ∈
R(Gc, ϕ) is close to being a necessary condition for asymptotic tracking of the
error ec insofar as, if asymptotic tracking of ρ is achievable, whilst maintaining
boundedness of ϕ◦uc together with ultimate continuity and ultimate boundedness
of gc +Gc(ϕ ◦uc), then ρ ∈ R(Gc, ϕ). We would like to obtain a result similar to
that in [16] for the sampled-data feedback system shown in Figure 8.3. However,
in the sampled-data context, the continuous-time signal uc is given by uc = Hu
for some u ∈ F (Z+,R). Consequently, uc is piecewise continuous, which in turn
means we can not obtain ultimate continuity of gc +Gc(ϕ ◦ uc). Hence the result
in [16] can not be applied to the sampled-data systems considered in Chapter 8.
An interesting research problem would be to determine (if possible) conditions,
similar to those in [16], under which ρ ∈ R(Gc, ϕ) is close to being a necessary
condition for asymptotic tracking in the sampled-data context.

The continuous-time integral control results in [9] have been extended (see [39]) to
include a large class of hysteretic input non-linearities containing many hysteresis
operators of relevance in control engineering, such as backlash (play), elastic-
plastic (stop) and Preisach operators. Combining results from [34] and [35], the
results in Chapters 4-6 and 8-9 could be extended to incorporate hysteretic input
non-linearities.

There are several further research topics relating to linear multistep methods.
Firstly, it has been seen in Chapter 10 that discrete-time absolute stability theory
can be applied to linear multistep methods to obtain stability results. This link
with linear multistep methods provides the possibility of using ideas from the
stability theory of linear multistep methods in a control theoretic context. In
particular reference [49] contains some results which might be useful in absolute
stability theory.
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Secondly, a result in [3] (see §3.5, Theorem 5.1 of [3]) gives a continuous-time
stability result for the following system,

u(t) = r(t) +

∫ t

0

g(t− s)ϕ(u(s)) ds, t ∈ R+,

where the non-linearity ϕ is sector bounded with lower bound possibly zero. It
is assumed further that the kernel g takes a certain form namely,

g(t) = g0(t) + α cosωt+ β sinωt,

with g0 ∈ L1(R+,R). If we take the Laplace transform of g we see that it
has a conjugate pair of poles on the imaginary axis. Due to the presence of a
discrete-time integrator in the linear system, the positive real conditions imposed
in Chapter 4 have a pole at z = 1. It should be possible to prove a corresponding
discrete-time stability result analogous to the result in [3], where the linear system
has several poles on the unit circle. Such stability results could have applications
to low-gain control for sinusoidal reference signals. Results of this type could also
be useful for applications to linear multistep stability, in particular, a stability
analysis of the so-called ‘leapfrog’ method (see, for example, [29]).
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Chapter 12

Appendices

Appendix 1: Proof of Lemma 4.1.1

Proof of Lemma 4.1.1. We proceed by induction on m. For the case m = 1
we have,

Re
1∑

n=1

〈
v(n),

0∑
k=0

v(k)

〉
= Re 〈v(1), v(0)〉

=
1

2

(
〈v(0), v(1)〉+ 〈v(1), v(0)〉

)
=

1

2
〈v(0) + v(1), v(0) + v(1)〉 − 1

2

(
‖v(0)‖2 + ‖v(1)‖2

)
=

1

2

∥∥∥∥v(0) + v(1)

∥∥∥∥2

− 1

2

(
‖v(0)‖2 + ‖v(1)‖2

)
=

1

2

∥∥∥∥ 1∑
k=0

v(k)

∥∥∥∥2

− 1

2

1∑
k=0

‖v(k)‖2.

Assuming that the result is true for m, we obtain,

Re
m+1∑
n=1

〈
v(n),

n−1∑
k=0

v(k)

〉

= Re

〈
v(m+ 1),

m∑
k=0

v(k)

〉
+

1

2

∥∥∥∥ m∑
k=0

v(k)

∥∥∥∥2

− 1

2

m∑
k=0

‖v(k)‖2
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=
1

2
‖v(m+ 1)‖2 − 1

2
‖v(m+ 1)‖2 + Re

〈
v(m+ 1),

m∑
k=0

v(k)

〉

+
1

2

∥∥∥∥ m∑
k=0

v(k)

∥∥∥∥2

− 1

2

m∑
k=0

‖v(k)‖2

=
1

2

∥∥∥∥m+1∑
k=0

v(k)

∥∥∥∥2

− 1

2

m+1∑
k=0

‖v(k)‖2,

advancing the inductive argument from m to m+ 1. Hence the claim is true for
all m ∈ N by induction. 2

Appendix 2: Upper and lower bounds on the

quantities fJ(G), fJ0(G), f0,J(G) and f0,J0(G)

Let G ∈ B(l2(Z+,R)) be shift-invariant and G ∈ H∞(E1) denote the transfer
function of G. Recall that,

fJ(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
and

f0,J(G) := ess infθ∈(0,2π)Re

[
G(eiθ)

eiθ − 1

]
.

We require the following lemma.

Lemma 12.1.1. Let f ∈ H∞(E1). Then,

ess infθ∈(0,2π)Re f(eiθ) ≤ Re f(∞),

where f(∞) := lim|z|→∞,z∈E1 f(z).

Remark 12.1.2. Suppose that G ∈ B(l2(Z+,R)) is shift-invariant with transfer
function G ∈ H∞(E1). Let z ∈ E1∩R. Then G(z) ∈ R. To see this we first note
that if u ∈ l2(Z+,R), then y = Gu ∈ l2(Z+,R). Consequently,

ŷ(z) =
∞∑

j=0

y(j)z−j = G(z)
∞∑

j=0

u(j)z−j, z ∈ E1.
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Furthermore,

ŷ(z) =
∞∑

j=0

y(j)z−j = G(z)
∞∑

j=0

u(j)z−j, z ∈ E1,

showing that G(z) = G(z). Hence, if z ∈ E1 ∩ R, then we have G(z) = G(z)
showing that G(z) ∈ R. In particular, since G(z) ∈ R for all z ∈ E1 ∩
R, if G(1) := limz→1,z∈E1 G(z) and G(∞) := lim|z|→∞,z∈E1 G(z) exist, then
G(1),G(∞) ∈ R. 3

Proof of Lemma 12.1.1. Setting f̃ := ess infθ∈(0,2π)Re f(eiθ), we have

e−Re f(∞) ≤ sup
z∈E1

|e−f(z)| = ess supθ∈(0,2π)|e−f(eiθ)| = e−
ef ,

where the first equality follows from the fact that e−f ∈ H∞(E1) and Theorem

3.3.2. Consequently, f̃ ≤ Re f(∞) as required. 2

In the following we assume that the transfer function G of G satisfies assumption
(A). We introduce the following auxiliary transfer function

H(z) :=
G(z)−G(1)

z − 1
, z ∈ E1, (A.1)

where, by Remark 12.1.2, G(1) ∈ R. The following result gives upper and lower
bounds on fJ(G) and f0,J(G).

Proposition 12.1.3. Let G ∈ B(l2(Z+,R)) be shift-invariant with transfer func-
tion G of G satisfying assumption (A). Then,

(i) −∞ < fJ(G) ≤ −G(1)/2,

(ii) −∞ < f0,J(G) ≤ −G(1)/2.

Proof. We first note that it follows trivially from the definitions of fJ(G) and
f0,J(G) that

fJ(G) ≥ f0,J(G). (A.2)

We claim that f0,J(G) > −∞. From assumption (A) and the fact that G ∈
H∞(E1), we have that H ∈ H∞(E1). Hence it follows that,

f0,J(G) = ess infθ∈(0,2π)Re

[
G(eiθ)−G(1)

eiθ − 1
+

G(1)

eiθ − 1

]
= ess infθ∈(0,2π)ReH(eiθ)− G(1)

2
> −∞,
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where the final inequality follows from the fact that H ∈ H∞(E1). Hence
f0,J(G) > −∞ and it follows from (A.2) that fJ(G) > −∞. By (A.2), in or-
der to show that (i) and (ii) hold, it remains to show that fJ(G) ≤ −G(1)/2. To
this end, we first set

Gq(z) := q
G(z)

z
+

G(z)−G(1)

z − 1
, z ∈ E1.

Then Gq ∈ H∞(E1) and Gq(∞) = 0. By Lemma 12.1.1,

ess infθ∈(0,2π)ReGq(e
iθ) ≤ 0.

Now,

ReGq(e
iθ) = Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
+

G(1)

2
.

Hence

ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]
≤ −G(1)

2
, ∀ q ≥ 0,

implying that

fJ(G) = sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q

eiθ
+

1

eiθ − 1

)
G(eiθ)

]}
≤ −G(1)

2
,

as required. 2

Recall that,

fJ0(G) := sup
q≥0

{
ess infθ∈(0,2π)Re

[(
q +

eiθ

eiθ − 1

)
G(eiθ)

]}
and

f0,J0(G) := ess infθ∈(0,2π)Re

[
G(eiθ)eiθ

eiθ − 1

]
.

Proposition 12.1.4. Let G ∈ B(l2(Z+,R)) be shift-invariant with transfer func-
tion G of G satisfying assumption (A). Then,

(i) −∞ < fJ0(G) ≤ ∞,

(ii) −∞ < f0,J0(G) ≤ G(∞)−G(1)/2.

Proof. We first note that it follows trivially from the definitions of fJ0(G) and
f0,J0(G) that

fJ0(G) ≥ f0,J0(G). (A.3)
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We claim that f0,J0(G) > −∞. From assumption (A) and the fact that G ∈
H∞(E1), we have that z 7→ zH(z) ∈ H∞(E1), where z ∈ E1 and H is given by
(A.1). Hence it follows that,

f0,J0(G) = ess infθ∈(0,2π)Re

[
(G(eiθ)−G(1))eiθ

eiθ − 1
+

G(1)eiθ

eiθ − 1

]
= ess infθ∈(0,2π)Re (eiθH(eiθ)) +

G(1)

2
> −∞,

where the final inequality follows from the fact that z 7→ zH(z) ∈ H∞(E1). Hence
f0,J0(G) > −∞ and it follows from (A.3) that fJ0(G) > −∞. Note that trivially
fJ0(G) ≤ ∞, which, together with the fact that fJ0(G) > −∞, shows that (i)
holds.

Define now
H̃(z) := zH(z), z ∈ E1.

Then H̃ ∈ H∞(E1) and

H̃(∞) = G(∞)−G(1).

By Lemma 12.1.1,

ess infθ∈(0,2π)Re H̃(eiθ) ≤ G(∞)−G(1).

Now,

Re H̃(eiθ) = Re

[
G(eiθ)eiθ

eiθ − 1

]
− G(1)

2
.

Hence

ess infθ∈(0,2π)Re

[
G(eiθ)eiθ

eiθ − 1

]
≤ G(∞)− G(1)

2
,

showing that f0,J0(G) ≤ G(∞) − G(1)/2, which, together with the fact that
f0,J0(G) > −∞, shows that (ii) holds. 2

Appendix 3: Details in Remark 5.1.3 (iii) and

(iv)

Proposition 12.1.5. Let f ∈ F (Z+,R). Then Jf ∈ m2(Z+,R) if and only if
(Jf)(n) converges to a finite limit as n→∞ and n 7→

∑∞
k=n f(k) is in l2(Z+,R).

Proof. Assume (Jf)(n) → σ ∈ R as n → ∞. Set h(n) :=
∑∞

k=n f(k) for all
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n ∈ Z+ and assume that h ∈ l2(Z+,R). Then

(Jf)(n) + h(n) = σ, ∀ n ∈ Z+,

showing that Jf ∈ m2(Z+,R). Conversely, if Jf ∈ m2(Z+,R), then

(Jf)(n) = h(n) + σ, ∀ n ∈ Z+, (A.4)

where σ ∈ R and h ∈ l2(Z+,R). Therefore h(n) → 0 as n→∞ and so

(Jf)(n) → σ =
∞∑

k=0

f(k).

Hence, by (A.4)
∞∑

k=n

f(k) = −h(n)

completing the proof. 2

Proposition 12.1.6. Let f ∈ F (Z+,R) be such that j 7→ f(j)jα is in l2(Z+,R)
for some α > 1, then n 7→

∑∞
j=n |f(j)| ∈ l2(Z+,R).

Proof. Let 1/2 < β ≤ α/2. Then

∞∑
j=n

|f(j)| = n−βnβ

∞∑
j=n

|f(j)| ≤ n−β

∞∑
j=n

|f(j)|jβ = n−β

∞∑
j=n

|f(j)|jαjβ−α, n ≥ 1.

Since β−α ≤ −α/2 < −1/2 it follows that j 7→ jβ−α ∈ l2(Z+,R). By assumption
j 7→ f(j)jα ∈ l2(Z+,R). Consequently, by Hölders inequality,

∞∑
j=n

|f(j)| ≤ n−β

∞∑
j=n

|f(j)|jαjβ−α

≤ n−β

( ∞∑
j=1

|f(j)|2j2α

)1/2( ∞∑
j=1

j2(β−α)

)1/2

≤ γn−β, n ≥ 1,

where γ := (
∑∞

j=1 |f(j)|2j2α)1/2(
∑∞

j=1 j
2(β−α))1/2 < ∞. Note that since j 7→

f(j)jα ∈ l2(Z+,R), it follows from Hölders inequality that,

∞∑
j=n

|f(j)| =
∞∑

j=n

|f(j)|jαj−α ≤
( ∞∑

j=0

|f(j)|2j2α

)1/2( ∞∑
j=n

j−2α

)1/2

, ∀ n ≥ 1.
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Hence, f ∈ l1(Z+,R) and we have

∞∑
n=0

( ∞∑
j=n

|f(j)|
)2

≤ ‖f‖2
l1 + γ

∞∑
n=1

n−2β.

Since 2β > 1, it follows that
∑∞

n=0 n
−2β < ∞, showing that n 7→

∑∞
j=n |f(j)| ∈

l2(Z+,R). 2

Appendix 4: Proof of Proposition 5.2.1

Proof of Proposition 5.2.1. By assumption, we have the following state-space
realisation of G,

G(z) = C(zI − A)−1B +D, z ∈ Eα

where 0 < α < 1, A ∈ B(X) is power stable, B ∈ B(R, X), C ∈ B(X,R),
D ∈ R and X denotes a Hilbert space. Defining x ∈ F (Z+, X) by,

x(n+ 1) = Ax(n) +B(ϕ ◦ u)(n), x(0) = 0, (A.5)

it follows that
w = g + Cx+D(ϕ ◦ u).

Since ϕ ◦ u ∈ l∞(Z+,R), it follows from Lemma 6.1.7 that x is bounded. Fur-
thermore,

w = g + C(x− (I − A)−1B(ϕ ◦ u)) + G(1)(ϕ ◦ u).

Note that since, by assumption, g(n) → 0 as n → ∞ we have g ∈ l∞(Z+,R).
Combining the previous it is clear that w ∈ l∞(Z+,R). Since w ∈ l∞(Z+,R), it
has a non-empty, compact ω-limit set Ω. By continuity of ψ and (5.18), it follows
that

ψ(ω) = ρ, ∀ ω ∈ Ω. (A.6)

Since ψ is monotone and continuous, it follows that ψ−1(ρ) is a closed interval.
It suffices to show that ψ−1(ρ) ∩G(1)imϕ 6= ∅. Indeed if there exists ξ ∈ ψ−1(ρ)
and v ∈ imϕ such that ξ = G(1)v, then ψ(G(1)v) = ψ(ξ) = ρ, showing that
ρ ∈ R(G,ϕ, ψ).

Seeking a contradiction, suppose that ψ−1(ρ) ∩G(1)imϕ = ∅. Then ψ−1(ρ) and
imϕ are closed disjoint intervals and so there exist ε > 0 and β = ±1 such that

inf{βξ | ξ ∈ ψ−1(ρ)} − sup{βG(1)v | v ∈ imϕ} = 2ε.

Moreover, since w(n) approaches its compact ω-limit set Ω as n → ∞, and, by
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(A.6), Ω ⊆ ψ−1(ρ), it follows that,

lim
n→∞

dist(βw(n), βψ−1(ρ)) = 0,

and so there exists N > 0 such that βw(n) > inf{βξ | ξ ∈ ψ−1(ρ)} − ε for all
n > N . Consequently,

β(w(n)−G(1)(ϕ ◦ u)(n)) ≥ βw(n)− sup{βG(1)v | v ∈ imϕ}
> inf{βξ | ξ ∈ ψ−1(ρ)} − ε− sup{βG(1)v | v ∈ imϕ}
= ε, ∀ n > N. (A.7)

By (A.5) it follows that,

(I − A)−1x(n+ 1) = (I − A)−1Ax(n) + (I − A)−1B(ϕ ◦ u)(n). (A.8)

Noting that (I − A)−1A = (I − A)−1 − I we obtain from (A.8),

(I − A)−1(4x)(n) = −(x(n)− (I − A)−1B(ϕ ◦ u)(n)).

Consequently,

C(I − A)−1(4x)(n) = g(n) + G(1)(ϕ ◦ u)(n)− w(n).

For n,N ∈ Z+ with n > N , summing the above from N to n− 1 gives

C(I − A)−1(x(n)− x(N)) =
n−1∑
k=N

(g(k) + G(1)(ϕ ◦ u)(k)− w(k)).

Since g(n) → 0 as n → ∞ there exists M ∈ N such that |g(n)| ≤ ε/2 for all
n ≥M . Choosing K ≥ max(N,M) and using (A.7), we have that,

−βC(I − A)−1(x(n)− x(K)) =
n−1∑
k=K

β(w(k)−G(1)(ϕ ◦ u)(k))− βg(k)

≥
(
ε− ε

2

)
(n−K)

=
(n−K)

2
ε, ∀ n > K.

Therefore limn→∞ βC(A− I)−1x(n) = ∞, contradicting the boundedness of x. 2

Remark 12.1.7. The proof of Proposition 5.2.1 is based on a modification of
the argument used in establishing the continuous-time result Proposition 3.4 of
[16]. 3
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Appendix 5: Proof of Lemmas 6.1.5, 6.1.6 and

6.1.7

Proof of Lemma 6.1.5. By (6.2) we have,

‖x(n)‖ ≤ ‖An‖‖x0‖+

∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥, n ≥ 1. (A.9)

Defining

ṽ(j) :=

{
v((n− 1)− j), if 0 ≤ j ≤ n− 1,

0, if j ≥ n,

it follows from (6.4) that,∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥ =

∥∥∥∥ ∞∑
j=0

AjBṽ(j)

∥∥∥∥ ≤ α‖ṽ‖l2 ≤ α‖v‖l2 , n ≥ 1, (A.10)

for some α ≥ 0. Noting that A is strongly stable, an application of the uniform
boundedness principle to {An}n∈N yields the existence of a constant K1 ≥ 0 such
that ‖An‖ ≤ K1 for all n ∈ N. Combining this fact with (A.10) and (A.9) yields

‖x(n)‖ ≤ K1‖x0‖+ α‖v‖l2 , ∀ n ∈ Z+.

Consequently, with K := max{K1, α},

‖x‖l∞ ≤ K(‖x0‖+ ‖v‖l2).

It remains to show that limn→∞ x(n) = 0. To this end note that by (6.1a) we
have, for m ∈ Z+,

x(n) = An−mx(m) +
n−1∑
j=m

A(n−1)−jBv(j), ∀ n ≥ m+ 1. (A.11)

Defining

ṽ(j) :=

{
v((n− 1)− j), 0 ≤ j ≤ n−m− 1,

0, otherwise,

it follows that

n−1∑
j=m

A(n−1)−jBv(j) =
n−m−1∑

j=0

AjBṽ(j), ∀ n ≥ m+ 1.
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Consequently, invoking (6.4) we obtain,∥∥∥∥ n−1∑
j=m

A(n−1)−jBv(j)

∥∥∥∥ =

∥∥∥∥ n−m−1∑
j=0

AjBṽ(j)

∥∥∥∥
≤ α

( n−1∑
j=m

‖v(j)‖2

)1/2

, n ≥ m+ 1, (A.12)

for some α ≥ 0. Let ε > 0. Since v ∈ l2(Z+, U), there exists m ≥ 0 such that

n−1∑
j=m

‖v(j)‖2 ≤
∞∑

j=m

‖v(j)‖2 ≤ ε2

4α2
, n ≥ m+ 1. (A.13)

By the strong stability of A there exists m1 ≥ 0 such that

‖Anx(m)‖ ≤ ε/2, ∀ n ≥ m1. (A.14)

Hence combining (A.12) - (A.14) with (A.11), we obtain for all n > m+m1

‖x(n)‖ ≤ ‖An−mx(m)‖+

∥∥∥∥ n−1∑
j=m

A(n−1)−jBv(j)

∥∥∥∥ ≤ ε

2
+
ε

2
= ε,

showing that limn→∞ ‖x(n)‖ = 0. 2

Proof of Lemma 6.1.6. Using the fact that 1 ∈ res(A), it follows from (6.1a)
that,

(I − A)−1x(n+ 1) = (I − A)−1Ax(n) + (I − A)−1Bv(n). (A.15)

Noting that (I − A)−1A = (I − A)−1 − I we obtain from (A.15),

(I − A)−1(4x)(n) = −(x(n)− (I − A)−1Bv(n)). (A.16)

Again by (6.1a)
(4x)(n+ 1) = A(4x)(n) +B(4v)(n). (A.17)

Since by assumption 4v ∈ l2(Z+, U), an application of Lemma 6.1.5 to (A.17)
yields limn→∞(4x)(n) = 0. Consequently, taking the limit as n → ∞ in (A.16)
we obtain

lim
n→∞

(x(n)− (I − A)−1Bv(n)) = 0.

2
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Proof of Lemma 6.1.7. Assume that A is power stable and let v ∈ l∞(Z+, U).
By power stability of A,

‖An‖ ≤ K1ρ
n, ∀ n ∈ Z+,

for some K1 ≥ 1 and 0 < ρ < 1. Consequently, ‖An‖ ≤ K1 for all n ∈ N. Hence
from (6.2) we obtain,

‖x(n)‖ ≤ ‖Anx0‖+

∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥
≤ K1‖x0‖+

∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥, n ≥ 1.

Consequently,

sup
n≥1

‖x(n)‖ ≤ K1‖x0‖+ sup
n≥1

∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥. (A.18)

Now by power stability of A, there exists an M ≥ 1 and γ ∈ (0, 1) such that

sup
n≥1

∥∥∥∥ n−1∑
j=0

A(n−1)−jBv(j)

∥∥∥∥ ≤ sup
n≥1

‖v(n)‖‖B‖ sup
n≥1

n−1∑
j=0

‖A(n−1)−j‖

≤ ‖v‖l∞‖B‖
( ∞∑

j=0

‖Aj‖
)

≤ M‖v‖l∞‖B‖
( ∞∑

j=0

γj

)
= K2‖v‖l∞ , (A.19)

where K2 := M‖B‖/(1− γ). Combining (A.18) and (A.19) yields

sup
n≥1

‖x(n)‖ ≤ K(‖x0‖+ ‖v‖l∞), (A.20)

where K := max{K1, K2} ≥ 1. Consequently, we see from (A.20) that x ∈
l∞(Z+, X) and

‖x‖l∞ ≤ K(‖x0‖+ ‖v‖l∞).

Suppose now that limn→∞ v(n) = v∞ exists. To see that limn→∞ x(n) = (I −
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A)−1Bv∞, we observe the following. Note that by (6.2) we obtain, for all n ≥ 1,

x(n) = Anx0 +
n−1∑
j=0

A(n−1)−jB(v(j)− v∞) +
n−1∑
j=0

A(n−1)−jBv∞

= Anx0 +
n−1∑
j=0

A(n−1)−jB(v(j)− v∞) + (I − A)−1Bv∞ − An(I − A)−1Bv∞.

Hence it follows that,

x(n)−(I−A)−1Bv∞ = An(x0−(I−A)−1Bv∞)+
n−1∑
j=0

A(n−1)−jB(v(j)−v∞), n ≥ 1.

Consequently, with z := x− (I − A)−1Bv∞ϑ and w := v − v∞ϑ, we have,

z(n) = Anz0 +
n−1∑
j=0

A(n−1)−jBw(j), n ≥ 1,

where z(0) = z0. Hence, for m ∈ Z+,

z(n) = An−mz(m) +
n−1∑
j=m

A(n−1)−jBw(j), ∀ n ≥ m+ 1. (A.21)

Now by power stability of A, there exists an M ≥ 1 and γ ∈ (0, 1) such that,∥∥∥∥ n−1∑
j=m

A(n−1)−jBw(j)

∥∥∥∥ ≤ sup
m≤j

‖w(j)‖‖B‖
( ∞∑

j=0

‖Aj‖
)

≤ sup
m≤j

‖w(j)‖‖B‖M
( ∞∑

j=0

γj

)
= sup

m≤j
‖w(j)‖‖B‖ M

1− γ

= α sup
m≤j

‖w(j)‖, n ≥ m+ 1, (A.22)

where α := M‖B‖/(1−γ). Let ε > 0. Since limn→∞w(n) = limn→∞(v(n)−v∞) =
0, there exists m ≥ 0 such that

‖w(j)‖ ≤ ε

2α
, ∀ j ≥ m.
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Hence by (A.22) we see that,∥∥∥∥ n−1∑
j=m

A(n−1)−jBw(j)

∥∥∥∥ ≤ ε

2
, ∀ n ≥ m+ 1. (A.23)

Since A is power stable, A is strongly stable and there exists m1 ≥ 0 such that

‖Anz(m)‖ ≤ ε

2
, ∀ n ≥ m1. (A.24)

Hence combining (A.23) and (A.24) with (A.21), we see that for all n > m+m1,

‖z(n)‖ ≤ ‖An−mz(m)‖+

∥∥∥∥ n−1∑
j=m

A(n−1)−jBw(j)

∥∥∥∥ ≤ ε

2
+
ε

2
= ε,

showing that limn→∞ ‖z(n)‖ = 0, or, equivalently, limn→∞ x(n) = (I−A)−1Bv∞.
2

Appendix 6: Proof of Lemmas 9.1.4 and 9.1.5

Proof of Lemma 9.1.4. Let x0 ∈ X, v∞ ∈ R be such that v−v∞ϑc ∈ L2(R+,R)
and assume that T is strongly stable. Note that for all t ∈ R+,

x(t) = Ttx
0 +

∫ t

0

Tt−sBv(s) ds

= Ttx
0 +

∫ t

0

Tt−sB(v(s)− v∞) ds+

∫ t

0

Tt−sBv
∞ ds

= Ttx
0 +

∫ t

0

Tt−sB(v(s)− v∞) ds+ (Tt − I)A−1Bv∞

= Tt(x
0 + A−1Bv∞) +

∫ t

0

Tt−sB(v(s)− v∞) ds− A−1Bv∞. (A.25)

Set z := x+ A−1Bv∞ϑc and w := v − v∞ϑc. Then by (A.25) we have

z(t) = Tt(x
0 + A−1Bv∞) +

∫ t

0

Tt−sBw(s) ds

= Ttz
0 +

∫ t

0

Tt−sBw(s) ds, ∀ t ∈ R+,
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where z(0) = z0. Consequently, for s0 ≥ 0,

z(t) = Tt−s0z(s0) +

∫ t

s0

Tt−sBw(s) ds, t ≥ s0. (A.26)

By infinite-time admissibility of B, there exists α > 0 such that∥∥∥∥∫ t

s0

Tt−sBw(s) ds

∥∥∥∥ ≤ α

(∫ t

s0

|w(s)|2 ds
)1/2

, ∀ t ≥ s0 ≥ 0. (A.27)

Let ε > 0. Since w := v − v∞ϑ ∈ L2(R+,R), we obtain from (A.27) that there
exists s0 ≥ 0 such that∥∥∥∥∫ t

s0

Tt−sBw(s) ds

∥∥∥∥ ≤ ε/2, ∀ t ≥ s0.

Finally, by strong stability, there exists s1 ≥ 0 such that

‖Ttz(s0)‖ ≤ ε/2, ∀ t ≥ s1.

It follows from (A.26), that ‖z(t)‖ ≤ ε for all t ≥ s0 + s1. Consequently, ‖x(t) +
A−1Bv∞‖ ≤ ε for all t ≥ s0 + s1. It is clear from the definition of z that
if v∞ = 0, we need no longer assume that 0 ∈ res(A) in order to show that
limt→∞ ‖x(t)‖ = 0. 2

Proof of Lemma 9.1.5. Let x0 ∈ X, w ∈ F (Z+,R), v = Hw and assume that
0 ∈ res(A). The solution of (9.3a) is given by

x(t) = Ttx
0 +

∫ t

0

Tt−sBv(s) ds, ∀ t ∈ R+,

or, equivalently,
x(t) = Ttx

0 + (Fv)(t), ∀ t ∈ R+, (A.28)

where F : L2
loc(R+,R) → L2

loc(R+, X) is the shift-invariant operator defined by

(Fu)(t) :=

∫ t

0

Tt−sBu(s) ds, u ∈ L2
loc(R+,R).

Define K : L2
loc(R+,R) → L2

loc(R+, X) by

(Ku)(t) := (FI u)(t) + A−1B(I u)(t), u ∈ L2
loc(R+,R).
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Recall from (7.12) that,

(I (H(4v)))(t) = τ(Hu)(t)− τu(0) + (t− ntτ)(H(4u))(t), (A.29)

∀ t ∈ R+, u ∈ F (Z+,R),

where τ > 0 denotes the sampling period and nt denotes the integer part of t/τ .

Set hc(t) := (t− ntτ)(H(4w))(t) for all t ∈ R+. By (A.29) it follows that,

(KH4w)(t) = (FIH4w)(t) + A−1B(IH4w)(t)

= τ(Fv)(t)− τ(Fϑc)(t)w(0) + (Fhc)(t) + τA−1Bv(t)

−τA−1Bw(0) + A−1Bhc(t), ∀ t ∈ R+. (A.30)

Rearranging (A.30) we obtain,

(Fv)(t) =
1

τ
(KH4w)(t) + (Fϑc)(t)w(0)− 1

τ
(Fhc)(t)

− A−1Bv(t) + A−1Bw(0)− 1

τ
A−1Bhc(t), ∀ t ∈ R+.

Combining this with (A.28) and rearranging gives,

x(t) + A−1Bv(t) =Ttx
0 +

1

τ
(KH4w)(t) + (Fϑc)(t)w(0)

− 1

τ
(Fhc)(t) + A−1Bw(0)− 1

τ
A−1Bhc(t), ∀ t ∈ R+.

(A.31)

A straightforward calculation shows that

Fϑc = (T− I)A−1B,

and

(Ku)(t) =

∫ t

0

Tt−sA
−1Bu(s) ds, ∀ u ∈ L2

loc(R+,R).

Combining the above with (A.31) gives

x(t) + A−1Bv(t) =Tt(x
0 + A−1Bw(0)) +

1

τ

∫ t

0

Tt−sA
−1B(H4w)(s) ds

− 1

τ
(Fhc)(t)−

1

τ
A−1Bhc(t), ∀ t ∈ R+. (A.32)

Note that since 4w ∈ l2(Z+,R), it follows that H(4w) ∈ L2(R+,R). Further-
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more, since the function

t 7→ t− ntτ = t− τbt/τc, t ∈ R+

is bounded (it takes values in [0, τ)), it follows that hc ∈ L2(R+,R) and moreover,

lim
t→∞

hc(t) = 0. (A.33)

To prove that limt→∞ ‖x(t) + A−1Bv(t)‖ = 0, note that by (A.32), (A.33) and
the strong stability of T it is sufficient to show that∫ t

0

Tt−sA
−1B(H4w)(s) ds− (Fhc)(t) → 0, t→∞.

We first show that

lim
t→∞

∫ t

0

Tt−sA
−1B(H4w)(s) ds = 0. (A.34)

Since, ∫ t

0

Tt−sA
−1B(H4w)(s) ds = A−1

∫ t

0

Tt−sB(H4w)(s) ds

and H4w ∈ L2(R+,R), an application of 9.1.4 shows that (A.34) holds. Noting
that

(Fhc)(t) =

∫ t

0

Tt−sBhc(s) ds,

and hc ∈ L2(R+,R), again applying Lemma 9.1.4, we see that

lim
t→∞

(Fhc)(t) = 0.

Hence we have that limt→∞ ‖x(t) + A−1Bv(t)‖ = 0. 2

Remark 12.1.8. The proof of Lemma 9.1.5 is inspired by similar arguments to
those used to prove Lemma 5.2 of [38]. The result in [38] differs from Lemma
9.1.5 in that, the input v is assumed to be in W 1,1

loc (R+,R) with derivative v′ ∈
L2(R+,R), whereas, we make no assumptions about the derivative of v, or the
integrability of v. 3
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hold operator, H, 128

incremental sector condition, 79
input-output operator, 105

linear multistep method (LMM), 177
convergent, 179
consistent, 179
strictly zero-stable, 178
zero-stable, 178

linear stability domain, S, 188

observation operator, 165
bounded, 165
unbounded, 165

Paley-Wiener theorem, 124
Parseval-Bessel theorem, 30
partition, 19
piecewise continuous function, 15
polynomials, ρ, σ, 177
power stable

operator, 105
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