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Summary

We investigate stability and convergence properties of forced Lur’e systems, that is, sys-
tems comprising a linear system in the forward path, a static nonlinearity in the feed-
back path and a forcing or input. In both the finite- and infinite-dimensional settings,
we develop various sufficient conditions for when such systems are input-to-state stable,
incrementally input-to-state stable, and exhibit the converging-input converging-state
property. We also study the effect that asymptotically almost periodic inputs have on
corresponding state and output trajectories of the aforementioned systems. Finally, we
note that we consider very general versions of forced Lur’e systems, and so we are able
to apply our results to a variety of applications. For instance, we deduce stability and
convergence properties of ‘four-block’ Lur’e systems, which are forced Lur’e systems
where the input and output spaces are split in two and only one part of the output is
utilised for feedback and is fed back into one part of the input. We also deduce stability
properties of sampled-data integral control systems.
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Notation

We denote the sets of real and complex numbers by R and C, respectively. Furthermore,
we denote the set of integers by Z and the set positive integers by N. We define
Z+ := N ∪ {0} and R+ := [0,∞). For α > 0, we define Dα := {z ∈ C : |z| < α} and
Eα := {z ∈ C : |z| > α}, and for α ∈ R, we define Cα := {s ∈ C : Re (s) > α}. For
convenience, we label D := D1 and E := E1. Furthermore, we set ∂D := {z ∈ C : |z| =
1} and clos(E) := {z ∈ C : |z| ≥ 1}.

If τ ∈ Z+, then we define τ := {0, 1, . . . , τ} and τ := {τ, τ + 1, . . .}. Furthermore, for
t ∈ R, we define btc to be the greatest integer less than or equal to t, and dte to be
the smallest integer greater than or equal to t. We note that bt/2c + dt/2e = t for all
t ∈ Z+.

For two nonempty sets S1, S2, we denote the Minkowski sum of S1 and S2 by S1 + S2,
that is,

S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

For a normed vector space U , we denote the norm on U by ‖ · ‖U . When U is finite-
dimensional, since all norms are equivalent, we will drop the subscript U notation and
will just write ‖ · ‖. Moreover, for a Hilbert space W , we denote the inner product on
W by 〈·, ·〉W . If W = Cn or Rn, then we shall simply write 〈·, ·〉 and take the inner
product to be the standard complex or real inner product, respectively.

For ξ ∈ U and r > 0, we define

BU (ξ, r) := {ζ ∈ U : ‖ζ − ξ‖U < r} and clos (BU (ξ, r)) := {ζ ∈ U : ‖ζ − ξ‖U ≤ r},

and, when the context is clear, we shall drop the subscript U . Further, in the case that
U = Cm×p or Rm×p, if the context is clear, we shall write BC(ξ, r) := BCm×p(ξ, r) and
BR(ξ, r) := BRm×p(ξ, r).

For Banach spaces V , V1 and V2, we denote by L(V1, V2) the space of bounded linear
operators mapping V1 → V2. We set L(V ) := L(V, V ). In addition to this, we denote
the spectrum of M ∈ L(V ) by σ(T ). In the finite-dimensional case, we say that a square
matrix M is Schur if its spectral radius is less than one, or, equivalently, if σ(M) ⊆ D.
Additionally, we say that M is Hurwitz if every eigenvalue of M has negative real part.

We denote the adjoint of M ∈ L(W ) by M∗, and, in the case that W = Rn, we shall
denote the transpose of M by MT . If M ∈ L(W ) is self-adjoint, then we say that
M is positive semi-definite if 〈ξ,Mξ〉W ≥ 0 for all ξ ∈ W , and positive definite if
〈ξ,Mξ〉W > 0 for all ξ ∈W\{0}. In the former, we write that M ≥ 0, and in the latter
we write that M > 0. Similarly, we say that M is negative semi-definite if −M ≥ 0,
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and negative definite if −M > 0. We write these properties as M ≤ 0 and M < 0,
respectively.

For a given function v : T → U and τ ∈ T, where T = R+, R, Z+ or Z, we define
Λτv : T→ U by (Λτv)(t) = v(t+ τ) for all t ∈ T. Depending on the sign of τ , we shall
call this function a left or right shift of v and may also say that Λτ is the left or right
shift operator (of magnitude τ). We set v+ := Λ1v for all v : Z → U , where Z = Z+ or
Z. Moreover, for τ ∈ Z+ and u : Z+ → U , we define the truncation of u of magnitude
τ by

(πτu)(s) :=

{
u(s), if s ∈ τ ,
0, if s ∈ τ + 1.

If α > 0, we define the Hardy space

H∞α (V ) := {H : Eα → V : H is holomorphic and bounded},

endowed with the norm
‖H‖H∞α := sup

z∈Eα
‖H(z)‖V .

In the situation that α = 1, we set H∞(V ) := H∞1 (V ), and if, additionally, V = Cp×m,
then we may sometimes write H∞p×m := H∞1 (V ).

For Z = Z+ or Z, we denote the set of functions v : Z → U by UZ . Moreover, for
p ∈ [1,∞), we let `p(Z+, U) denote the subspace of UZ+ such that

∞∑
k=0

‖v(k)‖pU <∞,

endowed with the norm

‖v‖`p :=

( ∞∑
k=0

‖v(k)‖pU

)1/p

.

Furthermore, for ρ > 0, we define the weighted `2 space

`2ρ(Z+, U) :=

v ∈ `2(Z+, U) :

( ∞∑
k=0

‖v(k)‖2Uρ2k

)1/2

<∞

 ,

with norm

‖v‖`2ρ :=

( ∞∑
k=0

‖v(k)‖2Uρ2k

)1/2

.

We let `∞(Z,U) be the subspace of UZ such that supk∈Z ‖v(k)‖U <∞, endowed with
the norm ‖v‖`∞ := supk∈Z ‖v(k)‖U .

The preimage of a set W ⊆ U under a function f : U → U is denoted by f−1(W ),
and in the situation where W = {ξ}, a singleton set, we shall abuse notation and write
f−1(ξ) = f−1({ξ}). The cardinality of f−1(W ) is denoted by #f−1(W ).

Finally, we abbreviate the phrase “almost everywhere” to “a.e.”.
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Chapter 1

Introduction

In this thesis, we investigate stability and convergence properties of forced Lur’e sys-
tems [81], with a focus on the discrete-time setting. Illustrated in Figure 1.1, Lur’e
systems comprise a linear system in the forward path and a static nonlinearity in the
feedback path. The study of these types of system constitutes absolute stability theory,

Σ

f

v y

Figure 1.1: Lur’e system with linear part Σ, nonlinearity f , output y and input v

which seeks to conclude stability via the interplay of frequency-domain properties of
the linear component and sector properties of the nonlinearity. As early as the 1940s,
Lyapunov approaches have been used to infer global asymptotic stability of unforced
Lur’e systems (see, for example, [53, 66, 71]). Moreover, input/output methods, pio-
neered by Sandberg and Zames in the 1960s, have been utilised to deduce L2 and L∞

stability (see, such as, [31, 121]).

An interesting notion associated with general controlled nonlinear systems is that of
input-to-state stability (ISS). Originating in the paper [110], roughly, ISS guarantees a
natural boundedness property of the state, in terms of initial conditions and inputs. It
is a well-documented area of research, see for example [28, 61, 62], the survey papers
[27, 113] and the forthcoming references. In the context of forced Lur’e systems, much
work has been completed in determining the extent to which assumptions that guar-
antee absolute stability, can be extended to also ensure ISS [7, 58, 59, 107, 108, 109].
A well-known quality of ISS systems is the 0-converging-input converging-state prop-
erty which, roughly, means that when inputs converge to zero, so do corresponding
state trajectories. Recently, in the paper [15], a general notion of a converging-input
converging-state (CICS) property was defined, and sufficient conditions were presented
that guarantee that forced continuous-time Lur’e systems exhibit this property. We
note that ISS results from the paper [107] were applied to prove the main results.

A related concept to ISS is incremental ISS, which is concerned with bounding the
difference of two state trajectories in terms of the difference of initial conditions and
the difference of inputs. For background information regarding incremental stability
notions for general nonlinear systems, we refer the reader to [5], which constructs a
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suite of Lyapunov methods for incremental ISS for finite-dimensional, continuous-time
nonlinear control systems. Related ideas, which have been explored in the contexts
of contraction methods and convergent systems, can be found in [2, 63, 99] and the
references therein.

Frequently in the literature (see, for example, [7, 15, 107, 108]), forced Lur’e systems
of the form

x+ = Ax+Bf(y) +Bv, y = Cx, (1.1)

or
x+ = Ax+Bf(y) + v, y = Cx, (1.2)

or continuous-time analogues, where A,B and C are appropriately sized matrices, v
is a forcing function, and f is a nonlinear function, have been considered in an ISS
or CICS framework. We call the variables x and y the state and output, respectively.
Of key interest to us in this thesis, is the investigation of stability and convergence
properties of a more general system, namely

x+ = Ax+Bf(y + w) +Bev, y = Cx+Df(y + w) +Dev, (1.3)

where, in addition to the setup for the previous two systems, Be, D andDe are appropri-
ately sized matrices and w is a disturbance function. The system (1.3) has potentially
nonzero feedthrough (i.e. D need not be 0), forcing arising through external matrices
(Be and De) and output disturbances (i.e. w). The inclusion of the function w in (1.3)
is to model errors. For example, errors naturally arise in practical applications from
the action of feeding back the output. As we shall see in this thesis, systems of the form
(1.3) encompass many other (even seemingly more general) systems. One such is the
‘four-block’ Lur’e system [40, 47], which is a forced Lur’e system where the input and
output spaces are split in two, and only one part of the output is utilised for feedback
purposes and is fed back into one part of the input. We comment that the investigation
of stability and convergence properties of the more general system given by (1.3), is an
entirely nontrivial extension of that of (1.1) and (1.2), as we shall prove.

In the forthcoming presentation, we shall be interested not only with finite-dimensional
Lur’e systems of the form (1.3), but also with infinite-dimensional ones. By this, we
mean that A,B,Be, C,D and De are bounded linear operators, each mapping from a
Banach space to a Banach space, f is a nonlinear vector-valued function, and v and w
are also vector-valued.

A further theme of this thesis, is the extent to which almost periodic forcing leads to
almost periodic state and output trajectories of forced Lur’e systems. Almost periodic
functions are a generalisation of the notion of continuous periodic functions, and were
first conceived by Harold Bohr in the 1920s [16]. They are frequently used in the theory
of differential and difference equations (see, for example, [34, 52, 105, 128]), and much
work has been attributed to the theory. Indeed, several further generalisations of the
notion have been developed (see, for example, [14]). In this thesis, we shall concern
ourselves with providing sufficient conditions for when state and output trajectories of
forced Lur’e systems converge asymptotically to almost periodic functions, when under
forcing that converge asymptotically to almost periodic functions.

The layout of the thesis is as follows. In Part I we consider finite-dimensional forced
Lur’e systems. In particular, in Chapter 2, we extend the ISS results of [108] to sys-
tems of the form (1.3), and then utilise these to obtain discrete-time analogues of the
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Chapter 1. Introduction

CICS results of [15], but which holds for systems of the form (1.3). Moreover, we
also investigate stability and convergence properties of the output of (1.3), which is
a nontrivial exercise in the situation that D 6= 0. In [15], the continuous-time ver-
sion of (1.2) is considered, and in [108], the authors investigate (1.2). Neither paper
considers output stability or convergence, owing to the fact that without feedthrough,
these are immediately obtained from stability and convergence properties of the state,
respectively. In Chapter 3, we present sufficient conditions for when (1.3) exhibits a
semi-global version of incremental ISS, and determine hypotheses that guarantee that
asymptotically almost periodic inputs generate asymptotically almost periodic state
and output trajectories. The final chapter of Part I is Chapter 4, where we once again
investigate ISS and CICS of (1.3), but with different hypotheses to those presented in
Chapter 2. Indeed, we develop sufficient conditions that allow for potentially superlin-
ear nonlinearities, which differs from Chapter 2, where the nonlinearity is assumed to
satisfy a linear bound. We comment that the chapter is inspired by [7], where similar
assumptions are used to deduce ISS of the continuous-time version of (1.1).

Moving on to Part II, our attention here concerns infinite-dimensional forced Lur’e
systems. In Chapter 5, by imposing stronger assumptions than that given in Part I of
this thesis, we deduce exponential incremental ISS and convergence properties of the
infinite-dimensional version of (1.3). The final chapter of this thesis is Chapter 6, which
utilises the results of Chapter 5 to obtain stability of an infinite-dimensional sampled-
data integral control system. We delay giving a thorough background of integral control
and sampled-data integral control until Chapter 6, and so we refer the reader there for
a review of the relevant literature. What we will say here, however, is that in sampled-
data control, a continuous-time system is controlled by a discrete-time controller. One
may think of this discrete-time controller as a processor of a digital computer.

Finally, this thesis concludes with several appendices. Appendix A provides a proof for
the proposition that the existence of a certain function guarantees ISS of (1.3). More-
over, Appendix B presents a convergence result for a discrete-time control system with
an asymptotically stable equilibrium, and Appendix C gives a thorough presentation
of almost periodic functions over the time domains R,R+,Z and Z+.

We close this introduction by stating that some of the results of this thesis have been
either accepted for publication or submitted for publication (see [38]-[42]).
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Part I

Finite-dimensional Lur’e systems
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Chapter 2

Stability and convergence
properties of discrete-time Lur’e
systems

In this chapter, we concern ourselves with stability and convergence properties of a class
of discrete-time control systems illustrated by Figure 1.1. As mentioned in the intro-
duction, these systems are termed Lur’e systems and their study constitutes absolute
stability theory. In the interest of not repeating ourselves, we refer the reader to the
introduction for more details. Moreover, we also refer the reader there for background
and brief descriptions of ISS and the CICS property. What we shall recall here, is that
in the paper [15], a general notion of the CICS property was defined, and sufficient
conditions were presented that guarantee that forced continuous-time Lur’e systems,
of the form

ẋ = Ax+Bf(y) + v, x(0) = x0, y = Cx, (2.1)

where A, B and C are appropriately sized matrices, f is a nonlinear function and v is
a forcing function, exhibit this property. Interestingly, ISS results from the paper [107]
were utilised to prove the main results.

Presently, we concern ourselves with discovering discrete-time analogues of the results
of [15], although in a more general setting. To illustrate what we mean by this, we are
interested in the discrete-time Lur’e system given by (1.3), where A, B, Be, C, D and
De are appropriately sized matrices, f is a nonlinear function, v is a forcing function
and w may be perceived to be an output disturbance. As discussed in the introduction,
this is a much more general system than (1.1) and (1.2), and so allows for a larger class
of potential applications. Moreover, as we shall see in this chapter, the investigation
of the stability and convergence properties of this system is a nontrivial generalistion
of that of (1.1) and (1.2). Now, as previously mentioned, the main results of [15]
utilise ISS results from [107]. With the intention of acting in a similar manner but for
the system (1.3), we shall require discrete-time ISS results for (1.3). The paper [108]
provides sufficient criteria for (1.2) being ISS, and [106] gives conditions that guarantee
ISS of systems of the form

x+ = Ax+Bf(y) +Bv, y = Cx+Df(y) +Dv.

Unfortunately these results cannot be applied to (1.3), and so the present chapter
thus involves forming generalised versions of the ISS results of [108], which are then
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Chapter 2. Stability and convergence properties of discrete-time Lur’e systems

applicable to (1.3). Once we have obtained these results, we shall then apply them to
yield discrete-time versions (in the more general setting of (1.3)) of the main results of
[15].

In addition to the previous, we also investigate stability and convergence properties
related to the output, namely, input-to-state/output stability and the converging-input
converging-state/output property. The papers [108] and [15] do not consider these
notions, owing to that fact that, for systems without feedthrough, any stability and
convergence properties of the state apply immediately to the output. However, when
the feedthrough matrix is nonzero, these are nontrivial notions, as we shall see.

The chapter is organised as follows. We begin in Section 2.1 by presenting preliminary
definitions and results. Indeed, we give relevant theory concerning linear difference
equations and, in particular, discuss linear output feedback via a method commonly
referred to as “loopshifting” (see, for example, [44, pp.98-106]). We also use a version of
the bounded real lemma in order to obtain results regarding quadratic forms. Moving
on to Section 2.2, we prove the previously mentioned input-to-state/output stability
results for forced discrete-time Lur’e systems of the form (1.3). In Section 2.3, we
concern ourselves with convergence properties of these systems, and this section is the
aforementioned discrete-time extension of [15]. Finally, in Section 2.4, we highlight the
generality of our forced Lur’e system by applying the previous results to ‘four-block’
Lur’e systems.

2.1 Preliminaries

In this initial section, we begin by recalling notions of comparison functions and by
presenting relevant results. Following this, we collect theory of linear discrete-time
systems and then give key results involving quadratic forms that will underpin the
main results of the next section. Finally, we discuss the Lur’e system that is central to
our study.

2.1.1 Comparison functions

We start with the following definition.

Definition 2.1.1. We define

K := {α : R+ → R+ : α(0) = 0, α strictly increasing and continuous},

and
K∞ :=

{
α ∈ K : lim

s→∞
α(s) =∞

}
.

Furthermore, we define KL to be the set of functions ψ : R+ × Z+ → R+ such that:
for each fixed t ∈ Z+, the function ψ(·, t) ∈ K; and, for each fixed s ∈ R+, the function
ψ(s, ·) is non-increasing and limt→∞ ψ(s, t) = 0.

We comment that comparison functions will appear frequently in the forthcoming sta-
bility analysis.

We shall now present a series of properties of comparison functions. We begin with the
following two results, which we shall not prove since they are easy to do so.

9



2.1. Preliminaries

Lemma 2.1.2. The addition, multiplication, minimum, maximum or composition of
a finite number of functions in K (respectively, K∞) is also in K (respectively, K∞).
Furthermore, the inverse of a K∞ function exists and is itself a K∞ function.

Lemma 2.1.3. Let α ∈ K. Then

α(s1 + s2) ≤ α(2s1) + α(2s2) ∀ s1, s2 ∈ R+.

The next two results each present an unboundedness property of certain K∞ functions.

Lemma 2.1.4. Let ε > 0 and α ∈ K∞. The following statements hold.

(i) √
(1 + ε)s−

√
s→∞ as s→∞.

(ii)

α
(√

(1 + ε)s
)

(1 + ε)s− α
(√
s
)
s→∞ as s→∞.

Proof. We begin by noting the following two trivial identities. The first is that
√
a+ b ≤

√
a+
√
b ∀ a, b ≥ 0, (2.2)

which is obtained by recalling that

(a+ b)2 ≥ a2 + b2 ∀ a, b ≥ 0.

The second identity is that

a− b =
a2 − b2

a+ b
∀ a, b > 0. (2.3)

By combining (2.2) and (2.3), we see that√
(1 + ε)s−

√
s =

εs√
(1 + ε)s+

√
s
≥ εs

(2 +
√
ε)
√
s

=
ε

2 +
√
ε

√
s ∀ s > 0.

This tends towards ∞ as s → ∞, hence giving statement (i). As for statement (ii),
since α ∈ K∞, α is strictly increasing and so

α
(√

(1 + ε)s
)

(1 + ε)s− α
(√
s
)
s ≥ α

(√
(1 + ε)s

)
(1 + ε)s− α

(√
(1 + ε)s

)
s

= α
(√

(1 + ε)s
)
εs ∀ s > 0.

This again tends to ∞ as s→∞, whence completing the proof.

Lemma 2.1.5. Let α, β ∈ K∞ and define γ ∈ K∞ by

γ(s) := min{α(s), β(s)} ∀ s ≥ 0.

If, for some ε > 0,

lim
s→∞

(α((1 + ε)s)− α(s)) =∞ and lim
s→∞

(β((1 + ε)s)− β(s)) =∞, (2.4)

then
lim
s→∞

(γ((1 + ε)s)− γ(s)) =∞. (2.5)

10



Chapter 2. Stability and convergence properties of discrete-time Lur’e systems

Proof. Assume that, for some ε > 0, (2.4) holds. Define d(s) := γ((1 + ε)s)− γ(s), for
all s ≥ 0. Fix M ≥ 0 and let sα ≥ 0 and sβ ≥ 0 be such that

α((1 + ε)s)− α(s) ≥M and β((1 + ε)s)− β(s) ≥M,

for all s greater than or equal to sα and sβ, respectively. The existence of such constants
is guaranteed by (2.4). We claim that d(s) ≥ M for all s ≥ max{sα, sβ}. To see this,
fix s ≥ max{sα, sβ} and consider the following four cases. The first two cases comprise
(i) γ((1 + ε)s) = α((1 + ε)s) and γ(s) = α(s), and (ii) γ((1 + ε)s) = β((1 + ε)s) and
γ(s) = β(s). Both of these cases trivially imply that d(s) ≥ M . The next case is (iii)
γ((1 + ε)s) = α((1 + ε)s) and γ(s) = β(s). This implies that α((1 + ε)s) ≤ β((1 + ε)s)
and β(s) ≤ α(s). We therefore see that

d(s) = α((1 + ε)s)− β(s) ≥ α((1 + ε)s)− α(s) ≥M.

The final case: (iv) γ((1 + ε)s) = β((1 + ε)s) and γ(s) = α(s), is proven similarly
and thus is omitted. Since M was arbitrary, we have therefore shown that (2.5) holds,
completing the proof.

The following is a useful relationship between two K∞ functions.

Lemma 2.1.6. Let α, β ∈ K∞ and µ ≥ 0. Then there exists γ ∈ K∞ such that

γ(s+ β(s))(s+ β(s))2 ≤ α(s) ∀ s ∈ [0, µ].

Proof. To begin with, if µ = 0 then the result is trivial and so let us assume that µ > 0.
For convenience, define ψ(s) := s + β(s) for all s ≥ 0, and note that ψ ∈ K∞ from
Lemma 2.1.2. We further define λ := (ψ(µ))2 > 0 and

γ(s) :=
1

λ
α(ψ−1(s)) ∀ s ≥ 0.

We then have, again from Lemma 2.1.2, that γ ∈ K∞, and also that

γ(s) ≤ α(ψ−1(s))

s2
=

α(ψ−1(s))

(ψ(ψ−1(s)))2
∀ s ∈ (0, ψ(µ)].

This in turn implies that

γ(ψ(s))(ψ(s))2 ≤ α(s) ∀ s ∈ [0, µ],

thus completing the proof.

We conclude this discussion of comparison functions with the subsequent two lemmas.
They can be found in [108, Lemma 14] and [108, Proposition 19] respectively, but are
presented here for completeness.

Lemma 2.1.7. Let α ∈ K∞. The following statements hold.

(i) There exists γ ∈ K∞ such that

s1s2 ≤ s1α(s1) + γ(s2) ∀ s1, s2 ≥ 0.

11
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(ii) For every ε > 0,

α(s1 + s2) ≤ α((1 + ε)s1) + α((1 + ε−1)s2) ∀ s1, s2 ≥ 0.

(iii) Define α̃ ∈ K∞ by α̃(s) :=
√
sα(
√
s). For every ε > 0, there exists η ∈ K∞ such

that

α̃(s1 − s2) ≤ α̃((1 + ε)s1)− η(s2) ∀ s1 ≥ s2 ≥ 0,

and η(s)/
√
s→∞ as s→∞.

Lemma 2.1.8. Let α ∈ K∞ and ε > 0. Assume that

lim
s→∞

(α((1 + ε)s)− α(s)) =∞

and define η : R+ → R+ by

η(s) := inf
σ∈[0,∞)

(α((1 + ε)(s+ σ))− α(σ)) ∀ s ≥ 0.

Then η ∈ K∞ and

α(s1 − s2) ≤ α((1 + ε)s1)− η(s2) ∀ s1 ≥ s2 ≥ 0.

2.1.2 Linear systems theory and linear output feedback

Our attention now turns towards the theory of linear difference equations. Indeed, we
shall consider the following system:

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

}
(2.6)

where

(A,B,Be, C,D,De) ∈ Rn×n × Rn×m × Rn×q × Rp×n × Rp×m × Rp×q,

u ∈ (Rm)Z+ , v ∈ (Rq)Z+ and n,m, p, q ∈ N. We shall call the variables x and y in (2.6)
the state and output, respectively, and we will label u and v as inputs or forcing.

In order to ease notation, we make the following conventions.

Definition 2.1.9. (i) We set

L := Rn×n × Rn×m × Rn×q × Rp×n × Rp×m × Rp×q.

(ii) For (A,B,Be, C,D,De) ∈ L, we label

Σ := (A,B,Be, C,D,De).

The following remark gives some motivation of the study of (2.6).

12
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Remark 2.1.10. For a given Σ ∈ L, (2.6) encompasses seemingly more general sys-
tems. Indeed, the linear difference equation

x+ = Ax+Bu+ v1,

y = Cx+Du+ v2,

}

where v1 ∈ (Rn)Z+ and v2 ∈ (Rp)Z+ , is a special case of (2.6) if we take Be :=
(
I 0

)
,

De :=
(
0 I

)
and v :=

(
v1 v2

)T
. ♦

We now make a series of definitions associated with (2.6), beginning with the following.

Definition 2.1.11. Let Σ ∈ L. We denote by G the transfer function of Σ (or of
(2.6)) from u to y, that is,

G(z) = C(zI −A)−1B +D,

for all z ∈ C for which the right-hand side makes sense.

As seen in much of the literature (see, for example, [40, 47, 107, 108]), it is often conve-
nient to talk in terms of the behaviour of systems of the form (2.6), hence motivating
the following definition.

Definition 2.1.12. Let Σ ∈ L. We define the behaviour of the linear system (2.6) as

Blin(Σ) :=
{

(u, v, x, y) ∈ (Rm)Z+ × (Rq)Z+ × (Rn)Z+ × (Rp)Z+ :

(u, v, x, y) satisfies (2.6)
}
,

and, when the context is clear, we shall suppress this to simply Blin.

We also give the following terminology.

Definition 2.1.13. Let Σ ∈ L. We say that Σ is: controllable if (A,B) is, observable
if (A,C) is, stabilisable if (A,B) is, and detectable if (A,C) is.

We are now interested in linear output feedback matrices of state-space systems. For
motivation of the sequel, let Σ ∈ L, K ∈ Rm×p and (u, v, x, y) ∈ Blin. If we set
ũ := u−Ky, then (2.6) gives that

x+ = Ax+BKy +Bũ+Bev,

y = Cx+DKy +Dũ+Dev.

Moreover, if I −DK is invertible, then the output equation can be written as

y = (I −DK)−1Cx+ (I −DK)−1Dũ+ (I −DK)−1Dev,

which in turn implies that

x+ =
(
A+BK(I −DK)−1C

)
x+

(
B +BK(I −DK)−1D

)
ũ

+ (Be +BK(I −DK)−1De)v.

13



2.1. Preliminaries

We hence see that (ũ, v, x, y) ∈ Blin(Σ̃), where Σ̃ ∈ L has linear components given by
the matrices

A+BK(I −DK)−1C, B +BK(I −DK)−1D, Be +BK(I −DK)−1De,

(I −DK)−1Cx, (I −DK)−1D, (I −DK)−1De.

The previous argument is often termed “loop shifting” (see, for example, [44, pp.98-
106]), although in classical loopshifting, Be = B and De = D.
With the above in mind, we now make the following definition.

Definition 2.1.14. Let F := R or C and D ∈ Fm×p. We define the set of admissible
feedback matrices of D (over F) by

AF(D) := {L ∈ Fm×p : I −DL is invertible}.

We note that, trivially, 0 ∈ Rm×p is admissible for all D ∈ Cp×m and AF(0) = Fm×p.

A characterisation of admissibility is now given.

Lemma 2.1.15. Let D,L ∈ Cm×p. Then I −DL is invertible if, and only if, I − LD
is invertible, and, in which case,

L(I −DL)−1 = (I − LD)−1L. (2.7)

Proof. To begin with, assume that I −DL is invertible and note that(
L(I −DL)−1D + I

)
(I − LD) = L(I −DL)−1D − L(I −DL)−1DLD + I − LD

= L(I −DL)−1 (I −DL− (I −DL))D + I

= I.

In a similar fashion we may also obtain that (I−LD)
(
L(I −DL)−1D + I

)
= I, whence

giving that I − LD is invertible. The reverse implication can be proven in a similar
manner, and so we leave it to the reader. To conclude the proof, we note the identity

(I − LD)L = L− LDL = L(I −DL)

gives (2.7) if we apply (I − LD)−1 and (I −DL)−1 on the left- and right-hand sides,
respectively.

For ease of notation, we make the next definition.

Definition 2.1.16. Let Σ ∈ L and L ∈ AC(D). We define the matrices

AL := A+BL(I −DL)−1C, BL := B +BL(I −DL)−1D,

CL := (I −DL)−1C, DL := (I −DL)−1D.

Remark 2.1.17. Let Σ ∈ L.

(i) If L ∈ AC(D), then from Lemma 2.1.15, we see that

BL = B +B(I − LD)−1LD = B(I − LD)−1. (2.8)

In the subsequent work, this alternate definition of BL will some times be more
useful than the original definition, and hence we shall use both interchangeably.
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(ii) If L ∈ AR(D), then AL, BL, CL and DL are all real matrices.

♦

The following lemma is a formal declaration of the loopshifting discussion given before
Definition 2.1.14.

Lemma 2.1.18. Let Σ ∈ L and L ∈ AC(D). Then (u, v, x, y) ∈ Blin if, and only if,
(u, v, x, y) satisfies

x+ = ALx+BL(u− Ly) + (Be +BLLDe)v ,

y = CLx+DL(u− Ly) + (I −DL)−1Dev .

}
(2.9)

Proof. The proof follows the method outlined in the discussion given immediately prior
to Definition 2.1.14, and so we shall be brief. Let (u, v, x, y) ∈ Blin. Then (I −DL)y =
Cx + D(u − Ly) + Dev and so, trivially, y = CLx + DL(u − Ly) + (I − DL)−1Dev.
With this in mind, by recalling Lemma 2.1.15 and (2.8), it is easy to see that

x+ = ALx+Bu+Bev −BL(I −DL)−1Cx

= ALx+Bu+Bev −BLy +BLDL(u− Ly) +B(I − LD)−1LDev

= ALx+ (B +BLDL)(u− Ly) +Bev +BLLDev

= ALx+BL(u− Ly) + (Be +BLLDe)v.

Whence, we have shown that (u, v, x, y) satisfies (2.9). The converse implication can
be proven by reversing the previous argument and therefore we omit the proof.

Again, for ease of notation, we make the subsequent definition.

Definition 2.1.19. Let Σ ∈ L and L ∈ AC(D).

(i) We denote the linear components of the feedback system (2.9) by ΣL, that is,

ΣL := (AL, BL, Be +BLLDe, C
L, DL, (I −DL)−1De).

(ii) We denote by GL the transfer function of the system ΣL (or of (2.9)), that is,

GL(z) = CL(zI −AL)−1BL +DL.

It is routine to show that GL = G(I − LG)−1.

(iii) For F := R or C, we define the set of stabilising feedback matrices (over F) by

SF(G) := {M ∈ AF(D) : GM ∈ H∞p×m}.

The following is, in a sense, an associativity result for admissible feedback matrices.

Lemma 2.1.20. Let Σ ∈ L and L ∈ AC(D). For M ∈ Cm×p, M ∈ AC(DL) if, and
only if, L+M ∈ AC(D), and in which case,

ΣL+M = (ΣL)M and (GL)M = GL+M .
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An explicit proof of Lemma 2.1.20 is difficult to find in the literature. We therefore
present one in order to preserve completeness.

Proof of Lemma 2.1.20. Let M ∈ Cm×p. By recalling that I −DL is invertible and by
considering

I −D(L+M) = (I −DL)(I − (I −DL)−1DM) = (I −DL)(I −DLM), (2.10)

it is clear that I − D(L + M) is invertible if, and only if, I − DLM is invertible, i.e.
M ∈ AC(DL) if, and only if, L+M ∈ AC(D). We now assume that M ∈ AC(DL) and
seek to show that ΣL+M = (ΣL)M . To this end, note that, by using (2.10),

AL+M = A+B(L+M)(I −D(L+M))−1C

= A+B(L+M)(I −DLM)−1CL.

By combining this with the identity

BL(I −DLM)−1CL = BL
(
DLM + I −DLM

)
(I −DLM)−1CL

= BL
(
DLM(I −DLM)−1 + I

)
CL

= BLDLM(I −DLM)−1CL +BLCL,

we obtain that

AL+M = A+BLCL +BLDLM(I −DLM)−1CL +BM(I −DLM)−1CL

= AL + (B +BLDL)M(I −DLM)−1CL

= AL +BLM(I −DLM)−1CL

= (AL)M .

In the interest of brevity, we omit the rest of the proof, since the other identities can
be shown in a similar manner.

Remark 2.1.21. If Σ ∈ L and L ∈ AC(D), then Lemma 2.1.20 gives that

−L ∈ AC(DL), (ΣL)−L = Σ and (GL)(−L) = G.

Therefore, applying an admissible feedback operator L to Σ, and then applying −L to
ΣL, yields the original system, as expected. ♦

The following lemma shows that controllability, observability, stabilisability and de-
tectability are preserved after applying feedback matrices.

Lemma 2.1.22. Let Σ ∈ L and L ∈ AC(D). Then Σ is controllable/observable/stabilisable
/detectable if, and only if, ΣL is controllable/observable/stabilisable/detectable.

Proof. We shall only prove the equivalence for controllable systems, since the proof for
observable, stabilisable and detectable systems can be completed in a similar manner.
To this end, assume that Σ is controllable. We seek to use the Hautus criterion for
controllability (see, such as, [69, Theorem 4.3.3]), and thus, we are required to show
that rank

(
λI −AL BL

)
= n for all λ ∈ C. Indeed, let λ ∈ C and assume that there

exists ξ ∈ Cn such that ξ∗
(
λI −AL BL

)
= 0. This implies that

ξ∗(λI −AL) = 0 and ξ∗BL = 0.
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From (2.8), we then see that ξ∗B = 0, which, when combined with the above equality,
implies that

λξ∗ = ξ∗AL = ξ∗A.

Combining this with the controllability of Σ we obtain that ξ∗ = 0. Therefore, ΣL

is controllable. Hence, we have shown that applying an output feedback matrix to a
controllable system preserves this property. Thus, for the converse implication, if ΣL

is controllable, then the controllability of Σ is obtained immediately by the use of the
feedback matrix −L and Lemma 2.1.20 (see also Remark 2.1.21).

Remark 2.1.23. By combining the previous result with [72, Theorem 2], we see that
if Σ ∈ L is stabilisable and detectable, then

SC(G) = {L ∈ AC(D) : σ(AL) ⊂ D}. ♦

We now present a generalisation of [108, Statement (5) of Lemma 6].

Lemma 2.1.24. Let Σ ∈ L, r > 0 and K ∈ Cm×p. Then

BC(K, r) ⊆ SC(G) ⇐⇒ ‖GK‖H∞ ≤ 1/r.

We shall not provide a proof of this result since an identical argument used in the proof
of [108, Statement (5) of Lemma 6] can be used here. Moreover, a discrete-time version
of the proof of [46, Proposition 5.6] would also yield the result.

For given Σ ∈ L, K ∈ Rm×p and r > 0 such that BC(K, r) ⊆ SC(G), we give the
following key assumption which will be used throughout this chapter:

Σ is (i) controllable and observable, or (ii) stabilisable and detectable and

r min
|z|=1
‖GK(z)‖ < 1.

 (A)

We note that rmin|z|=1 ‖GK(z)‖ < 1 if, trivially, r < 1/‖GK‖H∞ . The motivation for
assumption (A) comes from finding solutions to the bounded real equations, which we
shall explain in the next subsection - see Remark 2.1.28.

2.1.3 The bounded real lemma and quadratic forms

We shall now give some key results that will underpin our development of this chapter.
These results can be seen as a generalisation of the preliminary results of [108]. In
particular, we use a version of the bounded real lemma to prove a series of results
involving quadratic forms.

For a given Σ ∈ L, the bounded real lemma seeks to conclude the existence of matrices
P , L and W satisfying

ATPA− P + CTC = −LTL,
ATPB + CTD = −LTW,
BTPB +DTD = I −W TW.

 (2.11)

In the literature, the bounded real lemma is presented with differing assumptions.
Indeed, for various versions of the result, we refer the reader to references such as
[4, 51, 108, 126]. The following is one such version, and is sufficient for our purposes.
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Lemma 2.1.25. Let Σ ∈ L and assume that ‖G‖H∞ ≤ 1. The following statements
hold.

(i) If Σ is controllable and observable then there exist a positive definite P = P T ∈
Rn×n and matrices L and W such that (2.11) holds.

(ii) If Σ is stabilisable and detectable and there exists z0 ∈ C such that |z0| = 1
and ‖G(z0)‖ < 1, then there exist a positive semi-definite P = P T ∈ Rn×n and
matrices L and W such that W is positive definite and (2.11) holds.

We comment that statement (i) is [51, Lemma 3.1]. As for statement (ii), this is [108,
Lemma 3] in the situation that D = 0, and [106, Lemma 2.2.3] in the potentially
nonzero feedthrough case. We highlight that we may apply these results in the current
setting since Be and De play no role in the lemma.

Remark 2.1.26. Interestingly, in [108], an example of (A,B,C,D) ∈ Rn×n×Rn×m×
Rp×n × Rp×m is presented that has the property that (A,B) is not controllable but is
stabilisable, (A,C) is detectable, ‖G(z)‖ = ‖G‖H∞ = 1 for all z ∈ ∂D, and there does
not exist a positive semi-definite P = P T ∈ Rn×n and matrices L and W satisfying
(2.11). ♦

By using the previous lemma, we obtain the following result, which is a generalisation
of [108, Corollary 7].

Lemma 2.1.27. Let Σ ∈ L, K ∈ Rm×p and r > 0. Assume that BC(K, r) ⊆ SC(G)
and (A) holds. Then there exist a positive semi-definite matrix P = P T ∈ Rn×n and
constant κ > 0 such that the function V : Rn → R+, defined by V (ξ) := 〈Pξ, ξ〉 for all
ξ ∈ Rn, satisfies, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −r2‖y(t)‖2 + ‖u(t)−Ky(t)‖2

+ κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖u(t)−Ky(t)‖+ ‖x(t)‖
)
.

Proof. We employ similar arguments to those used to prove [108, Corollary 7]. To this
end, we seek to apply Lemma 2.1.25 to the system with linear components given by

Σ̃ := (AK , rBK , Be +BKKDe, C
K , rDK , (I −DK)De). (2.12)

We note that the transfer function of this system is rGK and, from Lemma 2.1.24,
‖rGK‖H∞ ≤ 1. Moreover, since (A) holds, it is readily verified, by use of Lemma 2.1.22,
that Σ̃ is either (i) controllable and observable, or; (ii) stabilisable and detectable and
there exists z0 ∈ C such that |z0| = 1 and ‖rG(z0)‖ < 1. Hence, we may indeed apply
Lemma 2.1.25 to obtain the existence of a positive semi-definite Q = QT ∈ Rn×n and
matrices L and W and such that

(AK)TQAK −Q+ (CK)TCK = −LTL,

(AK)TQBK + (CK)TDK = −1

r
LTW,

(BK)TQBK + (DK)TDK =
1

r2
(I −W TW ).

 (2.13)
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Define U(ξ) := 〈Qξ, ξ〉 for all ξ ∈ Rn. From Lemma 2.1.18, we see that, for all
(u, v, x, y) ∈ Blin and for all t ∈ Z+,

U(x(t+ 1)) = 〈Q(AKx(t) +BK(u(t)−Ky(t)) + (Be +BKKDe)v(t)), x(t+ 1)〉.

Equivalently, we may write, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1)) =〈QAKx(t), AKx(t)〉
+ 2〈QAKx(t), BK(u(t)−Ky(t)) + (Be +BKKDe)v(t)〉
+ 〈QBK(u(t)−Ky(t)), BK(u(t)−Ky(t)) + (Be +BKKDe)v(t)〉
+ 〈Q(Be +BKKDe)v(t), BK(u(t)−Ky(t)) + (Be +BKKDe)v(t)〉.

If we now invoke (2.13), we see that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1)) ≤U(x(t))− ‖CKx(t)‖2 − ‖Lx(t)‖2 − 2〈CKx(t), DK(u(t)−Ky(t))〉

− 2

r
〈Lx(t),W (u(t)−Ky(t))〉+ 2〈QAKx(t), (Be +BKKDe)v(t)〉

− ‖DK(u(t)−Ky(t))‖2 +
1

r2
‖u(t)−Ky(t)‖2 − 1

r2
‖W (u(t)−Ky(t))‖2

+ 2〈QBK(u(t)−Ky(t)), (Be +BKKDe)v(t)〉
+ ‖Q‖‖(Be +BKKDe)v(t)‖2.

Since, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

−‖CKx(t)‖2 − 2〈CKx(t), DK(u(t)−Ky(t))〉 − ‖DK(u(t)−Ky(t))‖2

= −‖CKx(t) +DK(u(t)−Ky(t))‖2

= −‖y(t)‖2 + 2〈(I −DK)−1Dev(t), CKx(t) +DK(u(t)−Ky(t))〉
+ ‖(I −DK)−1Dev(t)‖2,

we may use the Cauchy-Schwarz inequality to yield, for all (u, v, x, y) ∈ Blin and all
t ∈ Z+,

U(x(t+ 1))− U(x(t))

≤ −‖y(t)‖2 −
∥∥∥∥Lx(t) +

1

r
W (u(t)−Ky(t))

∥∥∥∥2

+
1

r2
‖u(t)−Ky(t)‖2

+ ‖(Be +BKKDe)v(t)‖
(
‖Q‖‖(Be +BKKDe)v(t)‖+ 2‖QAKx(t)‖

+2‖QBK(u(t)−Ky(t))‖
)

+ ‖(I −DK)−1Dev(t)‖
(
‖(I −DK)−1Dev(t)‖+ 2‖CKx(t)‖

+2‖DK(u(t)−Ky(t))‖
)
.

By expanding this further, we obtain that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤ −‖y(t)‖2 +
1

r2
‖u(t)−Ky(t)‖2

+ c

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖u(t)−Ky(t)‖+ ‖x(t)‖
)
,
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where c is a positive constant such that

c ≥ 2(1 + ‖BKK‖+ ‖(I −DK)−1‖) max{‖QAK‖, ‖QBK‖, ‖Q‖(1 + ‖BKK‖),
‖CK‖, ‖DK‖, ‖(I −DK)−1‖}.

Therefore, by setting P := r2Q, κ := r2c and V (ξ) := 〈Pξ, ξ〉 for all ξ ∈ Rn, we obtain,
for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −r2‖y(t)‖2 + ‖u(t)−Ky(t)‖2

+ κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖u(t)−Ky(t)‖+ ‖x(t)‖
)
,

which completes the proof.

Remark 2.1.28. We now explain the motivation for (A). In the previous proof, we
used (A) to deduce that the assumptions of Lemma 2.1.25 hold for Σ̃ given by (2.12).
From Remark 2.1.26, we see that if we were to weaken (A) to simply the assertion of
stabilisability and detectability, then we would not be able to guarantee the existence
of solutions to (2.13). Interestingly, in the continuous-time setting, (A) can indeed be
exchanged for simply asserting stabilisability and detectability of the relevant system
- see [107]. ♦

The next lemma is a generalisation of [108, Lemma 5].

Lemma 2.1.29. Let Σ ∈ L. If Σ is detectable, then there exists a positive definite
P = P T ∈ Rn×n and δ > 0 such that V : Rn → R+, defined by V (ξ) := 〈Pξ, ξ〉 for all
ξ ∈ Rn, satisfies, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −δ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

. (2.14)

The following proof utilises arguments employed to prove [108, Lemma 5].

Proof of Lemma 2.1.29. To begin with, since Σ is detectable, there exists H ∈ Rn×p
such that σ(A + HC) ⊂ D. An application of [53, Corollary 3.3.47] then gives the
existence of a positive definite Q = QT ∈ Rn×n which satisfies

(A+HC)TQ(A+HC)−Q = −I. (2.15)

We additionally note that, for all (u, v, x, y) ∈ Blin,

x+ = Ax+Bu+Bev

= (A+HC)x−HCx+Bu+Bev

= (A+HC)x−Hy + (B +HD)u+ (Be +HDe)v. (2.16)

We now define U : Rn → R+ by U(ξ) := 〈Qξ, ξ〉 for all ξ ∈ Rn, and utilise (2.16) so
that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1)) = 〈Q(A+HC)x(t), (A+HC)x(t)〉
+ 〈Q(A+HC)x(t),−Hy(t) + (B +HD)u(t) + (Be +HDe)v(t)〉
+ 〈Q (−Hy(t) + (B +HD)u(t) + (Be +HDe)v(t)) , x(t+ 1)〉.
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An application of (2.15) then yields, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1)) = U(x(t))− ‖x(t)‖2

+ 〈Q(A+HC)x(t),−Hy(t) + (B +HD)u(t) + (Be +HDe)v(t)〉
+ 〈Q (−Hy(t) + (B +HD)u(t) + (Be +HDe)v(t)) , x(t+ 1)〉.

Now, by applying the Cauchy-Schwarz inequality to the above, we obtain the existence
of constants c1, c2, c3, c4 > 0 such that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤− ‖x(t)‖2

+ c1‖x(t)‖
(
‖y(t)‖+ ‖u(t)‖+

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥)
+ c2‖y(t)‖

(
‖x(t)‖+ ‖u(t)‖+

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥)
+ c3‖u(t)‖

(
‖y(t)‖+ ‖x(t)‖+

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥)
+ c4

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥ (‖y(t)‖+ ‖u(t)‖+ ‖x(t)‖) .

We let c be a positive constant such that c2 < 1/(3c2
1 + c2

2 + c2
3 + c2

4). From the above
inequality, and by also noting the identity: ab ≤ 2ab = 2cac−1b ≤ c2a2 + b2/c2 for all
a, b ∈ R+, we obtain that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤− (1− 3c2
1c

2 − c2
2c

2 − c2
3c

2 − c2
4c

2)‖x(t)‖2

+
1

c2

(
‖y(t)‖2 + ‖u(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)

+

(
1

c2
+ 2c2

2c
2

)
‖y(t)‖2 +

1

c2

(
‖u(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)

+

(
1

c2
+ 2c2

3c
2

)
‖u(t)‖2 +

1

c2

(
‖y(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)

+

(
1

c2
+ 2c2

4c
2

)∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+
1

c2

(
‖y(t)‖2 + ‖u(t)‖2

)
.

Setting d1 := 4/c2 + 2c2 max{c2
2, c

2
3, c

2
4} > 0 gives, for all (u, v, x, y) ∈ Blin and all

t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤− (1− (3c2
1 + c2

2 + c2
3 + c2

4)c2)‖x(t)‖2

+ d1

(
‖y(t)‖2 + ‖u(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)
.

Recalling the choice of c > 0, we define d2 := 1− (3c2
1 + c2

2 + c2
3 + c2

4)c2 > 0 so that, for
all (u, v, x, y) ∈ Blin and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤ −d2‖x(t)‖2 + d1

(
‖y(t)‖2 + ‖u(t)‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)
.
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To conclude the proof, we define P := d−1
1 Q, V (ξ) := 〈Pξ, ξ〉 = d−1

1 U(ξ) for all ξ ∈ Rn,
and δ := d−1

1 d2 > 0, to yield, for all (u, v, x, y) ∈ Blin and all t ∈ Z+, that (2.14)
holds.

2.1.4 The Lur’e system and the initial-value problem

From hereon in, we shall consider the feedback interconnection of (2.6) with u =
f(y+w), where f : Rp → Rm is a nonlinearity and w ∈ (Rp)Z+ is an output disturbance
(see Figure 2.1). Explicitly, we consider the discrete-time forced Lur’e system of the
form

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

u = f(y + w),

 (2.17)

where Σ ∈ L, v ∈ (Rq)Z+ , w ∈ (Rp)Z+ and f : Rp → Rm. We say that the system is
uncontrolled (or undisturbed) if v = 0 and w = 0.

Remark 2.1.30. (i) We note that in the situation where I −Df is invertible, (2.17)
can be expressed succinctly as

x+ = Ax+Bf
(
(I −Df)−1Cx+Dev + w

)
+Bev.

(ii) The relevant literature is mostly concerned with the investigation of forced Lur’e
systems that do not involve output disturbances (see, for example, [7, 15, 107,
108]). As motivation for studying (2.17) with the inclusion of an output distur-
bance w, we note that in practical applications, the action of feeding back the
output will naturally produce errors. Therefore, w in (2.17) can encompass these
errors. ♦

Σ
u

yv

f
+ w

Figure 2.1: Block diagram of the feedback interconnection of (2.6) with u = f(y + w).

We now make a series of definitions and observations associated with (2.17).

Definition 2.1.31. Let Σ ∈ L and f : Rp → Rm. We define the behaviour of (2.17)
as

Bf (Σ) :=
{

(v, w, x, y) ∈ (Rq)Z+ × (Rp)Z+ × (Rn)Z+ × (Rp)Z+ :

(v, w, x, y) satisfies (2.17)
}
.

For ease of notation, we shall write B := Bf (Σ) when no ambiguity shall arise.

Remark 2.1.32. Let Σ ∈ L and f : Rp → Rm.
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(i) (v, w, x, y) ∈ Bf (Σ) if, and only if, (f(y + w), v, x, y) ∈ Blin(Σ).

(ii) If K ∈ AC(D), then, by Lemma 2.1.18, (v, w, x, y) ∈ B if, and only if, (v, w, x, y)
satisfies

x+ = AKx+BK(f(y + w)−Ky) + (Be +BKKDe)v ,

y = CKx+DK(f(y + w)−Ky) + (I −DK)−1Dev . ♦

The following result shows that B is time-invariant. The proof is trivial, and so we
omit it.

Lemma 2.1.33. Let Σ ∈ L and f : Rp → Rm.

(v, w, x, y) ∈ B =⇒ (Λτv,Λτw,Λτx,Λτy) ∈ B ∀ τ ∈ Z+.

Also associated with (2.17) is an initial-value problem. The rest of the current subsec-
tion concerns this.

Definition 2.1.34. Let Σ ∈ L and f : Rp → Rm. For given x0 ∈ Rn, v ∈ (Rq)Z+ and
w ∈ (Rp)Z+, we consider the initial-value problem (IVP):

x+ = Ax+Bu+Bev, x(0) = x0,

y = Cx+Du+Dev,

u = f(y + w).

 (2.18)

For given x0 ∈ Rn, v ∈ (Rq)Z+ and w ∈ (Rp)Z+, we say that (x, y) ∈ (Rn)Z+ × (Rp)Z+

is a solution to the IVP (2.18), if (v, w, x, y) ∈ B and x(0) = x0.

Remark 2.1.35. We note that in the case that f(0) = 0, x0 = 0, v = 0 and w = 0,
then, trivially, (0, 0) is a solution to the IVP (2.18). ♦

The following proposition presents sufficient conditions for when, given an initial con-
dition and inputs, solutions to the IVP (2.18) exist and when there is at most one
solution.

Proposition 2.1.36. Let Σ ∈ L, f : Rp → Rm, x0 ∈ Rn, v ∈ (Rq)Z+ and w ∈ (Rp)Z+.
Then the following statements hold.

(i) If the map I −Df is surjective, then there exists a solution to the IVP (2.18).

(ii) If the map I − Df is injective, then there is at most one solution to the IVP
(2.18).

Proof. For ease of notation in the sequel, we define g := I − Df . We begin with
statement (i) and so we assume that g is surjective. This then implies that there exists
z0 ∈ Rp such that g(z0) = Cx0 + Dev(0) + w(0). By defining y0 := z0 − w(0), we see
that

y0 = Cx0 +Df(y0 + w(0)) +Dev(0).

We now define x1 ∈ Rn by

x1 := Ax0 +Bf(y0 + w(0)) +Bev(0).
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By repeating this process, we hence obtain a pair (x, y) ∈ (Rn)Z+ × (Rp)Z+ , defined by
x(k) := xk and y(k) := yk for all k ∈ Z+, which is a solution to the IVP (2.18). Our
attention now turns to statement (ii), and so we assume instead that g is injective and
that (x1, y1), (x2, y2) ∈ (Rn)Z+ × (Rp)Z+ are both solutions of (2.18). In order to prove
equality of the two solutions, we shall utilise an inductive method. To this end, for the
initial case we trivially have that x1(0) = x0 = x2(0) and

g(y1(0) + w(0)) = Cx0 +Dev(0) + w(0) = g(y2(0) + w(0)),

where injectivity gives y1(0) = y2(0). We now assume that x1(k) = x2(k) and y1(k) =
y2(k) for k ∈ Z+. Consider

x1(k + 1) = Ax1(k) +Bf(y1(k) + w(k)) +Bev(k)

= Ax2(k) +Bf(y2(k) + w(k)) +Bev(k)

= x2(k + 1).

This subsequently gives that

g(y1(k + 1) + w(k + 1)) = Cx1(k + 1) +Dev(k + 1) + w(k + 1)

= Cx2(k + 1) +Dev(k + 1) + w(k + 1)

= g(y2(k + 1) + w(k + 1)),

which, when combined with the injectivity of g, yields that y1(k+ 1) = y2(k+ 1), thus
completing the proof by induction.

An application of Lemma 2.1.18 gives the following result. We do not provide a proof,
since a modification of the proof of Proposition 2.1.36 will suffice.

Proposition 2.1.37. Let Σ ∈ L, f : Rp → Rm, x0 ∈ Rn, v ∈ (Rq)Z+, w ∈ (Rp)Z+ and
K ∈ AC(D). Then the following statements hold.

(i) If the map I −DK(f −K) is surjective, then there exists a solution to the IVP
(2.18).

(ii) If the map I −DK(f −K) is injective, then there is at most one solution to the
IVP (2.18).

We note that if D = 0, then trivially I − Df is bijective, and so Proposition 2.1.36
implies the existence of unique solutions to the IVP (2.18) for some given initial con-
ditions and inputs. The following example demonstrates in the case D 6= 0, that if
injectivity or surjectivity of I − Df is dropped, then the conclusions of Proposition
2.1.36 need not hold.

Example 2.1.38. Consider (2.18) in the case wherein n = m = p = q = 1 and
A = B = C = D = Be = De = 1. Thus, (2.18) becomes

x+ = x+ f(y + w) + v , x(0) = x0 ∈ R ,
y = x+ f(y + w) + v .

}
(2.19)

(i) Let f(ξ) = ξ − eξ for all ξ ∈ R, and let x0 = 0 and v(0) = w(0) = 0. Suppose
that (x, y) is a solution to (2.19). Then, in particular, y(0) = f(y(0)) and so,
ey(0) = 0, which is impossible. Therefore, for x0 = 0 and v(0) = w(0) = 0, (2.19)
has no solutions.
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(ii) Let f(ξ) = 2ξ − ξ2 − ξ3 for all ξ ∈ R, and let x0 = 1 and v = w = 0. Trivially,
(x1, y1) ∈ RZ+ ×RZ+ , defined by x1(t) = 1 = y1(t) for all t ∈ Z+, is a solution to
(2.19). Moreover, by setting y2(0) = −1 and computing (x2, y2) iteratively, we
obtain another solution of (2.19) ♦

2.2 Global asymptotic and input-to-state/output stabil-
ity

The primary focus of this section is to extend the stability result [108, Theorem 13] to
Lur’e systems of the form (2.17). As previously mentioned, [108, Theorem 13] concerns
discrete-time systems that are of the form (1.2). Additionally, it is of interest to us
in this section to further extend the aforementioned result so that it includes output
stability. All of the aforementioned extensions of [108, Theorem 13] are nontrivial, as
we shall see.

We split this section into three parts. In the first we present a global asymptotic sta-
bility criterion from the literature; in the second we give the main result of this section:
the previously described extension of [108, Theorem 13]; and the final part comprises
a corollary that guarantees input-to-state stability with bias (see, for example, [59]) of
(2.17).

2.2.1 Global asymptotic stability

We begin with the following definition.

Definition 2.2.1. Let Σ ∈ L and f : Rp → Rm. We say that (2.17) is globally stable
in the large (GS), if there exists c > 0 such that

‖x(t)‖+ ‖y(t)‖ ≤ c‖x(0)‖ ∀ t ∈ Z+, ∀ (0, 0, x, y) ∈ B.

We say that (2.17) is globally asymptotically stable in the large (GAS), if it is GS and

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0 ∀ (0, 0, x, y) ∈ B.

Remark 2.2.2. We briefly explain why the definition we give of GS contains the words
“in the large”. This is because, in the literature (see, such as, [53, 77]), ‘standard’ global
stability is defined in a weaker manner. Indeed, a discrete-time global stability notion
is often defined as: for all ε > 0, there exists δ > 0 such that, for all (0, 0, x, y) ∈ B
satisfying ‖x(0)‖ ≤ δ, we have ‖x(t)‖ ≤ ε for all t ∈ Z+. It is easy to verify that global
stability in the large implies this notion of stability. Hence, the stability definition we
use is a stronger notion than what is commonly considered in the literature. ♦

The following provides sufficient conditions for when (2.17) is GS and GAS.

Theorem 2.2.3. Let Σ ∈ L, K ∈ Rm×p, r > 0 and f : Rp → Rm. Assume that
BC(K, r) ⊆ SC(G), ‖DK‖ < 1/r and (A) holds. The following statements hold.

(i) If
‖f(ξ)−Kξ‖ ≤ r‖ξ‖ ∀ ξ ∈ Rp, (2.20)

then (2.17) is GS.
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(ii) If f is continuous and

‖f(ξ)−Kξ‖ < r‖ξ‖ ∀ ξ ∈ Rp\{0}, (2.21)

then (2.17) is GAS.

We shall not provide a proof of Theorem 2.2.3, since it can be deduced from a combina-
tion of [106, Proposition 4.2.1] and [106, Proposition 4.2.9]. We will, however, provide
some commentary of the result in the following remark.

Remark 2.2.4. (i) We note that in the situation without feedthrough, i.e. D = 0,
then the condition ‖DK‖ < 1/r in the statement of Theorem 2.2.3 is trivially
satisfied.

(ii) Statement (ii) of Theorem 2.2.3 may be interpreted as saying that the complexi-
fied Aizerman conjecture is true (see, for example [53]). The underlying inspira-
tion of the result is [53, Theorem 5.6.22], where, in a continuous-time setting, the
Aizerman conjecture is proven to be true over the complex numbers, for systems
with zero feedthrough. ♦

2.2.2 Input-to-state/output stability

Our attention now turns to proving the previously described extension of the input-to-
state stability criterion [108, Theorem 13]. To do so, we begin by defining the following.

Definition 2.2.5. Let Σ ∈ L and f : Rp → Rm.

(i) We say that (2.17) is input-to-state stable (ISS), if there exist ψ ∈ KL and φ ∈ K
such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) +φ

(
max
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ N, ∀ (v, w, x, y) ∈ B. (2.22)

(ii) We say that (2.17) is input-to-state/output stable (ISOS), if there exist ψ ∈ KL
and φ ∈ K such that (2.22) holds and

‖y(t)‖ ≤ ψ(‖x(0)‖, t)+φ
(

max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ Z+, ∀ (v, w, x, y) ∈ B. (2.23)

In the case that D = 0, then ISS trivially implies ISOS. However, when D 6= 0, ISS
does not necessarily imply ISOS. The following example gives a system where D 6= 0
and (2.17) is ISS but not ISOS. This hence provides motivation for studying ISOS.

Example 2.2.6. Consider (2.17) where n = m = p = q = 2, A is any Schur matrix,

B =

(
0 1
0 0

)
, C =

(
1 0
0 0

)
= D, Be = I = De,

and f : R2 → R2 is the identity map. Since BC = 0 = BD and A is Schur, it is easily
checked that (2.17) is ISS. We shall now show that (2.17) is not ISOS. To this end, first
let x0 ∈ R2 and let x := (x1 x2)T ∈ (R2)Z+ be the unique solution of

x+ = Ax , x(0) = x0 .
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By setting w := (−x1 0)T ∈ (R2)Z+ and y := (y1 0)T ∈ (R2)Z+ for arbitrary y1 ∈ RZ+ ,
we see that

Cx+D(y + w) =

(
x1

0

)
+

(
y1 − x1

0

)
=

(
y1

0

)
= y,

and, since BC = 0 = BD and Bw = 0,

x+ = Ax = Ax+B(Cx+D(y + w) + w) = Ax+B(y + w).

Hence, (0, w, x, y) ∈ B. This holds for any y1 ∈ RZ+ and so (2.17) is not ISOS. ♦

Before moving on, we present another example to further motivate our investigation of
ISS of (2.17). Indeed, in the following, we provide an example of (2.17) which is not
ISS, however if we only consider the situation wherein w = 0, then (2.17) is ISS in the
sense that there exist ψ ∈ KL and φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t−1

‖v(s)‖
)
∀ t ∈ N, ∀ (v, 0, x, y) ∈ B. (2.24)

This version of ISS is what is discussed in much of the literature.

Example 2.2.7. Let Σ ∈ L where n = m = p = q = 2, A, D and De are each the zero
matrix, Be is the identity matrix, and

B =

(
0 0
1 1

)
= C.

Furthermore, define f : R2 → R2 by

f(ξ) = 2ξ1ξ2

(
1
1

)
∀ ξ =

(
ξ1

ξ2

)
∈ R2.

Let v(t) =
(
1 0

)T
= w(t) for all t ∈ Z+ and consider (v, w, x, y) ∈ B with initial

condition x(0) =
(
1 1

)T
. By writing x(t) =

(
x1(t) x2(t)

)T
, where x1, x2 ∈ RZ+ ,

then we see that

x+ =

(
0 0
1 1

)
f

((
1

x1 + x2

))
+

(
1
0

)
, x(0) =

(
1
1

)
.

From this, it is easily checked that ‖x(t)‖ → ∞ as t → ∞. However, v and w are
bounded, which therefore shows that (2.17) is not ISS.

If we now consider (2.17) in the situation that w = 0, then, for all (v, 0, x, y) ∈ B,

x+ =

(
0 0
1 1

)
f

((
0

x1 + x2

))
+ v = v,

where again we write x(t) =
(
x1(t) x2(t)

)T
, x1, x2 ∈ RZ+ . From this, we hence deduce

that there trivially exist ψ ∈ KL and φ ∈ K such that (2.24) holds. We comment that,
in the situation where w = 0, since D = De = 0, (2.17) is of the form (1.2). ♦

We also present the following definition.
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2.2. Global asymptotic and input-to-state/output stability

Definition 2.2.8. Let Σ ∈ L and f : Rp → Rm. A continuous function V : Rn → R+ is
said to be an ISS-Lyapunov function for (2.17) if there exist K∞ functions α1, α2, α3, α4

such that
α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ ξ ∈ Rn, (2.25)

and, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −α3(‖x(t)‖) + α4

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) . (2.26)

It is well-known (see, for example, [61]) that the existence of an ISS-Lyapunov function
is necessary and sufficient for determining when a system of the form

x+ = g(x, v), (2.27)

where g : Rn × Rq → Rn is continuous, is ISS. Unfortunately, we cannot use the work
of [61] to deduce that ISS-Lyapunov functions infer ISS of (2.17), since we cannot
necessarily write (2.17) in the form of (2.27). However, if we assume that I − Df
is invertible and that f and (I − Df)−1 are continuous, then (2.17) can indeed be
expressed as

x+ = Ax+Bf
(
(I −Df)−1(Cx+Dev + w)

)
+Bev,

and is hence in the form of (2.27). Interestingly, an example of (2.17) being ISS but
also such that I −Df is not invertible, is given in Example 2.2.6. Therefore, one may
wonder whether or not the existence of an ISS-Lyapunov function guarantees ISS of
(2.17) without the extra invertibility and continuity assumptions. The next proposition
gives precisely this.

Proposition 2.2.9. Let Σ ∈ L and f : Rp → Rm. If there exists an ISS-Lyapunov
function V : Rn → R+, then (2.17) is ISS. Furthermore, the functions ψ and φ in
(2.22) only depend upon α1, α2, α3 and α4 in (2.25) and (2.26).

Proposition 2.2.9 is not difficult to prove, and a similar argument to that used in the
proof of [106, Proposition 5.2.4] may be used. For completeness, we provide a proof in
Appendix A.

We now present the main result of this section, which shows that, under the same
assumptions of [108, Theorem 13], (2.17) is ISOS.

Theorem 2.2.10. Let Σ ∈ L, K ∈ Rm×p, r > 0 and α ∈ K∞. Assume that BC(K, r) ⊆
SC(G) and that (A) holds. Then there exist ψ ∈ KL and φ ∈ K such that, for all
f : Rp → Rm satisfying

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp, (2.28)

(2.22) and (2.23) hold. In particular, the Lur’e system (2.17) is ISOS.

Before proving Theorem 2.2.10, we provide some commentary in the form of a remark.

Remark 2.2.11. (i) The assumption that α ∈ K∞ in Theorem 2.2.10 cannot be
weakened to α ∈ K. Indeed, we refer the reader to [108] for counterexamples.

(ii) It is worth mentioning that there exist systems which satisfy the assumptions of
Theorem 2.2.3, and so are GAS, but are not ISOS. Once again, examples can be
found in [108]. ♦
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Proof of Theorem 2.2.10. We split the proof into two parts. The first part is a gener-
alisation of the method shown in the proof of [108, Theorem 13] and seeks to show ISS,
and the second part addresses ISOS. For the first part, we construct an ISS-Lyapunov
function in order to invoke Proposition 2.2.9. To obtain such a Lyapunov function, we
will construct two functions U, V : Rn → R+ whose sum is an ISS-Lyapunov function.
To this end, we begin with the derivation of U , and invoke Lemma 2.1.29 to obtain
the existence of a positive definite matrix Q = QT ∈ Rn×n and δ > 0 such that the
function U1 : Rn → R+, defined by U1(ξ) := 〈Qξ, ξ〉 for all ξ ∈ Rn, has the property
that, for all (u, v, x, y) ∈ Blin and all t ∈ Z+, (2.14) holds but with V replaced by
U1. We fix f : Rp → Rm satisfying (2.28). Since (v, w, x, y) ∈ Bf if, and only if,
(f(y + w), v, x, y) ∈ Blin, we hence obtain that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U1(x(t+1))−U1(x(t)) ≤ −δ‖x(t)‖2+‖y(t)‖2+‖f(y(t)+w(t))‖2+

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

. (2.29)

We now utilise assumption (2.28) so that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

‖f(y(t) + w(t))‖2 ≤ (‖f(y(t)) + w(t))−K(y(t) + w(t))‖+ ‖K(y(t) + w(t))‖)2

≤ (r + ‖K‖)2‖y(t) + w(t)‖2.

By combining this with (2.29) and utilising the triangle inequality, we obtain, for all
(v, w, x, y) ∈ B and all t ∈ Z+,

U1(x(t+ 1))− U1(x(t)) ≤− δ‖x(t)‖2 + (‖y(t) + w(t)‖+ ‖w(t)‖)2

+ (r + ‖K‖)2‖y(t) + w(t)‖2 + (‖Be‖2 + ‖De‖2)‖v(t)‖2.

By further expanding the above inequality and using a simple comparison argument,
we see that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U1(x(t+ 1))− U1(x(t)) ≤− δ‖x(t)‖2 + 4‖y(t) + w(t)‖2 + 4‖w(t)‖2

+ (r + ‖K‖)2‖y(t) + w(t)‖2 + (‖Be‖2 + ‖De‖2)‖v(t)‖2.

Define

c1 := max{4 + (r + ‖K‖)2, ‖Be‖2 + ‖De‖2} > 1,

so that, for all (v, w, x, y) ∈ B and all t ∈ Z+, the above inequality implies

U1(x(t+ 1))− U1(x(t)) ≤ −δ‖x(t)‖2 + c1

(
‖y(t) + w(t)‖2 + ‖w(t)‖2 + ‖v(t)‖2

)
.

We now define δ1 := δ/c1 and U2 : Rn → R+ by U2(ξ) := U1(ξ)/c1 for all ξ ∈ Rn. An
application of the previous inequality thus gives, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U2(x(t+ 1))− U2(x(t)) ≤ −δ1‖x(t)‖2 + ‖y(t) + w(t)‖2 +

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2

. (2.30)

Let c2 ≥ δ1 be such that U2(ξ) ≤ c2‖ξ‖2 for all ξ ∈ Rn, and define b > 1 such that

a := b

(
1− δ1

2c2

)
< 1.
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2.2. Global asymptotic and input-to-state/output stability

Furthermore, define α1 ∈ K∞ by

α1(s) :=
r

2

√
sα(
√
s) ∀ s ≥ 0, (2.31)

and utilise an application of statement (ii) of Lemma 2.1.7 to obtain the existence of
k > 1 such that

α1(as1 + s2) ≤ α1(s1) + α1(ks2) ∀ s1, s2 ≥ 0. (2.32)

Statement (iii) of the aforementioned result also yields the existence of η ∈ K∞ such
that

α1(s1 − s2) ≤ α1(bs1)− η(s2) ∀ s1 ≥ s2 ≥ 0, (2.33)

and
η(s)√
s
→∞ as s→∞. (2.34)

We subsequently define U : Rn → R+ by U(ξ) := α1(cU2(ξ)) for all ξ ∈ Rn, where
c := 1/2bk. By combining (2.30) with (2.33), we thus have, for all (v, w, x, y) ∈ B and
all t ∈ Z+,

U(x(t+ 1)) = α1(cU2(x(t+ 1)))

≤ α1

(
c

(
U2(x(t))− δ1‖x(t)‖2 + ‖y(t) + w(t)‖2 +

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2
))

≤ α1

(
bc

(
U2(x(t))− δ1

2
‖x(t)‖2 + ‖y(t) + w(t)‖2 +

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2
))
− η

(
c
δ1

2
‖x(t)‖2

)
.

(2.35)

We pause here and note that (2.34) implies the existence of µ ∈ K∞ such that

η

(
c
δ1

2
s2

)
≥ sµ(s) ∀ s ≥ 0. (2.36)

Moreover, recalling that U2(ξ) ≤ c2‖ξ‖2 for all ξ ∈ Rn, we see that

−δ1

2
‖ξ‖2 ≤ − δ1

2c2
U2(ξ) ∀ ξ ∈ Rn,

which in turn implies,

b

(
U2(ξ)− δ1

2
‖ξ‖2

)
≤ bU2(ξ)

(
1− δ1

2c2

)
= aU2(ξ) ∀ ξ ∈ Rn.

Therefore, by combining this with (2.35) and (2.36), we have, for all (v, w, x, y) ∈ B
and all t ∈ Z+,

U(x(t+ 1)) ≤ α1

(
acU2(x(t)) + bc‖y(t) + w(t)‖2 + bc

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2
)
− ‖x(t)‖µ(‖x(t)‖).
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Applying (2.32), along with Lemma 2.1.3 and the definition of c, gives, for all (v, w, x, y) ∈
B and all t ∈ Z+,

U(x(t+ 1)) ≤ α1 (cU2(x(t))) + α1

(
bck

(
‖y(t) + w(t)‖2 +

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2
))

− ‖x(t)‖µ(‖x(t)‖)

≤ U(x(t)) + α1(‖y(t) + w(t)‖2) + α1

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥2
)
− ‖x(t)‖µ(‖x(t)‖).

(2.37)

With the preamble given at the start of the present proof in mind, we now seek to find
V such that U + V is an ISS-Lyapunov function. To this end, invoking Lemma 2.1.27
gives the existence of κ > 0 and a positive semi-definite matrix P = P T ∈ Rn×n such
that the function V : Rn → R+, defined by V (ξ) := 〈Pξ, ξ〉 for all ξ ∈ Rn, satisfies, for
all (u, v, x, y) ∈ Blin and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −r2‖y(t)‖2 + ‖u(t)−Ky(t)‖2

+ κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖u(t)−Ky(t)‖+ ‖x(t)‖
)
.

Since (v, w, x, y) ∈ Bf if, and only if, (f(y + w), v, x, y) ∈ Blin, we hence obtain that,
for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −r2‖y(t)‖2 + ‖f(y(t) + w(t))−Ky(t)‖2

+ κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖f(y(t) + w(t))−Ky(t)‖+ ‖x(t)‖
)
. (2.38)

We pause here and derive some useful inequalities. As for the first, we use a trivial
comparison argument to obtain that

‖f(ξ + ζ)−Kξ‖2 ≤ (‖f(ξ + ζ)−K(ξ + ζ)‖+ ‖Kζ‖)2

≤ 4‖f(ξ + ζ)−K(ξ + ζ)‖2 + 4‖Kζ‖2 ∀ ξ, ζ ∈ Rp.

By combining this with (2.28), we see that

‖f(ξ + ζ)−Kξ‖2 ≤4r2‖ξ + ζ‖2 − 8r‖ξ + ζ‖α(‖ξ + ζ‖)
+ 4α(‖ξ + ζ‖)2 + 4‖Kζ‖2 ∀ ξ, ζ ∈ Rp. (2.39)

Moreover, since ‖ξ‖ ≥ |‖ξ + ζ‖ − ‖ζ‖| for all ξ, ζ ∈ Rp,

‖ξ‖2 ≥ (‖ζ‖ − ‖ξ + ζ‖)(‖ξ + ζ‖)− ‖ζ‖)
= 2‖ζ‖‖ξ + ζ‖ − ‖ζ‖2 − ‖ξ + ζ‖2 ∀ ξ, ζ ∈ Rp.

Hence,
−r2‖ξ‖2 ≤ −2r2‖ζ‖‖ξ + ζ‖+ r2‖ζ‖2 + r2‖ξ + ζ‖2 ∀ ξ, ζ ∈ Rp.

Now, fix ξ, ζ ∈ Rp and note that if ‖ζ‖ ≥ 3‖ξ + ζ‖, then

−r2‖ξ‖2 ≤ −5r2‖ξ + ζ‖2 + r2‖ζ‖2,
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and if ‖ζ‖ ≤ 3‖ξ + ζ‖, then

−r2‖ξ‖2 ≤ 1

3
r2‖ζ‖2 + r2‖ξ + ζ‖2.

Whence,

−r2‖ξ‖2 ≤ 4

3
r2‖ζ‖2 − 4r2‖ξ + ζ‖2 ∀ ξ, ζ ∈ Rp.

We now combine this with (2.39) to obtain that

‖f(ξ + ζ)−Kξ‖2 − r2‖ξ‖2 ≤− 8r‖ξ + ζ‖α(‖ξ + ζ‖) + 4α(‖ξ + ζ‖)2

+ 4‖Kζ‖2 +
4

3
r2‖ζ‖2 ∀ ξ, ζ ∈ Rp.

Since (2.28) implies that α(‖η‖) ≤ r‖η‖ for all η ∈ Rp, the above inequality yields that

‖f(ξ + ζ)−Kξ‖2 − r2‖ξ‖2 ≤ −4r‖ξ + ζ‖α(‖ξ + ζ‖)+
(

4‖K‖2 +
4

3
r2

)
‖ζ‖2

∀ ξ, ζ ∈ Rp. (2.40)

Before continuing with (2.38), we note that, from (2.28), for all (v, w, x, y) ∈ B and all
t ∈ Z+,

κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥ ‖f(y(t) + w(t))−Ky(t)‖

≤ κ
√
‖Be‖2 + ‖De‖2

∥∥∥∥(v(t)
w(t)

)∥∥∥∥(r‖y(t) + w(t)‖+ ‖K‖
∥∥∥∥(v(t)
w(t)

)∥∥∥∥) ,
and we also invoke statement (i) of Lemma 2.1.7 to yield the existence of γ1 ∈ K∞ such
that

rκ
√
‖Be‖2 + ‖De‖2s1s2 ≤

7r

2
s1α(s1) + γ1(s2) ∀ s1, s2 ≥ 0.

With the above two inequalities in mind, (2.38) and (2.40) therefore give that, for all
(v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤− 4r‖y(t) + w(t)‖α(‖y(t) + w(t)‖) +

(
4‖K‖2 +

4r2

3

)
‖w(t)‖2

+
7r

2
‖y(t) + w(t)‖α(‖y(t) + w(t)‖) + γ1

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥)
+ κ
√
‖Be‖2 + ‖De‖2‖K‖

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2

+ κ

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥(∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥+ ‖x(t)‖
)
.

Setting γ2(s) := γ1(s)+(4‖K‖2 +4r2/3+κ
√
‖Be‖2 + ‖De‖2‖K‖+κ(‖Be‖2 +‖De‖2))s2

for all s ≥ 0, thus gives, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤− r

2
‖y(t) + w(t)‖α(‖y(t) + w(t)‖) + κ‖x(t)‖

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥
+ γ2

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) .
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By recalling the definition of α1 ∈ K∞ from (2.31), we see that, for all (v, w, x, y) ∈ B
and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤− α1(‖y(t) + w(t)‖2) + κ‖x(t)‖
∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥
+ γ2

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) . (2.41)

With this in mind, we utilise another application of statement (i) of Lemma 2.1.7 to
obtain γ3 ∈ K∞ such that

κ
√
‖Be‖2 + ‖De‖2s1s2 ≤

1

2
s1µ(s1) + γ3(s2) ∀ s1, s2 ≥ 0.

This then subsequently gives, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤− α1(‖y(t) + w(t)‖2) +
1

2
‖x(t)‖µ(‖x(t)‖)

+ γ4

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) , (2.42)

where γ4 := γ2 + γ3 ∈ K∞.
Finally, we define W := U + V and, for all s ≥ 0, we further define α2(s) := sµ(s)/2
and α3(s) := α1(s2) + γ4(s). Invoking (2.37) and (2.42) obtains, for all (v, w, x, y) ∈ B
and all t ∈ Z+,

W (x(t+ 1))−W (x(t)) ≤ −α2(‖x(t)‖) + α3

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) .
Since U2 is positive definite, let c3, c4 > 0 be such that V (ξ) ≤ c3‖ξ‖2 and c4‖ξ‖2 ≤
U2(ξ) for all ξ ∈ Rn. Recalling that c2‖ξ‖2 ≥ U2(ξ) for all ξ ∈ Rn, we define α4(s) :=
α1(c4cs

2) and α5(s) := α1(c2cs
2) + c3s

2 for all s ≥ 0 so that

α4(‖ξ‖) ≤W (ξ) ≤ α5(‖ξ‖) ∀ ξ ∈ Rn.

Therefore, Proposition 2.2.9 yields that the Lur’e system (2.17) is ISS. Moreover, Propo-
sition 2.2.9 also gives that ψ and φ in (2.22) only depend on α2, α3, α4 and α5. An
inspection of the previous workings show that these are independent of f .
Our attention now turns to the second part of the proof, that is, showing that the
system is ISOS. To this end, by the first part, let ψ1 ∈ KL and φ1 ∈ K be such that,
for all f : Rp → Rm satisfying (2.28),

‖x(t)‖ ≤ ψ1(‖x(0)‖, t) + φ1

(
max
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ N, ∀ (v, w, x, y) ∈ B. (2.43)

Consider that, for all f : Rp → Rm, all (v, w, x, y) ∈ B and all t ∈ Z+, Lemma 2.1.18
implies that

‖y(t)‖ ≤ ‖CK‖‖x(t)‖+ ‖DK‖‖f(y(t) + w(t))−Ky(t)‖+ ‖(I −DK)−1‖‖De‖‖v(t)‖.

If f : Rp → Rm satisfies (2.28), then, for all (v, w, x, y) ∈ B and all t ∈ Z+,

‖y(t)‖ ≤‖CK‖‖x(t)‖+ ‖DK‖ (r id−α) (‖y(t) + w(t)‖)

+ (‖(I −DK)−1‖‖De‖+ ‖DK‖‖K‖)
∥∥∥∥(v(t)
w(t)

)∥∥∥∥ , (2.44)
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where id : R+ → R+ is the identity map. Define g := (1−r‖DK‖) id +‖DK‖α and note
that, using Lemma 2.1.24, r‖DK‖ ≤ r‖GK‖ ≤ 1. From this we deduce that g ∈ K∞,
and so from Lemma 2.1.2, we see that g−1 exists and is in K∞. If we now rearrange
(2.44), we see that, for all f : Rp → Rm satisfying (2.28), all (v, w, x, y) ∈ B and all
t ∈ Z+,

‖y(t) + w(t)‖ ≤ g−1

(
‖CK‖‖x(t)‖+ (‖(I −DK)−1‖‖De‖+ ‖DK‖‖K‖)

∥∥∥∥(v(t)
w(t)

)∥∥∥∥
+ ‖w(t)‖

)
.

Combining this with (2.43) and the reverse triangle inequality gives that, for all f :
Rp → Rm satisfying (2.28), all (v, w, x, y) ∈ B and all t ∈ Z+,

‖y(t)‖ ≤ g−1

(
‖CK‖ψ1(‖x(0)‖, t) + ‖CK‖φ1

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)
+ (1 + ‖(I −DK)−1‖‖De‖+ ‖DK‖‖K‖)

∥∥∥∥(v(t)
w(t)

)∥∥∥∥)+ ‖w(t)‖.

We now invoke Lemma 2.1.3 to yield, for all f : Rp → Rm satisfying (2.28), all
(v, w, x, y) ∈ B and all t ∈ Z+,

‖y(t)‖ ≤ g−1
(
2‖CK‖ψ1(‖x(0)‖, t)

)
+

∥∥∥∥(v(s)
w(s)

)∥∥∥∥
+ g−1

(
c̃(φ1 + id)

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)) ,
where c̃ := 2(‖CK‖ + 1 + ‖(I −DK)−1‖‖De‖ + ‖DK‖‖K‖) > 0. We define ψ2 ∈ KL
by ψ2(s, t) := g−1

(
(2‖CK‖+ 1)ψ1(s, t)

)
for all (s, t) ∈ R+ × Z+, and φ2 ∈ K by

φ2(s) := s+ g−1 (c̃(φ1 + id)(s)) ,

for all s ≥ 0. Therefore, for all f : Rp → Rm satisfying (2.28), all (v, w, x, y) ∈ B and
all t ∈ Z+,

‖y(t)‖ ≤ ψ2(‖x(0)‖, t) + φ2

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) . (2.45)

Finally, by defining ψ ∈ KL and φ ∈ K by

ψ(s, t) := max{ψ1(s, t), ψ2(s, t)} and φ(s) := max{φ1(s), φ2(s)} ∀ s ≥ 0, ∀ t ∈ Z+,

we immediately see from (2.43) and (2.45) that the proof is complete.

We conclude this section with the following example which presents a system that
satisfies the assumptions of Theorem 2.2.10.

Example 2.2.12. Consider (2.17) where n = 2, m = p = 1,

A =

(
1
2 1
0 1

2

)
, B =

(
1
0

)
, C =

(
1 0

)
, D = 1,
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f : R→ R is defined by

f(ξ) =
2

3
sign(ξ)

(√
|ξ|+ 1− 1

)
∀ ξ ∈ R,

and q, Be and De are arbitrary. It is easy to deduce that

G(1) = 3 and |G(z)| ≤ 3 ∀ z ∈ C, |z| ≥ 1.

Whence, we obtain that ‖G‖H∞ = 3. Furthermore, by defining r = 1/3, K = 0 and
α ∈ K∞ by

α(s) :=
s

3
− 2

3

(√
s+ 1− 1

)
∀ s ≥ 0,

it is straight forward to verify that the assumptions of Theorem 2.2.10 hold. Therefore,
in this case, (2.17) is ISOS. ♦

2.2.3 Input-to-state stability with bias

Here, we present a corollary to Theorem 2.2.10 that shows that if the nonlinearity of
(2.17) satisfies the sector condition (2.28) but only for all ξ ∈ Rp outside of a bounded
set, then the same assumptions on the linear system guarantee that (2.17) exhibits a
variant of ISS, namely ISS with bias. We now define this notion with respect to (2.17)
and, for background reading of ISS with bias, we refer the reader to works such as
[59, 108].

Definition 2.2.13. Let Σ ∈ L and f : Rp → Rm.

(i) We say that (2.17) is ISS with bias, if there exist ψ ∈ KL, φ ∈ K and θ > 0 such
that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
θ + max

s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ N, ∀ (v, w, x, y) ∈ B.

(2.46)

(ii) We say that (2.17) is ISOS with bias, if there exist ψ ∈ KL, φ ∈ K and θ > 0
such that (2.46) holds and

‖y(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
θ + max

s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ Z+, ∀ (v, w, x, y) ∈ B.

(2.47)

(iii) For a set S ⊆ Rp and ξ ∈ Rp, we define

dist(ξ, S) := inf{‖ξ − ζ‖ : ζ ∈ S}.

The following is the aforementioned corollary to Theorem 2.2.10. It is a generalisation
of [108, Corollary 17] to systems of the form (2.17).

Corollary 2.2.14. Let Σ ∈ L, K ∈ Rm×p, r > 0 and α ∈ K∞. Assume that
BC(K, r) ⊆ SC(G) and that (A) holds. Then there exist ψ ∈ KL and φ ∈ K such
that, for every nonlinearity f : Rp → Rm that is bounded on bounded sets and satisfies

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp with sufficiently large ‖ξ‖, (2.48)

it follows that (2.46) and (2.47) hold, where

θ = sup
ξ∈Rp

dist (f(ξ),BC(Kξ, r‖ξ‖ − α(‖ξ‖)) ∈ R+.

35



2.3. Convergence properties

Proof. We shall follow the steps laid out in [108, Corollary 17], and so shall only be
brief. Indeed, as per [108, Corollary 17], we note that we may assume, without loss of
generality, that α(s) < rs for all s > 0. With this in mind, we set ρ(s) := rs − α(s)
for every s ≥ 0 so that ρ(s) > 0 for all s > 0. It is easily seen that ρ(0) = 0 and ρ
is continuous. Let f : Rp → Rm be bounded on bounded sets and satisfy (2.48). We
subsequently define f̂ : Rp → Rm by

f̂(ξ) :=

{
f(ξ)−Kξ, if ‖f(ξ)−Kξ‖ ≤ ρ(‖ξ‖),
f(ξ)−Kξ
‖f(ξ)−Kξ‖ρ(‖ξ‖), if ‖f(ξ)−Kξ‖ > ρ(‖ξ‖),

}
∀ ξ ∈ Rp,

and f̃ : Rp → Rm by f̃(ξ) := f̂(ξ) + Kξ for all ξ ∈ Rp. We highlight the fact that
f̃(ξ) = f(ξ) for all ξ ∈ Rp such that ‖f(ξ)−Kξ‖ ≤ ρ(‖ξ‖) and also that

‖f̃(ξ)−Kξ‖ = ‖f̂(ξ)‖ ≤ ρ(‖ξ‖) ∀ ξ ∈ Rp. (2.49)

It is then not difficult to deduce that (see the proof of [108, Corollary 17])

sup
ξ∈Rp
‖f(ξ)− f̃(ξ)‖ = sup

ξ∈Rp
dist (f(ξ),BC(Kξ, ρ(‖ξ‖))) = θ <∞. (2.50)

To conclude the proof, we note that, for every (v, w, x, y) ∈ Bf (Σ), it follows that
(ṽ, w, x, y) ∈ Bf̃ (A,B, B̃e, C,D, D̃e), where B̃e :=

(
B Be

)
, D̃e :=

(
D De

)
and

ṽ(t) :=

(
f(y(t) + w(t))− f̃(y(t) + w(t))

v(t)

)
∀ t ∈ Z+.

In view of (2.49) and (2.50), we invoke Theorem 2.2.10 to obtain ψ ∈ KL and φ ∈ K
(independent of f) such that (2.46) and (2.47) hold.

2.3 Convergence properties

In [15], sufficient conditions are given for when continuous-time Lur’e systems, of the
form (2.1), exhibit a property known as the converging-input converging-state property.
Roughly, systems exhibit this notion if, for every vector v∞, inputs that asymptotically
converge to v∞, generate state trajectories that asymptotically converge to some vector
x∞. Our aim for this section is to present discrete-time analogues of the results of
[15], but which also allow for systems with feedthrough and with output disturbances.
Moreover, we shall also investigate the extent to which a converging input leads to a
converging output.

We split the current section into three, where, in the first part, we collect relevant
preliminary results and definitions. In the second part we then investigate convergence
properties of (2.17), and then, finally, we concern ourselves with steady-state gain maps
in the final portion of the section.

2.3.1 Preliminaries

For an element xe ∈ Rn, when the context is clear, we will sometimes abuse notation and
interchangeably write xe as an element of Rn and also the constant function mapping
t 7→ xe, for all t ∈ Z+.
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Definition 2.3.1. Let Σ ∈ L and f : Rp → Rm.

(i) We say that a quadruple (ve, we, xe, ye) ∈ Rq × Rp × Rn × Rp is an equilibrium
quadruple of (2.17), if (ve, we, xe, ye) ∈ B.

(ii) We say that an equilibrium quadruple (ve, we, xe, ye) is globally asymptotically
stable in the large (GAS), if there exists c > 0 such that, for all (ve, we, x, y) ∈ B,

‖x(t)− xe‖+ ‖y(t)− ye‖ ≤ c‖x(0)− xe‖ ∀ t ∈ Z+,

and

lim
t→∞

x(t) = xe and lim
t→∞

y(t) = ye.

(iii) We say that an equilibrium quadruple (ve, we, xe, ye) is input-to-state stable (ISS)
if there exist ψ ∈ KL and φ ∈ K such that, for every (v, w, x, y) ∈ B,

‖x(t)− xe‖ ≤ ψ(‖x(0)− xe‖, t) + φ

(
max
s∈t−1

∥∥∥∥( v(s)− ve

w(s)− we

)∥∥∥∥) ∀ t ∈ N. (2.51)

(iv) We say that an equilibrium quadruple (ve, we, xe, ye) is input-to-state/output sta-
ble (ISOS) if there exist ψ ∈ KL and φ ∈ K such that, for every (v, w, x, y) ∈ B,
(2.51) holds and

‖y(t)− ye‖ ≤ ψ(‖x(0)− xe‖, t) + φ

(
max
s∈t

∥∥∥∥( v(s)− ve

w(s)− we

)∥∥∥∥) ∀ t ∈ Z+.

Remark 2.3.2. Let Σ ∈ L and f : Rp → Rm.

(i) If f(0) = 0, then it is clear that (0, 0, 0, 0) is an equilibrium quadruple of (2.17).

(ii) If (0, 0, 0, 0) is an equilibrium quadruple of (2.17), then (0, 0, 0, 0) being GAS, ISS
or ISOS, is equivalent to (2.17) being GAS, ISS and ISOS, respectively. Indeed,
we refer the reader to Definitions 2.2.1 and 2.2.5. ♦

With the previous definitions in mind, we are able to reinterpret Theorems 2.2.3 and
2.2.10 in terms of equilibirum quadruples.

Corollary 2.3.3. Let Σ ∈ L, K ∈ Rm×p, r > 0 and f : Rp → Rm. Assume that
BC(K, r) ⊆ SC(G) and (A) holds. The following statements hold.

(i) If ‖DK‖ < 1/r, f is continuous and

‖f(ξ)−Kξ‖ < r‖ξ‖ ∀ ξ ∈ Rp\{0},

then (0, 0, 0, 0) is a GAS equilibrium quadruple of (2.17).

(ii) If there exists α ∈ K∞ such that

‖f(ξ)−Kξ‖ ≤ γ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp,

then (0, 0, 0, 0) is an ISOS equilibrium quadruple of (2.17).
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Proof. In either case, the assumptions on f guarantee that f(0) = 0. As discussed in
Remark 2.3.2, this implies that (0, 0, 0, 0) is an equilibrium quadruple of (2.17) and is
GAS or ISOS if, and only if, (2.17) is GAS or ISOS, respectively. Theorems 2.2.3 and
2.2.10 hence complete the proof.

The following function (first explicitly defined in the continuous-time setting in [15])
will be useful in obtaining the existence of equilibrium quadruples.

Definition 2.3.4. Let Σ ∈ L and f : Rp → Rm. For K ∈ SR(G), we define FK : Rp →
Rp by

FK(ξ) := ξ −GK(1)(f(ξ)−Kξ) ∀ ξ ∈ Rp. (2.52)

The next lemma shows a useful invariance property of FK .

Lemma 2.3.5. Let Σ ∈ L, f : Rp → Rm, W ⊆ Rp be a non-empty subset and assume
that K ∈ SR(G). Then

FK
(
im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W

)
⊆ im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W, (2.53)

and

F−1
K

(
im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W

)
⊆ im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W. (2.54)

Proof. Since GK(1)ξ ∈ im(CK)+im(DK) for every ξ ∈ Rm, it is clear that (2.53) holds.
Moreover, if ξ ∈ F−1

K

(
im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W

)
then there exist

ζ1 ∈ Rn, ζ2 ∈ Rm, ζ3 ∈ Rq and ζ4 ∈W such that

ξ −GK(1)(f(ξ)−Kξ) = CKζ1 +DKζ2 + (I −DK)−1Deζ3 + ζ4.

By combining this with the fact that GK(1)(f(ξ)−Kξ) ∈ im(CK)+im(DK), the proof
is complete.

The following proposition shows that we are able to obtain equilibrium quadruples from
certain preimages of the map FK .

Proposition 2.3.6. Let Σ ∈ L be stabilisable and detectable, f : Rp → Rm, v∞ ∈ Rq
and w∞ ∈ Rp. Assume that K ∈ SR(G) and

TK := F−1
K

(
CK(I −AK)−1

(
Be +BKKDe

)
v∞

+ (I −DK)−1Dev
∞ +

(
I + GK(1)K

)
w∞

)
(2.55)

is nonempty. Let z∞ ∈ TK and define y∞ := z∞ − w∞ and

x∞ := (I −AK)−1
(
BK(f(z∞)−K(z∞ − w∞)) + (Be +BKKDe)v

∞) . (2.56)

Then

y∞ = CKx∞ +DK(f(z∞)−K(z∞ − w∞)) + (I −DK)−1Dev
∞ , (2.57)

and (v∞, w∞, x∞, y∞) is an equilibrium quadruple of (2.17).
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Remark 2.3.7. (i) For Σ ∈ L and f : Rp → Rm, Proposition 2.3.6 is motivated by
the wish to find x∞ ∈ Rn and y∞ ∈ Rp such that

x∞ = Ax∞ +Bf(y∞ + w∞) +Bev
∞,

y∞ = Cx∞ +Df(y∞ + w∞) +Dev
∞,

for given v∞ ∈ Rq and w∞ ∈ Rp. Since I − A need not be invertible, we include
the output feedback matrix K. Indeed, from [72, Theorem 2] (see Remark 2.1.23),
the assumptions of Proposition 2.3.6 guarantee that AK is Schur. In the simple
situation wherein Be = B, De = D, K = 0 and w∞ = 0, the condition TK 6= ∅ is
equivalent to F−1

K (G(1)v∞) 6= ∅.
(ii) A continuous-time analogue to Proposition 2.3.6 is given in [15, Proposition 3.1].

Although, as already mentioned, in [15] a much less general system is considered,
that is, one without feedthrough and without output disturbances. ♦

Proof of Proposition 2.3.6. For ease of notation in the sequel, we define fK(ξ) := f(ξ)−
K(ξ) for all ξ ∈ Rp. We begin by recalling from the previous remark that AK is Schur,
and so (I −AK)−1 is well-defined (see Remark 2.3.7). By considering

CKx∞ = CK(I −AK)−1
(
BK(f(z∞)−K(z∞ − w∞)) + (Be +BKKDe)v

∞)
= GK(1)fK(z∞)−DKfK(z∞) + CK(I −AK)−1

(
(Be +BKKDe)v

∞ +BKKw∞
)
.

By recalling the definition of FK from (2.52), this becomes

CKx∞ =z∞ − FK(z∞)−DKfK(z∞)

+ CK(I −AK)−1
(
(Be +BKKDe)v

∞ +BKKw∞
)
.

Since z∞ ∈ TK , it is then easily checked that

CKx∞ =z∞ −DKfK(z∞)− (I −DK)−1Dev
∞ − w∞ −DKKw∞

= y∞ −DK(f(y∞ + w∞)−Ky∞)− (I −DK)−1Dev
∞.

Therefore,

y∞ = CKx∞ +DK(f(y∞ + w∞)−Ky∞) + (I −DK)−1Dev
∞, (2.58)

which is (2.57). To prove that (v∞, w∞, x∞, y∞) is an equilibrium quadruple, we note
that

x∞ = AKx∞ +BK(f(y∞ + w∞)−Ky∞) + (Be +BKKDe)v
∞ ,

which, together with (2.58), completes the proof via an application of Lemma 2.1.18.

With Proposition 2.3.6 in mind, we see that a useful property in determining equilib-
rium quadruples is surjectivity of FK . The next result is a discrete-time analogue of [15,
Proposition 4.1], and gives conditions sufficient for guaranteeing that FK is surjective.

Proposition 2.3.8. Let Σ ∈ L, K ∈ Rm×p, r > 0, W ⊆ Rp be a non-empty subset
and f : Rp → Rm. Assume that BC(K, r) ⊆ SC(G), and that f satisfies

‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖ ∀ ζ ∈ Y, ∀ ξ ∈ Rp\{0}, (2.59)

where Y ⊆ im(CK) + im(DK) + im
(
(I −DK)−1De

)
+W is a non-empty subset. The

following statements hold.
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(i) #F−1
K (ξ) = 1 for all ξ ∈ im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W such that

F−1
K (ξ) ∩ Y 6= ∅.

(ii) If f is continuous and ‖GK(1)‖ < 1/r, then FK is surjective.

(iii) If f is continuous and there exists η ∈ Rp such that

r‖ξ‖ − ‖f(ξ + η)− f(η)−Kξ‖ → ∞ as ‖ξ‖ → ∞,

then FK is surjective.

(iv) If Y = im(CK)+im(DK)+im
(
(I −DK)−1De

)
+W and either of the hypotheses

of statements (ii) or (iii) hold, then F̃K : Y → Y , defined by F̃K(ξ) := FK(ξ) for
all ξ ∈ Y , is a bijection.

In order to prove Proposition 2.3.8, we shall use [15, Lemma 4.2]. For convenience, we
present it here.

Lemma 2.3.9. Let g : Rp → Rm and r > 0.

(i) If there exists η ∈ Rp such that

r‖ξ‖ − ‖g(ξ + η)− g(η)‖ → ∞ as ‖ξ‖ → ∞,

then, for all ζ ∈ Rp,

r‖ξ‖ − ‖g(ξ + ζ)− g(ζ)‖ → ∞ as ‖ξ‖ → ∞.

(ii) If g is continuous, ‖g(ξ)‖ < r‖ξ‖ for all ξ ∈ Rp\{0}, and r‖ξ‖ − ‖g(ξ)‖ → ∞ as
‖ξ‖ → ∞, then there exists α ∈ K∞ such that

‖g(ξ)‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp.

Proof of Proposition 2.3.8. The proof is a discrete-time analogue of the proof of [15,
Proposition 4.1]. We begin with the observation that if GK(1) = 0, then FK is trivially
a bijective function. For the rest of this proof, we thus assume that GK(1) 6= 0 and
hence ‖GK‖H∞ 6= 0.
With regards to proving statement (i), let ξ ∈ im(CK)+im(DK)+im

(
(I −DK)−1De

)
+

W be such that F−1
K (ξ) ∩ Y 6= ∅ and let ξ1 ∈ F−1

K (ξ) ∩ Y and ξ2 ∈ F−1
K (ξ). We seek to

show that ξ1 = ξ2. To this end, first note that

‖ξ2 − ξ1‖ = ‖FK(ξ2) + GK(1)(f(ξ2)−Kξ2)− FK(ξ1)−GK(1)(f(ξ1)−Kξ1)‖
≤ ‖GK‖H∞‖f(ξ2)− f(ξ1)−K(ξ2 − ξ1)‖.

If ξ1 6= ξ2, then, by Lemma 2.1.24 and (2.59), we obtain that

‖ξ2 − ξ1‖ < r‖GK‖H∞‖ξ2 − ξ1‖ ≤ ‖ξ2 − ξ1‖,

which is a contradiction. Whence, ξ1 = ξ2 and #F−1
K (ξ) = 1, proving statement (i).

We now move on to showing that statement (ii) holds and hence we additionally assume
that f is continuous and that ‖GK(1)‖ < 1/r. We deduce from this that FK is
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continuous. Thus, in order to show that FK is surjective, we refer to [93, Theorem
9.36] and shall prove that FK is coercive, i.e.

1

‖ξ‖
〈FK(ξ), ξ〉 → ∞ as ‖ξ‖ → ∞.

To this end, an application of the Cauchy-Schwarz and triangle inequalities yields, for
all ξ ∈ Rp,

1

‖ξ‖
〈FK(ξ), ξ〉 =

1

‖ξ‖
〈ξ −GK(1)(f(ξ)−Kξ), ξ〉

= ‖ξ‖ − 〈G
K(1)(f(ξ)−Kξ), ξ〉

‖ξ‖
≥ ‖ξ‖ − ‖GK(1)‖‖f(ξ)−Kξ‖. (2.60)

We now fix ζ ∈ Y and utilise (2.59) so that, for all ξ ∈ Rp,

‖f(ξ)− f(ζ)−Kξ‖ ≤ ‖f(ξ − ζ + ζ)− f(ζ)−K(ξ − ζ)‖+ ‖Kζ‖
≤ r‖ξ − ζ‖+ ‖Kζ‖
≤ r‖ξ‖+ (‖K‖+ r)‖ζ‖.

By subsequently combining this with (2.60), we see that, for all ξ ∈ Rp,

1

‖ξ‖
〈FK(ξ), ξ〉 ≥ ‖ξ‖ − ‖GK(1)‖ (‖f(ξ)− f(ζ)−Kξ‖+ ‖f(ζ)‖)

≥ ‖ξ‖ − ‖GK(1)‖ (r‖ξ‖+ (‖K‖+ r)‖ζ‖+ ‖f(ζ)‖)
= (1− r‖GK(1)‖)‖ξ‖ − ‖GK(1)‖ ((‖K‖+ r)‖ζ‖+ ‖f(ζ)‖) . (2.61)

Since 1− r‖GK(1)‖ > 0, we obtain the desired coercivity of FK hence completing the
proof of statement (ii).
Turning our attention now to statement (iii), we see that under the additional assump-
tions of continuity of f and that there exists η ∈ Rp such that

r‖ξ‖ − ‖f(ξ + η)− f(η)−Kξ‖ → ∞ as ‖ξ‖ → ∞,

statement (i) of Lemma 2.3.9 guarantees that, for every ζ ∈ Rp,

r‖ξ‖ − ‖f(ξ + ζ)− f(ζ)−Kξ‖ → ∞ as ‖ξ‖ → ∞.

We fix ζ ∈ Y and note that the hypotheses of statement (ii) of Lemma 2.3.9 hold (with
respect to the function ξ 7→ f(ξ + ζ)− f(ζ)−Kξ). This then implies that there exists
α ∈ K∞ (dependent on ζ) such that

‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp.

We now act similarly to the proof of statement (ii) and seek to show that FK is coercive.
Indeed, first note that, for all ξ ∈ Rp, the above inequality yields that

‖f(ξ)− f(ζ)−Kξ‖ ≤ ‖f(ξ − ζ + ζ)− f(ζ)−K(ξ − ζ)‖+ ‖Kζ‖
≤ r‖ξ − ζ‖ − α(‖ξ − ζ‖) + ‖Kζ‖
≤ r‖ξ‖ − α(‖ξ − ζ‖) + (‖K‖+ r)‖ζ‖.
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By combining this with (2.60), we obtain that, for all ξ ∈ Rp,

1

‖ξ‖
〈FK(ξ), ξ〉 ≥ ‖ξ‖ − ‖GK(1)‖ (‖f(ξ)− f(ζ)−Kξ‖+ ‖f(ζ)‖)

≥ (1− r‖GK(1)‖)‖ξ‖+ ‖GK(1)‖α(‖ξ − ζ‖)
− ‖GK(1)‖ ((‖K‖+ r)‖ζ‖+ ‖f(ζ)‖) .

Since 1− r‖GK(1)‖ ≥ 1− r‖GK‖H∞ ≥ 0 by Lemma 2.1.24, and α ∈ K∞, we have that
FK is coercive and hence is surjective.
For the final part of the proof, we aim to show that statement (iv) holds. To do so,
we let Y = im(CK) + im(DK) + im

(
(I −DK)−1De

)
+ W and assume that either of

the hypotheses of statements (ii) or (iii) hold. The map FK is surjective and so for
all ζ ∈ Y , there exists ξ ∈ Rp such that FK(ξ) = ζ. From Lemma 2.3.5, we see that
ξ ∈ Y and so F̃K(ξ) = ζ. Moreover, #F−1

K (ζ) = 1 from statement (i). Therefore, F̃K
is bijective.

We shall now see that if (2.59) in fact holds globally (that is, Y = Rp), then a certain
map is bijective with a globally Lipschitz inverse. These properties of this map will be
useful in subsequent results (see Theorem 2.3.16).

Proposition 2.3.10. Let Σ ∈ L, K ∈ Rm×p, r > 0 and f : Rp → Rm. Assume that
BC(K, r) ⊆ SC(G), ‖DK‖ < 1/r and that f satisfies

‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖ ∀ ξ, ζ ∈ Rp, ξ 6= 0. (2.62)

Then I − DK(f − K) is bijective and (I − DK(f − K))−1 is globally Lipschitz with
Lipschitz constant L := 1/(1− r‖DK‖) > 0.

Proof. For ease of notation in the sequel, we define g := I −DK(f −K). We begin by
showing that g is surjective, and will do this by first showing that the map I − g is a
contraction. To this end, from (2.62), for all ξ1, ξ2 ∈ Rp,

‖(I − g)(ξ1)− (I − g)(ξ2)‖ = ‖DK(f −K)(ξ1)−DK(f −K)(ξ2)‖
≤ r‖DK‖‖ξ1 − ξ2‖.

Thus, since r‖DK‖ < 1, I − g is a contraction. We now fix ζ ∈ Rp and define hζ(ξ) :=
ξ − g(ξ) + ζ for all ξ ∈ Rp. Since I − g is a contraction, it is clear that hζ is also.
Therefore, an application of the contraction mapping theorem gives the existence of
η ∈ Rp such that hζ(η) = η. That is, g(η) = ζ, whence showing surjectivity.
As for injectivity of g, we utilise a contradiction argument and suppose that g(ξ1) =
g(ξ2) where ξ1, ξ2 ∈ Rp are such that ξ1 6= ξ2. From this we see that

ξ1 − ξ2 = DK(f −K)(ξ1)−DK(f −K)(ξ2),

which, when combined with (2.62) and the fact that r‖DK‖ < 1, gives

‖ξ1 − ξ2‖ < r‖DK‖‖ξ1 − ξ2‖ < ‖ξ1 − ξ2‖.

This is a contradiction, hence yielding that g is injective.
Finally, in order to show that g−1 is globally Lipschitz, note that, by (2.62),

‖ξ1 − ξ2‖ ≤ ‖g(ξ1)− g(ξ2)‖+ r‖DK‖‖ξ1 − ξ2‖ ∀ ξ1, ξ2 ∈ Rp.

42



Chapter 2. Stability and convergence properties of discrete-time Lur’e systems

Additionally, since r‖DK‖ < 1, we have L := 1/(1 − r‖DK‖) > 0, and so the above
inequality gives

‖ξ1 − ξ2‖ ≤ L‖g(ξ1)− g(ξ2)‖ ∀ ξ1, ξ2 ∈ Rp.

From this, it is clear that g−1 is Lipschitz continuous with Lipschitz constant L.

Remark 2.3.11. By combining Proposition 2.1.37 with Proposition 2.3.10, we see
that, under the assumptions of Proposition 2.3.10, for a given x0 ∈ Rn, v ∈ (Rq)Z+ and
w ∈ (Rp)Z+ , the IVP (2.18) has a unique solution. ♦

2.3.2 The converging-input converging-state/output property

As already discussed, the continuous-time result [15, Theorem 4.3] provides sufficient
conditions for when systems of the form (2.1) exhibit a notion called the converging-
input converging-state property. Our intention here is to prove a discrete-time version
of this result, which holds for general systems of the form (2.17). We hence begin by
giving the following definition.

Definition 2.3.12. Let Σ ∈ L and f : Rp → Rm. We say that (2.17) has the
converging-input converging-state (CICS) property if for every v∞ ∈ Rq and w∞ ∈ Rp,
there exists x∞ ∈ Rn such that limt→∞ x(t) = x∞ for every (v, w, x, y) ∈ B with
limt→∞ v(t) = v∞ and limt→∞w(t) = w∞.

Not only shall we present conditions that guarantee that (2.17) exhibits the CICS
property, we will also show that, under these same assumptions, the output converges
asymptotically to some vector in Rp, thus motivating the following definition.

Definition 2.3.13. Let Σ ∈ L and f : Rp → Rm. We say that (2.17) has the
converging-input converging-state/output (CICSO) property if for every v∞ ∈ Rq and
w∞ ∈ Rp, there exists x∞ ∈ Rn and y∞ ∈ Rp such that limt→∞ x(t) = x∞ and
limt→∞ y(t) = y∞ for every (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) =
w∞.

Of course, in the situation where the feedthrough is zero, the CICS property implies the
CICSO property. The following example shows that there exist systems with nonzero
feedthrough that exhibit the CICS property but not the CICSO property.

Example 2.3.14. Consider (2.17) where n = m = p = q = 2, A = De = 0 ∈ R2×2,
Be = I ∈ R2×2,

B =

(
1/2 0
0 0

)
, C :=

(
1 0
0 0

)
, D :=

(
0 0
0 1

)
,

and f : R2 → R2 is the identity map. We note that since BC = B and BD = 0, the
state equation in (2.17) becomes

x+ = 0 +B(Cx+Dy +Dw + 0 + w) + v = Bx+Bw + v.

Since B is a Schur matrix, we hence see, from standard linear control theory, that
(2.17) has the CICS property.
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We now let v∞ ∈ R2 be fixed and set w∞ := 0 ∈ R2. We additionally define v, w ∈
(R2)Z+ by v(t) := v∞ and w(t) := 0 for all t ∈ Z+, and denote by x = (x1x2)T ∈ (R2)Z+

the solution of the initial-value problem

x+ = Bx+ v∞, x(0) = 0.

Finally, we define y = (y1 y2)T ∈ (R2)Z+ by

y(t) :=

(
x1(t)
(−1)t

)
∀ t ∈ Z+.

We then see that

Cx+Df(y + w) +Dev =

(
x1

0

)
+

(
0
y2

)
= y,

and

Ax+Bf(y + w) +Bev = Bx+ v∞ = x+.

Therefore, (v, w, x, y) ∈ B. To conclude the example, we note that, trivially, v(t) and
w(t) converge to v∞ and w∞ as t→∞, respectively, but y(t) does not converge. ♦

Before giving the next result, we recall what it means for a set of functions to be
equi-convergent to a vector.

Definition 2.3.15. We say that a subset V ⊆ (Rq)Z+ is equi-convergent to v∞ ∈ Rq
if, for all ε > 0, there exists τ ∈ Z+ such that

‖(Λτv)(t)− v∞‖ ≤ ε ∀ t ∈ Z+, ∀ v ∈ V.

We now present the main result of this section, the aforementioned generalisation of
[15, Theorem 4.3] to discrete-time Lur’e systems of the form (2.17).

Theorem 2.3.16. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p, r > 0, W ⊆ Rp be a non-
empty subset, v∞ ∈ Rq and w∞ ∈ W . Assume that BC(K, r) ⊆ SC(G), (A) holds and
that f is continuous and satisfies

‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖ ∀ ζ ∈ Y, ∀ ξ ∈ Rp\{0}, (2.63)

where Y ⊆ im(CK)+im(DK)+im
(
(I −DK)−1De

)
+W is a non-empty subset such that

TK ∩ Y 6= ∅, and where TK is given by (2.55). Then #TK = 1 and (v∞, w∞, x∞, y∞)
is an equilibrium quadruple, where y∞ := z∞ − w∞ with {z∞} = TK , and x∞ is given
by (2.56). Furthermore, the following statements hold.

(i) If ‖DK‖ < 1/r, then (v∞, w∞, x∞, y∞) is a GAS equilibrium quadruple. Addi-
tionally, if I−DK(f−K) is bijective and (I−DK(f−K))−1 is continuous, then
for all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞, we have
that either x(t)→ x∞ or ‖x(t)‖ → ∞ as t→∞.

(ii) If there exists η ∈ Rp such that

r‖ξ‖ − ‖f(ξ + η)− f(η)−Kξ‖ → ∞ as ‖ξ‖ → ∞, (2.64)
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then (v∞, w∞, x∞, y∞) is an ISOS equilibrium quadruple and there exist ψ1, ψ2 ∈
KL and φ ∈ K such that, for all (v, w, x, y) ∈ B and all t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥ ≤ψ1(‖x(0)− x∞‖, t) + ψ2

(
max
s∈bt/2c

∥∥∥∥( v(s)− v∞
w(s)− w∞

)∥∥∥∥ , t
)

+ φ

(
max
s∈dt/2e

∥∥∥∥( (Λbt/2cv)(s)− v∞
(Λbt/2cw)(s)− w∞

)∥∥∥∥
)
. (2.65)

In particular, for all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) =
w∞, we have limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞.

Remark 2.3.17. (i) Under the hypotheses of Theorem 2.3.16, we note that x∞ and
y∞ given by (2.56) and (2.57) do not depend on the choice of K. Indeed, this
is shown in the proof of Lemma 2.3.19 situated immediately after the following
proof of Theorem 2.3.16. We comment that one can also deduce that x∞ and y∞

do not depend upon K from the conclusions of Theorem 2.3.16. For more details
of this, we refer the reader to [15, Remark 4.4.(c)].

(ii) In Theorem 2.3.16 we assume that f is continuous. We highlight that this con-
dition is trivially a consequence of (2.63) if

Y = im(CK) + im(DK) + im
(
(I −DK)−1De

)
+W = Rp.

Furthermore, in such a situation, (2.62) holds and so, if ‖DK‖ < 1/r, it follows
from Proposition 2.3.10 that I −DK(f −K) is bijective and (I −DK(f −K))−1

is globally Lipschitz. Hence, the additional assumptions of statement (i) are
redundant.

(iii) The convergence in statement (ii) of Theorem 2.3.16 is uniform in the following
sense: given a set of inputs V ⊆ (Rq)Z+ × (Rp)Z+ which is equi-convergent to
(v∞, w∞) and κ > 0, the set{

x ∈ (Rn)Z+ : ∃ (v, w, y) ∈ V × (Rp)Z+ s.t. (v, w, x, y) ∈ B

and ‖x(0)‖+ sup
t∈Z+

∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ κ
}

is equi-convergent to x∞. ♦

Before proving Theorem 2.3.16, we first present the following corollary, which succinctly
gives sufficient conditions that guarantee that (2.17) exhibits the CICSO property.

Corollary 2.3.18. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p, r > 0 and W ⊆ Rp be a
non-empty subset. Assume that BC(K, r) ⊆ SC(G), (A) holds, f is continuous, (2.63)
holds with Y = im(CK) + im(DK) + im

(
(I −DK)−1De

)
+W and there exists η ∈ Rp

such that (2.64) holds. Then for each v∞ ∈ Rq and w∞ ∈ W , there exists x∞ ∈ Rn
and y∞ ∈ Rp such that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞ for all (v, w, x, y) ∈ B
where limt→∞ v(t) = v∞ and limt→∞w(t) = w∞. In particular, if W = Rp, then (2.17)
has the CICSO property.
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Proof. First, fix v∞ ∈ Rq and w∞ ∈ W and note that statement (iii) in Proposition
2.3.8 gives that FK is surjective. Moreover, Lemma 2.3.5 implies that F−1

K (Y ) ⊆ Y .
Combining this with the surjectivity of FK , we see that TK ∩Y 6= ∅, where TK is given
by (2.55). Statement (ii) of Theorem 2.3.16 hence completes the proof.

Proof of Theorem 2.3.16. We begin with an application of statement (i) of Proposition
2.3.8 to obtain that #TK = 1, and an application of Proposition 2.3.6 to yield that
(v∞, w∞, x∞, y∞) is an equilibrium quadruple. We also define f̃ : Rp → Rm by

f̃(ξ) := f(ξ + y∞ + w∞)− f(y∞ + w∞) ∀ ξ ∈ Rp,

and highlight that, since y∞ + w∞ = z∞ ∈ TK ⊆ Y and (2.63) holds,

‖f̃(ξ)−Kξ‖ < r‖ξ‖ ∀ ξ ∈ Rp\{0}. (2.66)

Our attention now turns to proving statement (i). To this end, we assume that ‖DK‖ <
1/r and let (v∞, w∞, x, y) ∈ B. We define ỹ := y − y∞ and x̃ := x− x∞, and combine
Lemma 2.1.18 with Proposition 2.3.6 to yield

x̃+ = AKx+BK (f(y + w∞)−Ky) + (Be +BKKDe)v
∞

−AKx∞ −BK (f(y∞ + w∞)−Ky∞)− (Be +BKKDe)v
∞

= AK x̃+BK (f(ỹ + y∞ + w∞)− f(y∞ + w∞)−Kỹ)

= AK x̃+BK
(
f̃(ỹ)−Kỹ

)
.

It can similary be shown that

ỹ = CK x̃+DK
(
f̃(ỹ)−Kỹ

)
,

which, when combined with Lemma 2.1.18, shows that (0, 0, x̃, ỹ) ∈ Bf̃ . Therefore,
in order to show that (v∞, w∞, x∞, y∞) is GAS, it suffices to prove that (0, 0, 0, 0) is
a GAS equilibrium quadruple of the system given by (2.17) but with nonlinearity f̃ .
Indeed this is obtained immediately from Corollary 2.3.3 by recalling (2.66). Hence
(v∞, w∞, x∞, y∞) is a GAS equilibrium quadruple. To conclude the proof of statement
(i), we now additionally assume that I−DK(f−K) is bijective and (I−DK(f−K))−1

is continuous. Let (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞.
In order to prove the statement, we shall utilise an application of Theorem B.0.2 in
Appendix B. To this end, since (I−DK(f−K))−1 exists, it follows from Lemma 2.1.18
that we can write

y + w = (I −DK(f −K))−1
(
CKx+ (I −DK)−1Dev + (I +DKK)w

)
.

By combining this with the fact that (I − DK(f − K))−1 is continuous, it is easily
checked that (2.17) can be written in the form x+ = g

(
x, (v, w)T

)
, for some continuous

function g : Rn×Rq+p → Rn. Explicitly, for all ξ ∈ Rn and ζ ∈ Rq+p, g(ξ, ζ) is defined
by

g(ξ, ζ) : = AKξ +
(
Be +BKKDe BKK

)
ζ

+BK(f −K)
(

(I −DK(f −K))−1
(
CKξ +

(
(I −DK)−1De I +DKK

)
ζ
) )
.
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If ‖x(t)‖ does not tend to infinity as t → ∞, then there exists M ≥ 0 such that, for
every k ∈ Z+, there exists tk ∈ k such that ‖x(tk)‖ ≤ M . Let C be the compact set
defined by

C = {ξ ∈ Rn : ‖ξ‖ ≤M}.

Using Theorem B.0.2 then gives that x(t)→ x∞ as t→∞, as required.

We now prove statement (ii) and so we now assume that there exists η ∈ Rp such that
(2.64) holds. Let (v, w, x, y) ∈ B and define ỹ := y− y∞, x̃ := x−x∞, ṽ := v− v∞ and
w̃ := w − w∞. A combination of Lemma 2.1.18 and Proposition 2.3.6 gives

x̃+ = AKx+BK (f(y + w)−Ky) + (Be +BKKDe)v

−AKx∞ −BK (f(y∞ + w∞)−Ky∞)− (Be +BKKDe)v
∞

= AK x̃+BK (f(ỹ + w̃ + y∞ + w∞)− f(y∞ + w∞)−Kỹ) + (Be +BKKDe)ṽ

= AK x̃+BK
(
f̃(ỹ + w̃)−Kỹ

)
+ (Be +BKKDe)ṽ.

It can similary be shown that

ỹ = CK x̃+DK
(
f̃(ỹ + w̃)−Kỹ

)
+ (I −DK)−1Deṽ,

and so another application of Lemma 2.1.18 implies that (ṽ, w̃, x̃, ỹ) ∈ Bf̃ . Therefore,
in order to show that (v∞, w∞, x∞, y∞) is an ISOS equilibrium quadruple of the Lur’e
system (2.17), it suffices to prove that (0, 0, 0, 0) is an ISOS equilibrium quadruple of
the system given by (2.17) but with nonlinearity f̃ . To this end, note that, from (2.64)
and an application of statement (i) of Lemma 2.3.9,

r‖ξ‖ − ‖f̃(ξ)−Kξ‖ → ∞ as ‖ξ‖ → ∞.

By combining this with (2.66), it follows from statement (ii) of Lemma 2.3.9, that there
exists α ∈ K∞ such that

‖f̃(ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp.

Whence, by Corollary 2.3.3, (0, 0, 0, 0) is an ISOS equilibrium quadruple of the system
given by (2.17) but with nonlinearity f̃ , which implies that (v∞, w∞, x∞, y∞) is an
ISOS equilibrium quadruple of (2.17). Therefore, there exist ψ ∈ KL and φ ∈ K such
that, for all (v, w, x, y) ∈ B and all t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥ ≤ ψ(‖x(0)− x∞‖, t) + φ

(
max
s∈t

∥∥∥∥( v(s)− v∞
w(s)− w∞

)∥∥∥∥) . (2.67)

A combination of Lemma 2.1.33 alongside the identity dt/2e+ bt/2c = t for all t ∈ Z+,
thus yields, for all (v, w, x, y) ∈ B and all t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥ =

∥∥∥∥((Λbt/2cx)(dt/2e)− x∞
(Λbt/2cy)(dt/2e)− y∞

)∥∥∥∥
≤ ψ (‖x(bt/2c)− x∞‖ , dt/2e) + φ

(
max
s∈dt/2e

∥∥∥∥( (Λbt/2cv)(s)− v∞
(Λbt/2cw)(s)− w∞

)∥∥∥∥
)
.
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Applying another ISOS estimate to the term ‖x(bt/2c)− x∞‖ in the above inequality
then obtains, for all (v, w, x, y) ∈ B and all t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥ ≤ ψ

(
ψ(‖x(0)− x∞‖, bt/2c) + φ

(
max
s∈bt/2c

∥∥∥∥( v(s)− v∞
w(s)− w∞

)∥∥∥∥
)
, dt/2e

)

+ φ

(
max
s∈dt/2e

∥∥∥∥( (Λbt/2cv)(s)− v∞
(Λbt/2cw)(s)− w∞

)∥∥∥∥
)
.

Finally, we set ψ1(s, t) := ψ (2ψ(s, bt/2c), dt/2e) and ψ2(s, t) := ψ (2φ(s), dt/2e) for all
s ∈ R+ and t ∈ Z+, to yield that (2.65) holds, for all (v, w, x, y) ∈ B and all t ∈ Z+.
For all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞, it is clear that
the right hand side of the previous inequality tends to zero as t → ∞, thus yielding
that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞ and completing the proof.

The following result was mentioned in Remark 2.3.17, and shows that x∞ and y∞,
given by (2.56) and (2.57), do not depend on the choice of K.

Lemma 2.3.19. Let Σ ∈ L be stabilisable and detectable, f : Rp → Rm, K1,K2 ∈
Rm×p, r1, r2 > 0, W ⊆ Rp be a non-empty subset, v∞ ∈ Rq and w∞ ∈ W . Assume
that, for each i = 1, 2, BC(Ki, ri) ⊆ SC(G) and that f satisfies

‖f(ξ + ζ)− f(ζ)−Kiξ‖ < ri‖ξ‖ ∀ ζ ∈ Yi, ∀ ξ ∈ Rp\{0}, (2.68)

where Yi ⊆ im(CKi) + im(DKi) + im
(
(I −DKi)

−1De

)
+W is a non-empty subset such

that TKi ∩ Yi 6= ∅. Then x∞1 = x∞2 and y∞1 = y∞2 , where y∞i + w∞ ∈ TKi and

x∞i := (I −AKi)−1
(
BKi(f(y∞i + w∞)−Ki(y

∞)) + (Be +BKiKiDe)v
∞) ,

for each i = 1, 2.

Proof. An application of statement (i) of Proposition 2.3.8 gives that #TKi = 1 for each
i = 1, 2, and, from Proposition 2.3.6, we obtain that (v∞, w∞, x∞i , y

∞
i ) is an equilibrium

quadruple for each i = 1, 2. Therefore, by setting x̃ := x∞1 −x∞2 and ỹ := y∞1 − y∞2 , we
see that

x̃ = Ax̃+B(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞))

ỹ = Cx̃+D(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞)).

From this, Lemma 2.1.18 implies that

x̃ = AK2 x̃+BK2(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞)−K2ỹ)

ỹ = CK2 x̃+DK2(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞)−K2ỹ).

}
(2.69)

Consequently,

ỹ = (CK2(I −AK2)−1BK2 +DK2)(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞)−K2ỹ)

= GK2(1)(f(ỹ + y∞2 + w∞)− f(y∞2 + w∞)−K2ỹ).

Since ‖GK2(1)‖ ≤ 1/r by Lemma 2.1.24 and since (2.68) holds and y∞2 +w∞ ∈ Y2, we
yield that ỹ = 0, that is, y∞1 = y∞2 . Finally, by combining this with (2.69), we obtain
that x̃ = AK2 x̃. Since I −AK2 is invertible, this implies that x̃ = 0, or that x∞1 = x∞2 ,
completing the proof.
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In the situation where the signal w in (2.17) is considered to be an output disturbance,
obtained say from sampling or actuation errors for example, then it is quite possible
that w is not convergent. This idea motivates the following corollary.

Corollary 2.3.20. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p and r > 0. Assume that
BC(K, r) ⊆ SC(G), (A) holds and that f satisfies (2.63) with Y = Rp and is such that
there exists η ∈ Rp such that (2.64) holds. Then for each v∞ ∈ Rq and w∞ ∈ Rp,
there exists x∞ ∈ Rn, y∞ ∈ Rp and φ ∈ K such that, for all (v, w, x, y) ∈ B with
limt→∞ v(t) = v∞ and w bounded,

lim sup
t→∞

∥∥∥∥(x(t)− x∞
y(t)− y∞

)∥∥∥∥ ≤ φ(lim sup
t→∞

‖w(t)− w∞‖
)
. (2.70)

Proof. Let v∞ ∈ Rq and w∞ ∈ Rp. Since (2.63) holds with Y = Rp, Proposition 2.3.8
implies that FK is bijective. Therefore, the hypotheses of Statement (ii) of Theorem
2.3.16 are satisfied with W = Rp. We thus immediately obtain the existence of x∞ ∈
Rn, y∞ ∈ Rp, ψ1, ψ2 ∈ KL and φ ∈ K such that (2.65) holds for all (v, w, x, y) ∈ B
and all t ∈ Z+. From this, it is then straightforward to see that (2.70) holds for all
(v, w, x, y) ∈ B with limt→∞ v(t) = v∞.

We now give two examples of systems which satisfy the assumptions of Corollary 2.3.18,
and hence exhibit the CICSO property.

Example 2.3.21. Consider (2.17) in the case given in Example 2.2.12, that is, let
n = 2, m = p = 1,

A =

(
1
2 1
0 1

2

)
, B =

(
1
0

)
, C =

(
1 0

)
, D = 1,

f : R→ R be defined by

f(ξ) =
2

3
sign(ξ)

(√
|ξ|+ 1− 1

)
∀ ξ ∈ R,

and let q, Be and De be arbitrary. It was shown in Example 2.2.12 that ‖G‖H∞ = 3
and that (A) holds if we take K = 0 and r = 1/3. Furthermore, since f ′(ξ) ∈ (0, 1/3)
for all ξ ∈ R\{0}, an application of [15, Lemma 4.9] implies that (2.63) holds with
Y = Rp. Combining this with the fact that f is continuous and that

1

3
|ξ| − |f(ξ)| → ∞ as |ξ| → ∞,

we see that the hypotheses of Corollary 2.3.18 are satisfied with W = Rp. Therefore,
(2.17) has the CICSO property, in this case. ♦

Example 2.3.22. Consider (2.17) where n = 3, m = p = q = 1,

A =

1
3 0 1
0 1

2 2
0 0 1

9

 , B =

1
3
0
0

 , C =
(
1 0 0

)
, D =

1

2
,

f : R→ R is defined by

f(ξ) = sign(ξ) ln(|ξ|+ 1) ∀ ξ ∈ R,
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and q, Be and De are arbitrary. Now, straight forward calculations lead to the finding
that

G(1) = 1 and |G(z)| ≤ 1 ∀ z ∈ C, |z| ≥ 1.

We hence obtain that ‖G‖H∞ = 1. Moreover, it is also easy to see that (A) holds with
K = 0 and r = 1. Furthermore, the nonlinearity f is the same as the nonlinearity given
in [15, Example 4.12]. There, it is shown that f satisfies (2.63) with Y = Rp, and that

|ξ| − |f(ξ)| → ∞ as |ξ| → ∞.

By combining all of this together, we see that the assumptions of Corollary 2.3.18 hold
with W = Rp. This in turn whence gives that, in this case, (2.17) has the CICSO
property. We highlight that, since f ′(0) = 1, there does not exist δ > 0 such that

|f(ξ + ζ)− f(ζ)| ≤ (1− δ)|ξ| ∀ ξ, ζ ∈ R. ♦

The final corollary of Theorem 2.3.16 that we shall present here is a result that guar-
antees that (2.17) has the CICSO property, but with assumptions that are reminiscent
of the circle criterion (see, for example, [66]). Before giving this, we first require the
following definition.

Definition 2.3.23. We say a rational Cm×m-valued function H is positive real if
H(z) + H(z)∗ is positive semi-definite for every z ∈ E which is not a pole of H.

We now give the aforementioned corollary of Theorem 2.3.16, which can be interpreted
as a discrete-time generalisation of [15, Corollary 4.15].

Corollary 2.3.24. Let Σ ∈ L, f : Rp → Rm and K1,K2 ∈ Rm×p with K1 ∈ AR(D).
Assume that H := (I − K2G)(I − K1G)−1 is positive real and that Σ is either (i)
controllable and observable or, (ii) stabilisable and detectable and there exists z ∈ C
such that |z| = 1 and H(z) + H(z)∗ is positive definite. If, additionally,

〈f(ξ + ζ)− f(ζ)−K1ξ, f(ξ + ζ)− f(ζ)−K2ξ〉 < 0 ∀ ξ, ζ ∈ Rp, ξ 6= 0, (2.71)

and there exists η ∈ Rp and α ∈ K∞ such that

〈f(ξ + η)− f(η)−K1ξ, f(ξ + η)− f(η)−K2ξ〉 ≤ −α(‖ξ‖)‖ξ‖ ∀ ξ ∈ Rp,

then (2.17) has the CICSO property.

Proof. We proceed in an analogous manner to that seen in the proof of [15, Corollary
4.15]. To begin with, we define

L := (K1 −K2)/2, M := (K1 +K2)/2.

We then see that, for all ξ, ζ ∈ Rp,

〈f(ξ + ζ)− f(ζ)−K1ξ, f(ξ + ζ)− f(ζ)−K2ξ〉
= 〈f(ξ + ζ)− f(ζ)− (M + L)ξ, f(ξ + ζ)− f(ζ)− (M − L)ξ〉
= ‖f(ξ + ζ)− f(ζ)−Mξ‖2 − ‖Lξ‖2.

By combining this with (2.71), it is easily deduced that kerL = 0, and hence, that LTL
is invertible. By setting L̃ = (LTL)−1LT , we see that L̃ is a left inverse of L. With
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Chapter 2. Stability and convergence properties of discrete-time Lur’e systems

this and Lemma 2.1.18 in mind, we note that (v, w, x, y) ∈ B if, and only if, (v, w, x, y)
satisfies

x+ = AK1x+BK1g(L(y + w)) +BK1K1w + (Be +BK1K1De)v,

y = CK1x+DK1g(L(y + w)) +DK1K1w + (I −DK1)−1Dev,

where g : Rm → Rm is defined by g(ξ) := f(L̃ξ)−K1L̃ξ for all ξ ∈ Rm. Moreover, by
the left-invertibility of L, this implies that (v, w, x, y) ∈ B if, and only if, (v, w, x, y)
satisfies

x+ = AK1x+BK1g(L(y + w)) +BK1K1w + (Be +BK1K1De)v,

Ly = LCK1x+ LDK1g(L(y + w)) + LDK1K1w + L(I −DK1)−1Dev.

}
(2.72)

Therefore, to complete the proof, it is sufficient to show that (2.72) exhibits the CICSO
property. Indeed, we shall do this by showing that the relevant assumptions of Corollary
2.3.18 are satisfied. To this end, we define K := −LL̃ and denote by F the transfer
function of (2.72), that is,

F(z) := LCK1
(
zI −AK1

)−1
BK1 + LDK1 = LGK1(z).

By utilising the methods outlined in the proof of [108, Corollary 11], we may obtain
that BC(K, 1) ⊆ SC(F), and that the analogous assumption of (A) (with r = 1) holds
for the system (2.72). In addition to this, by again following similar arguments to that
presented in the proofs of [108, Corollary 11 and Corollary 16], it is easy to deduce the
existence of β ∈ K∞ such that

‖g(ξ + Lη)− g(Lη)−Kξ‖ ≤ ‖ξ‖ − β(‖ξ‖) ∀ ξ ∈ Rm,

and that
‖g(ξ + ζ)− g(ζ)−Kξ‖ < ‖ξ‖ ∀ ξ, ζ ∈ Rm, ξ 6= 0.

We may now invoke Corollary 2.3.18 (with r = 1 and W = Rp) to deduce that (2.72),
and hence (2.17), exhibits the CICSO property.

2.3.3 The steady-state gain maps

We shall now concern ourselves with explicitly writing formulae for so-called steady-
state gain maps. For motivation of this, let us consider (2.17) in the situation that A
is Schur, f = 0, Be = B and De = D. It is easy to see that if v ∈ (Rm)Z+ converges
asymptotically to v∞ ∈ Rm, then for every initial condition x0 ∈ Rn, the solution of
the corresponding IVP (2.18), (x, y), is such that x converges to (I −A)−1Bv∞ and y
to G(1)v∞. We hence obtain linear maps v∞ 7→ (I −A)−1Bv∞ and v∞ 7→ G(1)v∞. It
is our intention here to generalise these maps for the Lur’e system (2.17). To this end,
we make the following definition.

Definition 2.3.25. Let Σ ∈ L and f : Rp → Rm. If (2.17) has the CICSO property,
then the maps

Γis : Rq × Rp → Rn, (v∞, w∞) 7→ x∞,

and
Γio : Rq × Rp → Rp, (v∞, w∞) 7→ y∞,

are well-defined. We say that Γis is the input-to-state steady-state (ISSS) gain and Γio

is the input-to-output steady-state (IOSS) gain.
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Before presenting a result that gives explicit formulae for the ISSS and IOSS gain maps,
we first recall that when under the assumptions of Corollary 2.3.18 with W = Rp,
Proposition 2.3.8 gives that FK is bijective. With this in mind, under the assumptions
of Corollary 2.3.18 with W = Rp, we define GK : Rq × Rp → Rp by

GK(ξ1, ξ2) :=F−1
K

(
CK(I −AK)−1

(
Be +BKKDe

)
ξ1

+ (I −DK)−1Deξ1 +
(
I + GK(1)K

)
ξ2

)
∀ (ξ1, ξ2) ∈ Rq × Rp.

 (2.73)

The next proposition gives explicit formulae for the ISSS and IOSS gain maps.

Proposition 2.3.26. Under the assumptions Corollary 2.3.18 with W = Rp, for all
(ξ1, ξ2) ∈ Rq × Rp,

Γis(ξ1, ξ2) =(I −AK)−1
(
BK(f −K)GK(ξ1, ξ2) +BKKξ2

+(Be +BKKDe)ξ1

)
, (2.74)

and

Γio(ξ1, ξ2) = GK(ξ1, ξ2)− ξ2, (2.75)

where GK is given by (2.73).

We shall not provide a proof of Proposition 2.3.26, since the result can be obtained
from a combination of Proposition 2.3.6, Proposition 2.3.8 and Corollary 2.3.18.

Remark 2.3.27. In the simple case wherein D = 0 = De and Be = I, then Proposition
2.3.26 tells us that, under the assumptions and notation of Corollary 2.3.18 with W =
Rp, for all ξ ∈ Rq,

Γis(ξ, 0) = (I −AK)−1
(
B(f −K)

(
F−1
K (C(I −AK)−1ξ)

)
+ ξ
)
,

and

Γio(ξ, 0) = F−1
K (C(I −AK)−1ξ),

which forms the discrete-time analogue of [15, Equations (4.30) and (4.31)]. If, in
addition, A is Schur, f = 0 and K = 0, then (2.17) simply becomes

x+ = Ax+ v, y = Cx,

which has transfer function given by z 7→ C(zI − A)−1. In this case, FK becomes the
identity map and Γio(ξ, 0) = G(1)ξ for all ξ ∈ Rq, as expected. ♦

We conclude this section with the following proposition, which is a generalisation of
[15, Proposition 4.14] to the discrete-time setting. The result gives sufficient conditions
for when the ISSS and IOSS gains are continuous and globally Lipschitz.

Proposition 2.3.28. Under the assumptions Corollary 2.3.18 with W = Rp, the fol-
lowing statements hold.

(i) Γis and Γio are continuous.
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(ii) If ‖GK‖H∞ = 0, then Γis and Γio are globally Lipschitz.

(iii) If ‖GK‖H∞ > 0 and f − K is globally Lipschitz with Lipschitz constant λ <
1/‖GK‖H∞, then Γis and Γio are globally Lipschitz.

Proof. In view of Proposition 2.3.26, in order to prove each statement, it is sufficient
to show that F−1

K is continuous or globally Lipschitz, respectively. Since, mutatis
mutandis, this is what is shown in the proof of [15, Proposition 4.14], for brevity we
leave the proof to the reader.

2.4 Application to the four-block problem

In this section, we consider so-called ‘four-block’ forced discrete-time Lur’e systems
which are informally described by Figure 2.2. In Figure 2.2, Σ = (A,B,Be, C,D,De) ∈
L and the signal y is given by

y =

(
y1

y2

)
.

The motivation for studying such systems is that there may be outputs that are of
interest but that are not utilised for feedback purposes (i.e. y1 in Figure 2.2). In the
literature, the four-block arrangement has been considered in the infinite-dimensional
continuous-time setting in [47] and in the infinite-dimensional discrete-time setting in
[40] (see also Chapter 5).

Σ
u

yv y1

y2

f + w

Figure 2.2: Block diagram of a four-block forced Lur’e system.

In this section, we shall give analogous results to those seen in the earlier sections,
but applicable to four-block forced discrete-time Lur’e systems. We shall do this by
rewriting the four-block system in the form of (2.17) and then invoking the previous
results. First, however, we need to precisely give the four-block Lur’e system that we
will be considering and present some preliminary results.

2.4.1 Preliminaries

Throughout this section, we let p1, p2 ∈ Z+ be such that

p1 + p2 = p,

and will repeatedly consider the matrices defined in the following definition.

Definition 2.4.1. For i = 1, 2, we define Pi ∈ Rpi×p by

P1 :=
(
Ip1 , 0p1×p2

)
and P2 :=

(
0p2×p1 , Ip2

)
,

where, for r, s ∈ Z+, Ir denotes the identity matrix in Rr×r and 0r×s ∈ Rr×s is the
matrix with all entries zero.
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2.4. Application to the four-block problem

Remark 2.4.2. We note that, for wi ∈ Rpi where i = 1, 2,

Pi

(
w1

w2

)
= wi.

Thus, the action of Pi may be thought of as “projecting” Rp to the subspace Rpi . ♦

The next lemma shows that the previously defined matrices have norm of magnitude 1.

Lemma 2.4.3. For each i = 1, 2, we have that ‖Pi‖ = 1.

Proof. Fix i ∈ {1, 2} and note that

‖Pi‖ = sup
‖x‖=1

‖Pix‖ ≤ sup
‖x‖=1

‖x‖ = 1.

To obtain equality, let ei ∈ Rp be the vector with all zeros except for 1 in either: (i)
the first entry if i = 1; or, (ii) the last entry if i = 2. Then, ‖ei‖ = 1 and

‖Pi‖ ≥ ‖Piei‖ = 1,

completing the proof.

We are now ready to precisely give the so-called four-block discrete-time Lur’e system
described informally by Figure 2.2. Indeed, we shall consider

x+ = Ax+Bu+Bev

y = Cx+Du+Dev

u = f(Piy + w),

 (2.76)

where Σ ∈ L, v ∈ (Rq)Z+ , w ∈ (Rpi)Z+ , f : Rpi → Rm and i = 1, 2. For the rest of this
section, we consider i ∈ {1, 2} to be a fixed quantity.

For ease of notation in the sequel, we make the following definitions.

Definition 2.4.4. Let Σ ∈ L and f : Rpi → Rm.

(i) We label the relevant components of the subsystem of (2.76) generated by applying
Pi to the output equation, by Σi, that is,

Σi := (A,B,Be, PiC,PiD,PiDe).

(ii) We define the behaviour of (2.76) by

Bif (Σ) :=
{

(v, w, x, y) ∈ (Rq)Z+ × (Rpi)Z+ × (Rn)Z+ × (Rp)Z+ :

(v, w, x, y) satisfies (2.76)
}
.

For ease of notation, we shall write Bi := Bif (Σ) when no ambiguity shall arise.
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Remark 2.4.5. We note that (2.76) can be rewritten in terms of a Lur’e system of
the form (2.17). Indeed, by applying Pi to the output equation, (2.76) becomes

x+ = Ax+Bf(Piy + w) +Bev

Piy = PiCx+ PiDf(Piy + w) + PiDev.

We recognise this to be a system of the form of (2.17) with linear component given by
Σi. As mentioned in the preamble of this section, the previous rewritten form of (2.76)
will be the key to obtaining analogous results to those seen in the earlier sections. ♦

For given Σ ∈ L, Ki ∈ Rm×pi and r > 0 such that BC(Ki, r) ⊆ SC(PiG), we shall
repeatedly make use of the following assumption:

Σi is (i) controllable and observable, or (ii) stabilisable and detectable and

r min
|z|=1
‖(PiG)Ki(z)‖ < 1.

 (Ai)

Assumption (Ai) is simply assumption (A) but in the context of the subsystem gener-
ated by Σi. The following two propositions help to relate (A) with (Ai).

Proposition 2.4.6. Let Σ ∈ L, Ki ∈ Cm×pi and set K := KiPi. Then Ki ∈ AC(PiD)
if, and only if, K ∈ AC(D), and in which case

ΣKi
i =

(
AKi , BKi , Be +BKiKiPiDe, (PiC)Ki , (PiD)Ki , (I − PiDKi)

−1PiDe

)
=
(
AK , BK , Be +BKKDe, PiC

K , PiD
K , Pi(I −DK)−1De

)
,

and

(PiG)Ki = PiG
K .

Proof. An application of Lemma 2.1.15 immediately gives that I −PiDKi is invertible
if, and only if, I−DKiPi = I−DK is invertible, that is, Ki ∈ AC(PiD) if, and only if,
K ∈ AC(D). Under the assumption that Ki ∈ AC(PiD), another application of Lemma
2.1.15 yields that

(PiD)Ki = (I − PiDKi)
−1PiD = Pi(I −DKiPi)

−1D = PiD
K .

The rest of the claimed identities can be proven in a similar manner, and thus are left
to the reader to verify.

Proposition 2.4.7. Let Σ ∈ L, Ki ∈ Cm×pi and set K := KiPi. The following
statements hold.

(i) Σ is stabilisable/detectable if Σi is stabilisable/detectable.

(ii) Σ is controllable/observable if Σi is controllable/observable.

(iii) If Σi is stabilisable and detectable, then Ki ∈ SC(PiG) if, and only if, K ∈ SC(G).

Proof. The first two statements hold trivially, and so we shall only prove statement
(iii). To this end, assume that Σi is stabilisable and detectable and note that, from
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statement (i), we have that Σ is stabilisable and detectable. Hence, a combination of
[72, Theorem 2], Lemma 2.1.22 and Proposition 2.4.6 yields

Ki ∈ SC(PiG) ⇐⇒ (PiG)Ki ∈ H∞pi×m
⇐⇒ AKi is Schur

⇐⇒ AK is Schur

⇐⇒ GK ∈ H∞p×m
⇐⇒ K ∈ SC(G),

which completes the proof.

Associated with (2.76) is the following initial-value-problem (IVP), which will be our
focus for the rest of this subsection.

Definition 2.4.8. Let Σ ∈ L and f : Rpi → Rm. For given x0 ∈ Rn, v ∈ (Rq)Z+ and
w ∈ (Rpi)Z+, we consider the IVP:

x+ = Ax+Bu+Bev, x(0) = x0,

y = Cx+Du+Dev,

u = f(Piy + w).

 (2.77)

For given x0 ∈ Rn, v ∈ (Rq)Z+ and w ∈ (Rpi)Z+, we say that (x, y) ∈ (Rn)Z+ × (Rp)Z+

is a solution to (2.77) if (v, w, x, y) ∈ Bi and x(0) = x0.

We wish to present a result that guarantees the existence and uniqueness of solutions
of (2.77). With Proposition 2.1.36 in mind, we give the following result.

Proposition 2.4.9. Let Σ ∈ L and f : Rpi → Rm. The following statements hold.

(i) Pi(I −DfPi) = (I − PiDf)Pi.

(ii) I −DfPi is injective if, and only if, I − PiDf is injective.

(iii) I −DfPi is surjective if, and only if, I − PiDf is surjective.

Proof. Statement (i) is trivial and so we shall only prove statements (ii) and (iii). For
ease of notation in the sequel, we define g := I −DfPi and gi := I − PiDf . Without
loss of generality, we assume that i = 1. To prove statement (ii), we assume that g is
injective and that g1(ξ1) = g1(ζ1), where ξ1, ζ1 ∈ Rp1 . By setting ξ2 := P2Df(ξ1) ∈ Rp2 ,
we see that

g

(
ξ1

ξ2

)
=

(
ξ1

ξ2

)
−Df(ξ1) =

(
ξ1

ξ2

)
−
(
P1Df(ξ1)
P2Df(ξ1)

)
=

(
g1(ξ1)

0

)
.

Proceeding similarly, it can be checked that

g

(
ζ1

ζ2

)
=

(
g1(ζ1)

0

)
,

where ζ2 := P2Df(ζ1) ∈ Rp2 . The injectivity of g then yields that ξ1 = ζ1 and, hence,
that g1 is injective. For the converse implication, assume that g1 is injective and that

g

(
ξ1

ξ2

)
= g

(
ζ1

ζ2

)
,
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where ξ1, ζ1 ∈ Rp1 and ξ2, ζ2 ∈ Rp2 . From this, we deduce that g1(ξ1) = g1(ζ1), which
subequently gives that ξ1 = ζ1. Additionally, we also obtain that ξ2 − P2Df(ξ1) =
ζ2−P2Df(ζ1) = ζ2−P2Df(ξ1), which implies that ξ2 = ζ2, whence obtaining injectivity
of g and proving statement (ii). Turning our attention now to statement (iii), assume
that g1 is surjective and let ξ1 ∈ Rp1 and ξ2 ∈ Rp2 . By the surjectivity of g1, there
exists ζ1 ∈ Rp1 such that g1(ζ1) = ξ1. Subsequently defining ζ2 := ξ2 +P2Df(ζ1) ∈ Rp2 ,
leads to the conclusion that

g

(
ζ1

ζ2

)
=

(
ξ1

ξ2

)
,

and that g is surjective. The converse statement is trivially true, and hence we omit
the proof.

The following is immediately obtained from a combination of Proposition 2.1.36 with
Remark 2.4.5 and Proposition 2.4.9.

Corollary 2.4.10. Let Σ ∈ L, f : Rpi → Rm, x0 ∈ Rn, v ∈ (Rq)Z+ and w ∈ (Rpi)Z+.
The following statements hold.

(i) If the map I −DfPi is surjective, then there exists a solution to the IVP (2.77).

(ii) If the map I − DfPi is injective, then there is at most one solution to the IVP
(2.77).

2.4.2 Stability and convergence properties

We now present a number of corollaries of the previous sections, but for (2.76). Before
doing so however, we make some natural analogous definitions of those seen earlier,
applied to (2.76).

Definition 2.4.11. Let Σ ∈ L and f : Rpi → Rm.

(i) We say that (2.76) is globally asymptotically stable in the large (GAS), if there
exists c > 0 such that

‖x(t)‖+ ‖y(t)‖ ≤ c‖x(0)‖ ∀ t ∈ Z+, ∀ (0, 0, x, y) ∈ Bi

and

lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = 0 ∀ (0, 0, x, y) ∈ Bi.

(ii) We say that (2.76) is input-to-state/output stable (ISOS), if there exist ψ ∈ KL
and φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ N, ∀ (v, w, x, y) ∈ Bi.

(2.78)
and

‖y(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ Z+, ∀ (v, w, x, y) ∈ Bi.

(2.79)
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(iii) We say that (2.76) has the converging-input converging-state/output (CICSO)
property if for every v∞ ∈ Rq and w∞ ∈ Rpi, there exists x∞ ∈ Rn and y∞ ∈ Rp
such that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞ for every (v, w, x, y) ∈ Bi
with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞.

The first corollary that we shall give highlights sufficient conditions for when (2.76) is
GAS.

Corollary 2.4.12. Let Σ ∈ L, Ki ∈ Rm×pi, r > 0 and f : Rpi → Rm. Assume that
BC(Ki, r) ⊆ SC(PiG), ‖(PiD)Ki‖ < 1/r and that (Ai) holds. If f is continuous and

‖f(ξ)−Kiξ‖ < r‖ξ‖ ∀ ξ ∈ Rpi\{0},

then (2.76) is GAS.

Proof. We begin by applying Pi to the output equation in (2.76) to obtain that

x+ = Ax+Bf(Piy + w) +Bev

Piy = PiCx+ PiDf(Piy + w) + PiDev.

The assumptions of Theorem 2.2.3 hold in the context of this system, and so we obtain
the existence of c > 0 such that, for all (0, 0, x, y) ∈ Bf (Σi),

‖x(t)‖+ ‖y(t)‖ ≤ c‖x(0)‖ ∀ t ∈ Z+,

and limt→∞ x(t) = 0 = limt→∞ y(t). Since (0, 0, x, y) ∈ Bi implies that (0, 0, x, Piy) ∈
Bf (Σi), this gives that, for all (0, 0, x, y) ∈ Bi,

‖x(t)‖+ ‖Piy(t)‖ ≤ c‖x(0)‖ ∀ t ∈ Z+, (2.80)

and limt→∞ x(t) = 0 = limt→∞ Piy(t). To complete the proof, it is sufficient to show
that there exists a constant b > 0 such that, for all (0, 0, x, y) ∈ Bi,

‖y(t)‖ ≤ b‖x(0)‖ ∀ t ∈ Z+, and lim
t→∞

y(t) = 0. (2.81)

To show this, let (0, 0, x, y) ∈ Bi. Now, by Proposition 2.4.6, K := KiPi ∈ AC(D), and
hence, by Lemma 2.1.18,

y = CKx+DK(f(Piy)−KiPiy).

We then have

‖y(t)‖ ≤ ‖CK‖‖x(t)‖+ r‖DK‖‖Piy(t)‖ ∀ t ∈ Z+,

which, along with (2.80), implies the existence of b > 0 such that (2.81) holds, and
completes the proof.

The next two results present hypotheses that guarantee that (2.76) is ISOS and exhibits
the CICSO property, respectively. We shall not provide a proof of these two results,
since the method to do so follows in a similar manner to the previous proof. Indeed,
in order to prove the subsequent corollaries, one should rewrite (2.76) in terms of
a system of the form (2.17) (see Remark 2.4.5), invoke the relevant result from the
previous sections (either Theorem 2.2.10 or Corollary 2.3.18), and then verify that the
result holds for the ‘entire’ output y (i.e. not just for Piy).
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Corollary 2.4.13. Let Σ ∈ L, Ki ∈ Rm×pi, r > 0 and α ∈ K∞. Assume that
BC(Ki, r) ⊆ SC(PiG) and (Ai) holds. Then there exists ψ ∈ KL and φ ∈ K such that,
for all f : Rpi → Rm satisfying

‖f(ξ)−Kiξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rpi ,

(2.78) and (2.79) hold. In particular, the Lur’e system (2.76) is ISOS.

Corollary 2.4.14. Let Σ ∈ L, f : Rpi → Rm, Ki ∈ Rm×pi, r > 0 and W ⊆ Rpi
be a nonempty subset. Assume that BC(Ki, r) ⊆ SC(PiG), (Ai) holds and that f is
continuous, satisfies

‖f(ξ + ζ)− f(ζ)−Kiξ‖ < r‖ξ‖ ∀ ζ ∈ Y, ξ ∈ Rpi\{0},

with Y = im((PiC)Ki)+ im((PiD)Ki)+ im
(
(I − PiDKi)

−1PiDe

)
+W , and there exists

η ∈ Rpi such that

r‖ξ‖ − ‖f(ξ + ζ)− f(ζ)−Kiξ‖ → ∞ as ‖ξ‖ → ∞.

Then for each v∞ ∈ Rq and w∞ ∈ W , there exists x∞ ∈ Rn and y∞ ∈ Rp such that
limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞ for all (v, w, x, y) ∈ Bi where limt→∞ v(t) =
v∞ and limt→∞w(t) = w∞. In particular, if W = Rpi, then the Lur’e system (2.76)
has the CICSO property.

Remark 2.4.15. We comment that every other result of the previous sections can also
be generalised to the four-block setting. So as to avoid repetition, we omit these results
and leave them to the reader to formulate. ♦

2.5 Notes and references

As we have already discussed, the contents of this chapter can be split into two main
parts: the first comprising generalisations of the main results of [108] that are extended
to include output stability and to systems of the form (2.17); and the second being a
discrete-time analogue of [15], but again which also extends the results to systems
of the form (2.17) and which also considers output convergence. We note that these
generalisations can additionally be completed in the continuous-time setting. Explicitly,
one could, via analogous methods to those conducted in the previous sections, generalise
the main results of [107] and [15] to continuous-time versions of (2.17). The rationale
for considering the discrete-time setting in this chapter is to further differentiate it from
the known works.

We now discuss the following relevant references. To begin with, as already mentioned,
[106, Theorem 5.3.1] and [108, Theorem 13] utilise the same assumptions as Theorem
2.2.10 to deduce ISS estimates for discrete-time Lur’e systems which are far more
restrictive than (2.17). Moreover, the issue of ISOS is not considered in either [106] or
[108]. We again comment that the generalisation we have provided is nontrivial, which
we evidenced with several examples given throughout the chapter.

Continuing with the theme of ISOS, a relevant paper from the literature is [115] which
concerns input to output stability of continuous-time control systems. The authors
provide relationships between various output stability notions. Further to this, in [67],
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it is shown that an exponential ISS property holds for discrete-time Lur’e systems in
the context of observer-based output feedback. Neither paper directly overlaps with the
current work. ISOS of forced infinite-dimensional discrete- and continuous-time Lur’e
systems is also considered in the papers [40] (see also Chapter 5) and [47], respectively.
These papers use stronger assumptions than those seen in the main results of this
chapter to deduce stronger stability notions, particular cases of which yield ISOS and
CICS. In [40] and Chapter 5, exponential weighting and small-gain arguments are used,
whereas Lyapunov arguments were used in the current chapter. It would be interesting
to see if infinite-dimensional versions of the results of this chapter hold.

We also mention the paper [7] since, in the continuous-time setting, ISS for forced
Lur’e systems (without feedthrough and without external and output disturbances) is
investigated. This work differs from ours since the assumptions utilised to deduce ISS
concern positive real conditions on the linear system and unboundedness properties on
the nonlinearity.

Regarding the results of Section 2.3 which concern the CICS and CICSO properties,
there is little else apart from (of course) [15] that is relevant to the current work. The
references [5, 100, 112] deal with CICS-like properties of general nonlinear systems,
with a discrete-time analogue to [112] being used in the proof of Theorem 2.3.16. We
also refer the reader to [20, 104]. The closest of these to the curent setting is [104,
Statement 1) of Theorem], which concerns the steady state error of Lur’e systems in
the single-input single-output setting, when under the conditions of the circle criterion.
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Chapter 3

Semi-global incremental stability
properties and convergence
under almost periodic forcing of
Lur’e systems

In this chapter, we define a semi-global notion of incremental ISS for discrete-time
forced Lur’e systems of the form (2.17), and provide sufficient conditions for when these
systems exhibit this property. We also investigate convergence properties of (2.17),
accumulating in a result that guarantees that asymptotically almost periodic inputs
generate asymptotically almost periodic state and output trajectories. In the interest
of not repeating ourselves, we refer the reader to the introduction for background
reading and brief descriptions of incremental ISS and almost periodicity. Moreover, a
thorough presentation of almost periodicity is provided in Appendix C. Of key relevance
to the present chapter, however, is that there are many generalisations of the original
Bohr definition of almost periodicity (see, for example, [14]). One such is the notion
of Stepanov almost periodicity. In addition to the previously mentioned outcomes of
this chapter, we shall also investigate the effect on state trajectories of continuous-
time forced Lur’e systems that have Stepanov almost periodic inputs. We consider
continuous-time systems for this, since Stepanov almost periodicity is only relevant in
that setting.

This chapter is outlined as follows. We begin with Section 3.1, which is based upon
the work achieved in [39]. We split the section in four, beginning with a discussion of
some preliminary results. We then introduce semi-global incremental ISS, and move
on to developing criteria that guarantees that Lur’e systems of the form (2.17) exhibit
this property. The final two portions of the section comprise our investigation into
convergence properties of trajectories of these systems when under almost periodic
forcing, and an application of the previous results to the four-block setting, respectively.
The results of Section 3.2 are based off those in [41]. We split the section into three
main parts, with the first explicitly describing the continuous-time forced Lur’e systems
of interest to us in the section, and providing preliminary results. We then move
onto presenting conditions that are sufficient to conclude various incremental stability
properties. Similar to the previous section, we then apply these results to obtain
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convergence properties of state trajectories when inputs are Stepanov almost periodic.

3.1 Incremental and convergence properties of discrete-
time Lur’e systems

As previously mentioned, this section largely comprises the work of [39].

3.1.1 Preliminaries

Throughout this section, we shall concern ourselves with the system given by (2.17)
situated in Chapter 2, that is, a discrete-time forced Lur’e system with potentially
non-zero feedthrough and which allows for output disturbances. Explicitly, we recall
the system to be

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

u = f(y + w),

 (2.17)

where (see Definition 2.1.9)

Σ := (A,B,Be, C,D,De) ∈ L := Rn×n × Rn×m × Rn×q × Rp×n × Rp×m × Rp×q,

v ∈ (Rq)Z+ , w ∈ (Rp)Z+ , f : Rp → Rm and n,m, p, q ∈ N. We assume all notation asso-
ciated with this system which was defined and discussed in Section 2.1. In particular,
for (2.17), we denote the transfer function by G, the behaviour by B, and the set of
stabilising feedback matrices over C and R by SC(G) and SR(G), respectively (see Def-
inition 2.1.19). Finally, for Σ ∈ L, K ∈ Rm×p and r > 0 such that BC(K, r) ⊆ SC(G),
we recall assumption (A) which we will regularly make use of:

Σ is (i) controllable and observable, or (ii) stabilisable and detectable and

r min
|z|=1
‖GK(z)‖ < 1.

 (A)

Once again, we highlight that a thorough presentation of preliminary results concerning
(2.17) was conducted in Section 2.1. This included the investigation of linear output
feedback via ‘loop-shifting’, time-invariance principles and the associated initial-value
problem. Moreover, the generality of (2.17), and in particular how it encompasses
many other systems, was also highlighted. In the interest of brevity, we do not repeat
ourselves, and instead refer the reader to Section 2.1 for more detail.

We shall now present two results that underpin the main results of this section. We
begin with the following.

Lemma 3.1.1. Let h : Rp → Rm be continuous and Γ ⊆ Rp be compact. Then the
function ξ 7→ supζ∈Γ ‖h(ξ + ζ)− h(ζ)‖ is continuous.

An explicit reference of the above is difficult to locate in the literature, and hence we
provide a proof here.
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Proof of Lemma 3.1.1. Let ξ ∈ Rp and let (ξk)k∈N ⊆ Rp be a sequence such that
limk→∞ ξk = ξ. We begin with the observation that, for all k ∈ N, there exists ζk ∈ Γ
such that

sup
ζ∈Γ
‖h(ξk + ζ)− h(ζ)‖ = ‖h(ξk + ζk)− h(ζk)‖, (3.1)

and there exists ζξ ∈ Γ such that

sup
ζ∈Γ
‖h(ξ + ζ)− h(ζ)‖ = ‖h(ξ + ζξ)− h(ζξ)‖. (3.2)

Here, we have utilised the continuity of h and the compactness of Γ. Again by using the
compactness of Γ, we may assume, without loss of generality, that (ζk)k∈N converges to
ζ̃ ∈ Γ. We now fix ε > 0 and note that, as a consequence of h being continuous, there
exists δ1 > 0 such that, for all η ∈ Rp,

‖η − ξ‖ < δ1 =⇒
∣∣∣‖h(ξ + ζξ)− h(ζξ)‖ − ‖h(η + ζξ)− h(ζξ)‖

∣∣∣ ≤ ε. (3.3)

Furthermore, again since h is continuous, there exists δ2 > 0 such that, for all η1, η2 ∈
Rp,

‖η1 − ξ − ζ̃‖, ‖η2 − ζ̃‖ < δ2 =⇒
∣∣∣‖h(η1)− h(η2)‖ − ‖h(ξ + ζ̃)− h(ζ̃)‖

∣∣∣ ≤ ε. (3.4)

We subsequently set δ := min{δ1, δ2}/2 > 0 and consider k large enough so that
‖ξk − ξ‖+ ‖ζk − ζ̃‖ < δ. We then see that, from (3.2) and (3.3),

sup
ζ∈Γ
‖h(ξ + ζ)− h(ζ)‖ = ‖h(ξ + ζξ)− h(ζξ)‖

≤ ‖h(ξk + ζξ)− h(ζξ)‖+ ε

≤ sup
ζ∈Γ
‖h(ξk + ζ)− h(ζ)‖+ ε. (3.5)

Similarly, we utilise (3.1) and (3.4) to obtain that

sup
ζ∈Γ
‖h(ξk + ζ)− h(ζ)‖ = ‖h(ξk + ζk)− h(ζk)‖

≤ ‖h(ξ + ζ̃)− h(ζ̃)‖+ ε

≤ sup
ζ∈Γ
‖h(ξ + ζ)− h(ζ)‖+ ε. (3.6)

Therefore, a combination of (3.5) and (3.6) yields, for all k sufficiently large enough,∣∣∣∣∣ sup
ζ∈Γ
‖h(ξ + ζ)− h(ζ)‖ − sup

ζ∈Γ
‖h(ξk + ζ)− h(ζ)‖

∣∣∣∣∣ ≤ ε.
Since ε was arbitrary, this shows that ξ 7→ supζ∈Γ ‖h(ξ + ζ)− h(ζ)‖ is continuous, and
hence completes the proof.

The second preliminary result that we provide here is a version of Theorem 2.2.10 that
holds for systems of the form (2.17) but which have a time-varying nonlinearity. That
is, an input-to-state/output stability criterion for the system:

x(t+ 1) = Ax(t) +Bg(t, y(t) + w(t)) +Bev(t)

y(t) = Cx(t) +Dg(t, y(t) + w(t)) +Dev(t)

}
∀ t ∈ Z+ , (3.7)

where Σ ∈ L, v ∈ (Rq)Z+ , w ∈ (Rp)Z+ and g : Z+ × Rp → Rm.
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Corollary 3.1.2. Let Σ ∈ L, K ∈ Rm×p, r > 0 and α ∈ K∞. Assume that BC(K, r) ⊆
SC(G) and (A) holds. Then there exist ψ ∈ KL and φ ∈ K such that, for all g :
Z+ × Rp → Rm satisfying

sup
t∈Z+

‖g(t, ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp, (3.8)

and for every (v, w, x, y) ∈ (Rq)Z+ × (Rp)Z+ × (Rn)Z+ × (Rp)Z+ satisfying (3.7),

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
sup
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥
)
∀ t ∈ N, (3.9)

and

‖y(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
sup
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ Z+. (3.10)

We shall not provide a proof of Corollary 3.1.2, since the result can be proven identically,
mutatis mutandis, to the proof of Theorem 2.2.10. To give some more detail here: since
(3.8) holds uniformly in time, by following the steps laid out in the proof of Theorem
2.2.10, we may obtain the existence of an ISS-Lyapunov function (see Definition 2.2.8).
Furthermore, by also inspecting the proof of Proposition 2.2.9, situated in Appendix A,
we see that this ISS-Lyapunov function is sufficient for obtaining (3.9). As for (3.10),
again by using the uniformity of (3.8) in time and following the final steps of the proof
of Theorem 2.2.10, the claim is proven. Finally, the uniformity of φ and φ with respect
to g, v, w, x and y, follows from the fact that ψ and φ depend only upon α1, α2, α3

and α4 in (2.25) and (2.26), which in turn depend only upon Σ, K, r and α.

3.1.2 Incremental stability properties

Our attention now turns towards incremental stability properties of (2.17). As previ-
ously mentioned, here we shall develop a notion called semi-global incremental input-
to-state stability and present a theorem that gives sufficient conditions for when (2.17)
exhibits this type of stability. We also provide a corollary of this theorem which has
assumptions reminiscent of the well-known circle criterion (see, for example, [66]). To
this end, we begin with the following definition.

Definition 3.1.3. Let Σ ∈ L and f : Rp → Rm.

(i) We say that (2.17) is semi-globally incrementally input-to-state stable if for any
R > 0, there exist ψ ∈ KL and φ ∈ K such that, for all (vi, wi, xi, yi) ∈ B with
‖xi(0)‖+

∥∥(vi wi)
T
∥∥
`∞
≤ R, i = 1, 2,

‖x1(t)−x2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t)+φ

(
sup
s∈t−1

∥∥∥∥( v1(s)− v2(s)
w1(s)− w2(s)

)∥∥∥∥
)
∀t ∈ N.

(3.11)

(ii) We say that (2.17) is semi-globally incrementally input-to-state/output stable if
for any R > 0, there exist ψ ∈ KL and φ ∈ K such that, for all (vi, wi, xi, yi) ∈ B
with ‖xi(0)‖+

∥∥(vi wi)
T
∥∥
`∞
≤ R, i = 1, 2, it follows that (3.11) holds and

‖y1(t)−y2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t)+φ

(
sup
s∈t

∥∥∥∥( v1(s)− v2(s)
w1(s)− w2(s)

)∥∥∥∥) ∀t ∈ Z+.

(3.12)
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Remark 3.1.4. Although the previously defined stability notion is semi-global, it
is suitable for almost all practical applications. This is because all relevant initial
conditions and inputs are likely to have their norm bounded by some R > 0. We refer
the reader to papers such as [5, 40, 47] and to Chapter 5, for various notions of global
incremental stability. ♦

The next theorem is the main stability result of this section.

Theorem 3.1.5. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p, r > 0 and Z ⊆ Rp be a
nonempty and closed subset. Assume that BC(K, r) ⊆ SC(G), (A) holds, f is continu-
ous,

‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖ ∀ ζ ∈ Z, ∀ ξ ∈ Rp\{0}, (3.13)

and there exists η ∈ Rp such that

r‖ξ‖ − ‖f(ξ + η)− f(η)−Kξ‖ → ∞ as ‖ξ‖ → ∞. (3.14)

Then for any R > 0, there exist ψ ∈ KL and φ ∈ K such that (3.11) and (3.12) both hold
for all (v1, w1, x1, y1) ∈ B satisfying ‖x1(0)‖+

∥∥(v1 w1)T
∥∥
`∞
≤ R and y1(t) +w1(t) ∈ Z

for all t ∈ Z+, and all (v2, w2, x2, y2) ∈ B.

As a direct consequence of Theorem 3.1.5, we obtain the following.

Corollary 3.1.6. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p and r > 0. Assume that
BC(K, r) ⊆ SC(G), (A) holds, f satisfies (3.13) with Z = Rp, and there exists η ∈ Rp
such that (3.14) holds. Then (2.17) is semi-globally incrementally ISOS.

Before proving Theorem 3.1.5, we first provide some commentary of its hypotheses.

Remark 3.1.7. (i) In the situation that Z = Rp, if (3.13) holds, then f is continuous,
therefore making the assumption redundant.

(ii) Under the assumptions of Theorem 3.1.5 with Z = Rp, we obtain from Corollary
2.3.18 that (2.17) has the CICSO property. Moreover, in such a situation, it
follows from Lemma 2.3.9, that for every ζ ∈ Rp, there exists αζ ∈ K∞ such that

‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ r‖ξ‖ − αζ(‖ξ‖) ∀ ξ ∈ Rp.

In particular, if f(0) = 0, then

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α0(‖ξ‖) ∀ ξ ∈ Rp,

which we recognise as the main assumption imposed on the nonlinearity in The-
orem 2.2.10 (see also [108, Theorem 13]). Hence, in this case, the assumptions of
Theorem 3.1.5 guarantee ISOS of (2.17).

(iii) If the assumptions of Theorem 3.1.5 are strengthened so that there exists δ > 0
such that

‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ (r − δ)‖ξ‖ ∀ ξ, ζ ∈ Rp, (3.15)

then [40, Theorem 3.2] (see also Theorem 5.2.5 situated later in Chapter 5) yields
that (2.17) is exponentially incrementally input-to-state/output stable (see Defini-
tion 5.2.3). We highlight that there exist Lur’e systems that satisfy the assump-
tions of Theorem 3.1.5, but for which there does not exist δ > 0 such that (3.15)
holds - see Examples 3.1.8 and 3.1.9 situated after the proof of Theorem 3.1.5. ♦
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Proof of Theorem 3.1.5. We seek to apply Corollary 3.1.2. To begin with, however,
since Z is assumed to be nonempty, we let z∗ ∈ Z. By invoking (3.14) and statement
(i) of Lemma 2.3.9, we obtain that

r‖ξ‖ − ‖f(ξ + ζ)− f(ζ)−Kξ‖ → ∞ as ‖ξ‖ → ∞ , ∀ ζ ∈ Rp.

Consequently,

r‖ξ‖ − ‖f(ξ + z∗)− f(z∗)−Kξ‖ → ∞ as ‖ξ‖ → ∞ . (3.16)

By setting f̃(ξ) := f(ξ + z∗) − f(z∗) for all ξ ∈ Rp, it is clear from the continuity of
f , (3.13) and (3.16), that f̃ −K : Rp → Rm is continuous, ‖f̃(ξ)−Kξ‖ < r‖ξ‖ for all
ξ ∈ Rp\{0}, and r‖ξ‖ − ‖f̃(ξ) − Kξ‖ → ∞ as ‖ξ‖ → ∞. Hence, f̃ − K satisfies the
hypotheses of statement (ii) of Lemma 2.3.9 and so, there exists α∗ ∈ K∞ such that

‖f(ξ + z∗)− f(z∗)−Kξ‖ = ‖f̃(ξ)−Kξ‖ ≤ r‖ξ‖ − α∗(‖ξ‖) ∀ ξ ∈ Rp . (3.17)

We shall use (3.17) to establish the existence of α1 ∈ K∞ and s1 > 0 such that

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α1(‖ξ‖) ∀ ξ ∈ Rp s.t. ‖ξ‖ ≥ s1 . (3.18)

For which purpose, we note that, for all ξ ∈ Rp,

‖f(ξ)−Kξ‖ ≤ ‖f(ξ − z∗ + z∗)− f(z∗)−K(ξ − z∗)‖+ ‖f(z∗)−Kz∗‖
≤ r‖ξ − z∗‖ − α∗(‖ξ − z∗‖) + ‖f(z∗)−Kz∗‖ ,

where we have used (3.17). Defining α̃ ∈ K∞ by

α̃(s) :=

{
α∗(s− ‖z∗‖), if s ≥ ‖z∗‖+ 1,

α∗(1)s/(‖z∗‖+ 1), if 0 ≤ s < ‖z∗‖+ 1,

we obtain that, for all ξ ∈ Rp such that ‖ξ‖ ≥ ‖z∗‖+ 1,

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ − α̃(‖ξ‖) + r‖z∗‖+ ‖f(z∗)−Kz∗‖.

Therefore, if we let s1 ≥ ‖z∗‖ + 1 be such that α̃(s) > r‖z∗‖ + ‖f(z∗) −Kz∗‖ for all
s ≥ s1, and define α1 ∈ K∞ by

α1(s) :=

{
α̃(s)− r‖z∗‖ − ‖f(z∗)−Kz∗‖, if s ≥ s1,

(α̃(s1)− r‖z∗‖ − ‖f(z∗)−Kz∗‖)s/s1, if 0 ≤ s < s1,

we obtain that (3.18) holds.
Next, fix R > 0 and combine (3.18) with Corollary 2.2.14 to obtain the existence of
ψ̃ ∈ KL, φ̃ ∈ K and θ > 0 such that (2.46) and (2.47) hold (but with ψ and φ replaced
by ψ̃ and φ̃, respectively). By setting ρ := ψ̃(R, 0) + φ̃(θ + R) + R > 0, we see, from
(2.46) and (2.47), that, for all (v, w, x, y) ∈ B with ‖x(0)‖+ ‖(v w)T ‖`∞ ≤ R,

‖y(t) + w(t)‖ ≤ ‖y(t)‖+R ≤ ρ ∀ t ∈ Z+ . (3.19)

Without loss of generality, we assume that ρ ≥ ‖z∗‖. Subsequently, the set

W := {ξ ∈ Rp : ‖ξ‖ ≤ ρ} ∩ Z ⊆ Rp ,
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is nonempty since z∗ ∈ Z. Moreover, W is compact since Z is closed. We claim that

r‖ξ‖ − sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ → ∞ as ‖ξ‖ → ∞. (3.20)

To avoid interruption of the argument, we relegate the validation of (3.20) to the end
of the proof.
Continuing, by invoking (3.13), the continuity of f and compactness of W , we conclude
that

sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ < r‖ξ‖ ∀ ξ ∈ Rp\{0} . (3.21)

Moreover, by Lemma 3.1.1, the function ξ 7→ supζ∈W ‖f(ξ+ζ)−f(ζ)−Kξ‖ is continuous
which, in conjunction with (3.20) and (3.21) and an application of statement (ii) of
Lemma 2.3.9, shows that there exists α ∈ K∞ such that

sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp . (3.22)

Let (v1, w1, x1, y1) ∈ B be such that ‖x1(0)‖+ ‖(v1w1)T ‖`∞ ≤ R and y1(t) +w1(t) ∈ Z
for all t ∈ Z+. Define g : Z+ × Rp → Rm by

g(t, ξ) := f (ξ + y1(t) + w1(t))− f (y1(t) + w1(t)) ∀ (t, ξ) ∈ Z+ × Rp.

From (3.19) and (3.22),

sup
t∈Z+

‖g(t, ξ)−Kξ‖ ≤ sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp,

that is, (3.8) holds. Moreover, for (v2, w2, x2, y2) ∈ B, if we define v := v2 − v1,
w := w2 − w1, x := x2 − x1 and y := y2 − y1, it is easily checked that (v, w, x, y)
satisfies (3.7). An application of Corollary 3.1.2 then yields the existence of ψ ∈ KL
and φ ∈ K such that (3.11) and (3.12) both hold for all (v2, w2, x2, y2) ∈ B. Since ψ and
φ depend only on Σ, K, r and α (and not on (v1, w1, x1, y1)), we see that in fact (3.11)
and (3.12) both hold for all (v1, w1, x1, y1) ∈ B satisfying ‖x1(0)‖+

∥∥(v1 w1)T
∥∥
`∞
≤ R

and y1(t) + w1(t) ∈ Z for all t ∈ Z+, and all (v2, w2, x2, y2) ∈ B.
All that is left to prove is (3.20). To that end, since f is continuous, and W is compact,
it follows that for each ξ ∈ Rp, there exists ζξ ∈W such that

sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ = ‖f(ξ + ζξ)− f(ζξ)−Kξ‖ . (3.23)

If we write, for all ξ ∈ Rp,

‖f(ξ + ζξ)− f(ζξ)−Kξ‖ ≤ ‖f(ξ + ζξ − z∗ + z∗)− f(z∗)−K(ξ + ζξ − z∗)‖
+ ‖f(z∗)‖+ ‖Kζξ‖+ ‖Kz∗‖+ ‖f(ζξ)‖,

and use (3.17), we see that

‖f(ξ + ζξ)− f(ζξ)−Kξ‖ ≤ r‖ξ‖+ r‖ζξ − z∗‖ − α∗(‖ξ + ζξ − z∗‖)
+ ‖f(z∗)‖+ ‖Kζξ‖+ ‖Kz∗‖+ ‖f(ζξ)‖. (3.24)

Since α∗ ∈ K∞, by the reverse triangle inequality we have that

α∗(‖ξ + ζξ − z∗‖) ≥ α∗(‖ξ‖ − ‖ζξ − z∗‖) ∀ ξ ∈ Rp, ‖ξ‖ ≥ ‖ζξ − z∗‖ . (3.25)

67



3.1. Incremental and convergence properties of discrete-time Lur’e systems

Hence, by recalling that ‖ζξ − z∗‖ ≤ ρ+ ‖z∗‖ for all ξ ∈ Rp and by combining (3.23)–
(3.25), we obtain, for all ξ ∈ Rp with ‖ξ‖ ≥ ρ+ ‖z∗‖,

r‖ξ‖ − sup
ζ∈W
‖f(ξ + ζ)− f(ζ)−Kξ‖ ≥ −rρ− r‖z∗‖+ α∗(‖ξ‖ − ρ− ‖z∗‖)

− ‖f(z∗)‖ − ‖Kζξ‖ − ‖Kz∗‖ − ‖f(ζξ)‖.

Since ‖ζξ‖ ≤ ρ for all ξ ∈ Rp, and f is continuous, it follows that ‖f(ζξ)‖ is bounded and
so the right-hand side of the above converges to∞ as ‖ξ‖ → ∞. This is precisely (3.20).

To illustrate Theorem 3.1.5, we present two examples. They each provide a system
that satisfies the hypotheses of Theorem 3.1.5, but are such that there does not exist
δ > 0 such that (3.15) holds.

Example 3.1.8. Consider the simple case of the Lur’e system (2.17) with

A :=
1

2

 2 1 0
−1 1 1
1 0 0

 , B :=

0
0
1

 , C :=
(
1 0 0

)
, D = 0,

Be and De arbitrary, and f : R→ R given by

f(ξ) :=
1

2
sign(ξ) ln(1 + |ξ|) ∀ ξ ∈ R.

It is easy to check that A is Schur,

G(z) =
1/4

(z − 1/2)3
,

and
|G(z)| ≤ 2 = |G(1)| ∀ z ∈ clos(E).

We hence deduce that
‖G‖H∞ = |G(1)| = 2.

Moreover, it can easily be verified that (A) holds with r = 1/2 and K = 0. Since
f ′(0) = 1/2, it can also be checked that there does not exist δ > 0 such that

|f(ξ + ζ)− f(ζ)| ≤
(

1

2
− δ
)
|ξ| ∀ ξ, ζ ∈ R,

that is, f does not satisfy the assumptions of [40, Theorem 3.2]. However, since f is
continuously differentiable with

f ′(0) =
1

2
and f ′(ξ) ∈

(
0,

1

2

)
∀ ξ ∈ R\{0},

it follows from [15, Lemma 4.9] that (3.13) holds with Z = Rp, K = 0 and r = 1/2.
Finally,

1

2
|ξ| − |f(ξ)| → ∞ as |ξ| → ∞

and so (3.14) is satisfied with K = 0, r = 1/2 and η = 0. Therefore, Theorem 3.1.5
gives that (2.17) is semi-globally incrementally input-to-state stable. ♦
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We comment that the nonlinearity given in the previous example is a modification of
that found in [15, Example 4.12].

Example 3.1.9. Consider again a simple version of (2.17). Here we take

A :=

(
1/10 1

0 1/2

)
, B :=

(
1

1/2

)
, C :=

(
0 1

)
, D = 0,

Be and De arbitrary, and f : R→ R as

f(ξ) :=

{
ξ/(e− 1), if |ξ| ≤ e− 1,

sign(ξ)
(
|ξ| − e+ 3−

√
|ξ| − e+ 2

)
, if |ξ| > e− 1.

Trivially, A is Schur. Moreover,

G(z) =
1/2

z − 1/2
,

and

|G(z)| ≤ 1 = |G(1)| ∀ z ∈ clos(E).

Therefore,

‖G‖H∞ = |G(1)| = 1,

and (A) holds with r = 1 and K = 0. We note that since

1

|ξ|
|f(ξ)− f(0)| → 1 as |ξ| → ∞,

there does not exist δ > 0 such that

|f(ξ + ζ)− f(ζ)| ≤ (1− δ) |ξ| ∀ ξ, ζ ∈ R.

Whence, f does not satisfy the assumptions of [40, Theorem 3.2]. However, as in
Example 3.1.8, since f is continuously differentiable with

f ′(ξ) ∈ (0, 1) ∀ ξ ∈ R,

it follows from [15, Lemma 4.9] that (3.13) holds with Z = Rp, K = 0 and r = 1.
Finally,

|ξ| − |f(ξ)| → ∞ as |ξ| → ∞

and so (3.14) is satisfied with K = 0, r = 1 and η = 0. We thus conclude that the
hypotheses of Theorem 3.1.5 are satisfied (with Z = Rp, K = 0 and r = 1) and so
(2.17) is semi-globally incrementally input-to-state stable. ♦

We conclude our discussion of incremental stability properties of (2.17) with a corol-
lary of Theorem 3.1.5. This corollary presents sufficient conditions, reminiscent of the
well-known circle-criterion (see, for example, [66]), for when (2.17) is semi-globally
incrementally ISOS. Before giving this result, we recall from Definition 2.3.23 that a
Cm×m-valued rational function H is positive real if H(z)+H(z)∗ is positive semi-definite
for every z ∈ E which is not a pole of H.
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Corollary 3.1.10. Let Σ ∈ L, f : Rp → Rm and K1,K2 ∈ Rm×p with K1 ∈ AR(D).
Assume that H := (I − K2G)(I − K1G)−1 is positive real and that Σ is either (i)
controllable and observable or, (ii) stabilisable and detectable and there exists z ∈ C
such that |z| = 1 and H(z) + H(z)∗ is positive definite. If, additionally,

〈f(ξ + ζ)− f(ζ)−K1ξ, f(ξ + ζ)− f(ζ)−K2ξ〉 < 0 ∀ ξ, ζ ∈ Rp, ξ 6= 0, (3.26)

and there exists η ∈ Rp and α ∈ K∞ such that

〈f(ξ + η)− f(η)−K1ξ, f(ξ + η)− f(η)−K2ξ〉 ≤ −α(‖ξ‖)‖ξ‖ ∀ ξ ∈ Rp,

then (2.17) is semi-globally incrementally ISOS.

Remark 3.1.11. The assumptions of Corollary 3.1.10 are the same as those of Corol-
lary 2.3.24, where it was deduced that (2.17) exhibits the CICSO property. ♦

We shall not provide a proof of Corollary 3.1.10, since the result can be proven by using
the proof of Corollary 2.3.24, but invoking Theorem 3.1.5 instead of Corollary 2.3.18.

3.1.3 Discrete-time Lur’e systems subject to almost periodic forcing

We now provide a corollary of Theorem 3.1.5 that asserts that the hypotheses of Theo-
rem 3.1.5 are sufficient for obtaining that asymptotically almost periodic inputs gener-
ate asymptotically almost periodic state and output trajectories. A thorough presenta-
tion of almost periodic functions is given in Appendix C. Indeed, we define the notion of
almost and asymptotically almost periodic functions over various time-domains, give
relevant theory, and discuss relationships between almost periodicity and other no-
tions. Therefore, in the interest of not repeating ourselves, we will not define almost
and asymptotically almost periodic functions here, or give much relevant theory, and
instead refer the reader to the appendix. For additional background reading, we also
refer the reader to literature such as [1, 14, 17, 21, 22, 52].

However, for convenience, we recall: that AP (Z,Rn) denotes the space of almost peri-
odic functions mapping Z → Rn, where Z = Z or Z+; for ε > 0, the set of ε-periods of
an almost periodic function vap is denoted by P (vap, ε); the space of asymptotically al-
most periodic functions Z+ → Rn is denoted by AAP (Z+,Rn); and c0(Z+,Rn) denotes
the space of all functions Z+ → Rn that converge to zero as their argument tends to
infinity. In addition to this, we also recall that every vap ∈ AP (Z+,Rn) has a unique
extension vap

e ∈ AP (Z,Rn) such that

vap
e (t) = vap(t) ∀ t ∈ Z+ and sup

t∈Z
‖vap

e (t)‖ = sup
t∈Z+

‖vap(t)‖.

Indeed, as discussed in Appendix C, if we follow an idea seen in [12, Remark on p.318]
and define vap

e by
vap

e (t) = lim
k→∞

vap(t+ τk) ∀ t ∈ Z, (3.27)

where, for each k ∈ N, τk ∈ P (vap, 1/k) and τk ↗ ∞ as k → ∞, then it can be
shown (see Lemma C.1.6 and Corollary C.1.33) that this function is a well-defined
almost periodic extension of vap and satisfies supt∈Z ‖v

ap
e (t)‖ = supt∈Z+

‖vap(t)‖. With
this in mind, we obtain the following theorem, which is a finite-dimensional version of
Theorem C.1.35 in Appendix C.
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Theorem 3.1.12. The map AP (Z+,Rn)→ AP (Z,Rn) which maps vap to vap
e , where

vap
e is given by (3.27), is an isometric isomorphism.

We are now ready to present the previously discussed corollary of Theorem 3.1.5, which
concerns the convergence of trajectories with (asymptotically) almost periodic inputs.

Corollary 3.1.13. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p, r > 0, vap ∈ AP (Z+,Rq) and
wap ∈ AP (Z+,Rp). Assume that BC(K, r) ⊆ SC(G), (A) holds, there exists (x̃, ỹ) ∈
(Rn)Z+ × (Rp)Z+ such that (vap, wap, x̃, ỹ) ∈ B, f satisfies (3.13) with Z = Rp, and
there exists η ∈ Rp such that (3.14) holds. Then the following statements hold.

(i) There exists a unique pair (xap, yap) ∈ AP (Z+,Rn) × AP (Z+,Rp) such that
(vap, wap, xap, yap) ∈ B and, for all (v, w, x, y) ∈ B such that v− vap ∈ c0(Z+,Rq)
and w − wap ∈ c0(Z+,Rp),

lim
t→∞
‖x(t)− xap(t)‖ = 0 = lim

t→∞
‖y(t)− yap(t)‖. (3.28)

Furthermore, for all ε > 0, there exists δ > 0 such that P (vap, δ) ∩ P (wap, δ) ⊆
P (xap, ε) ∩ P (yap, ε). In particular, if vap and wap are τ -periodic, then xap and
yap are τ -periodic.

(ii) The pair of almost periodic extensions (xap
e , y

ap
e ) of (xap, yap) to Z, is the unique

bounded pair of functions that satisfy

z1(t+ 1) = Az1(t) +Bf(z2(t) + wap
e (t)) +Bev

ap
e (t),

z2(t) = Cz1(t) +Df(z2(t) + wap
e (t)) +Dev

ap
e (t),

}
∀ t ∈ Z. (3.29)

Remark 3.1.14. (i) Under the assumptions of Corollary 3.1.13, asymptotically al-
most periodic inputs generate asymptotically almost periodic state and output
trajectories.

(ii) Under the assumptions of Corollary 3.1.13, if, additionally, ‖DK‖ < 1/r, then
Proposition 2.3.10 gives that I−DK(f −K) is bijective. By combining this with
Proposition 2.1.37, we see that, for every x0 ∈ Rn, v ∈ (Rq)Z+ , w ∈ (Rp)Z+ ,
there is a unique solution to the IVP given by (2.18). Hence, in this case, the
assumption in Corollary 3.1.13 asserting the existence of (x̃, ỹ) ∈ (Rn)Z+×(Rp)Z+

such that (vap, wap, x̃, ỹ) ∈ B, is redundant. We further note that, trivially,
‖DK‖ < 1/r if D = 0.

(iii) Instead of imposing in Corollary 3.1.13 the assumptions of Theorem 3.1.5, we
could impose the hypotheses of Corollary 3.1.10, and statements (i) and (ii) re-
main valid. ♦

Proof of Corollary 3.1.13. We begin by proving statement (i). To this end, we use
Propositions 2.3.6 and 2.3.8 to yield that, for every v∗ ∈ Rq and w∗ ∈ Rp, there
exist x∗ ∈ Rn and y∗ ∈ Rp such that (v∗, w∗, x∗, y∗) is an equilibrium quadruple (see
Definition 2.3.1). We now fix such a quadruple (v∗, w∗, x∗, y∗). Let (vap, wap, x̃, ỹ) ∈ B
and note that, since vap and wap are almost periodic, vap and wap are bounded (see
Lemma C.1.31). Let R1 > 0 be such that

‖x̃(0)‖+

∥∥∥∥(vap

wap

)∥∥∥∥
`∞
, ‖x∗‖+

∥∥∥∥(v∗w∗
)∥∥∥∥ ≤ R1. (3.30)
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Hence, by setting Z := Rp, Theorem 3.1.5 yields the existence of ψ1 ∈ KL and φ1 ∈ K
(dependent on R1) such that∥∥∥∥(x̃(t)− x∗

ỹ(t)− y∗
)∥∥∥∥ ≤ ψ1 (‖x̃(0)− x∗‖, t) + φ1

(
max
s∈t

∥∥∥∥( vap(s)− v∗
wap(s)− w∗

)∥∥∥∥) ∀ t ∈ Z+ .

Combining this with (3.30), we see that∥∥∥∥(x̃(t)− x∗
ỹ(t)− y∗

)∥∥∥∥ ≤ ψ1 (2R1, 0) + φ1 (2R1) ∀ t ∈ Z+ ,

whence x̃ and ỹ are bounded. Thus, as a consequence, there exists R > 0 such that

‖x̃‖`∞ +

∥∥∥∥(vap

wap

)∥∥∥∥
`∞
≤ R . (3.31)

Since vap and wap are almost periodic, by Lemma C.1.37, we may obtain a sequence
(τk)k∈N ⊆ Z+ such that

τk ∈ P
(
vap,

1

2k

)
∩ P

(
wap,

1

2k

)
∀ k ∈ N and τk →∞ as k →∞. (3.32)

Inspired by an argument from the proof of [5, Proposition 4.4], we claim that (Λτk x̃)k∈N
and (Λτk ỹ)k∈N are Cauchy sequences in `∞(Z+,Rn) and `∞(Z+,Rp), respectively. To
show this, we first invoke Theorem 3.1.5 to obtain ψ ∈ KL and φ ∈ K (dependent on
R) such that, for all (vi, wi, xi, yi) ∈ B with ‖xi(0)‖+

∥∥(vi wi)
T
∥∥
`∞
≤ R, i = 1, 2,∥∥∥∥(x1(t)− x2(t)

y1(t)− y2(t)

)∥∥∥∥ ≤ ψ (‖x1(0)− x2(0)‖, t) + φ

(
sup
s∈t

∥∥∥∥( v1(s)− v2(s)
w1(s)− w2(s)

)∥∥∥∥) ∀ t ∈ Z+.

(3.33)
Subsequently, we let ε > 0 and k, l ∈ N be sufficiently large so that

ψ(2R, τk), ψ(2R, τl) ≤
ε

2
and φ

(
1

k
+

1

l

)
≤ ε

2
,

and, without loss of generality, assume that τl ≥ τk. Then, for all t ∈ Z+,

sup
s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τl − τk)
wap(s+ t)− wap(s+ t+ τl − τk)

)∥∥∥∥
≤ sup

s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τl)
wap(s+ t)− wap(s+ t+ τl)

)∥∥∥∥
+ sup
s∈τk

∥∥∥∥( vap(s+ t+ τl)− vap(s+ t+ τl − τk)
wap(s+ t+ τl)− wap(s+ t+ τl − τk)

)∥∥∥∥
≤ 1

l
+

1

k
.

Hence, for all t ∈ Z+,

φ

(
sup
s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τl − τk)
wap(s+ t)− wap(s+ t+ τl − τk)

)∥∥∥∥
)
≤ ε

2
,
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which, when combined with Lemma 2.1.33, (3.31) and (3.33), implies, for all t ∈ Z+,∥∥∥∥((Λτk x̃)(t)− (Λτl x̃)(t)
(Λτk ỹ)(t)− (Λτl ỹ)(t)

)∥∥∥∥ =

∥∥∥∥((Λtx̃)(τk)− (Λt+τl−τk x̃)(τk)
(Λtỹ)(τk)− (Λt+τl−τk ỹ)(τk)

)∥∥∥∥
≤ ψ(‖x̃(t)− x̃(t+ τl − τk)‖, τk) +

ε

2

≤ ψ(2R, τk) +
ε

2
≤ ε.

Whence, we have shown that (Λτk x̃)k∈N and (Λτk ỹ)k∈N are Cauchy sequences in
`∞(Z+,Rn) and `∞(Z+,Rp), respectively. They therefore converge to functions xap ∈
`∞(Z+,Rn) and yap ∈ `∞(Z+,Rp), respectively. To show that (vap, wap, xap, yap) ∈ B,
we note that, for all k ∈ Z+ and t ∈ Z+, by Lemma 2.1.33,

(Λτk x̃)(t+ 1) = A(Λτk x̃)(t) +Bf((Λτk ỹ)(t) + (Λτkw
ap)(t)) +Be(Λτkv

ap)(t),

(Λτk ỹ)(t) = C(Λτk x̃)(t) +Df((Λτk ỹ)(t) + (Λτkw
ap)(t)) +De(Λτkv

ap)(t).

Since f is continuous, if we use (3.32) and take the limit as k → ∞, we see that
(vap, wap, xap, yap) ∈ B.

To show that xap ∈ AP (Z+,Rn) and yap ∈ AP (Z+,Rp), we fix ε > 0 and note that,
since φ(0) = 0 and φ is continuous, there exists δ1 > 0 such that

φ(s) ≤ ε ∀ s ∈ [0, δ1]. (3.34)

Let δ := δ1/2 and let τ ∈ P (vap, δ) ∩ P (wap, δ), which exists by Lemma C.1.37. Then,
by combining Lemma 2.1.33 with (3.31), (3.33) and (3.34), we see that, for all t ∈ Z+

and all k ∈ N,∥∥∥∥((Λτk x̃)(t)− (Λτk x̃)(t+ τ)
(Λτk ỹ)(t)− (Λτk ỹ)(t+ τ)

)∥∥∥∥ =

∥∥∥∥((Λtx̃)(τk)− (Λt+τ x̃)(τk)
(Λtỹ)(τk)− (Λt+τ ỹ)(τk)

)∥∥∥∥
≤ ψ (‖x̃(t)− x̃(t+ τ)‖, τk) + ε. (3.35)

Since (τk)k∈N converges to ∞ as k →∞ and x̃ is bounded, (3.35) hence yields, for all
t ∈ Z+, ∥∥∥∥(xap(t)− xap(t+ τ)

yap(t)− yap(t+ τ)

)∥∥∥∥ ≤ ε,
showing that τ ∈ P (xap, ε)∩P (yap, ε). It follows that P (vap, δ)∩P (wap, δ) ⊆ P (xap, ε)∩
P (yap, ε). Since P (vap, δ) ∩ P (wap, δ) is relatively dense in Z+ (see Defintion C.1.29
and Lemma C.1.37), we see that P (xap, ε)∩P (yap, ε) is relatively dense in Z+, showing
that xap ∈ AP (Z+,Rn) and yap ∈ AP (Z+,Rp).
In order to establish (3.28), let (v, w, x, y) ∈ B be such that v−vap ∈ c0(Z+,Rq) and w−
wap ∈ c0(Z+,Rp). Obviously, v and w are bounded, and so, as in the beginning of this
proof, an application of Theorem 3.1.5 yields that x and y are bounded. Subsequently,
let R̃ > 0 be such that

‖x‖`∞ +

∥∥∥∥(vw
)∥∥∥∥

`∞
, ‖xap‖`∞ +

∥∥∥∥(vap

wap

)∥∥∥∥
`∞
≤ R̃ .

73



3.1. Incremental and convergence properties of discrete-time Lur’e systems

Another application of Theorem 3.1.5 guarantees the existence of ψ̃ ∈ KL and φ̃ ∈ K
(dependent upon R̃) such that (3.33) holds for all (vi, wi, xi, yi) ∈ B with ‖xi(0)‖ +∥∥(vi wi)

T
∥∥
`∞
≤ R̃, i = 1, 2, but with ψ and φ replaced by ψ̃ and φ̃, respectively. In

particular, by setting ṽ := v − vap and w̃ := w − wap and using Lemma 2.1.33, we see
that, for all t ∈ Z+,∥∥∥∥(x(t)− xap(t)

y(t)− yap(t)

)∥∥∥∥ =

∥∥∥∥((Λbt/2cx)(dt/2e)− (Λbt/2cx
ap)(dt/2e)

(Λbt/2cy)(dt/2e)− (Λbt/2cy
ap)(dt/2e)

)∥∥∥∥
≤ ψ̃ (‖x(bt/2c)− xap(bt/2c)‖ , dt/2e) + φ̃

(
sup

s∈dt/2e

∥∥∥∥((Λbt/2cṽ)(s)

(Λbt/2cw̃)(s)

)∥∥∥∥
)
.

By applying (3.33) (again with ψ and φ replaced by ψ̃ and φ̃, respectively) to the term
‖x(bt/2c)− xap(bt/2c)‖ in the above inequality, we deduce that, for all t ∈ N,∥∥∥∥(x(t)− xap(t)

y(t)− yap(t)

)∥∥∥∥ ≤ ψ̃
(
ψ̃(‖x(0)− xap(0)‖, bt/2c) + φ̃

(
sup

s∈bt/2c

∥∥∥∥( ṽ(s)
w̃(s)

)∥∥∥∥
)
, dt/2e

)

+ φ̃

(
sup

s∈dt/2e

∥∥∥∥((Λbt/2cṽ)(s)

(Λbt/2cw̃)(s)

)∥∥∥∥
)
.

Finally, the right hand side of the above inequality converges to 0 as t → ∞, showing
that (3.28) holds. It is easily seen, by a combination of (3.28) with Lemma C.1.39,
that (xap, yap) is the unique almost periodic pair such that (vap, wap, xap, yap) ∈ B,
completing the proof of statement (i).
We proceed to prove statement (ii). To this end, first note that the almost periodic
extensions xap

e and yap
e of xap and yap to Z, respectively, are bounded. We shall now

show that (xap
e , y

ap
e ) satisfies (3.29). To this end, note that since Λ1x

ap
e is the almost

periodic extension of Λ1x
ap, we hence see that Λ1x

ap
e is also the almost periodic exten-

sion of Axap + Bf(yap + wap) + Bev
ap. Moreover, since yap

e + wap
e is almost periodic

(see Corollary C.1.34) and (3.13) holds with Z = Rp, it follows that f(yap
e + wap

e ) is
almost periodic. Consequently, Axap

e +Bf(yap
e +wap

e )+Bev
ap
e is also an almost periodic

extension of Axap+Bf(yap+wap)+Bev
ap. Hence, by the uniqueness of almost periodic

extensions (see Theorem 3.1.12),

Λ1x
ap
e = Axap

e +Bf(yap
e + wap

e ) +Bev
ap
e .

In a similar manner, one can easily show that

yap
e = Cxap

e +Df(yap
e + wap

e ) +Dev
ap
e .

Therefore, (xap
e , y

ap
e ) satisfies (3.29).

To show that (xap
e , y

ap
e ) is the unique bounded pair that satisfies (3.29) on Z, let (x̂, ŷ) ∈

(Rn)Z × (Rp)Z be another bounded pair satisfying (3.29). Let R̂ > 0 be such that

‖xap
e ‖`∞ + ‖x̂‖`∞ +

∥∥∥∥(vap
e

wap
e

)∥∥∥∥
`∞
≤ R̂,

and apply Theorem 3.1.5 to obtain the existence of ψe ∈ KL and φe ∈ K (dependent
upon R̂) such that (3.33) holds for all (vi, wi, xi, yi) ∈ B with ‖xi(0)‖+‖(viwi)T ‖`∞ ≤ R̂,
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i = 1, 2, but with ψ and φ replaced by ψe and φe, respectively. Let ε > 0 and t ∈ Z
and choose τ ∈ Z such that τ ≤ t and

ψe(2R̂, t− τ) ≤ ε.

Since the restrictions of (Λτv
ap
e ,Λτw

ap
e ,Λτx

ap
e ,Λτy

ap
e ) and (Λτv

ap
e ,Λτw

ap
e ,Λτ x̂,Λτ ŷ) to

Z+ are in B and satisfy ‖(Λτxap
e )(0)‖ + ‖(Λτ x̂)(0)‖ + ‖(Λτvap

e Λτw
ap
e )T ‖`∞ ≤ R̂, it

follows from (3.33) (with ψ and φ replaced by ψe and φe, respectively) that∥∥∥∥(xap
e (t)− x̂(t)
yap

e (t)− ŷ(t)

)∥∥∥∥ =

∥∥∥∥((Λτx
ap
e )(t− τ) + (Λτ x̂)(t− τ)

(Λτy
ap
e )(t− τ) + (Λτ ŷ)(t− τ)

)∥∥∥∥
≤ ψe(‖xap

e (τ)− x̂(τ)‖, t− τ)

≤ ψe(2R̂, t− τ)

≤ ε.

Since ε was arbitrary, we see that xap
e (t) = x̂(t) and yap

e (t) = ŷ(t) and, since t was also
arbitrary, it follows that xap

e = x̂ and yap
e = ŷ, completing the proof.

Remark 3.1.15. Assume the hypotheses of Theorem 3.1.5 hold with Z = Rp and, for
simplicity, that D = 0. Consider the (non-autonomous) system

z(t+ 1) = g(t, z(t)), (3.36)

where

g(t, ξ) := Aξ +Bf(Cξ +Dev
ap(t) + wap(t)) +Bev

ap(t) ∀ (t, ξ) ∈ Z× Rn,

vap ∈ AP (Z,Rq) and wap ∈ AP (Z,Rp). For (t0, x
0) ∈ Z × Rn, we denote the solution

to (3.36) with initial state x0 at time t0 by x(·; t0, x0), which is defined on t0. Corollary
3.1.13 yields the existence of a unique bounded solution xb ∈ (Rn)Z of (3.36). If we
now apply Theorem 3.1.5 and use methods similar to those employed in the proof of
statement (ii) of Corollary 3.1.13, we obtain that for all R > 0, there exists ψ ∈ KL
such that, for all (t0, x

0) ∈ Z× Rn with ‖x0‖ ≤ R,

‖x(t; t0, x
0)− xb(t)‖ ≤ ψ(‖x0 − xb(t0)‖, t− t0) ∀ t ∈ Z, t ≥ t0.

This shows that (3.36) satisfies a semi-global version of the definition of a uniformly
convergent system given in [99]. ♦

Example 3.1.16. The systems given in Example 3.1.8 and Example 3.1.9 were both
shown to satisfy the assumptions of Theorem 3.1.5. Therefore, Corollary 3.1.13 yields
that asymptotically almost periodic inputs generate asymptotically almost periodic
state trajectories, in both systems. ♦

We conclude this section with the following two corollaries. Before doing so, we recall
from Lemma C.1.39 that every v ∈ AAP (Z+,Rn) has a unique decomposition v =
vap + v0, where vap ∈ AP (Z+,Rn) and v0 ∈ c0(Z+,Rn). In the sequel, we shall call vap

the “almost periodic part of v”.
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Corollary 3.1.17. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p and r > 0. Assume that
BC(K, r) ⊆ SC(G), (A) holds, ‖DK‖ < 1/r, f satisfies (3.13) with Z = Rp, and
there exists η ∈ Rp such that (3.14) holds. Then, for all R > 0, there exists φ ∈ K
such that, for all (vi, wi, xi, yi) ∈ B with vi ∈ AAP (Z+,Rq), wi ∈ AAP (Z+,Rp) and
‖xi(0)‖+ ‖(vi wi)T ‖`∞ ≤ R, i = 1, 2∥∥∥∥(xap

1 − x
ap
2

yap
1 − y

ap
2

)∥∥∥∥
`∞
≤ φ

(∥∥∥∥( vap
1 − v

ap
2

wap
1 − w

ap
2

)∥∥∥∥
`∞

)
,

where vap
i , wap

i , xap
i and yap

i are the almost periodic parts of vi, wi, xi and yi, respec-
tively, i = 1, 2.

Remark 3.1.18. The hypotheses of Corollary 3.1.17 imply that those of Corollary
3.1.13 hold, since, as mentioned in Remark 3.1.14, the assumption ‖DK‖ < 1/r along
with the fact that (3.13) holds with Z = Rp, guarantees that for every x0 ∈ Rn,
v ∈ (Rq)Z+ , w ∈ (Rp)Z+ , there is a unique solution to the IVP given by (2.18). ♦

Proof of Corollary 3.1.17. Fix R > 0 and let v∗ ∈ Rq and w∗ ∈ Rp. Applications
of Propositions 2.3.6 and 2.3.8 give the existence of x∗ ∈ Rn and y∗ ∈ Rp such
that (v∗, w∗, x∗, y∗) is an equilibrium quadruple. Let R1 := max{R, ‖(x∗ y∗)T ‖ +
‖(v∗ w∗)T ‖} > 0. We now apply Theorem 3.1.5 to obtain the existence of ψ1 ∈ KL
and φ1 ∈ K (dependent upon R1) such that (3.33) holds for all (vi, wi, xi, yi) ∈ B with
‖xi(0)‖ +

∥∥(vi wi)
T
∥∥
`∞
≤ R1, i = 1, 2, with ψ and φ replaced by ψ1 and φ1, respec-

tively. For (v, w, x, y) ∈ B with ‖x(0)‖ + ‖(v w)T ‖`∞ ≤ R, if we use the above with
(v1, w1, x1, y1) = (v, w, x, y) and (v2, w2, x2, y2) = (v∗, w∗, x∗, y∗), we then see that∥∥∥∥(x(t)

y(t)

)∥∥∥∥ ≤ ψ1(R+R1, 0) + φ1(R+R1) +R1 =: R2 ∀ t ∈ Z+.

Hence, by setting R3 := R2 + R > 0, we have that ‖x‖`∞ + ‖(v w)T ‖`∞ ≤ R3 for all
(v, w, x, y) ∈ B with ‖x(0)‖+ ‖(v w)T ‖`∞ ≤ R.

With this in mind, we once again apply Theorem 3.1.5 to obtain the existence of
ψ ∈ KL and φ ∈ K (dependent on R3) such that, for all (vi, wi, xi, yi) ∈ B with
‖xi(0)‖+ ‖(vi wi)T ‖`∞ ≤ R3, i = 1, 2, it follows that (3.33) holds.

Let (vi, wi, xi, yi) ∈ B with vi ∈ AAP (Z+,Rq), wi ∈ AAP (Z+,Rp) and ‖xi(0)‖ +
‖(vi wi)T ‖`∞ ≤ R, i = 1, 2. Let vap

i ∈ AP (Z+,Rq), wap
i ∈ AP (Z+,Rp), ṽi ∈ c0(Z+,Rq)

and w̃i ∈ c0(Z+,Rp) be such that vi = vap
i + ṽi and wi = wap

i + w̃i, i = 1, 2. From
Corollary 3.1.13, we see that xi and yi are also asymptotically almost periodic for each
i = 1, 2. We similarly let xap

i ∈ AP (Z+,Rn), yap
i ∈ AP (Z+,Rp), x̃i ∈ c0(Z+,Rn) and

ỹi ∈ c0(Z+,Rp) be such that xi = xap
i + x̃i and yi = yap

i + ỹi, i = 1, 2. Now, by noting
that ‖xi‖`∞ + ‖(vi wi)T ‖ ≤ R3, i = 1, 2, we obtain from (3.33) and Lemma 2.1.33 that,
for all t ∈ Z+,∥∥∥∥(x1(t)− x2(t)

y1(t)− y2(t)

)∥∥∥∥ =

∥∥∥∥((Λbt/2cx1)(dt/2e)− (Λbt/2cx2)(dt/2e)
(Λbt/2cy1)(dt/2e)− (Λbt/2cy2)(dt/2e)

)∥∥∥∥
≤ ψ (‖x1(bt/2c)− x2(bt/2c)‖ , dt/2e)

+ φ

(
sup

s∈dt/2e

∥∥∥∥( (Λbt/2cv1)(s)− (Λbt/2cv2)(s)

(Λbt/2cw1)(s)− (Λbt/2cw2)(s)

)∥∥∥∥
)
.
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By recalling that x1 and x2 are bounded by R3, this gives, for all t ∈ Z+,∥∥∥∥(x1(t)− x2(t)
y1(t)− y2(t)

)∥∥∥∥ ≤ψ (2R3, dt/2e) + φ

(
2

∥∥∥∥( vap
1 − v

ap
2

wap
1 − w

ap
2

)∥∥∥∥
`∞

)
+ φ

(
2 sup
s∈dt/2e

∥∥∥∥( (Λbt/2cṽ1)(s)− (Λbt/2cṽ2)(s)

(Λbt/2cw̃1)(s)− (Λbt/2cw̃2)(s)

)∥∥∥∥
)
, (3.37)

where we have used Lemma 2.1.3. Fix ε > 0 and let T ∈ Z+ be such that, for all t ∈ T ,

ε ≥
∥∥∥∥(x̃1(t)− x̃2(t)

ỹ1(t)− ỹ2(t)

)∥∥∥∥+ φ

(
2 sup
s∈dt/2e

∥∥∥∥( (Λbt/2cṽ1)(s)− (Λbt/2cṽ2)(s)

(Λbt/2cw̃1)(s)− (Λbt/2cw̃2)(s)

)∥∥∥∥
)

+ ψ (2R3, dt/2e) .

Then, from (3.37), an application of Lemma C.1.32 gives∥∥∥∥(xap
1 − x

ap
2

yap
1 − y

ap
2

)∥∥∥∥
`∞
≤ ε+ φ

(
2

∥∥∥∥( vap
1 − v

ap
2

wap
1 − w

ap
2

)∥∥∥∥
`∞

)
.

Since ε was arbitrary, the proof is thus complete.

For the second, and final corollary, let us recall the CICSO property, which was given
in Definition 2.3.13: for Σ ∈ L and f : Rp → Rm, we say that (2.17) has the CICSO
property if for every v∞ ∈ Rq and w∞ ∈ Rp, there exists x∞ ∈ Rn and y∞ ∈ Rp
such that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞ for every (v, w, x, y) ∈ B with
limt→∞ v(t) = v∞ and limt→∞w(t) = w∞.

Corollary 3.1.19. Let Σ ∈ L, f : Rp → Rm, K ∈ Rm×p and r > 0. Assume that
BC(K, r) ⊆ SC(G), (A) holds, f satisfies (3.13) with Z = Rp, and there exists η ∈ Rp
such that (3.14) holds. Then (2.17) exhibits the CICSO property.

Remark 3.1.20. We note that Corollary 3.1.19 is not novel, since it is a particular
case of Corollary 2.3.18. However, we include a proof of the result below, since it is
interesting to see the result proven via an application of Corollary 3.1.13. We have now
seen the result proven in two different ways. ♦

Proof of Corollary 3.1.19. Let v∞ ∈ Rq and w∞ ∈ Rp. An application of Propo-
sitions 2.3.6 and 2.3.8 yields the existence of x∞ ∈ Rn and y∞ ∈ Rp such that
(v∞, w∞, x∞, y∞) is an equilibrium quadruple (see Definition 2.3.1). We recall that
here we are abusing notation and interpreting vectors as constant functions. With
this in mind, trivially, (v∞, w∞, x∞, y∞) ∈ AP (Z+,Rq)×AP (Z+,Rp)×AP (Z+,Rn)×
AP (Z+,Rp). Therefore, the hypotheses of Corollary 3.1.13 are satisfied (with vap := v∞

and wap := w∞), and so we obtain that (x∞, y∞) is the unique almost periodic pair such
that (v∞, w∞, x∞, y∞) ∈ B and, for all (v, w, x, y) ∈ B such that v − v∞ ∈ c0(Z+,Rq)
and w − w∞ ∈ c0(Z+,Rp),

lim
t→∞
‖x∞ − x∞(t)‖ = 0 = lim

t→∞
‖y∞ − y∞(t)‖.

Since v∞ and w∞ were arbitrary, the proof is complete.
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3.1.4 Application to the four-block problem

Here, we present analgous results of the previous sections, related to four-block forced
discrete-time Lur’e systems, which are described informally by Figure 2.2. Since the
four-block system is defined in Section 2.4 and a great deal of attention is attributed
to its basic properties, we shall only briefly recall this system here and, if the reader
seeks more information, refer them to Section 2.4. To that end, in this subsection, we
let p1, p2 ∈ Z+ be such that

p1 + p2 = p,

and, for i = 1, 2, define Pi ∈ Rpi×p by

P1 :=
(
Ip1 , 0p1×p2

)
and P2 :=

(
0p2×p1 , Ip2

)
,

where, for r, s ∈ Z+, Ir denotes the identity matrix in Rr×r and 0r×s ∈ Rr×s is the
matrix with all entries zero. In the sequel, we consider i ∈ {1, 2} to be a fixed quantity
and shall consider (2.76), which is explicitly given by

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

u = f(Piy + w),

 (2.76)

where Σ ∈ L, v ∈ (Rq)Z+ , w ∈ (Rpi)Z+ and f : Rpi → Rm. As in Definition 2.4.4,
we set Σi := (A,B,Be, PiC,PiD,PiDe) and denote the behaviour of (2.76) by Bif (Σ),

which we will reduce to Bi when the context is clear.

As discussed in Remark 2.4.5, the key to obtaining the following results is that (2.76)
can be rewritten in the form of (2.17). To see this, we simply apply Pi to the output
equation, so that (2.76) becomes

x+ = Ax+Bf(Piy + w) +Bev

Piy = PiCx+ PiDf(Piy + w) + PiDev.

}
(3.38)

For given Σ ∈ L, Ki ∈ Rm×pi and r > 0 such that BC(Ki, r) ⊆ SC(PiG), let us
recall assumption (Ai) (which is simply the assumption (A), but in the context of the
subsystem generated by Σi):

Σi is (i) controllable and observable, or (ii) stabilisable and detectable and

r min
|z|=1
‖(PiG)Ki(z)‖ < 1.

 (Ai)

We now define semi-global incremental ISS and ISOS of (2.76).

Definition 3.1.21. Let Σ ∈ L and f : Rpi → Rm.

(i) We say that (2.76) is semi-globally incrementally input-to-state stable if for
any R > 0, there exist ψ ∈ KL and φ ∈ K such that (3.11) holds for all
(vj , wj , xj , yj) ∈ Bi with ‖xj(0)‖+

∥∥(vj wj)
T
∥∥
`∞
≤ R, j = 1, 2.

(ii) We say that (2.76) is semi-globally incrementally input-to-state/output stable if
for any R > 0, there exist ψ ∈ KL and φ ∈ K such that (3.11) and (3.12) hold
for all (vj , wj , xj , yj) ∈ Bi with ‖xj(0)‖+

∥∥(vj wj)
T
∥∥
`∞
≤ R, j = 1, 2.
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The following theorem is an analogue of Theorem 3.1.5.

Theorem 3.1.22. Let Σ ∈ L, f : Rpi → Rm, Ki ∈ Rm×pi, r > 0 and Z ⊆ Rpi be
a nonempty and closed subset. Assume that BC(Ki, r) ⊆ SC(PiG), (Ai) holds, f is
continuous,

‖f(ξ + ζ)− f(ζ)−Kiξ‖ < r‖ξ‖ ∀ ζ ∈ Z, ∀ ξ ∈ Rpi\{0}, (3.39)

and there exists η ∈ Rpi such that

r‖ξ‖ − ‖f(ξ + η)− f(η)−Kiξ‖ → ∞ as ‖ξ‖ → ∞. (3.40)

Then for any R > 0, there exist ψ ∈ KL and φ ∈ K such that (3.11) and (3.12) both hold
for all (v1, w1, x1, y1) ∈ Bi satisfying ‖x1(0)‖+

∥∥(v1 w1)T
∥∥
`∞
≤ R and y1(t)+w1(t) ∈ Z

for all t ∈ Z+, and all (v2, w2, x2, y2) ∈ Bi.

Proof. Let R > 0. As previously mentioned, we apply Pi to the output equation of
(2.76) so that it becomes (3.38). We now recognise this to be of the form (2.17) with
linear component Σi. We also note that the corresponding assumptions of Theorem
3.1.5 are satisfied with respect to this system. Hence, as a consequence, there exist
ψ ∈ KL and φ ∈ K such that (3.11) and (3.12) both hold for all (v1, w1, x1, y1) ∈ Bf (Σi)
satisfying ‖x1(0)‖ +

∥∥(v1 w1)T
∥∥
`∞
≤ R and y1(t) + w1(t) ∈ Z for all t ∈ Z+, and all

(v2, w2, x2, y2) ∈ Bf (Σi). Since (v, w, x, y) ∈ Bi implies that (v, w, x, Piy) ∈ Bf (Σi),
then for all (v1, w1, x1, y1) ∈ Bi satisfying ‖x1(0)‖ +

∥∥(v1 w1)T
∥∥
`∞
≤ R and y1(t) +

w1(t) ∈ Z for all t ∈ Z+, and all (v2, w2, x2, y2) ∈ Bi, it follows that (3.11) holds and

‖Piy1(t)− Piy2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t) + φ

(
sup
s∈t

∥∥∥∥( v1(s)− v2(s)
w1(s)− w2(s)

)∥∥∥∥) ∀ t ∈ Z+.

(3.41)
Fix (v1, w1, x1, y1) ∈ Bi satisfying ‖x1(0)‖+

∥∥(v1 w1)T
∥∥
`∞
≤ R and y1(t)+w1(t) ∈ Z for

all t ∈ Z+, and fix (v2, w2, x2, y2) ∈ Bi. To complete the proof, it suffices to shows that
(3.12) holds. To that end, we note that, by Proposition 2.4.6, K := KiPi ∈ AR(D),
and hence, by Lemma 2.1.18,

y1 − y2 =CK(x1 − x2) +DK(f(Piy1 + w1)− f(Piy2 + w2)−K(y1 − y2))

+ (I −DK)−1De(v1 − v2).

An application of (3.39) then yields that, for all t ∈ Z+,

‖y1(t)−y2(t)‖ ≤ ‖CK‖‖x1(t)−x2(t)‖+r‖DK‖‖Piy1(t)−Piy2(t)‖+c
∥∥∥∥( v1(t)− v2(t)
w1(t)− w2(t)

)∥∥∥∥ ,
for some c > 0. By combining this with (3.11) and (3.41), and by relabelling ψ and φ,
the proof is complete.

The next result is an analogue of Corollary 3.1.13.

Corollary 3.1.23. Let Σ ∈ L, f : Rpi → Rm, Ki ∈ Rm×pi, r > 0, vap ∈ AP (Z+,Rq)
and wap ∈ AP (Z+,Rpi). Assume that BC(Ki, r) ⊆ SC(PiG), (Ai) holds, there exists
(x̃, ỹ) ∈ (Rn)Z+×(Rpi)Z+ such that (vap, wap, x̃, ỹ) ∈ Bi, f satisfies (3.39) with Z = Rpi,
and there exists η ∈ Rpi such that (3.40) holds. Then the following statements hold.
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(i) There exists a unique pair (xap, yap) ∈ AP (Z+,Rn) × AP (Z+,Rp) such that
(vap, wap, xap, yap) ∈ Bi and, for all (v, w, x, y) ∈ Bi such that v−vap ∈ c0(Z+,Rq)
and w − wap ∈ c0(Z+,Rpi),

lim
t→∞
‖x(t)− xap(t)‖ = 0 = lim

t→∞
‖y(t)− yap(t)‖. (3.42)

Furthermore, for all ε > 0, there exists δ > 0 such that P (vap, δ) ∩ P (wap, δ) ⊆
P (xap, ε) ∩ P (yap, ε). In particular, if vap and wap are τ -periodic, then xap and
yap are τ -periodic.

(ii) The pair of almost periodic extensions (xap
e , y

ap
e ) of (xap, yap) to Z, is the unique

bounded pair of functions that satisfy

z1(t+ 1) = Az1(t) +Bf(Piz2(t) + wap
e (t)) +Bev

ap
e (t),

z2(t) = Cz1(t) +Df(Piz2(t) + wap
e (t)) +Dev

ap
e (t),

}
∀ t ∈ Z. (3.43)

Proof. We begin with statement (i) and act in a similar manner as that done in the
proof of Theorem 3.1.22. Indeed, we note that the assumptions of Corollary 3.1.13
hold in the context of the system given by (3.38). Therefore, there exists a unique pair
(xap, ỹap) ∈ AP (Z+,Rn)×AP (Z+,Rpi) such that (vap, wap, xap, ỹap) ∈ Bf (Σi) and, for
all (v, w, x, y) ∈ Bf (Σi) such that v − vap ∈ c0(Z+,Rq) and w − wap ∈ c0(Z+,Rpi),

lim
t→∞
‖x(t)− xap(t)‖ = 0 = lim

t→∞
‖y(t)− ỹap(t)‖. (3.44)

Furthermore, for all ε > 0, there exists δ > 0 such that P (vap, δ) ∩ P (wap, δ) ⊆
P (xap, ε)∩P (ỹap, ε). In particular, if vap and wap are τ -periodic, then xap and ỹap are
τ -periodic.
We define yap ∈ (Rp)Z by

yap := Cxap +Df(ỹap + wap) +Dev
ap,

and note that, as a consequence, Piy
ap = ỹap and so (vap, wap, xap, yap) ∈ Bi. Moreover,

again from the definition of yap, since xap, ỹap, vap and wap are almost periodic and
f satisfies (3.39) with Z = Rpi , it is easy to deduce that yap ∈ AP (Z+,Rp). Let
(v, w, x, y) ∈ Bi be such that v − vap ∈ c0(Z+,Rq) and w − wap ∈ c0(Z+,Rpi). Since
(v, w, x, Piy) ∈ Bf (Σi), (3.44) gives that

lim
t→∞
‖x(t)− xap(t)‖ = 0 = lim

t→∞
‖Piy(t)− ỹap(t)‖. (3.45)

In order to show that (3.42) holds, it is therefore sufficient to show that limt→∞ ‖y(t)−
yap(t)‖ = 0. To see this, note that

y − yap = C(x− xap) +D (f(Piy + w)− f(ỹap + wap)) +De(v − vap),

and so, since f satisfies (3.39) with Z = Rpi and (3.45) holds, it is clear that limt→∞ ‖y(t)−
yap(t)‖ = 0. As for uniqueness of the pair (xap, yap), this easily follows from a combi-
nation of (3.42) with Lemma C.1.39.
Finally, let ε > 0 and set

ε̃ :=
ε

‖C‖+ 2(r + ‖K‖)‖D‖+ ‖De‖+ 1
∈ (0, ε).
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Then, from Corollary 3.1.13, we obtain the existence of δ > 0 such that P (vap, δ) ∩
P (wap, δ) ⊆ P (xap, ε̃) ∩ P (ỹap, ε̃). Without loss of generality, we may assume that
δ ≤ ε̃. Let τ ∈ P (vap, δ) ∩ P (wap, δ) and note that

‖yap(t+ τ)− yap(t)‖ ≤‖C‖‖xap(t+ τ)− xap(t)‖
+ ‖D‖‖f(ỹap(t+ τ) + wap(t+ τ))− f(ỹap(t) + wap(t))‖
+ ‖De‖‖vap(t+ τ)− vap(t)‖.

Since f satisfies (3.39) with Z = Rpi , this implies that

‖yap(t+ τ)− yap(t)‖ ≤ ‖C‖ε̃+ ‖De‖δ
+ (r + ‖Ki‖)‖D‖‖ỹap(t+ τ)− ỹap(t) + wap(t+ τ)− wap(t)‖
≤ ‖C‖ε̃+ (r + ‖Ki‖)‖D‖(ε̃+ δ) + ‖De‖ε̃
≤ ε.

We have therefore shown that τ ∈ P (xap, ε̃) ∩ P (yap, ε) ⊆ P (xap, ε) ∩ P (yap, ε), which
completes the proof of statement (i).
Now that statement (i) is given to be true, statement (ii) can be proven in a similar
manner to that shown in the proof of Corollary 3.1.13. We thus omit this, and leave it
to the reader.

Remark 3.1.24. Analogous results of Corollaries 3.1.10 and 3.1.17 can also be ob-
tained for the four-block system given by (2.76). They can be proven via similar
methods to those seen in the previous proofs, and so, in the interest of brevity, we do
not explicitly give these, and will instead leave them to the reader to formulate and
verify. ♦

3.2 Convergence properties for continuous-time Lur’e sys-
tems with Stepanov almost periodic forcing

As briefly discussed at the start of this chapter, the focus of the current section is
to present an analogous result to Corollary 3.1.13, but for Stepanov almost periodic
functions (see, for example, [14] or Appendix C) instead of (Bohr) almost periodic
functions. Since Stepanov almost periodicity is only relevant in the continuous-time
setting, we consider continuous-time forced Lur’e systems here. We comment that this
section is based off the work of [41].

3.2.1 Preliminaries

In this initial subsection, we introduce notation, explicitly give the Lur’e system of
our current focus, and present relevant theory. We make note that since a lot of this
notation and theory is a continuous-time version of a particular case of that introduced
in Chapter 2, we will be very brief. Moreover, we further note that the following
notation and setup is unique to this section, and should not be confused with that
developed in the rest of this thesis.

We begin by denoting by KLc the set of functions ψ : R+ × R+ → R+ such that: for
each fixed t ∈ R+, the function ψ(·, t) ∈ K; and for each fixed s ∈ R+, the function
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ψ(s, ·) is non-increasing and limt→∞ ψ(s, t) = 0. The superscript “c” illustrates that
it is the “continuous-time version” of KL (see Definition 2.1.1), since here the second
element of each function takes values in R+ instead of Z+. Continuing, we define
Lc := Rn×n × Rn×m × Rp×n and consider the controlled and observed linear system

ẋ = Ax+Bu+ v, x(0) = x0 ∈ Rn, y = Cx, (3.46)

where (A,B,C) ∈ Lc, u ∈ L∞loc(R+,Rm) and v ∈ L∞loc(R+,Rn). As in Definition 2.1.11,
we denote the transfer function of (A,B,C) ∈ Lc by G, that is, G(s) = C(sI−A)−1B.
Moreover, for (A,B,C) ∈ Lc and K ∈ Cm×p, we denote by GK the transfer function
of the system given by (AK , B,C), as in Definition 2.1.19. We recall that, in this case,
AK = A + BKC (see Definition 2.1.16). For F = C or R, we denote the (continuous-
time) set of stabilising output feedback matrices (over F) for (A,B,C) ∈ Lc by Sc

F(G),
that is,

Sc
F(G) :=

{
K ∈ Fm×p : GK is holomorphic and bounded on C0

}
.

Furthermore, for K ∈ Cm×p and r > 0, we obtain from [107, Lemma 2.1] that
BC(K, r) ⊆ Sc

C(G) if, and only if, sups∈C0
‖GK(s)‖ ≤ 1/r.

Application of the feedback law u = f(y) to the linear system (3.46), where f : Rp →
Rm is a locally Lipschitz nonlinearity, leads to the closed-loop system

ẋ = Ax+Bf(Cx) + v. (3.47)

From sources such as [19, 33, 114] and [106, Appendix D], for every x0 ∈ Rn and v ∈
L∞loc(R+,Rn), the local Lipschitz property of f guarantees a unique maximal solution
of (3.47) defined on a maximal interval of existence [0, ω) ⊆ [0,∞). It is well-known
(see, for example, [114, Proposition C.3.6, p.481]) that if ω < ∞, then the solution x
satisfies

lim
t→ω
‖x(t)‖ =∞. (3.48)

In subsequent results, we shall impose assumptions on (3.47) that, as a consquence, will
ensure that solutions are defined globally (see Remark 3.2.6). With this in mind, and
for given (A,B,C) ∈ Lc and locally Lipschitz f : Rp → Rm, we define the behaviour
of (3.47) by

Bc
f (A,B,C) :=

{
(v, x) ∈ L∞loc(R+,Rn)×W 1,1

loc (R+,Rn) :

(v, x) satisfies (3.47) a.e. on R+

}
,

where, again, the superscript c indicates the continuous-time setting. When the con-
text is clear, we shall supress Bc

f (A,B,C) to simply Bc. We note that Bc is left-shift
invariant, that is,

(v, x) ∈ Bc =⇒ (Λτv,Λτx) ∈ Bc ∀ τ ∈ R+. (3.49)

Finally, we also define the “bi-lateral” behaviour of the Lur’e system (3.47) by

B̃c
f (A,B,C) :=

{
(v, x) ∈ L∞loc(R,Rn)×W 1,1

loc (R,Rn) :

(v, x) satisfies (3.47) a.e. on R
}
,
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and again, when the context is clear, we shall supress this to B̃c. Similar to Bc, it is
true that B̃c is shift invariant, that is,

(v, x) ∈ B̃c =⇒ (Λτv,Λτx) ∈ B̃c ∀ τ ∈ R. (3.50)

For the rest of this subsection, we consider the following continuous-time Lur’e system
with time-varying nonlinearity:

ẋ(t) = Ax(t) +Bg(t, Cx(t)) + v(t), x(0) = x0 ∈ Rn, (3.51)

where (A,B,C) ∈ Lc, v ∈ L∞loc(R+,Rn), and g belongs to the space C comprising all
functions h : R+ × Rp → Rm such that: (i) h(· , ξ) is measurable for every ξ ∈ Rp; (ii)
h(t, ·) is continuous for almost every t ∈ R+; (iii) for every ξ ∈ Rp there exists a locally
integrable function β : R+ → R+ such that

‖h(t, ξ)‖ ≤ β(t) a.e. t ∈ R+;

and (iv) for every η ∈ Rp, there exists ρ > 0 and a locally integrable function α : R+ →
R+ such that

‖h(t, ξ)− h(t, ζ)‖ ≤ α(t)‖ξ − ζ‖ ∀ t ∈ R+, ∀ ξ, ζ ∈ Rp s.t. ‖ξ − η‖, ‖ζ − η‖ ≤ ρ.

We make this assumption on g so that solutions of (3.51) are guaranteed to exist (and
are unique) for every initial condition x0 and input v (see, for example, [33, 114]).

Lemma 3.2.1. Let (A,B,C) ∈ Lc, K ∈ Rm×p, r > 0 and α ∈ K∞. Assume that
(A,B,C) is stabilsable and detectable and BC(K, r) ⊆ SC(G). Then there exist ψ, ψ̃ ∈
KLc and φ, φ̃ ∈ K such that, for all functions g ∈ C satisfying

ess sup
t∈R+

‖g(t, ξ)−Kξ‖ ≤ r‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ Rp, (3.52)

and for every (v, x) ∈ L∞loc(R+,Rn)×W 1,1
loc (R+,Rn) satisfying (3.51) almost everywhere

on R+, it follows that

‖x(t)‖ ≤ ψ̃(‖x(0)‖, t) + φ̃

(
ess sup
0≤s≤t

‖v(s)‖
)
∀ t ∈ R+, (3.53)

and

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(∫ t

0
‖v(s)‖ds

)
∀ t ∈ R+, (3.54)

Lemma 3.2.1 extends [107, Theorem 3.2] to the time-varying case.

Proof of Lemma 3.2.1. For ease of notation in the sequel, for given g ∈ C, t ≥ 0 and
ξ, ζ ∈ Rn, we define

Fg(t, ξ, ζ) := Aξ +Bg(t, Cξ) + ζ.

By identically following the steps of the proof of [107, Theorem 3.2], and by using
(3.52), we are able to obtain the existence of a continuously differentiable function
V : Rn → R+ and α1, α2, α3, α4 ∈ K∞ (which depend only upon A,B,C,K, r and α)
such that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖) ∀ ξ ∈ Rn, (3.55)
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and, for all g ∈ C satisfying (3.52), almost every t ≥ 0 and all ξ, ζ ∈ Rn,

〈(∇V )(ξ), Fg(t, ξ, ζ)〉 ≤ −α3(‖ξ‖) + α4(‖ζ‖). (3.56)

The existence of such functions guarantees the existence of functions ψ̃ ∈ KLc and
φ̃ ∈ K such that (3.53) holds for all (v, x) ∈ L∞loc(R+,Rn) ×W 1,1

loc (R+,Rn) satisfying
(3.51) almost everywhere on R+. Indeed, this can be shown by mirroring the proof of
[77, Theorem 5.41]. Moreover, again from the proof of [77, Theorem 5.41], it is clear
that ψ̃ and φ̃ depend only upon V, α1, α2, α3 and α4, which in turn only depend upon
A,B,C,K, r and α. We now proceed to show that (3.54) holds for all g ∈ C satisfying
(3.52) and all (v, x) ∈ L∞loc(R+,Rn)×W 1,1

loc (R+,Rn) satisfying (3.51) almost everywhere
on R+. To this end, we note that as a consequence of (3.56), we have that, for all g ∈ C
satisfying (3.52), almost every t ≥ 0 and all ξ ∈ Rn,

〈(∇V )(ξ), Fg(t, ξ, 0)〉 ≤ −α3(‖ξ‖). (3.57)

We now follow an argument given in the proof of [6, Lemma IV.10]. Thus, we obtain
from (3.57) that, for all g ∈ C satisfying (3.52), almost every t ≥ 0 and all ξ, ζ ∈ Rn,

〈(∇V )(ξ), Fg(t, ξ, ζ)〉 = 〈(∇V )(ξ), Fg(t, ξ, 0)〉+ 〈(∇V )(ξ), Fg(t, 0, ζ)〉
≤ −α3(‖ξ‖) + ‖(∇V )(ξ)‖‖ζ‖. (3.58)

Since ∇V is continuous, we see that κ ∈ K, where

κ(s) := s+ max
‖ξ‖≤s

‖(∇V )(ξ)‖ ∀ s ≥ 0.

Therefore, (3.58) yields that, for all g ∈ C satisfying (3.52), almost every t ≥ 0 and all
ξ, ζ ∈ Rn,

〈(∇V )(ξ), Fg(t, ξ, ζ)〉 ≤ −α3(‖ξ‖) + κ(‖ξ‖)‖ζ‖.

By acting identically to the proof of [6, Proposition II.5], we obtain a positive definite
(not necessarily proper, i.e. not necessarily radially unbounded), continuously differ-
entiable function W : Rn → R+ and a positive definite function ρ : R+ → R+ (both
dependent only upon A,B,C,K, r and α) such that, for all g ∈ C satisfying (3.52),
almost every t ≥ 0 and all ξ, ζ ∈ Rn,

〈(∇W )(ξ), Fg(t, ξ, ζ)〉 ≤ −ρ(‖ξ‖) + ‖ζ‖. (3.59)

We now claim the existence of a positive definite, proper function U : Rn → R+ and a
positive constant c such that, for all g ∈ C satisfying (3.52), almost every t ≥ 0 and all
ξ, ζ ∈ Rn,

〈(∇U)(ξ), Fg(t, ξ, ζ)〉 ≤ c‖ζ‖. (3.60)

However, we shall not explicitly provide a proof of this here, since identical methods
(ensuring to use the assumption (3.52) that is uniform in time) to that shown in steps
1 and 2 of the proof of [45, Theorem 3.1] will lead to the desired outcome. Finally, by
combining (3.59) and (3.60), we see that, for all g ∈ C satisfying (3.52), almost every
t ≥ 0 and all ξ, ζ ∈ Rn,

〈(∇(U +W ))(ξ), Fg(t, ξ, ζ)〉 ≤ −ρ(‖ξ‖) + (c+ 1)‖ζ‖. (3.61)
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From [6, Proof of 2 =⇒ 1 in Theorem 1, p. 1088], we see that this is sufficient for the
existence of ψ ∈ KLc and φ ∈ K such that (3.54) holds for all (v, x) ∈ L∞loc(R+,Rn)×
W 1,1

loc (R+,Rn) satisfying (3.51) almost everywhere on R+. We also note, by inspection
of the previous cited proof, that the functions ψ ∈ KLc and φ ∈ K only depend upon
U , W , ρ and c. Since U , W , ρ and c each only depend upon A,B,C,K, r and α, the
proof is complete.

3.2.2 Incremental stability properties

In Section 3.1, we developed a semi-global incremental ISS result that allowed us to
obtain convergence properties for forced discrete-time Lur’e systems with (Bohr) almost
periodic inputs - see Theorem 3.1.5 and Corollary 3.1.13, respectively. As already
mentioned, the focus of the present section is to provide an analogue of Corollary 3.1.13
but which concerns Stepanov almost periodic functions. To do so, we act similarly to
the previous section and first develop a semi-global incremental stability result. To
that end, we begin with the following definition.

Definition 3.2.2. Let (A,B,C) ∈ Lc and f : Rp → Rm be locally Lipschitz.

(i) We say that (3.47) is semi-globally incrementally integral input-to-state stable
(iISS) (with linear iISS gain) if for any R > 0, there exist ψ ∈ KLc and φ ∈ K
such that, for all (vi, xi) ∈ Bc with ‖xi(0)‖+ ‖vi‖L∞ ≤ R, i = 1, 2,

‖x1(t)− x2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t) + φ

(∫ t

0
‖v1(s)− v2(s)‖ds

)
∀ t ≥ 0.

(ii) We say that (3.47) is semi-globally incrementally input-to-state stable (ISS) if
for any R > 0, there exist ψ ∈ KLc and φ ∈ K such that, for all (vi, xi) ∈ Bc

with ‖xi(0)‖+ ‖vi‖L∞ ≤ R, i = 1, 2,

‖x1(t)−x2(t)‖ ≤ ψ (‖x1(0)− x2(0)‖, t)+φ

(
ess sup
0≤s≤t

‖v1(s)− v2(s)‖ds
)
∀ t ≥ 0.

Remark 3.2.3. Integral ISS was first introduced in [111], and is a weaker notion
than ISS, with the latter implying the former. For more details we refer the reader to
literature such as [6, 45, 60, 113]. ♦

The following is the aforementioned incremental stability result concerning (3.47).

Proposition 3.2.4. Let (A,B,C) ∈ Lc, f : Rp → Rm be locally Lipschitz, K ∈ Rm×p
and r > 0. Assume that (A,B,C) is stabilisable and detectable, BC(K, r) ⊆ Sc

C(G),
(3.13) holds with Z = imC, and there exists η ∈ Rp such that (3.14) holds. Then,
for every R > 0, there exist ψ, ψ̃ ∈ KLc and φ, φ̃ ∈ K such that, for all (v1, x1) ∈ Bc

satisfying ‖x1(0)‖+ ‖v1‖L∞ ≤ R, all (v2, x2) ∈ Bc, and all t ≥ t0 ≥ 0,

‖x1(t)− x2(t)‖ ≤ψ̃(‖x1(t0)− x2(t0)‖, t− t0) + φ̃

(
ess sup
t0≤s≤t

‖v1(s)− v2(s)‖
)
, (3.62)

and

‖x1(t)− x2(t)‖ ≤ψ(‖x1(t0)− x2(t0)‖, t− t0) + φ

(∫ t

t0

‖v1(s)− v2(s)‖ds
)
. (3.63)
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Before proving Proposition 3.2.4, we first state the following immediate corollary.

Corollary 3.2.5. Let (A,B,C) ∈ Lc, f : Rp → Rm be locally Lipschitz, K ∈ Rm×p and
r > 0. Assume that (A,B,C) is stabilisable and detectable, BC(K, r) ⊆ Sc

C(G), (3.13)
holds with Z = imC and that there exists η ∈ Rp such that (3.14) holds. Then (3.47)
is semi-globally incrementally iISS and ISS.

Proof of Proposition 3.2.4. We begin by defining f̃ : Rp → Rm by f̃(ξ) := f(ξ)− f(0)
for all ξ ∈ Rp. In a similar fashion to that done in the proof of Theorem 3.1.5, one may
see that, as a consquence of (3.13) and (3.14), there exists α0 ∈ K∞ such that

‖f̃(ξ)−Kξ‖ ≤ r‖ξ‖ − α0(‖ξ‖) ∀ ξ ∈ Rp. (3.64)

Subsequently, [107, Theorem 3.2] guarantees that the Lur’e system with linear com-
ponent (A,B,C) and nonlinearity f̃ is ISS (in the continuous-time sense - see [107,
Equation (3.2)]). Noting that if (v, x) ∈ Bc

f , then (v + Bf(0), x) ∈ Bc
f̃
, it follows that

for given R > 0, there exists ρ > 0, such that ‖Cx‖L∞ ≤ ρ for all (v, x) ∈ Bc satisfying
‖v‖L∞ + ‖x(0)‖ ≤ R. We now fix R > 0 and let ρ be such a previously described
positive constant. Define

W := {ξ ∈ Rp : ‖ξ‖ ≤ ρ} ∩ imC ⊆ Rp.

Since W is compact, we may deduce that (3.20) and (3.21) hold by proceeding iden-
tically to that done in the proof of Theorem 3.1.5 (with z∗ = 0). Moreover, by
Lemma 3.1.1, the function ξ 7→ supζ∈W ‖f(ξ + ζ) − f(ζ) − Kξ‖ is continuous which,
in conjunction with (3.20) and (3.21) and an application of statement (ii) of Lemma
2.3.9, implies the existence of α ∈ K∞ such that (3.22) holds. Now, with this K∞
function α, we apply Lemma 3.2.1 in order to deduce the existence of ψ, ψ̃ ∈ KLc and
φ, φ̃ ∈ K such that, for all functions g ∈ C satisfying (3.52) and for every (v, x) ∈
L∞loc(R+,Rn)×W 1,1

loc (R+,Rn) satisfying (3.51) almost everywhere on R+, it follows that
(3.53) and (3.54) both hold.
We now let (v1, x1), (v2, x2) ∈ Bc be such that ‖v1‖L∞ + ‖x1(0)‖ ≤ R, and let t0 ≥ 0.
Note that from the first part of this proof, ‖Cx1‖L∞ ≤ ρ. Define g : R+×Rp → Rm by

g(t, ξ) := f (ξ + C(Λt0x1)(t))− f (C(Λt0x1)(t)) ∀ (t, ξ) ∈ R+ × Rp.

By recalling (3.22) and the fact that ‖C(Λt0x1)‖L∞ ≤ ρ, we see that (3.52) holds. Fur-
thermore, it is easy to check that g ∈ C and, by using (3.49), that (Λt0v2−Λt0v1,Λt0x2−
Λt0x1) satisfies (3.51) almost everywhere on R+. Hence, from Lemma 3.2.1, we obtain
that, for all t ∈ R+,

‖x1(t+ t0)− x2(t+ t0)‖ ≤ψ̃(‖x1(t0)− x2(t0)‖, t) + φ̃

(
ess sup
t0≤s≤t+t0

‖v1(s)− v2(s)‖
)
,

and

‖x1(t+ t0)− x2(t+ t0)‖ ≤ψ(‖x1(t0)− x2(t0)‖, t) + φ

(∫ t+t0

t0

‖v1(s)− v2(s)‖ds
)
.

These two equations imply that (3.62) and (3.63) both hold for all t ≥ t0, thus com-
pleting the proof.
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Remark 3.2.6. We showed in the previous proof that, when under the assumptions
of Proposition 3.2.4, for given x0 ∈ Rn and v ∈ L∞loc(R+,Rn), the unique solution of
(3.47) is defined everywhere. Indeed, as a consquence of (3.64) we saw that the Lur’e
system with linear component (A,B,C) and nonlinearity f̃ , where f̃(ξ) := f(ξ)− f(0)
for all ξ ∈ Rp, is ISS, and so solutions to that system are defined globally. Hence, if
(v, x) ∈ Bc

f , then (v +Bf(0), x) ∈ Bc
f̃
, and so x is defined globally. ♦

3.2.3 The response to Stepanov almost periodic inputs

Our attention now turns towards the main contribution of this section, namely an ana-
logue of Corollary 3.1.13, but which concerns Stepanov almost periodic functions. As
in the previous section, we shall be extremely brief in our setup, since a very thorough
presentation of (Bohr) almost periodic and Stepanov almost periodic functions is given
in Appendix C. However, for convenience to the reader, we recall the following for a
Banach space X and time domain R = R or R+. First, AP (R,X) denotes the space
of almost periodic functions mapping R→ X, where R = R or R+ and, for ε > 0, the
set of ε-periods of an almost periodic function vap is denoted by P (vap, ε) (see Defini-
tion C.1.1). The set of almost periodic functions is a closed subspace of the space of
bounded uniformly continuous functions endowed with the sup-norm. Moreover, the
space of asymptotically almost periodic functions R+ → X is denoted by AAP (R+, X)
and C0(R+, X) denotes the space of all continuous functions R+ → X that converge
to zero as their argument converges to infinity. As in the discrete-time setting, we also
recall that every vap ∈ AP (R+, X) has a unique extension vap

e ∈ AP (R, X) such that

vap
e (t) = vap(t) ∀ t ∈ R+ and sup

t∈R
‖vap

e (t)‖X = sup
t∈R+

‖vap(t)‖X .

For the details of this, we refer the reader to Appendix C, and in particular, Lemma
C.1.6. Briefly, we mention that if we follow an idea seen in [12, Remark on p.318] and
define vap

e by

vap
e (t) = lim

k→∞
vap(t+ τk) ∀ t ∈ R, (3.65)

where, for each k ∈ N, τk ∈ P (vap, 1/k) and τk ↗∞ as k →∞, then it is not difficult to
prove that this function is a well-defined almost periodic extension of vap and satisfies
supt∈R ‖v

ap
e (t)‖X = supt∈R+

‖vap(t)‖X . With this in mind, we obtain the following
theorem, which is Theorem C.1.11 in Appendix C.

Theorem 3.2.7. The map AP (R+, X)→ AP (R, X) which maps vap to vap
e , where vap

e

is given by (3.65), is an isometric isomorphism.

We also mention here that for a function vap ∈ AP (R, X) and λ ∈ R, it follows that

lim
T→∞

1

2T

∫ T

−T
e−iλtvap(t)dt,

exists (see Corollary C.1.23). Moreover, it is well-known that the set of λ ∈ R such
that the above limit is nonzero, denoted by Λ(vap), is countable (see for example, [1,
III, p.22]). The elements of Λ(vap) are called the characteristic exponents of vap [1].
Furthermore, the module mod(vap) is the smallest additive group of real numbers that
contains Λ(vap). That is, mod(vap) is the set of all real numbers which are a finite
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linear combination of the elements of Λ(vap) with integer coefficients (see Definition
C.1.26).

Let us also briefly recall notation and concepts concerning Stepanov almost periodicity.
Let v ∈ L1

loc(R,Rn), where R = R or R+, and ε > 0. As in Definition C.2.1, we say
that τ ∈ R is an ε-period of v (in the sense of Stepanov) if

sup
a∈R

∫ a+1

a
‖v(s+ τ)− v(s)‖ds ≤ ε.

The set of ε-periods of v (in the sense of Stepanov) is denoted by P1(v, ε). We say
that v is almost periodic in the sense of Stepanov if, for every ε > 0, the set P1(v, ε) is
relatively dense in R. The set of all functions in L1

loc(R,Rn) that are almost periodic in
the sense of Stepanov is denoted by S1(R,Rn). We further recall from Lemma C.2.8,
that S1(R,Rn) is a closed subspace of the Banach space of uniformly locally integrable
functions, which is defined by

UL1
loc(R,Rn) :=

{
v ∈ L1

loc(R,Rn) : sup
a∈R

∫ a+1

a
‖v(s)‖ds <∞

}
,

and is endowed with the Stepanov norm

‖v‖S := sup
a∈R

∫ a+1

a
‖v(s)‖ds.

For more details on UL1
loc(R,Rn) we refer the reader to Appendix C, and in particular

to Remark C.2.2 and Lemma C.2.3. The final thing we shall mention here is that,
for a function v ∈ L1

loc(R,Rn) the Bochner transform of v is denoted by ṽ : R →
L1([0, 1],Rn), that is (

ṽ(t)
)
(s) := v(t+ s) ∀ t ∈ R, ∀ s ∈ [0, 1].

We note that ṽ is continuous and, furthermore, v ∈ S1(R,Rn) if, and only if, ṽ ∈
AP (R,L1([0, 1],Rn)) (see Definition C.2.1, Lemma C.2.5 and [1, pp.77-78]). As with
(Bohr) almost periodic functions, we may obtain a relationship between S1(R+,Rn)
and S1(R,Rn). Indeed, one can, for each v ∈ S1(R+,Rn), construct an extension
which is Stepanov almost periodic on R. We denote this extension by ve. Moreover,
we obtain the following, which is a particular case of Theorem C.2.11,

Theorem 3.2.8. The map S1(R+,Rn) → S1(R,Rn) which maps v to ve, is an iso-
metric isomorphism.

For v ∈ S1(R,Rn), one may also define Λ(v) and mod(v). For details of this, and for
relevant results, we once again refer the reader to Appendix C (see Theorem C.2.16).

We are now in the position to state and prove the main result of this section: the
aforementioned analogue of Corollary 3.1.13.

Theorem 3.2.9. Let (A,B,C) ∈ Lc, f : Rp → Rm be locally Lipschitz, K ∈ Rm×p,
r > 0 and w ∈ S1(R+,Rn) ∩ L∞(R+,Rn). Assume that (A,B,C) is stabilisable and
detectable, BC(K, r) ⊆ Sc

C(G), (3.13) holds with Z = Rp and there exists η ∈ Rp such
that (3.14) holds. Then the following statements hold.
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(i) There exists a unique xap ∈ AP (R+,Rn) such that (w, xap) ∈ Bc and, for all
(v, x) ∈ Bc satisfying that either: (a) v−w ∈ L1(R+,Rn); or (b) v ∈ L∞(R+,Rn)
and ess sups≥t ‖v(s)− w(s)‖ → 0 as t→∞; we have that

lim
t→∞
‖x(t)− xap(t)‖ = 0. (3.66)

Furthermore, for all ε > 0, there exists δ > 0 such that P1(w, δ) ⊂ P (xap, ε). In
particular, if w is periodic with period τ , then xap is τ -periodic.

(ii) The function xap
e is the unique bounded function such that (we, xap

e ) ∈ B̃c. More-
over, mod(xap

e ) ⊂ mod(we).

Proof. We begin with applications of [15, Propositions 3.1 and 4.1] to yield that for
every v∗ ∈ Rn, there exists x∗ ∈ Rn such that (v∗, x∗) ∈ Bc, where we abuse notation
and consider a vector to be a constant function. We fix such a pair (v∗, x∗). Let
(w, x) ∈ Bc and set R1 := ‖x(0)‖+‖w‖L∞+‖x∗‖+‖v∗‖. By applying Proposition 3.2.4
and noting that t 7→ x∗ is a bounded function, we are able to deduce that x is bounded.
Let R > 0 be such that ‖x‖L∞+‖w‖L∞ ≤ R. We now apply Proposition 3.2.4 a further
time to obtain the existence of ψ, ψ̃ ∈ KLc and φ, φ̃ ∈ K (dependent on R) such that
(3.62) and (3.63) both hold for all (v1, x1) ∈ Bc satisfying ‖x1(0)‖ + ‖v1‖L∞ ≤ R, all
(v2, x2) ∈ Bc, and all t ≥ t0 ≥ 0.
Since the rest of the proof consists of many different parts, we label each step.
Step 1: Construction of xap. Since w ∈ S1(R+,Rn), we choose a non-decreasing
sequence (τk)k∈N ⊆ R+ such that

τk ∈ P1(w, 1/k2) and τk > k ∀ k ∈ N.

We are going to show that (Λτkx)k∈N is a Cauchy sequence in the Banach space of
bounded continuous functions mapping R+ → Rn. To this end, we first note that∫ a+k

a
‖w(t+ τk)− w(t)‖dt =

k∑
j=1

∫ a+j

a+j−1
‖w(t+ τk)− w(t)‖dt

≤ 1

k
∀ a ≥ 0, ∀ k ∈ N. (3.67)

Moreover, since (Λτw,Λτx) ∈ Bc for all τ ≥ 0 by (3.49), and that ‖Λτx‖L∞ +
‖Λτw‖L∞ ≤ R for every τ ≥ 0, it follows from (3.63) that

‖(Λσx)(s)− (Λσ+τx)(s)‖ ≤ψ(‖x(σ + s0)− x(σ + τ + s0)‖, s− s0)

+ φ

(∫ s

s0

‖(Λσw)(η)− (Λσ+τw)(η)‖dη
)

∀ s ≥ s0 ≥ 0, ∀σ, τ ≥ 0. (3.68)

Trivially, for k, ` ∈ N with k ≥ `,

(Λτ`x)(t)− (Λτkx)(t) = (Λtx)(τ`)− (Λt+τk−τ`x)(τ`) ∀ t ≥ 0,

and so, setting

I(t; k, `) :=

∫ τ`

τ`−`
‖(Λtw)(η)− (Λt+τk−τ`w)(η)‖dη ∀ t ≥ 0,
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and invoking (3.68) (with s = τ`, s0 = τ` − `, σ = t and τ = τk − τ`), we arrive at

‖(Λτ`x)(t)− (Λτkx)(t)‖ ≤ψ(‖x(t+ τ` − `)− x(t+ τk − `)‖, `) + φ(I(t; k, `))

∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `. (3.69)

Now, for all t ≥ 0 and all k, ` ∈ N such that k ≥ `,

I(t; k, `) ≤
∫ τ`

τ`−`
‖(Λtw)(η)−(Λt+τkw)(η)‖dη+

∫ τ`

τ`−`
‖(Λt+τkw)(η)−(Λt+τk−τ`w)(η)‖dη,

which, after changing variables, implies that

I(t; k, `) ≤
∫ t+τ`−`+k

t+τ`−`
‖(w(η)− (Λτkw)(η)‖dη +

∫ t+τk

t+τk−`
‖(Λτ`w)(η)− w(η)‖dη.

Consequently, by (3.67),

I(t; k, `) ≤ 1

k
+

1

`
∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `.

By combining this with (3.69), we see that

‖(Λτ`x)(t)− (Λτkx)(t)‖ ≤ ψ(2R, `) + φ

(
1

k
+

1

`

)
∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `.

This shows that (Λτkx)k∈N is a Cauchy sequence in the space of bounded continuous
functions mapping R+ → Rn, the limit of which we denote by xap. We note that
‖xap‖L∞ + ‖w‖L∞ ≤ R.
Step 2: Almost periodicity of xap. To show that xap ∈ AP (R+,Rn), let ε > 0 and
choose T ∈ N and a > 0 such that

ψ(2R, T ) ≤ ε

2
and φ(a) ≤ ε

2
. (3.70)

Furthermore, let τ ∈ P1(w, a/T ) and note that

(Λτ`x)(t+ τ)− (Λτ`x)(t) = (Λt+τx)(τ`)− (Λtx)(τ`) ∀ ` ∈ N, ∀ t ≥ 0.

Thus, by invoking (3.68) (with s = τ`, s0 = τ` − T , and σ = t),

‖(Λτ`x)(t+ τ)− (Λτ`x)(t)‖ ≤ψ(‖x(t+ τ` − T )− x(t+ τ + τ` − T )‖, T )

+ φ

(∫ τ`

τ`−T
‖(Λtw)(η)− (Λt+τw)(η)‖dη

)
∀ t ≥ 0, ∀ ` ∈ N s.t. τ` ≥ T .

Now, ∫ τ`

τ`−T
‖(Λtw)(η)− (Λt+τw)(η)‖dη =

∫ t+τ`

t+τ`−T
‖w(η)− (Λτw)(η)‖dη

=

T∑
j=1

∫ t+τ`−T+j

t+τ`−T+j−1
‖w(η)− w(η + τ)‖dη

≤ a ∀ t ≥ 0, ∀ ` ∈ N s.t. τ` ≥ T ,
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where the last inequality follows from the choice of τ . Therefore, by combining the
previous two inequalities with (3.70), we see that

‖(Λτ`x)(t+ τ)− (Λτ`x)(t)‖ ≤ ψ(2R, T ) + φ(a) ≤ ε ∀ t ≥ 0, ∀ ` ∈ N s.t. τ` ≥ T .

By then letting `→∞, we see that

‖xap(t)− xap(t+ τ)‖ ≤ ε ∀ t ≥ 0,

and so τ ∈ P (xap, ε). Since τ ∈ P1(w, a/T ) was arbitrary, we conclude that

P1(w, a/T ) ⊂ P (xap, ε), (3.71)

showing that P (xap, ε) is relatively dense in R+. Consequently, xap ∈ AP (R+,Rn).
Step 3: Trajectory property of (w, xap). To show that (w, xap) ∈ Bc, let T ∈ N be
arbitrary and note that∫ T

0
‖(Λτ`w)(s)− w(s)‖ds ≤ T

`2
∀ ` ∈ N.

Hence, Λτ`w → w in L1([0, T ],Rn) as ` → ∞. Furthermore, invoking (3.13) with
Z = Rp and the fact that

(
Λτ`x

)
`∈N converges uniformly to xap on R+, we see that

the sequence
(
f(CΛτ`x)

)
`∈N converges uniformly to f(Cxap) on R+, and consequently,

f(CΛτ`x) → f(Cxap) in L1([0, T ],Rn) as ` → ∞. Therefore, since, for all ` ∈ N and
all t ∈ [0, T ],

(Λτ`x)(t) = (Λτ`x)(0) +A

∫ t

0
(Λτ`x)(s)ds+B

∫ t

0
f(C(Λτ`x)(s))ds+

∫ t

0
(Λτ`w)(s)ds

it follows that in the limit, as `→∞,

xap(t) = xap(0) +A

∫ t

0
xap(s)ds+B

∫ t

0
f(Cxap(s))ds+

∫ t

0
w(s)ds ∀ t ∈ [0, T ].

As this holds for every T ∈ N, we have that xap ∈W 1,1
loc (R+,Rn) and

ẋap(t) = Axap(t) +Bf(Cxap(t)) + w(t) for a.e. t ≥ 0,

showing that (w, xap) ∈ Bc.
Step 4: Uniqueness of xap within AP (R+,Rn). Assume that x̃ ∈ AP (R+,Rn) is such
that (w, x̃) ∈ Bc. From an application of (3.63), we see that ‖x̃(t) − xap(t)‖ → 0 as
t → ∞. By combining this with Lemma C.1.15 and the fact that x̃ − xap is almost
periodic (see Corollary C.1.10), we conclude that x̃ = xap.
Step 5: Proof of (3.66). Let (v, x̃) ∈ Bc and initially let us assume that v − w ∈
L1(R+,Rn). Let ε > 0 and choose t0, t1 ≥ 0 such that

φ

(∫ ∞
t0

‖w(s)− v(s)‖ds
)
≤ ε

2
and ψ(‖xap(t0)− x̃(t0)‖, t1) ≤ ε

2
,

where the existence of a suitable t0 follows from the assumption that v−w ∈ L1(R+,Rn).
Then, by combining this with (3.63) and the fact that ‖xap‖L∞ + ‖w‖L∞ ≤ R, we see
that ‖xap(t)− x̃(t)‖ ≤ ε for all t ≥ t0 + t1, showing that ‖xap(t)− x̃(t)‖ → 0 as t→∞.
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If we now instead assume that v ∈ L∞(R+,Rn) and ess sups≥t ‖v(s) − w(s)‖ → 0 as
t → ∞, then a similar argument, except by utilising (3.62) instead of (3.63), leads to
the conclusion that ‖xap(t)− x̃(t)‖ → 0 as t→∞.
Step 6: Proof of statement (ii). For convenience, we set

g(ξ) := Aξ +Bf(Cξ) ∀ ξ ∈ Rn.

We know from Step 2 (see (3.71)) that, for each k ∈ N, there exists δk ∈ (0, 1/k) such
that

P1(w, δk) ⊂ P (xap, 1/k) ∀ k ∈ N. (3.72)

Moreover, it follows from the fact that (3.13) holds with Z = Rp, that there exists
κ > 0 such that

P (xap, 1/k) ⊂ P (g ◦ xap, κ/k) ∀ k ∈ N.

Hence, by combining this with (3.72),

P1(w, δk) ⊂ P (g ◦ xap, κ/k) ⊂ P1(g ◦ xap, κ/k) ∀ k ∈ N. (3.73)

Let a < 0 be fixed and let τk ∈ P1(w, δk) ∩ [−a,∞). We note that, for all t ∈ [a, 0],

xap
e (t+ τk)− xap

e (a+ τk) = xap(t+ τk)− xap(a+ τk) =

∫ t+τk

a+τk

g(xap(s)) + w(s)ds.

From this, we deduce that

xap
e (t+ τk)− xap

e (a+ τk) =

∫ t

a

(
g(xap(s+ τk)) + w(s+ τk)

)
ds

=

∫ t

a

(
g(xap

e (s+ τk)) + we(s+ τk)
)
ds ∀ t ∈ [a, 0]. (3.74)

Since (see Lemma C.1.6 and Lemma C.2.9), for all k ∈ N,

P1(w, δk) ⊂ P1(we, δk), P (xap, 1/k) ⊂ P (xap
e , 1/k), P1(g ◦ xap, κ/k) ⊂ P1(g ◦ xap

e , κ/k),

by (3.72) and (3.73), we obtain that

τk ∈ P1(we, δk) ∩ P (xap
e , 1/k) ∩ P1(g ◦ xap

e , κ/k) ∀ k ∈ N,

Therefore, letting k →∞ in (3.74) yields that

xap
e (t)− xap

e (a) =

∫ t

a

(
g(xap

e (s)) + we(s)
)
ds ∀ t ∈ [a, 0].

Since a < 0 was arbitrary, we conclude that

ẋap
e (t) = g(xap

e (t)) + we(t) = Axap
e (t) +Bf(Cxap

e (t)) + we(t) for a.e. t ≤ 0,

establishing that (we, xap
e ) ∈ B̃c.

We now show that xap
e is the unique bounded function defined on R such that (we, xap

e ) ∈
B̃c. To do so, we first show that

‖we‖L∞(R,Rn) = ‖w‖L∞(R+,Rn). (3.75)
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To that end, let a ≤ −1 be arbitrary and let N ∈ N be such that τk ≥ −a for all k ∈ N .
We then have, for all k ∈ N , we(τk + s) = w(τk + s) for almost every s ∈ [a, a + 1].
Thus,∫ a+1

a
‖we(s)− w(τk + s)‖ds =

∫ a+1

a
‖we(s)− we(τk + s)‖ds ≤ 1

k
∀ k ∈ K.

This converges to zero as k →∞, and so we may obtain a subsequence (which, for ease
of notation, has the same label) such that we(s) − w(τk + s) converges pointwise to 0
almost everywhere on [a, a + 1] as k → ∞. Therefore, ‖we(s)‖ ≤ ‖w‖L∞ for almost
every s ∈ [a, a+ 1]. Since a ≤ −1 was arbitrary, it follows that (3.75) holds. With this
established, we now let ζ : R→ Rn be bounded and assume that (we, ζ) ∈ B̃c. We will
show that ζ = xap

e . To begin with, by (3.50), for any τ ∈ R, the restrictions of the pairs
(Λτw

e,Λτx
ap
e ) and (Λτw

e,Λτζ) to R+ are in Bc. Moreover, since ‖(Λτxap
e )|R+‖L∞ +

‖(Λτwe)|R+‖L∞ ≤ R for any τ ∈ R (see Theorem 3.2.7 and (3.75)), an application of
(3.63) gives that

‖(Λτζ)(s)− (Λτx
ap
e )(s)‖ ≤ ψ(‖(Λτζ)(0)− (Λτx

ap
e )(0)‖, s) ∀ s ≥ 0, ∀ τ ∈ R.

Now let t ∈ R and ε > 0. Choosing τ ≤ t such that ψ(‖xap
e ‖L∞ + ‖ζ‖L∞ , t− τ) ≤ ε and

applying the above inequality (with s = t− τ) leads to

‖ζ(t)− xap
e (t)‖ = ‖(Λτζ)(t− τ)− (Λτx

ap
e )(t− τ)‖

≤ ψ(‖ζ(τ)− xap
e (τ)‖, t− τ)

≤ ψ(‖xap
e ‖L∞ + ‖ζ‖L∞ , t− τ)

≤ ε.

As ε > 0 was arbitrary, it follows that ζ(t) = xap
e (t) . Finally, since t ∈ R was arbitrary,

we obtain that ζ = xap
e .

Finally, from (3.71), we have shown that for every ε > 0, there exists δ > 0 such that
P1(w, δ) ⊂ P (xap, ε). If we then apply Lemma C.1.6 and Lemma C.2.9, we see that
for every ε > 0, there exists δ > 0 such that P1(we, δ) ⊂ P (xap

e , ε). Since xap
e is almost

periodic, it is also Stepanov almost periodic, and so we may utilise Theorem C.2.16 to
yield that mod(xap

e ) ⊂ mod(we), thus completing the proof.

3.3 Notes and references

With regards to the main stability results of this chapter, i.e. Theorem 3.1.5 and
Proposition 3.2.4, the papers with results that are closest to these are [40] (see also
Chapter 5) and [47], where criteria are given that guarantee that infinite-dimensional
Lur’e systems are exponentially incrementally ISS in the discrete- and continuous-time
settings, respectively. Exponential incremental ISS is a stronger stability notion than
that investigated in this chapter. However, we make note that the assumptions imposed
on the nonlinearity in the aforementioned papers are considerably stronger than what
we impose in the stability results of this chapter. Indeed, in [40] and [47], a ‘strict
contraction’ assumption is used, that is, an assumption of the form:

‖f(ξ + ζ)− f(ζ)−Kξ‖U ≤ (r − δ)‖ξ‖Y ∀ ξ, ζ ∈ Y, (3.76)
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where f : Y → U is a function, Y and U are Hilbert spaces, K is a stabilising feedback
operator, r > 0 is such that every element of B(K, r) stabilises the system, and δ > 0.
For an illustration that the hypotheses of [40] and [47] are stronger, we refer the reader
to Examples 3.1.8 and 3.1.9. Although they are in the discrete-time setting, it is also
easy to construct examples in the continuous-time setting.

We now compare to related results in the literature, the results of this chapter concern-
ing the convergence of trajectories of systems with Bohr and Stepanov almost periodic
inputs, i.e. Corollary 3.1.13 and Theorem 3.2.9. The most relevant results in this
context are [103, 105, 128], which are all in the continuous-time setting. A state-space
and Lyapunov approach is used in [128], whilst the analysis in [103, 105] is based on
input-output methods. An inspection of the assumptions imposed in [103, Theorem 2],
[105, Theorem 1] and [128, Theorem 1] shows that they are equivalent to the existence
of a δ > 0 such that (3.76) holds for some stabilising feedback matrix K and r > 0.
As already mentioned, this assumption is stronger than what we impose in the afore-
mentioned results of this chapter. We further mention that [103, 105, 128] consider
feedback systems that are considerably more restrictive than that considered presently,
with, in particular, [105, 128] being in the single-input single-output setting. Moreover,
none of the papers address the case of Stepanov almost periodic forcing.

The final paper that we mention here is [38], of which the author of this thesis coau-
thored. The article may be considered to be an infinite-dimensional version of Section
3.2. However, the assumptions imposed on the nonlinearity comprise a strict contrac-
tion of the form (3.76). As already mentioned, this is much more restrictive than the
hypotheses used in Section 3.2
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Chapter 4

Stability and convergence
properties of Lur’e systems with
potentially superlinear
nonlinearity

In [7, Theorem 1], ISS is investigated for forced continuous-time Lur’e systems of the
variety

ẋ = Ax+Bf(Cx) +Bv, x(0) = x0 ∈ Rn, y = Cx, (4.1)

where A, B, C are matrices of appropriate dimensions and v is an input or forcing.
There, it is shown that a condition on the linear part of the system, similar to positive
realness (see, for example, [3]), together with certain unboundedness assumptions on
the nonlinearity, guarantees input-to-state stability (ISS) - see Section 2.2.2. Interest-
ingly, the assumptions on the nonlinearity allow for potentially ‘superlinear’ functions.
This differs from other ISS work on forced Lur’e systems, such as [107, 108] and Chapter
2, which all assume a linear bound on the nonlinearity of the system.

In this chapter, we investigate whether an analogue to [7, Theorem 1] holds for discrete-
time versions of (4.1), and, moreover, whether similar assumptions can be used to
infer ISS of much more general systems, given explicitly by (2.17). As discussed in
Chapter 2, (2.17) allows for non-zero feedthrough, the entry of inputs not through the
linear components of the system, and output disturbances. As such, it encompasses
many other types of system. Not only shall we discuss ISS, we shall also develop
sufficient criteria for when the aforementioned system exhibits the CICS property - see
Section 2.3.2. Since convergence properties were not considered in [7], the forthcoming
investigation further separates this work from the literature. Finally, in this chapter,
we also discuss various versions of the positive real lemma. For background regarding
the positive real lemma in the discrete-time setting, we refer the reader to [51, 54, 68,
119, 125, 127].

The layout of the chapter is as follows. In Section 4.1 we compile various preliminary
results regarding the inner products and bounds of functions, and also give versions
of the positive real lemma. In Section 4.2, we present the main stability results of
this chapter. These comprise three main theorems and subsequent corollaries. The
corollaries include ISS criterions which are expressed in the form of positive and strict
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positive real assumptions. Finally, in Section 4.3, we investigate the CICS property and
develop sufficient conditions, which allow for superlinear nonlinearities, that guarantee
the CICS property for systems of the form (2.17).

4.1 Preliminaries

In this initial section, we collect some useful preliminary results which will be key to
our development of the rest of the chapter. We split this section into three, with the
first and second parts comprising lemmas that concern bounds of functions and inner
products of functions, respectively. The last portion of this section contains theory
regarding positive and strict positive real transfer functions, accumulating in forming
so-called positive and strict positive real lemmas.

4.1.1 Bounds of functions

We begin with the following result concerning a supremum of a continuous function.

Lemma 4.1.1. Let h : Rm → R+ and σ1, σ2 ∈ R+ with σ1 ≤ σ2. If h is bounded on
bounded sets and continuous on {ξ ∈ Rm : σ1 ≤ ‖ξ‖ ≤ σ2}, then φ : R+ → R+, defined
by

φ(s) := sup{h(ξ) : ξ ∈ Rm, ‖ξ‖ ≤ s} ∀ s ≥ 0,

is well-defined and continuous on [σ1, σ2].

Proof. To begin with, we note that since h is bounded on bounded sets, φ(s) is well-
defined for each s ≥ 0 and φ is nondecreasing. To show continuity on the prescribed
interval, we fix ε > 0 and s ∈ [σ1, σ2]. Now, since h is uniformly continuous on
S := {ξ ∈ Rm : σ1 ≤ ‖ξ‖ ≤ σ2}, there exists δ̃ > 0 such that

|h(ξ)− h(ζ)| < ε ∀ ξ, ζ ∈ S s.t. ‖ξ − ζ‖ ≤ δ̃. (4.2)

We claim that there exists δ1 > 0 such that

φ(s)− φ(t) = |φ(s)− φ(t)| < ε ∀ t ∈ (s− δ1, s] ∩ [σ1, σ2]. (4.3)

In order to prove this claim, we suppose that it is false. Therefore, s > σ1 and, for all
δ1 > 0, there exists t ∈ (s− δ1, s] ∩ [σ1, σ2] such that φ(s)− φ(t) ≥ ε. In particular, by
setting δ1 := min{δ̃, s− σ1} > 0, we see that there exists t ∈ (s− δ1, s] ⊆ (σ1, σ2] such
that

φ(s)− φ(t) ≥ ε. (4.4)

Now, since φ(s) > φ(t), it is clear that

φ(s) = sup{h(ξ) : ξ ∈ Rm, t ≤ ‖ξ‖ ≤ s}. (4.5)

Moreover, by combining (4.5) with the continuity of h on {ξ ∈ Rm : t ≤ ‖ξ‖ ≤ s}, we
see that φ(s) = h(ξ) for some ξ ∈ Rm such that ‖ξ‖ ∈ [t, s]. By noting that t > σ1 ≥ 0
and so ξ 6= 0, we let ζ ∈ Rm be defined by ζ := tξ/‖ξ‖. We then see that ζ ∈ S,
‖ξ − ζ‖ < δ̃ and ‖ζ‖ = t. By invoking (4.2), we then yield that h(ξ) < ε + h(ζ). A
combination of this with (4.4) then gives that

ε+ φ(t) ≤ φ(s) = h(ξ) < ε+ h(ζ) ≤ ε+ φ(t),
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which is a contradiction. Thus, we have shown that there does exist δ1 > 0 such that
(4.3) holds. By operating in a very similar manner, it is possible to prove that there
exists δ2 > 0 such that

φ(t)− φ(s) = |φ(s)− φ(t)| < ε ∀ t ∈ [s, s+ δ2) ∩ [σ1, σ2]. (4.6)

By combining (4.3) and (4.6), we see that φ is continuous at s, and since s was arbitrary,
the proof is complete.

The subsequent two results give conditions for when a function can be bounded above
by a K∞ function (see Section 2.1.1).

Lemma 4.1.2. Let φ : R+ → R+ be non-decreasing, continuous on [0, ε] for some
ε > 0, and be such that φ(0) = 0. Then there exists γ ∈ K∞ such that φ(s) ≤ γ(s) for
all s ≥ 0.

Proof. We begin by defining the function

γ1(s) :=

{
max

{
φ(s), sε

∫ s+1
s φ(σ)dσ

}
, if s ∈ [0, ε],∫ s+1

s φ(σ)dσ, if s > ε.

Note that γ1 is continuous, non-decreasing and γ1(0) = 0. Further to this, γ1(s) ≥ φ(s)
for all s ≥ 0, and so, by defining

γ(s) := s+ γ1(s) ∀ s ≥ 0,

we obtain that γ ∈ K∞ and that φ(s) ≤ γ(s) for all s ≥ 0, thus completing the
proof.

Corollary 4.1.3. Let f : Rm → Rm be such that f(0) = 0. Assume that f is bounded
on bounded sets and that there exists ε > 0 such that f is continuous on {ξ ∈ Rm :
‖ξ‖ ≤ ε}. Then there exists γ ∈ K∞ such that ‖f(ξ)‖ ≤ γ(‖ξ‖) for all ξ ∈ Rm.

Proof. First, define φ : R+ → R+ by

φ(s) := sup{‖f(ξ)‖ : ξ ∈ Rm, ‖ξ‖ ≤ s} ∀ s ≥ 0.

Note that φ(0) = 0, φ is non-decreasing and, by Lemma 4.1.1, φ is continuous on [0, ε].
Hence, by Lemma 4.1.2, there exists γ ∈ K∞ such that φ(s) ≤ γ(s) for all s ≥ 0. In
particular, ‖f(ξ)‖ ≤ φ(‖ξ‖) ≤ γ(‖ξ‖) for all ξ ∈ Rm.

The following example highlights a simple situation where losing the assumption of
boundedness on bounded sets in Corollary 4.1.3 yields that the conclusion does not
hold.

Example 4.1.4. Consider g : R→ R defined by

g(ξ) =


ξ, if ξ < 0,

e
1

1−ξ − e1, if ξ ∈ [0, 1),

ξ, if ξ ≥ 1.

Note that g is continuous in a neighbourhood around 0 but g is unbounded on [0, 1].
Moreover, we claim that there does not exist γ ∈ K∞ such that |g(ξ)| ≤ γ(|ξ|) for all
ξ ∈ R. Indeed, if there was such a γ, then, trivially, γ would be continuous on the
compact interval [0, 1] but would be unbounded, which is a contradiction. ♦
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The following lemma gives a useful property of an infimum of continuous functions.

Lemma 4.1.5. Let h : Rm → R+ and σ1, σ2 ∈ R+ with σ1 ≤ σ2. If h is continuous
on {ξ ∈ Rm : σ1 ≤ ‖ξ‖ ≤ σ2}, then φ : R+ → R+ is continuous on [σ1, σ2], where φ is
defined by

φ(s) := inf{h(ξ) : ξ ∈ Rm, ‖ξ‖ ≥ s} ∀ s ≥ 0.

Proof. To begin with, we note that since h is bounded from below, φ(s) is well-defined
for each s ≥ 0. Moreover, φ is nondecreasing. In order to show continuity on [σ1, σ2],
we fix ε > 0 and s ∈ [σ1, σ2]. As in the proof of Lemma 4.1.1, since h is uniformly
continuous on S := {ξ ∈ Rm : σ1 ≤ ‖ξ‖ ≤ σ2}, there exists δ̃ > 0 such that

|h(ξ)− h(ζ)| < ε ∀ ξ, ζ ∈ S s.t. ‖ξ − ζ‖ ≤ δ̃. (4.7)

Acting similarly to how we did in the proof of Lemma 4.1.1, we claim that there exists
δ1 > 0 such that

φ(s)− φ(t) = |φ(s)− φ(t)| < ε ∀ t ∈ (s− δ1, s] ∩ [σ1, σ2]. (4.8)

We suppose this is not the case, in order to then obtain a contradiction and prove
that the claim is true. Indeed, if the claim is false, then s > σ1 and, for all δ1 > 0,
there exists t ∈ (s− δ1, s] ∩ [σ1, σ2] such that φ(s)− φ(t) ≥ ε. In particular, by setting
δ1 := min{δ̃, s− σ1} > 0, we see that there exists t ∈ (s− δ1, s] ⊆ (σ1, σ2] such that

φ(s)− φ(t) ≥ ε. (4.9)

From this we deduce, in particular, that φ(s) > φ(t) and so

φ(t) = inf{h(ξ) : ξ ∈ Rm, t ≤ ‖ξ‖ ≤ s}. (4.10)

We now combine (4.10) with the continuity of h on {ξ ∈ Rm : t ≤ ‖ξ‖ ≤ s} to obtain
the existence of ζ ∈ Rm such that ‖ζ‖ ∈ [t, s] and φ(t) = h(ζ). We also note that
t > σ1 ≥ 0, which implies that ζ 6= 0. Subsequently, we let ξ ∈ Rm be defined by
ξ := sζ/‖ζ‖. As a consequence of this definition, we see that ξ ∈ S, ‖ξ − ζ‖ < δ̃
and ‖ξ‖ = s. An application of (4.7) then yields that h(ξ) < ε + h(ζ), which, when
combined with (4.9) then gives that

φ(s) ≥ ε+ φ(t) = ε+ h(ζ) > h(ξ) ≥ φ(s),

which is a contradiction. We have therefore shown that there does exist δ1 > 0 such
that (4.8) holds. By a very similar manner, it is not difficult to show that there also
exists δ2 > 0 such that

φ(t)− φ(s) = |φ(s)− φ(t)| < ε ∀ t ∈ [s, s+ δ2) ∩ [σ1, σ2]. (4.11)

Finally, a combination of (4.8) and (4.11) gives that φ is continuous at s. The proof is
thus complete, since s was chosen arbitrarily.

We now give a slightly different version of Lemma 4.1.5. We shall not provide a proof,
since the result can be proven in a similar manner to the previous proof.
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Lemma 4.1.6. Let h : Rm → R+ and λ > 0. If h is continuous, then φ : [0, λ]→ R+

is continuous, where φ is defined by

φ(s) := inf{h(ξ) : ξ ∈ Rm, s ≤ ‖ξ‖ ≤ λ} ∀ s ∈ [0, λ].

The next lemma asserts that the quotient of functions satisfying certain properties can
be bounded below by a K∞ function.

Lemma 4.1.7. Let h, g : Rm → R+. If h and g are continuous, zero at zero, positive
away from zero and

h(ξ)

g(ξ)
→∞ as ‖ξ‖ → ∞,

then there exists α ∈ K∞ such that

h(ξ)

g(ξ)
≥ α(‖ξ‖) ∀ ξ ∈ Rm\{0}.

The following proof takes some inspiration from the proof of [15, Statement 2 of Lemma
4.2].

Proof of Lemma 4.1.7. Let λ > 0. Since g is continuous, let M > 0 be such that
g(ξ) ≤M for all ξ ∈ Rm with ‖ξ‖ ≤ λ. We define the following functions:

β1(s) :=

inf
{
h(ξ)
M : ξ ∈ Rm, s ≤ ‖ξ‖ ≤ λ

}
, if s ∈ [0, λ],

inf
{
h(ξ)
M : ξ ∈ Rm, ‖ξ‖ = λ

}
+ s− λ, if s > λ,

β2(s) :=


s
λ inf

{
h(ξ)
g(ξ) : ξ ∈ Rm, ‖ξ‖ ≥ λ

}
, if s ∈ [0, λ],

inf
{
h(ξ)
g(ξ) : ξ ∈ Rm, ‖ξ‖ ≥ s

}
, if s > λ.

Note that β1(0) = 0 = β2(0), both are nondecreasing and both tend to ∞ as their
arguments do. Moreover, a routine argument yields that β1(s) and β2(s) are positive
for positive s. It is also true that β1 and β2 are both continuous. Indeed, β1 is
continuous by Lemma 4.1.6 and β2 is continuous by Lemma 4.1.5. Hence, by setting

αi(s) := (1− e−s)βi(s) ∀ s ≥ 0, ∀ i ∈ {1, 2},

we see that αi ∈ K∞ for each i = 1, 2. We now define α ∈ K∞ by defining

α(s) := min{α1(s), α2(s)} ∀ s ≥ 0.

To complete the proof, let ξ ∈ Rm\{0} and consider the two cases of when ‖ξ‖ is
greater or less than λ. First, assume that 0 < ‖ξ‖ ≤ λ. We then have that

α(‖ξ‖) ≤ α1(‖ξ‖) ≤ β1(‖ξ‖) = inf

{
h(ζ)

M
: ζ ∈ Rm, ‖ξ‖ ≤ ‖ζ‖ ≤ λ

}
≤ h(ξ)

M
≤ h(ξ)

g(ξ)
.

For the second case, assume that ‖ξ‖ > λ so that

α(‖ξ‖) ≤ α2(‖ξ‖) ≤ β2(‖ξ‖) = inf

{
h(ζ)

g(ζ)
: ζ ∈ Rm, ‖ζ‖ ≥ ‖ξ‖

}
≤ h(ξ)

g(ξ)
,

hence completing the proof.
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4.1.2 Results regarding inner products

We now present lemmas concerning the inner products of functions. We begin by
recalling a simple result regarding the negative definiteness and stability of matrices.
The result is well-known, see, for example, [92, Proposition 3].

Lemma 4.1.8. Let A,P ∈ Rn×n, where P = P T is positive definite. If ATPA− P is
negative definite, then A is Schur.

The subsequent lemma is a trivial result regarding inner products, but we present it to
ensure clarity of subsequent proofs.

Lemma 4.1.9. Let (A,B,C,D) ∈ Rn×n × Rn×m × Rm×n × Rm×m. Then〈(
A B
C D

)(
ξ
ζ

)
,

(
ξ
ζ

)〉
= 〈Aξ, ξ〉+ 〈Bζ, ξ〉+ 〈Cξ, ζ〉+ 〈Dζ, ζ〉 ∀ ξ ∈ Rn, ∀ ζ ∈ Rm.

Proof. In the following, we denote the ith component of a vector ξ by ξi. Fix ξ ∈ Rn
and ζ ∈ Rm, and note that〈(

A B
C D

)(
ξ
ζ

)
,

(
ξ
ζ

)〉
=

〈(
Aξ +Bζ
Cξ +Dζ

)
,

(
ξ
ζ

)〉
=

(
Aξ +Bζ
Cξ +Dζ

)T (
ξ
ζ

)
=
(
ξTAT + ζTBT ξTCT + ζTDT

)(ξ
ζ

)
= ξTAT ξ + ζTBT ξ + ξTCT ζ + ζTDT ζ

= 〈Aξ, ξ〉+ 〈Bζ, ξ〉+ 〈Cξ, ζ〉+ 〈Dζ, ζ〉,

which therefore completes the proof.

The following lemma gives sufficient conditions (which will be of key relevance to the
assumptions of the main theorems of the next section - Section 4.2) for when a function
satisfies f(0) = 0.

Lemma 4.1.10. Let f : Rm → Rm. If f is continuous on a neighbourhood containing
0 and

0 ≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm, (4.12)

then f(0) = 0.

Proof. First, for ξ ∈ R and i ∈ {1, . . . ,m}, we define ξ0
i to be the vector in Rm with

zeros everywhere except for the ith component which is given by ξ. Additionally, we
let f1, f2, . . . , fm : Rm → R be such that

f(ζ) =

 f1(ζ)
...

fm(ζ)

 ∀ ζ ∈ Rm,
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and note that, for each i ∈ {1, . . . ,m}, fi is continuous on the same neighbourhood
around 0 that f is. Moreover, for each i ∈ {1, . . . ,m}, we define gi : R→ R by

gi(ξ) = fi(ξ
0
i ) ∀ ξ ∈ R,

and again note that, for each i ∈ {1, . . . ,m}, gi is continuous on the same neighbour-
hood around 0 that f is. Fix i ∈ {1, . . . ,m} and let ξ ∈ R. Then, using (4.12), we see
that

0 ≤ −〈ξ0
i , f(ξ0

i )〉 = −ξfi(ξ0
i ) = −ξgi(ξ).

By combining this with the continuity of gi around zero, we see that gi(0) = 0, which in
turn implies that fi(0) = 0. Furthermore, since i was arbitrary, we have that f(0) = 0,
and the proof is complete.

The final preliminary result concerning inner products that we present here is given
subsequently.

Lemma 4.1.11. Let f : Rm → Rm be continuous on a neighbourhood containing 0 and
be bounded on bounded sets. Furthermore, assume that there exist α ∈ K∞, c > 0 and
µ > 0 such that

‖ξ‖α(‖ξ‖) ≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm, (4.13)

and
‖f(ξ)‖ ≤ −c〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≥ µ. (4.14)

Then there exist ε > 0 and η ∈ K∞ such that

ε (‖f(ξ)‖+ ‖ξ‖) ≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≥ µ, (4.15)

and

η(‖ξ‖)‖ξ‖2 + η(‖f(ξ)‖)‖f(ξ)‖2 ≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≤ µ. (4.16)

Before proving Lemma 4.1.11, we provide some commentary.

Remark 4.1.12. A particular case of Lemma 4.1.11 is nested inside the proof of [7,
Theorem 1]. In [7, Theorem 1], the above is proven for the case that c = 1 and
continuity is assumed everywhere. In the next section, in Example 4.2.5, we present
a function f which satisfies (4.14) with c = 2 and µ = 1, but which has the property
that there does not exist any µ > 0 such that (4.14) holds for c = 1. ♦

Proof of Lemma 4.1.11. We shall act similarly to that done in the proof of [7, Theorem
1]. To this end, we begin by proving (4.15), and so we let ε > 0 be such that

ε ≤ 1

2
min

{
1

c
, α(µ)

}
.

From (4.14), we see that

ε‖f(ξ)‖ ≤ −1

2
〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≥ µ. (4.17)

Moreover, (4.13) gives that

ε‖ξ‖ ≤ 1

2
α(µ)‖ξ‖ ≤ 1

2
α(‖ξ‖)‖ξ‖ ≤ −1

2
〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≥ µ.
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Thus, by combining this with (4.17), we yield (4.15). As for (4.16), we use applications
of Lemma 4.1.10 and Corollary 4.1.3 to obtain the existence of β ∈ K∞ such that
‖f(ξ)‖ ≤ β(‖ξ‖) for all ξ ∈ Rm. Now, for ξ ∈ Rm and for η ∈ K∞ to be chosen later,
we see that

η(‖ξ‖)‖ξ‖2 + η(β(‖ξ‖))β(‖ξ‖)2 ≤ (η(‖ξ‖) + η(β(‖ξ‖))) (‖ξ‖2 + β(‖ξ‖)2)

≤ 2η(‖ξ‖+ β(‖ξ‖))(‖ξ‖2 + β(‖ξ‖)2). (4.18)

Invoking Lemma 2.1.6 then gives the existence of η such that, for all ξ ∈ Rm with
‖ξ‖ ≤ µ,

2η(‖ξ‖+ β(‖ξ‖))(‖ξ‖2 + β(‖ξ‖)2) ≤ ‖ξ‖α(‖ξ‖) ≤ −〈ξ, f(ξ)〉, (4.19)

where we have used (4.13). By the choice of β, we may combine (4.18) with (4.19) to
yield (4.16), thus completing the proof.

4.1.3 The positive and strict positive real lemmas

Let us now recall the following linear difference equation seen in Chapter 2 (see (2.6)):

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

}
(2.6)

where (A,B,Be, C,D,De) ∈ Rn×n×Rn×m×Rn×q×Rp×n×Rp×m×Rp×q, u ∈ (Rm)Z+

and v ∈ (Rq)Z+ . We recall that we defined

L := Rn×n × Rn×m × Rn×q × Rp×n × Rp×m × Rp×q,

and let Σ := (A,B,Be, C,D,De) ∈ L. Furthermore, we recall that the transfer function
of (2.6) is denoted by G and the behaviour by Blin. For a detailed discussion of (2.6),
we refer the reader to Section 2.1, where items such as the generality of the system and
linear output feedback via ‘loop-shifting’, are presented.

For the rest of this chapter, we make the following standing assumption:

Assumption. m = p.

This is the same as saying that (2.6) is “square”.

Our attention now concerns the positive and strict positive real lemmas. The positive
real lemma (in discrete-time) is given by [54, Lemma 3] for controllable and observable
systems. For given Σ ∈ L, it asserts sufficient conditions for when there exist a positive
(semi-)definite matrix P ∈ Rn×n and matrices L and W satisfying

ATPA− P = −LTL,
ATPB = CT − LTW,
BTPB = D +DT −W TW.

 (4.20)

Here, we formulate a second result that guarantees the existence of P , L and W satis-
fying (4.20), but does not assume that the system is controllable and observable. To do
so, we first collect some relevant definitions and results. To this end, let us first recall
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what we mean by a positive real function from Definition 2.3.23. Indeed, a Cm×m-
valued rational function H is positive real if H(z) + H(z)∗ is positive semi-definite for
every z ∈ E which is not a pole of H.

We now give two results that will be key to our development. The first associates pos-
itive realness of a transfer function in terms of the boundedness of a different function
related by a Cayley transform (see, for example, [85]). The lemma is well-known in the
continuous-time setting (see, for example, [4, 49]). However, it is difficult to find an
explicit result for the discrete-time case. Fortunately, the ideas used in the continuous-
time literature can be easily applied to here also. For completeness, we shall provide a
brief proof.

Lemma 4.1.13. Let Σ ∈ L. If G is positive real, then I + G(z) is invertible for every
z ∈ E, I + D is invertible and G̃ := (I −G)(I + G)−1 is such that ‖G̃‖H∞ ≤ 1 and
G̃(z) = C̃(zI − Ã)−1B̃ + D̃ for all z ∈ E, where

Ã := A−B(I +D)−1C, B̃ :=
√

2B(I +D)−1,

C̃ := −
√

2(I +D)−1C, D̃ := (I −D)(I +D)−1.

}
(4.21)

Proof. Assume that G is positive real. As a consequence of this, we obtain that D +
DT ≥ 0, and so an application of [46, Corollary 2.3] gives that I +D is invertible and
I + G(z) is invertible for every z ∈ E. Not only this, [46, Corollary 2.3] also yields
that ‖(I − D)(I + D)−1‖ ≤ 1 and ‖G̃(z)‖ ≤ 1 for all z ∈ E. We hence deduce that
‖G̃‖H∞ ≤ 1. We shall now show that G̃(z) = C̃(zI − Ã)−1B̃+ D̃ for all z ∈ E. To this
end, let H := I −G and L := I/2 ∈ Rm×m. Note that I − (I −D)L = (I + D)/2 is
invertible, that is, L ∈ AC(I −D) (see Definition 2.1.14). Moreover,

G̃ = (I −G)(I + G)−1

= H(2I −H)−1

= LH(I − LH)−1

= LHL,

where recall HL = H(I − LH) - see Definition 2.1.19. Furthermore, ‖HL‖H∞m×m =

2‖LHL‖H∞ = 2‖G̃‖H∞ and so HL ∈ H∞m×m. Therefore, with these facts and Definition
2.1.16 in mind, we see that, for all z ∈ E,

G̃(z) = LHL(z)

= L(I − (I −D)L)−1(I −D)

− L(I − (I −D)L)−1C(zI −A+BL(I − (I −D)L)−1C)−1B(I − (I −D)L)−1

= (I +D)−1(I −D)− 2(I +D)−1C(zI −A+B(I +D)−1C)−1B(I +D)−1

= D̃ + C̃(zI − Ã)−1B̃,

which completes the proof.

The second preliminary result shows that certain key properties are preserved under
the Cayley transform seen in the previous lemma.

Lemma 4.1.14. Let Σ ∈ L. Under the assumption that G is positive real, the following
statements hold, where G̃ := (I −G)(I + G)−1, and Ã, B̃, C̃, D̃ are as in (4.21).
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(i) (A,B) is stabilisable if, and only if, (Ã, B̃) is stabilisable.

(ii) (A,C) is detectable if, and only if, (Ã, C̃) is detectable.

(iii) If there exists η ∈ ∂D which is not a pole of G, then G(η) + G(η)∗ > 0 if, and
only if, I + G(η) is invertible and ‖G̃(η)‖ < 1.

Proof. For statement (i), assume that (A,B) is stabilisable and let F ∈ Rm×n be such
that σ(A+BF ) ⊆ D. By defining F̃ := 1√

2
C + 1√

2
(I +D)F ∈ Rm×n, we have

Ã+ B̃F̃ = A−B(I +D)−1C +
√

2B(I +D)−1

(
1√
2
C +

1√
2

(I +D)F

)
= A+BF,

which thus shows the stabilisability of (Ã, B̃). For the reverse implication, if σ(Ã +
B̃F̃ ) ⊆ D for some F̃ ∈ Rm×n, then setting F := (I + D)−1(

√
2F̃ − C) yields that

(A,B) is stabilisable. Statement (ii) is proven similarly and thus the proof is omitted.
As for statement (iii), we note that if G(η) + G(η)∗ > 0, then it is easy to show that
there exists ε > 0 such that 〈(G(η) + G(η)∗)ξ, ξ〉 ≥ ε‖ξ‖2 for all ξ ∈ Rm. Hence, the
statement is immediately obtained from [46, Corollary 2.3].

The subsequent lemma is the positive real lemma which we alluded to earlier. The
result is in two parts: the first is an immediate consequence of [54, Lemma 3] (see also
[51, Lemma 4.1]); and the second is a new result which contains sufficient conditions
for the existence of P , L and W satisfying (4.20), which do not necessarily require
controllability and observability of the overall system.

Lemma 4.1.15. Let Σ ∈ L and assume that G is positive real. The following state-
ments hold.

(i) If Σ is controllable and observable then there exist a positive definite P = P T ∈
Rn×n and matrices L and W such that (4.20) holds.

(ii) If Σ is stabilisable and detectable and there exists η ∈ ∂D, not a pole of G, such
that G(η) + G(η)∗ > 0, then there exist a positive semi-definite P = P T ∈ Rn×n
and matrices L and W such that W is invertible and (4.20) holds.

Before proving Lemma 4.1.15, we first give some commentary.

Remark 4.1.16. (i) In statement (ii) of Lemma 4.1.15, P is positive semi-definite and
not necessarily positive definite. Fortunately, this is sufficient for our purposes in
the later sections. However, statement (ii) does guarantee that W is invertible.

(ii) Example 4.1.17, situated after the following proof, shows that only assuming
stabilisability and detectability of Σ is insufficient in proving that there exist a
positive semi-definite P = P T ∈ Rn×n and matrices L and W such that (4.20)
holds. ♦

Proof of Lemma 4.1.15. As repeatedly mentioned, if Σ is controllable and observable,
then the result follows from [54, Lemma 3] (or from [51, Lemma 4.1]) and P is positive
definite. Thus, we assume that Σ is stabilisable and detectable and that there exists
η ∈ ∂D, not a pole of G, such that G(η)+G(η)∗ > 0. Let G̃ := (I−G)(I+G)−1, and
let Ã, B̃, C̃, D̃ be given as in (4.21). Lemma 4.1.14 gives that (Ã, B̃) is stabilisable,
(Ã, C̃) is detectable, I + G(η) is invertible and ‖G̃(η)‖ < 1. Since Lemma 4.1.13 gives
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that ‖G̃‖H∞ ≤ 1, an application of Lemma 2.1.25 therefore yields the existence of a
positive semi-definite P ∈ Rn×n and matrices L̃ and W̃ such that W̃ is positive definite
and

ÃTPÃ− P + C̃T C̃ = −L̃T L̃,
ÃTPB̃ + C̃T D̃ = −L̃T W̃ ,

B̃TPB̃ + D̃T D̃ = I − W̃ T W̃ .

 (4.22)

With this in mind, we set W := 1√
2
W̃ (I +D) and shall show that

BTPB = D +DT −W TW. (4.23)

To this end, consider

B̃TPB̃ + D̃T D̃ = 2(I +DT )−1BTPB(I +D)−1

+ (I +DT )−1(I −DT )(I −D)(I +D)−1

= (I +DT )−1(2BTPB + I −D −DT +DTD)(I +D)−1.

By multiplying the above through by (I + DT ) and (I + D) on the left and right
respectively, and by recalling (4.22), we obtain that

I +D +DT +DTD − (I +DT )W̃ T W̃ (I +D) = 2BTPB + I − (D +DT ) +DTD,

which easily simplifies to (4.23). Our attention now turns to proving that

ATPB = CT − LTW, (4.24)

where L := L̃+W (I +D)−1C. Indeed, to show this, consider

ÃTPB̃ + C̃T D̃ = (A−B(I +D)−1C)TP (
√

2B(I +D)−1)

−
√

2((I +D)−1C)T (I −D)(I +D)−1

=
√

2ATPB(I +D)−1 −
√

2CT (I +DT )−1BTPB(I +D)−1

−
√

2CT (I +DT )−1(I −D)(I +D)−1.

We now use (4.22), and multiply by 1/
√

2 and (I +D) from the right, to obtain that

ATPB − CT (I +DT )−1BTPB − CT (I +DT )−1(I −D) = −L̃TW. (4.25)

We pause here and note that, from (4.23),

(I +DT )−1BTPB = (I +DT )−1(D +DT −W TW )

= I − (I +DT )−1(I −D)− (I +DT )−1W TW.

Hence, after writing

ATPB − CT (I+DT )−1BTPB − CT (I +DT )−1(I −D)

= ATPB − CT ((I +DT )−1BTPB + (I +DT )−1(I −D)),

we combine the previous identity with (4.25) to obtain

ATPB − CT = −L̃TW − CT (I +DT )−1W TW,
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that is, (4.24). To complete the proof, all that is left to show is that

ATPA− P = −LTL. (4.26)

To this end, consider

ÃTPÃ− P = (A−B(I +D)−1C)TP (A−B(I +D)−1C)− P,

which may be rewritten as

ÃTPÃ− P =ATPA− P −ATPB(I +D)−1C − CT (I +DT )−1BTPA

+ CT (I +DT )−1BTPB(I +D)−1C. (4.27)

Moreover, set M := ATPB(I +D)−1C and note that, using (4.25),

M =
(
CT (I +DT )−1BTPB + CT (I +DT )−1(I −D)− L̃TW

)
(I +D)−1C,

which may be expressed as

M =
(
CT (I +DT )−1BTPB + CT (I +DT )−1

)
(I +D)−1C

−
(
CT (I +DT )−1D + LTW − CT (I +DT )−1W TW

)
(I +D)−1C. (4.28)

Furthermore, we have

−C̃T C̃ − L̃T L̃ = −2CT (I +DT )−1(I +D)−1C

−
(
L−W (I +D)−1C

)T (
L−W (I +D)−1C

)
. (4.29)

Therefore, by combining (4.27) with (4.28), (4.29) and the identity ÃTPÃ−P+C̃T C̃ =
−L̃T L̃, a series of algebraic simplifications leads to

ATPA− P =− LTL+ CT (I +DT )−1BTPB(I +D)−1C

− CT (I +DT )−1(D +DT )(I +D)−1C

+ CT (I +DT )−1W TW (I +D)−1C.

An application of (4.23) then gives (4.26). Therefore, (4.23), (4.24) and (4.26) combine
to yield (4.20). Finally, Lemma 2.1.25 gives that W̃ is positive definite, and hence
invertible. Thus, since I + D is also invertible from Lemma 4.1.13, we see that W is
invertible and the proof is complete.

We now give the following example, which presents a system where the transfer function
is a scalar positive real function, the underlying system is stabilisable and detectable,
G(z) + G(z)∗ = 0 for all z ∈ ∂D which aren’t poles, and there does not exist a positive
semi-definite P = P T ∈ Rn×n and matrices L and W such that (4.20) holds. This
hence shows that statement (ii) of Lemma 4.1.15 is justified in its hypotheses.

Example 4.1.17. Let Σ ∈ L, where n = 2, m = 1,

A :=

(
−1 −1
0 1

2

)
, B :=

2√
2

(
1
0

)
, C := − 2√

2

(
1 1

)
, D := 1,
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and Be and De are arbitrary. It is easily checked that (A,B) is stabilisable, (A,C)
is detectable, the transfer function is positive real and that G(z) + G(z)∗ = 0 for all
z ∈ ∂D\{−1}. Furthermore, we suppose for contradiction that there exist a positive
semi-definite P = P T ∈ R2×2 and matrices L and W such that (4.20) holds. We write

P =

(
p1 p2

p2 p4

)
, L =

l1,1 l1,2
...

...
lq,1 lq,2

 and W =

w1
...
wq

 ,

where q ∈ N and pi, lj,k, wj ∈ R for all i ∈ {1, 2, 4}, j ∈ {1, . . . , q} and k ∈ {1, 2}. By
using (4.20), we obtain the following three identities. The first is(

0 p1 − 3
2p2

p1 − 3
2p2 p1 − p2 − 3

4p4

)
= ATPA− P = −LTL (4.30)

the second is given by

2√
2

(
1− p1

1− p1 + 1
2p2

)
= ATPB − CT = −LTW (4.31)

and finally

2(p1 − 1) = BTPB − 2D = −W TW. (4.32)

From (4.30), we obtain that l1,1 = l2,1 = · · · = lq,1 = 0. Subsequently, (4.31) yields that
p1 = 1 and this in turn gives, from (4.30) again, that p2 = 2/3. However, substituting
p1 = 1 into (4.32) yields that w1 = · · · = wq = 0, and then by combining this with
(4.31) we see that p2 = 0, hence contradicting that p2 also equals 2/3. ♦

We now investigate a so-called strict positive real lemma. Before discussing this further,
we first define what we mean by strict positive realness.

Definition 4.1.18. Let Σ ∈ L. We say that G is strictly positive real if there exists
ε ∈ (0, 1) such that z 7→ G(εz) is positive real.

Remark 4.1.19. (i) Strict positive realness can be thought of as positive realness on
a ‘larger domain’. A trivial example of a strict positive real transfer function is
G(z) = (z − ε)/(z + ε), where ε ∈ (0, 1).

(ii) Quite often in the literature (for example in [51]), G is defined to be strictly
positive real if the poles of G are in D and G(eiθ)+G(eiθ)∗ > 0 for all θ ∈ [0, 2π].
The definition we use, as given in Definition 4.1.18, is actually weaker. Indeed,
as discussed in [119], transfer functions of the form

z − ε
z + ε

(
1 1
1 1

)
,

where ε ∈ (0, 1), are strictly positive real in the sense of Definition 4.1.18, but
are singular at every z. Additionally, [119, Theorem 2.2] proves that the two
aforementioned notions of strict positive realness are equivalent, provided that
G(z) + G(z−1)T has full rank almost everywhere. ♦
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The following is a strict positive real lemma, and is a consequence of [51, Lemma 4.2].
However, we shall still provide a brief proof of the result, since we need to verify that
the assumptions used below imply that the hypotheses of [51, Lemma 4.2] hold. This is
because, as mentioned in Remark 4.1.19, there are various, not equivalent, definitions
of strict positive real functions.

Lemma 4.1.20. Let Σ ∈ L. If Σ is controllable and observable, G is strictly positive
real and D+DT > 0, then there exist matrices P,R ∈ Rn×n, L ∈ Rm×n and W ∈ Rm×m
such that P,R and W are all positive definite, and

ATPA− P = −LTL−R,
ATPB = CT − LTW,
BTPB = D +DT −W TW.

 (4.33)

Remark 4.1.21. We note that in the case that m = 1, as long as G is positive real
and not the zero function, then [24, Lemma 6.1] yields that D > 0. ♦

Proof of Lemma 4.1.20. Since G is strictly positive real, we have, in particular, that
G is holomorphic on {z ∈ C : |z| ≥ 1}. From this, we obtain that G ∈ H∞m×m. By
combining this with the controllability and observability of Σ, as a consequence, we see
that A is Schur (see, for example, [72, Theorem 2]). In addition to this, by combining
the strict positive realness of G with the assumption that D +DT > 0, we claim that

G(z) + G(z)∗ > 0 ∀ z ∈ Eε, (4.34)

where ε ∈ (0, 1) is such that the function z 7→ G(εz) is positive real. We delay the
verification of this claim until the proof of Lemma 5.2.17 in Chapter 5. We do this,
because there we shall prove it in a more general setting.

Moving on, with the stability of A in mind, (4.34) allows us to apply [51, Lemma 4.2]
to yield the existence of positive definite matrices P,R ∈ Rn×n such that

D +DT −BTPB > 0

and

P = ATPA+ (ATPB − CT )(D +DT −BTPB)−1(BTPA− C) +R.

We now invoke [9, Theorem 7.35, p.226] to yield a positive definite matrix W ∈ Rm×m
such that W TW = D +DT −BTPB > 0. By setting L := −(W T )−1(BTPA−C), we
complete the proof.

4.2 Stability properties

This section contains our main stability results of this chapter. We split the section
into three. In the first part, we recall relevant theory and give a key preliminary result;
in the second, we give three stability theorems; and in the third, we reformulate these
in terms of positive and strict positive real assumptions, by utilising the outcomes of
the previous section.
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4.2.1 System and definitions

From hereon in this chapter, we consider the feedback interconnection of (2.6) with
u = f(y + w), where f : Rm → Rm and w ∈ (Rm)Z+ is an output disturbance. This
system (in the not necessarily square case) is given by (2.17) situated in Chapter 2.
For completeness, let us explicitly recall it here also:

x+ = Ax+Bu+Bev,

y = Cx+Du+Dev,

u = f(y + w),

 (2.17)

where Σ ∈ L, v ∈ (Rq)Z+ , w ∈ (Rm)Z+ and f : Rm → Rm. We hereby recall all notation
and all stability notions associated with this system, which were defined and discussed
in Chapter 2. For example, for Σ ∈ L and f : Rm → Rm, we denote the behaviour of
(2.17) by B and say that (2.17) is input-to-state stable (ISS), if there exist ψ ∈ KL and
φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ N, ∀ (v, w, x, y) ∈ B. (4.35)

Since a thorough presentation of results regarding (2.17) was given in Section 2.1, we
shall not repeat ourselves, and instead refer the reader there for more details. What we
shall mention here, however, is the generality of (2.17) when compared to the literature.
Frequently, Be and De are assumed to equal B and D, respectively, and w is assumed
to be the zero function. Additionally, more often than not, the feedthrough matrix
D is taken to be the zero matrix. Interestingly, Example 2.2.7 presented a version of
(2.17) which is not ISS, but if we only consider the situation wherein w = 0, then, in
that case, there exist ψ ∈ KL and φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t−1

‖v(s)‖
)
∀ t ∈ N, ∀ (v, 0, x, y) ∈ B. (4.36)

This justifies our investigation of ISS for the general system (2.17).

We conclude this initial subsection with the following key result.

Lemma 4.2.1. Let Σ ∈ L and P ∈ Rn×n be such that P = P T . Then U : Rn → R,
defined by U(ξ) := 〈ξ, Pξ〉 for all ξ ∈ Rn, satisfies, for all t ∈ Z+ and all (u, v, x, y) ∈
Blin,

U(x(t+ 1))− U(x(t)) =

〈(
ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)(
x(t)
u(t)

)
,

(
x(t)
u(t)

)〉
+ 2〈Cx(t) +Du(t), u(t)〉+ 2〈x(t), ATPBev(t)〉
+ 2〈Bu(t), PBev(t)〉+ 〈Bev(t), PBev(t)〉 (4.37)

Proof. Let (u, v, x, y) ∈ Blin and t ∈ Z+. We then have

U(x(t+ 1))− U(x(t)) = 〈Ax(t) +Bu(t) +Bev(t), P (Ax(t) +Bu(t) +Bev(t))〉
− 〈x(t), Px(t)〉,
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which in turn implies that

U(x(t+ 1))− U(x(t)) = 〈x(t), (ATPA− P )x(t)〉+ 2〈x(t), ATPBu(t)〉
+ 2〈x(t), ATPBev(t)〉+ 〈u(t), BTPBu(t)〉
+ 2〈Bu(t), PBev(t)〉+ 〈Bev(t), PBev(t)〉.

Furthermore, an application of Lemma 4.1.9 yields〈(
ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)(
x(t)
u(t)

)
,

(
x(t)
u(t)

)〉
= 〈(ATPA− P )x(t), x(t)〉+ 〈(ATPB − CT )u(t), x(t)〉

+ 〈(BTPA− C)x(t), u(t)〉+ 〈(BTPB − (D +DT ))u(t), u(t)〉.

By combining the previous two identities, it is easy to see that (4.37) holds. Since
(u, v, x, y) and t are arbitrary, the proof is thus complete.

4.2.2 Input-to-state stability

We now present three stability theorems. The first gives sufficient conditions for when
(2.17), with Be and De replaced by B and D respectively, satisfies (4.36) for some
ψ ∈ KL and φ ∈ K. This result may be percieved to be a discrete-time analogue
of [7, Theorem 1]. The second and third results give hypotheses that guarantee that
(2.17) (without the previous restrictions on Be and De) is ISS by using slightly stronger
assumptions. Interestingly, this differs from the work of Section 2.2.2, where it is shown
that the same assumptions used in [108, Theorem 13] also yield ISS for the general
system (2.17). We shall discuss the aforementioned stronger hypotheses after giving
the first result, which we do so now.

Theorem 4.2.2. Let Σ ∈ L be such that Be = B and De = D, and let f : Rm → Rm.
Assume that Σ is detectable and that there exists a positive semi-definite P = P T ∈
Rn×n such that (

ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)
≤ 0. (4.38)

Furthermore, assume that f is continuous on a neighbourhood containing 0, f is bounded
on bounded sets and that there exist α ∈ K∞, c > 0 and µ > 0 such that

‖ξ‖α(‖ξ‖) ≤ −〈ξ, f(ξ)〉 ∀ ξ ∈ Rm, (4.39)

and

‖f(ξ)‖ ≤ −c〈ξ, f(ξ)〉 ∀ ξ ∈ Rm s.t. ‖ξ‖ ≥ µ. (4.40)

Then there exist ψ ∈ KL and φ ∈ K such that

‖x(t)‖ ≤ ψ(‖x(0)‖, t) + φ

(
max
s∈t−1

‖v(s)‖
)
∀ t ∈ N, ∀ (v, 0, x, y) ∈ B. (4.41)

Before proving Theorem 4.2.2, we provide some commentary in the form of a remark,
and two examples.
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Remark 4.2.3. (i) Theorem 4.2.2 is a discrete-time generalisation of [7, Theorem
1], but with weaker assumptions. Indeed, the first improvement concerns the
linear matrix inequality (LMI) given by (4.38). In [7, Theorem 1], it is assumed
that ATP + PA ≤ 0, PB = CT and D = 0. The discrete-time analogue to these
assumptions, would be that ATPA−P ≤ 0, ATPB = CT and BTPB = (D+DT ).
We claim that the LMI is a weaker assumption than this and refer the reader to
Example 4.2.4, situated after the current remark, which gives a situation where
the LMI (4.38) holds for some P ≥ 0, but that ATPB 6= CT for all P ≥ 0.
The second improvement in the hypotheses, is that [7, Theorem 1] assumes the
existence of µ > 0 such that (4.40) holds for c = 1. Example 4.2.5, once again
located after the present remark, gives a function f that satisfies (4.40) with
µ = 1 and c = 2, but which does not satisfy (4.40) for any µ > 0 in the situation
that c = 1.

(ii) The assumptions imposed on the nonlinearity f in Theorem 4.2.2 do not restrict
the function to be linearly bounded, as in Chapter 2 (see also [107] and [108]).
Therefore, we see that f may be ‘superlinear’, and indeed should be thought of as
such, since this is the most interesting case. Moreover, Lemma 4.1.10 guarantees
that, under the assumptions of Theorem 4.2.2, f(0) = 0. An archetypal example
of a function satisfying the hypotheses of Theorem 4.2.2 is f : R → R, f(ξ) :=
−ξ3. For further (multi-dimensional) examples, a collection is given after the
proof of Theorem 4.2.2.

(iii) In the single-input single-output case where m = 1, so long as (4.39) holds,
then (4.40) is redundant, since the inequality trivially holds for µ = 1 = c. In
the multi-input multi-output setting where m > 1, this is not true. Indeed, a
counterexample is given in [7, Remark 2].

(iv) We highlight that in the forthcoming proof of Theorem 4.2.2, we use repeatedly
that f can be bounded above by a K∞ function. If the assumption of boundedness
of f on bounded sets is dropped, then this cannot be guaranteed. Indeed, consider
g given in Example 4.1.4 and set f = −g. It is clear that α ∈ K∞ defined by
α(s) := s for all s ≥ 0, is such that (4.39) holds, however, there does not exist
such a K∞ function bounding f from above. ♦

Example 4.2.4. Let Σ ∈ L where n = 2, m = 1,

A :=

(
1
2 0
0 0

)
, B :=

(
1
0

)
, C :=

(
9 1

)
, D :=

13

2
,

and Be and De are arbitrary. By defining

P :=

(
12 3
3 1

)
,

it is easily checked that P is positive definite and (4.38) holds. However, we claim that
there does not exist a semi-definite P = P T ∈ Rn×n such that ATPB = CT . Indeed,
if so, then writing

P :=

(
p1 p2

p2 p4

)
,
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where p1, p2, p4 ∈ R, we see that

0 = ATPB − CT =

(
1
2p1 − 9
−1

)
,

hence yielding a contradiction. ♦

Example 4.2.5. Let f : R2 → R2 be defined by

f(ξ) :=


−‖ξ‖

 1
2‖ξ‖ − sin

(
cos−1

(
1

2‖ξ‖

))
sin
(

cos−1
(

1
2‖ξ‖

))
1

2‖ξ‖

 ξ, if ‖ξ‖ ≥ 1,

−‖ξ‖

(
1
2 − sin

(
cos−1

(
1
2

))
sin
(
cos−1

(
1
2

))
1
2

)
ξ, if ‖ξ‖ < 1.

We comment that f can be thought of as a linear extension of a rotation matrix which,
for each ξ ∈ R2 with ‖ξ‖ ≥ 1, rotates ξ at the variable angle of cos−1(1/2‖ξ‖). In the

sequel, for ξ ∈ R2, we shall write ξ =
(
ξ1 ξ2

)T
where ξ1, ξ2 ∈ R. Consider that, for all

ξ ∈ R2 with ‖ξ‖ ≥ 1,

−〈ξ, f(ξ)〉 = ‖ξ‖
(

1

2‖ξ‖
ξ2

1 − sin

(
cos−1

(
1

2‖ξ‖

))
ξ1ξ2

+ sin

(
cos−1

(
1

2‖ξ‖

))
ξ1ξ2 +

1

2‖ξ‖
ξ2

2

)
=

1

2
‖ξ‖2. (4.42)

In a similar fashion, it can also be shown that, for all ξ ∈ R2 with ‖ξ‖ < 1,

−〈ξ, f(ξ)〉 =
1

2
‖ξ‖3.

Hence, by defining α ∈ K∞ by α(s) := min{s, s2}/2 for all s ≥ 0, we see that (4.39)
holds. In addition to this, note that, for all ξ ∈ R2 with ‖ξ‖ ≥ 1,

‖f(ξ)‖2 = ‖ξ‖2
(

1

4‖ξ‖2
ξ2

1 −
1

‖ξ‖
sin

(
cos−1

(
1

2‖ξ‖

))
ξ1ξ2 + sin2

(
cos−1

(
1

2‖ξ‖

))
ξ2

2

1

4‖ξ‖2
ξ2

2 +
1

‖ξ‖
sin

(
cos−1

(
1

2‖ξ‖

))
ξ1ξ2 + sin2

(
cos−1

(
1

2‖ξ‖

))
ξ2

1

)
= ‖ξ‖2

(
1

4
+ sin2

(
cos−1

(
1

2‖ξ‖

))
‖ξ‖2

)
.

Since sin2(θ) = 1− cos2(θ) for all θ ∈ R, this implies that, for all ξ ∈ R2 with ‖ξ‖ ≥ 1,

‖f(ξ)‖2 = ‖ξ‖2
(

1

4
+

(
1− 1

4‖ξ‖2

)
‖ξ‖2

)
= ‖ξ‖4.

By combining this with (4.42), we hence deduce that

‖f(ξ)‖ = −2〈ξ, f(ξ)〉 ∀ ξ ∈ R2 s.t. ‖ξ‖ ≥ 1.

Therefore, (4.40) holds with c = 2 and µ = 1. Furthermore, we also deduce that
(4.40) does not hold for any µ > 0 in the situation that c = 1, hence highlighting the
differences of the assumptions of Theorem 4.2.2 and [7, Theorem 1]. ♦
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We shall now prove Theorem 4.2.2, but first we make note that the idea for the method
of the proof is obtained from the proof of [7, Theorem 1]. Moreover, some of the
arguments we use take inspiration from some ideas seen in [108, Theorem 13].

Proof of Theorem 4.2.2. We seek U, V : Rn → R+ and γ1, γ2 ∈ K∞ such that

(U + V )(x(t+ 1))− (U + V )(x(t)) ≤ −γ1(‖x(t)‖) + γ2(‖v(t)‖)
∀ t ∈ Z+, ∀ (v, 0, x, y) ∈ B, (4.43)

and constants λ1, λ2 > 0 such that

λ1‖ξ‖2 ≤ (U + V )(ξ) ≤ λ2‖ξ‖2 ∀ ξ ∈ Rn. (4.44)

By following an identical argument to the proof of Proposition 2.2.9 situated in Ap-
pendix A, we see that the previous is sufficient for the existence of ψ ∈ KL and φ ∈ K
such that (4.41) holds.

We begin by defining U : Rn → R+ by U(ξ) := 〈ξ, Pξ〉 for all ξ ∈ Rn. Since Be = B
and De = D, we see that (f(y) + v, 0, x, y) ∈ Blin for all (v, 0, x, y) ∈ B. Therefore, we
invoke Lemma 4.2.1 to yield, for all (v, 0, x, y) ∈ B and all t ∈ Z+,

U(x(t+ 1))− U(x(t))

=

〈(
ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)(
x(t)

f(y(t)) + v(t)

)
,

(
x(t)

f(y(t)) + v(t)

)〉
+ 2〈Cx(t) +Df(y(t)) +Dv(t), f(y(t)) + v(t)〉.

A use of (4.38) subsequently gives

U(x(t+ 1))− U(x(t)) ≤ 2〈y(t), f(y(t))〉+ 2〈y(t), v(t)〉
∀ t ∈ Z+, ∀ (v, 0, x, y) ∈ B. (4.45)

We now claim that

2〈y(t), v(t)〉 ≤ −〈y(t), f(y(t))〉+ 2α−1(2‖v(t)‖)‖v(t)‖
∀ t ∈ Z+, ∀ (v, 0, x, y) ∈ B. (4.46)

Indeed to see this, fix t ∈ Z+ and (v, 0, x, y) ∈ B, and consider the following two cases.
If ‖v(t)‖ ≥ 1

2α(‖y(t)‖), then

2〈y(t), v(t)〉 ≤ 2‖y(t)‖‖v(t)‖ ≤ 2α−1(2‖v(t)‖)‖v(t)‖, (4.47)

and if ‖v(t)‖ ≤ 1
2α(‖y(t)‖), then an application of (4.39) provides

2〈y(t), v(t)〉 ≤ 2‖y(t)‖‖v(t)‖ ≤ ‖y(t)‖α(‖y(t)‖) ≤ −〈y(t), f(y(t))〉. (4.48)

Therefore, by combining (4.47) with (4.48), we see that the (4.46) holds. Continuing
with (4.45), we thus have that

U(x(t+ 1))− U(x(t)) ≤ 〈y(t), f(y(t))〉+ 2α−1(2‖v(t)‖)‖v(t)‖
∀ t ∈ Z+, ∀ (v, 0, x, y) ∈ B. (4.49)
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We now construct a function V : Rn → R+ such that U + V satisfies the properties
discussed at the beginning of the proof. To this end, note that since Σ is detectable,
we may apply Lemma 2.1.29 to yield the existence of a positive definite matrix P̃ =
P̃ T ∈ Rn×n and δ1 > 0 such that V1 : Rn → R+, defined by V1(ξ) := 〈ξ, P̃ ξ〉 for all
ξ ∈ Rn, has the property that (2.14) holds for all (u, v, x, y) ∈ Blin and all t ∈ Z+, with
V and δ replaced by V1 and δ1, respectively. In particular, for all (v, 0, x, y) ∈ B and
all t ∈ Z+, again since (f(y) + v, 0, x, y) ∈ Blin, (2.14) gives that

V1(x(t+ 1))− V1(x(t)) ≤ −δ1‖x(t)‖2 + ‖f(y(t)) + v(t)‖2 + ‖y(t)‖2. (4.50)

By noting that, for all (v, 0, x, y) ∈ B and all t ∈ Z+,

‖f(y(t)) + v(t)‖2 ≤ ‖f(y(t))‖2 + ‖v(t)‖2 + 2‖f(y(t))‖‖v(t)‖
≤ 4‖f(y(t))‖2 + 4‖v(t)‖2,

we set δ := δ1/4 and define V2 : Rn → R+ by V2(ξ) = V1(ξ)/4 for all ξ ∈ Rn. We then
have, from (4.50), that

V2(x(t+ 1))− V2(x(t)) ≤ −δ‖x(t)‖2 + ‖f(y(t))‖2 + ‖v(t)‖2 + ‖y(t)‖2

∀ t ∈ Z+, ∀ (v, 0, x,y) ∈ B. (4.51)

We pause here for a moment, and invoke Lemma 4.1.11 to obtain the existence of ε > 0
and η ∈ K∞ such that (4.15) and (4.16) hold. We also define ρ : R+ → R+ by

ρ(s) := min

{
ε

√
s

4
, η

(√
s

4

)
s

4

}
∀ s ≥ 0,

and note that Lemma 2.1.2 gives that ρ ∈ K∞. Let a1 ≥ δ be such that V2(ξ) ≤ a1‖ξ‖2
for all ξ ∈ Rn, and, furthermore, choose a2 > 1 such that

a3 := a2

(
1− δ

2a1

)
< 1.

Statement (ii) of Lemma 2.1.7 yields the existence of a4 > 1 such that

ρ(a3s1 + s2) ≤ ρ(s1) + ρ(a4s2) ∀ s1, s2 ≥ 0. (4.52)

Moreover, Lemma 2.1.4 combined with Lemma 2.1.5 yields that

lim
s→∞

(ρ(a2s)− ρ(s)) =∞.

By utilising this along with Lemma 2.1.8, we yield the existence of γ̃1 ∈ K∞ such that

ρ(s1 − s2) ≤ ρ(a2s1)− γ̃1(s2) ∀ s1 ≥ s2 ≥ 0. (4.53)

Continuing with (4.51), let a := 1/(a2a4) and define V (ξ) := ρ(aV2(ξ)) for all ξ ∈ Rn,
so that, for all (v, 0, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤ ρ(a(V2(x(t))− δ‖x(t)‖2 + ‖f(y(t))‖2 + ‖v(t)‖2 + ‖y(t)‖2)).
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Combining this with (4.53) then gives that, for all (v, 0, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤ ρ
(
aa2

(
V2(x(t))− δ

2
‖x(t)‖2 + ‖f(y(t))‖2 + ‖v(t)‖2 + ‖y(t)‖2

))
− γ̃1

(
a
δ

2
‖x(t)‖2

)
. (4.54)

Furthermore, since V2(ξ) ≤ a1‖ξ‖2 for all ξ ∈ Rn, we see that

a2

(
V2(ξ)− δ

2
‖ξ‖2

)
≤ a2

(
1− δ

2a1

)
V2(ξ) = a3V2(ξ) ∀ ξ ∈ Rn,

and thus, by substituting this into (4.54), we obtain that, for all (v, 0, x, y) ∈ B and all
t ∈ Z+,

V (x(t+1)) ≤ ρ
(
aa3V2(x(t)) + aa2

(
‖f(y(t))‖2 + ‖v(t)‖2 + ‖y(t)‖2

))
−γ̃1

(
a
δ

2
‖x(t)‖2

)
.

We now invoke (4.52) and recall that 1 = aa2a4 so that the above inequality implies,
for all (v, 0, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤V (x(t)) + ρ
(
‖f(y(t))‖2 + ‖v(t)‖2 + ‖y(t)‖2

)
− γ̃1

(
a
δ

2
‖x(t)‖2

)
. (4.55)

For (v, 0, x, y) ∈ B and t ∈ Z+, if ‖y(t)‖ ≥ µ, then (4.15) gives that

ρ(4‖y(t)‖2) + ρ(4‖f(y(t))‖2) ≤ ε(‖y(t)‖+ ‖f(y(t))‖) ≤ −〈y(t), f(y(t))〉,

and if ‖y(t)‖ ≤ µ, then (4.16) yields

ρ(4‖y(t)‖2) + ρ(4‖f(y(t))‖2) ≤ η(‖y(t)‖)‖y(t)‖2 + η(‖f(y(t))‖)‖f(y(t))‖2

≤ −〈y(t), f(y(t))〉.

By combining these inequalities with (4.55), and also by recalling Lemma 2.1.3, we see
that, for all (v, 0, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −γ̃1

(
a
δ

2
‖x(t)‖2

)
+ ρ(4‖f(y(t))‖2) + ρ(4‖y(t)‖2)

+ ρ(2‖v(t)‖2)

≤ −γ̃1

(
a
δ

2
‖x(t)‖2

)
+ ρ(2‖v(t)‖2)− 〈y(t), f(y(t))〉.

Hence, we define γ1 ∈ K∞ by γ1(s) := γ̃1(a δ2s
2) for all s ≥ 0, so that

V (x(t+ 1))− V (x(t)) ≤ −γ1(‖x(t)‖) + ρ(2‖v(t)‖2)− 〈y(t), f(y(t))〉
∀ t ∈ Z+, ∀ (v, 0, x,y) ∈ B. (4.56)

To conclude the proof, by considering (4.49) and (4.56), we see that (4.43) holds, where
γ2 ∈ K∞ is defined by γ2(s) := 2α−1(2s)s + ρ(2s2) for all s ≥ 0. Moreover, since P̃ is
positive definite, it is clear that there exist λ1, λ2 > 0 such that (4.43) holds. Therefore,
as mentioned at the start of this proof, these two properties of U + V are sufficient to
imply the existence of ψ ∈ KL and φ ∈ K such that (4.41) holds.
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The subsequent example gives two classes of functions that satisfy the assumptions of
Theorem 4.2.2 that are relevant to the nonlinearity f .

Example 4.2.6. Let f : Rm → Rm to be defined and let k ∈ R+ be arbitrary.

(i) If we define f by

f(ξ) := −‖ξ‖kξ ∀ ξ ∈ Rm,

then it is clear that f satisfies (4.39) and (4.40) with α(s) := sk+1 for all s ≥ 0,
and c = µ = 1, respectively.

(ii) Let m = 2. We define f by

f(ξ) := −‖ξ‖k
(

1 −1
1 1

)
ξ ∀ ξ ∈ R2.

It is easy to conclude that

−〈ξ, f(ξ)〉 = ‖ξ‖k
〈
ξ,

(
1 −1
1 1

)
ξ

〉
= ‖ξ‖k+2 ∀ ξ ∈ R2,

and that

‖f(ξ)‖ =
√

(ξ1 − ξ2)2 + (ξ1 + ξ2)2‖ξ‖k =
√

2‖ξ‖k+1 ∀ ξ =

(
ξ1

ξ2

)
∈ R2.

Therefore, f satisfies (4.39) and (4.40) with α(s) := sk+1 for all s ≥ 0, and c = 1
and µ =

√
2, respectively. ♦

In the following, we present two examples of (2.17) that satisfy the assumptions of
Theorem 4.2.2.

Example 4.2.7. Consider (2.17) where n = 2, m = 1,

A :=

(
1
2 0
0 0

)
, B :=

(
1
0

)
=: Be, C :=

(
9 1

)
, D :=

13

2
=: De,

and

f(ξ) = sign(ξ)(1− e|ξ|) ∀ ξ ∈ R.

As in Example 4.2.4, it is easily checked that

P :=

(
12 3
3 1

)
is a positive semi-definite matrix such that (4.38) holds. Moreover,

−ξf(ξ) = |ξ|(e|ξ| − 1) ≥ |ξ|2 = |ξ|α(|ξ|),

where α ∈ K∞ is defined by α(s) := s for all s ≥ 0. Therefore, (4.39) is satisfied and
so Theorem 4.2.2 yields that there exist ψ ∈ KL and φ ∈ K such that (4.41) holds.
(Here, we have used that (4.39) implies that there exist c, µ > 0 such that (4.40) holds
if m = 1 (see Remark 4.2.3).) ♦
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Example 4.2.8. Consider (2.17) with n = m = 2, A = I/2, where I is the identity
matrix,

B = Be = C = D = De =

(
1 0
0 0

)
,

and

f(ξ) = −‖ξ‖2
(

1 −1
1 1

)
ξ ∀ ξ ∈ R2.

We see from Example 4.2.6 that f satisfies (4.39) and (4.40) for some α ∈ K∞ and
c, µ > 0. We shall now show that there exists a positive semi-definite matrix P ∈ R2×2

such that (4.38) holds. To this end, we define P = 2I. It can easily be shown that
ATPA − P = −3I/2 and ATPB − CT = 0 = BTPB − (D + DT ). Therefore, (4.38)
is satisfied and so, from Theorem 4.2.2, we obtain that there exist ψ ∈ KL and φ ∈ K
such that (4.41) holds. ♦

We now focus our attention on the case where B and D need not equal Be and De

respectively, and where w need not be 0. To this end, the next result is the second
theorem that we mentioned at the start of this subsection. The result shows that if we
impose the assumptions of Theorem 4.2.2, but additionally assume an extra condition
on the nonlinearity, then (2.17) is ISS.

Theorem 4.2.9. Let Σ ∈ L and f : Rm → Rm. Assume that Σ is detectable and
that there exists a positive semi-definite P = P T ∈ Rn×n such that (4.38) holds. Fur-
thermore, assume that f is continuous, there exists α ∈ K∞ such that (4.39) holds
and

− 〈ξ, f(ξ)〉
‖f(ξ)‖

→ ∞ as ‖ξ‖ → ∞. (4.57)

Then (2.17) is ISS.

Before giving the proof of Theorem 4.2.9, we first give some commentary and an ex-
ample which presents a suite of functions that satisfy (4.57).

Remark 4.2.10. (i) Apart from the extra continuity assumption, the statements of
Theorem 4.2.2 and Theorem 4.2.9 are identical with the exception of the assump-
tions (4.40) and (4.57). We claim that if f : Rm → Rm is continuous and there
exists α ∈ K∞ such that (4.39) holds, then (4.57) implies (4.40). Indeed, to see
this, note that Lemma 4.1.7 and Lemma 4.1.10 together guarantee the existence
of γ ∈ K∞ such that

γ(‖ξ‖) ≤ −〈ξ, f(ξ)〉
‖f(ξ)‖

∀ ξ ∈ Rm\{0}.

From this, we see that there exists µ > 0 such that (4.40) holds with c = 1. We
note, from Example 4.2.5, that (4.39) and (4.40) holding for some α ∈ K∞, c > 0
and µ > 0, does not imply (4.57).

(ii) In the case that m = 1, (4.39) implies (4.57), and is hence redundant in this
case. We therefore conclude that in the single-input single-output setting, the
statements of Theorem 4.2.2 and Theorem 4.2.9 are identical. Hence, we now
learn that the assumptions of Theorem 4.2.2, in the case that m = 1, in fact
guarantee ISS of (2.17) (without any extra assumption). ♦
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Example 4.2.11. Let f : Rm → Rm be defined by

f(ξ) := −g(ξ)Mξ ∀ ξ ∈ Rm,

where g : Rm → R+ and M ∈ Rm×m are such that g(ξ) > 0 for all ξ ∈ Rm\{0} and

M +MT > 0.

Let λ := min{σ(M +MT )} > 0. We note that, for all ξ ∈ Rm\{0},

−〈ξ, f(ξ)〉
‖f(ξ)‖

= g(ξ)
〈ξ,Mξ〉
‖g(ξ)Mξ‖

=
〈ξ, (M +MT )ξ〉

2‖Mξ‖
≥ λ‖ξ‖2

2‖Mξ‖
≥ λ

2‖M‖
‖ξ‖.

Therefore, f satisfies (4.57). For a specific example of such a function f , we refer the
reader to statement (ii) of Example 4.2.6. ♦

We now present the proof of Theorem 4.2.9. As with the previous proof, we note that
the following is partly inspired by the proof of [108, Theorem 13].

Proof of Theorem 4.2.9. We begin the proof by applying Lemmas 4.1.7 and 4.1.10 to
guarantee the existence of α̃ ∈ K∞ such that

α̃(‖ξ‖) ≤ −〈ξ, f(ξ)〉
‖f(ξ)‖

∀ ξ ∈ Rm\{0}. (4.58)

Furthermore, we combine Lemma 4.1.10 and Corollary 4.1.3 to obtain β ∈ K∞ such
that ‖f(ξ)‖ ≤ β(‖ξ‖) for all ξ ∈ Rm. Define ρ : R+ → R+ by

ρ(s) := min

{
1

3

√
s

16
α

(√
s

16

)
,

√
s

16
α̃

(
β−1

(√
s

4

))}
,

and note that, from Lemma 2.1.2, ρ ∈ K∞. Now, via the detectability of Σ, an
application of Lemma 2.1.29 yields the existence of a positive definite matrix P̃ =
P̃ T ∈ Rn×n and δ > 0 such that V1 : Rn → R+, defined by V1(ξ) := 〈ξ, P̃ ξ〉 for all
ξ ∈ Rn, has the property that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V1(x(t+ 1))− V1(x(t)) ≤− δ‖x(t)‖2 + ‖f(y(t) + w(t))‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+ ‖y(t)‖2. (4.59)

We let a1 ≥ δ be such that V1(ξ) ≤ a1‖ξ‖2 for all ξ ∈ Rn, and, furthermore, choose
a2 > 1 such that

a3 := a2

(
1− δ

2a1

)
< 1.

An application of statement (ii) of Lemma 2.1.7 gives that there exists a4 > 1 such
that

ρ(a3s1 + s2) ≤ ρ(s1) + ρ(a4s2) ∀ s1, s2 ≥ 0, (4.60)

and statement (iii) of Lemma 2.1.7 yields that there exists γ̃1 ∈ K∞ such that

ρ(s1 − s2) ≤ ρ(a2s1)− γ̃1(s2) ∀ s1 ≥ s2 ≥ 0, (4.61)
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and
γ̃1(s)√
s
→∞ as s→∞. (4.62)

Let a := 1/(a2a4) and define V : Rm → R+ by V (ξ) := ρ(aV1(ξ)) for all ξ ∈ Rn.
Recalling (4.59), we see that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤ ρ

(
a

(
V1(x(t))− δ‖x(t)‖2 + ‖f(y(t) + w(t))‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+ ‖y(t)‖2
))

.

We combine this with (4.61) to yield that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤ ρ

(
aa2

(
V1(x(t))− δ

2
‖x(t)‖2 + ‖f(y(t) + w(t))‖2

+

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+ ‖y(t)‖2
))
− γ̃1

(
a
δ

2
‖x(t)‖2

)
. (4.63)

Also, by invoking (4.62) and by applying Lemma 4.1.7, we obtain the existence of
γ̃2 ∈ K∞ such that

γ̃1

(
a
δ

2
s2

)
≥ sγ̃2(s) ∀ s ≥ 0.

Moreover, since V1(ξ) ≤ a1‖ξ‖2 for all ξ ∈ Rn, we see that

a2

(
V1(ξ)− δ

2
‖ξ‖2

)
≤ a2

(
1− δ

2a1

)
V1(ξ) = a3V1(ξ) ∀ ξ ∈ Rn.

Thus, by combining the previous two inequalities with (4.63), we yield that, for all
(v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1)) ≤ρ

(
aa3V1(x(t)) + aa2

(
‖f(y(t) + w(t))‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+ ‖y(t)‖2
))

− ‖x(t)‖γ̃2 (‖x(t)‖) .

If we now use (4.60) and recall that aa2a4 = 1, we see that, for all (v, w, x, y) ∈ B and
all t ∈ Z+,

V (x(t+ 1)) ≤V (x(t)) + ρ

(
‖f(y(t) + w(t))‖2 +

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2

+ ‖y(t)‖2
)

− ‖x(t)‖γ̃2 (‖x(t)‖) . (4.64)

We pause here and claim two inequalities. The first is that, for all (v, w, x, y) ∈ B and
all t ∈ Z+,

ρ(4‖y(t)‖2) ≤ −1

2
〈y(t) + w(t), f(y(t) + w(t))〉+

1

2
‖w(t)‖α(‖w(t)‖), (4.65)
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and the second is that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

ρ(4‖f(y(t) + w(t))‖2) ≤ −1

2
〈y(t) + w(t), f(y(t) + w(t))〉. (4.66)

Turning our attention first to proving (4.65), fix (v, w, x, y) ∈ B and t ∈ Z+ and consider

ρ(4‖y(t)‖2) ≤ 1

6
‖y(t)‖α

(
‖y(t)‖

2

)
≤ 1

6
(‖y(t) + w(t)‖+ ‖w(t)‖)α

(
‖y(t) + w(t)‖+ ‖w(t)‖

2

)
≤ 1

6
(‖y(t) + w(t)‖+ ‖w(t)‖)(α(‖y(t) + w(t)‖) + α(‖w(t)‖)), (4.67)

where we have used Lemma 2.1.3. By considering cases of when ‖w(t)‖ is greater and
less than ‖y(t) + w(t)‖, we see that

‖y(t) + w(t)‖α(‖w(t)‖) + ‖w(t)‖α(‖y(t) + w(t)‖)
≤ 2‖y(t) + w(t)‖α(‖y(t) + w(t)‖) + 2‖w(t)‖α(‖w(t)‖),

which, when combined with (4.67) and (4.39), yields that

ρ(4‖y(t)‖2) ≤ 1

2
‖y(t) + w(t)‖α(‖y(t) + w(t)‖) +

1

2
‖w(t)‖α(‖w(t)‖)

≤ −1

2
〈y(t) + w(t), f(y(t) + w(t))〉+

1

2
‖w(t)‖α(‖w(t)‖),

which is precisely (4.65). We now move onto showing (4.66). To this end, we again fix
(v, w, x, y) ∈ B and t ∈ Z+ and note that

ρ(4‖f(y(t) + w(t))‖2) ≤ 1

2
α̃(β−1(‖f(y(t) + w(t))‖))‖f(y(t) + w(t))‖.

By using (4.58) and the fact that ‖f(ξ)‖ ≤ β(‖ξ‖) for all ξ ∈ Rm, this becomes

ρ(4‖f(y(t) + w(t))‖2) ≤ 1

2
α̃(‖y(t) + w(t)‖)‖f(y(t) + w(t))‖

≤ −1

2
〈y(t) + w(t), f(y(t) + w(t))〉,

hence giving (4.66). We now continue with (4.64) and utilise (4.65) and (4.66) along
with Lemma 2.1.3, to yield, for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −‖x(t)‖γ̃2 (‖x(t)‖) + ρ

(
2

∥∥∥∥(Bev(t)
Dev(t)

)∥∥∥∥2
)

− 〈y(t) + w(t), f(y(t) + w(t))〉+
1

2
‖w(t)‖α(‖w(t)‖). (4.68)

To complete the proof, we seek to obtain U : Rn → R+ such that U + V is an ISS-
Lyapunov function with the aim of invoking Proposition 2.2.9. To this end, define U :
Rn → R+ by U(ξ) := 〈ξ, Pξ〉 for all ξ ∈ Rn, and note that since (f(y+w), v, x, y) ∈ Blin

for all (v, w, x, y) ∈ B, Lemma 4.2.1 yields that (4.37) holds for all (v, w, x, y) ∈ B and
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all t ∈ Z+, where u = f(y + w). Therefore, by combining (4.37) with (4.38), we see
that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤ 2〈y(t)−Dev(t), f(y(t) + w(t))〉+ ‖P‖‖Bev(t)‖2

+ 2‖ATP‖‖x(t)‖‖Bev(t)‖+ 2‖BTP‖‖f(y(t) + w(t))‖‖Bev(t)‖. (4.69)

We now combine (4.69) with statement (i) of Lemma 2.1.7 to obtain the existence of
γ̃3 ∈ K∞ such that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤ 1

2
‖x(t)‖γ̃2 (‖x(t)‖) + γ̃3 (‖v(t)‖) + 2‖w(t)‖‖f(y(t) + w(t))‖

+ 2〈y(t) + w(t), f(y(t) + w(t))〉+ 2(‖BTP‖‖Be‖+ ‖De‖)‖v(t)‖‖f(y(t) + w(t))‖.

By defining c := 2(1+‖BTP‖‖Be‖+‖De‖) > 0, we then see that, for all (v, w, x, y) ∈ B
and all t ∈ Z+,

U(x(t+1))− U(x(t)) ≤ 1

2
‖x(t)‖γ̃2(‖x(t)‖) + γ̃3

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥)
+ 2〈y(t) + w(t), f(y(t) + w(t))〉+ c‖f(y(t) + w(t))‖

∥∥∥∥(v(t)
w(t)

)∥∥∥∥ . (4.70)

We pause here for a moment, and claim that there exists γ̃4 ∈ K∞ such that, for all
(v, w, x, y) ∈ B and all t ∈ Z+,

c‖f(y(t)+w(t))‖
∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ −〈y(t)+w(t), f(y(t)+w(t))〉+ γ̃4

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) . (4.71)

Indeed, to see this, fix (v, w, x, y) ∈ B and t ∈ Z+, and begin with the case that∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ 1

c
α̃(‖y(t) + w(t)‖),

where we recall α̃ from (4.58). We then have that

c‖f(y(t) + w(t))‖
∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ α̃(‖y(t) + w(t)‖)‖f(y(t) + w(t))‖

≤ −〈y(t) + w(t), f(y(t) + w(t))〉.

If instead the converse were to hold, then

c‖f(y(t) + w(t))‖
∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ cβ(‖y(t) + w(t)‖)
∥∥∥∥(v(t)
w(t)

)∥∥∥∥
≤ cβ

(
α̃−1

(
c

∥∥∥∥(v(t)
w(t)

)∥∥∥∥))∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ,
where we recall that β ∈ K∞ is such that ‖f(ξ)‖ ≤ β(‖ξ‖) for all ξ ∈ Rm. We therefore
see that a combination of the two cases proves (4.71). By continuing with (4.70), (4.71)
gives that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤1

2
‖x(t)‖γ̃2 (‖x(t)‖) + 〈y(t) + w(t), f(y(t) + w(t))〉

+ γ̃5

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) , (4.72)
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where γ̃5(s) := γ̃4(s) + γ̃3(s) for all s ≥ 0. To conclude the proof, we set W := U + V
and refer to (4.68) and (4.72) so that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

W (x(t+ 1))−W (x(t)) ≤ −γ1 (‖x(t)‖) + γ2

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) ,
where γ1, γ2 ∈ K∞ are defined by γ1(s) := 1

2sγ̃2 (s) and γ2(s) := γ̃5(s) + ρ(2(‖Be‖2 +

‖De‖2)s2) + sα(s)/2 for all s ≥ 0. Hence, since P̃ is positive definite, W is an ISS-
Lyapunov function and so, by Propositon 2.2.9, the proof is complete.

We saw in Theorem 4.2.9 that if we strengthen the nonlinearity assumptions of Theorem
4.2.2, then we obtain that (2.17) is ISS. The next, and final, stability result shows that
if we instead strengthen the linear assumptions, namely the LMI (4.38), then (2.17) is
ISS.

Theorem 4.2.12. Let Σ ∈ L and f : Rm → Rm. Assume that there exists a positive
definite P = P T ∈ Rn×n such that(

ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)
< 0, (4.73)

and 0 ≤ −〈ξ, f(ξ)〉 for all ξ ∈ Rm. Then (2.17) is ISS.

Before proving Theorem 4.2.12, we give the following remark and two examples.

Remark 4.2.13. (i) The LMI (4.73) is a stronger assumption than (4.38). Indeed,
Example 4.2.14, given after this remark, presents a system that satisfies (4.38)
for some P ≥ 0, but not (4.73) for any P > 0.

(ii) We highlight that the strength of (4.73) allows us to impose only a very weak
assumption on the nonlinearity. Indeed, the assumption 0 ≤ −〈ξ, f(ξ)〉 for all
ξ ∈ Rm is weaker than the assumptions on f utilised in the previous two theorems,
and we refer the reader to Example 4.2.15, situated after the current remark, for
an illustration of this.

(iii) From Lemma 4.1.9, we see that as a consequence of (4.73), ATPA−P is negative
definite. An application of Lemma 4.1.8 then yields that A is Schur. ♦

Example 4.2.14. Consider the linear system from Example 4.2.8. Namely, consider
Σ ∈ L with n = m = 2, A = I/2, where I is the identity matrix, and

B = Be = C = D = De =

(
1 0
0 0

)
.

We saw in Example 4.2.8 that Σ satisfies (4.38) with P = 2I. However, we shall now
show that (4.73) is not satisfied for any positive definite matrix P ∈ R2×2. To this end,
suppose such a matrix exists and denote it by

P =

(
p1 p2

p2 p4

)
,

where p1, p2, p4 ∈ R. An application of Lemma 4.1.9 then yields that BTPB−(D+DT )
is a negative definite matrix. However,

BTPB − (D +DT ) =

(
p1 0
0 0

)
−
(

2 0
0 0

)
=

(
p1 − 2 0

0 0

)
,
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which is not negative definite. We hence have a contradiction, which thus implies that
(4.73) does not hold for any positive definite matrix P ∈ R2×2. ♦

Example 4.2.15. Consider (2.17) where n = 2, m = 1,

A =

(
−1

2 0
0 0

)
, B =

(
−1
0

)
, C =

(
1 0

)
, D = 2,

Be and De are arbitrary, and f : R→ R is defined by

f(ξ) =

{
−sign(ξ)

√
|ξ|, if |ξ| ≤ 1

−sign(ξ), if |ξ| > 1.

We further define P = 2I ∈ R2×2, where I is the identity matrix. Trivially, P is positive
definite and it is not difficult to verify that (4.73) holds and that 0 ≤ −〈ξ, f(ξ)〉 for all
ξ ∈ Rm. Therefore, Theorem 4.2.12 guarantees that (2.17) is ISS. However, f certainly
does not satisfy (4.39) for any α ∈ K∞, and so Theorem 4.2.2 cannot be applied. ♦

Proof of Theorem 4.2.12. Define U : Rn → R+ by U(ξ) := 〈ξ, Pξ〉 for all ξ ∈ Rn. Note
that since (f(y + w), v, x, y) ∈ Blin for all (v, w, x, y) ∈ B, Lemma 4.2.1 yields that
(4.37) holds for all (v, w, x, y) ∈ B and all t ∈ Z+ and where u = f(y + w). Moreover,
by (4.73), we obtain the existence of λ > 0 such that, for all ξ ∈ Rn and ζ ∈ Rm,〈(

ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)(
ξ
ζ

)
,

(
ξ
ζ

)〉
≤ −λ

∥∥∥∥(ξζ
)∥∥∥∥2

.

Hence, by combining this with (4.37), we obtain that, for all (v, w, x, y) ∈ B and all
t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤− λ
∥∥∥∥( x(t)
f(y(t) + w(t))

)∥∥∥∥2

+ 2〈y(t)−Dev(t), f(y(t) + w(t))〉

+ 2‖ATP‖‖x(t)‖‖Bev(t)‖+ ‖P‖‖Bev(t)‖2

+ 2‖BTP‖‖f(y(t) + w(t))‖‖Bev(t)‖. (4.74)

We shall now show that U is an ISS-Lyapunov function (see Definition 2.2.8) and then
invoke Proposition 2.2.9 to complete the proof. To this end, we shall first show that
there exist γ1, γ2 ∈ K∞ such that, for all (v, w, x, y) ∈ B and all t ∈ Z+,

U(x(t+ 1))− U(x(t)) ≤ −γ1(‖x(t)‖) + γ2

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) . (4.75)

Indeed, to prove this, fix (v, w, x, y) ∈ B and t ∈ Z+ and note that, by considering
separate cases of when 4‖ATP‖‖Bev(t)‖ is greater or less than λ‖x(t)‖, we obtain that

2‖ATP‖‖x(t)‖‖Bev(t)‖ ≤ λ

2
‖x(t)‖2 +

8

λ
‖ATP‖2‖Bev(t)‖2

≤ λ

2
‖x(t)‖2 +

8

λ
‖ATP‖2‖Be‖2

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2

. (4.76)
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Furthermore,

2〈y(t)−Dev(t), f(y(t) + w(t))〉+ 2‖BTP‖‖f(y(t) + w(t))‖‖Bev(t)‖
≤ 2〈y(t) + w(t), f(y(t) + w(t))〉

+ 2
(
‖w(t)‖+ ‖Dev(t)‖+ ‖BTP‖‖Bev(t)‖

)
‖f(y(t) + w(t))‖

≤ 2〈y(t) + w(t), f(y(t) + w(t))〉

+ 2
(
1 + ‖De‖+ ‖BTP‖‖Be‖

) ∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ‖f(y(t) + w(t))‖.

Therefore, by considering separate cases of when∥∥∥∥(v(t)
w(t)

)∥∥∥∥ is greater or less than
λ‖f(y(t) + w(t))‖

4(1 + ‖De‖+ ‖BTP‖‖Be‖)
,

we see that

2〈y(t)−Dev(t), f(y(t) + w(t))〉+ 2‖BTP‖‖f(y(t) + w(t))‖‖Bev(t)‖

≤ 2〈y(t) + w(t), f(y(t) + w(t))〉+
λ

2
‖f(y(t) + w(t))‖2

+
8

λ
(1 + ‖De‖+ ‖BTP‖‖Be‖)2

∥∥∥∥(v(t)
w(t)

)∥∥∥∥2

. (4.77)

Hence, we define γ2 ∈ K∞ by

γ2(s) :=
8

λ

(
(1 + ‖De‖+ ‖BTP‖‖Be‖)2 + ‖ATP‖2‖Be‖2

)
s2 + ‖P‖‖Be‖2s2 ∀ s ≥ 0,

so that (4.76) and (4.77), when combined with (4.74) and the identity∥∥∥∥(ξζ
)∥∥∥∥2

= ‖ξ‖2 + ‖ζ‖2 ∀ ξ ∈ Rn, ∀ ζ ∈ Rm,

yield

U(x(t+ 1))− U(x(t)) ≤− λ

2
‖x(t)‖2 − λ

2
‖f(y(t) + w(t))‖2

+ 2〈y(t) + w(t), f(y(t) + w(t))〉+ γ2

(∥∥∥∥(v(t)
w(t)

)∥∥∥∥) .
Since 〈ξ, f(ξ)〉 ≤ 0 for all ξ ∈ Rm, by defining γ1 ∈ K∞ by γ1(s) := λs2/2 for all s ≥ 0,
it is clear that (4.75) holds. Moreover, since γ1 and γ2 only depend on Σ and P (and
hence not on (v, w, x, y) or t), we see that (4.75) holds for all (v, w, x, y) ∈ B and all
t ∈ Z+. Finally, since P is positive definite, it is easy to check that there exist c1, c2 > 0
such that

c1‖ξ‖2 ≤ U(ξ) ≤ c2‖ξ‖2 ∀ ξ ∈ Rn.
Therefore, by combining this with the fact that (4.75) holds for all (v, w, x, y) ∈ B and
all t ∈ Z+, we see that U is indeed an ISS-Lyapunov function, which, by Proposition
2.2.9, completes the proof.

We conclude this subsection by summarising the assumptions of the previous three
theorems. Indeed, we refer the reader to Table 4.1 for an illustration. We recall that
(4.73) implies (4.38). Moreover, (4.39) guarantees that 0 ≤ −〈ξ, f(ξ)〉, ∀ ξ ∈ Rm, and
(4.39) together with (4.57) implies (4.40).
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Linear assumptions Nonlinear assumptions

Theorem (4.38) (4.73) (4.39) (4.40) (4.57) 0 ≤ −〈ξ, f(ξ)〉, ∀ ξ ∈ Rm
4.2.2 X X X
4.2.9 X X X
4.2.12 X X

Table 4.1: Summary of the assumptions of the three theorems of Section 4.2. The symbol X
means that the relevant assumption is imposed in the corresponding theorem.

4.2.3 Positive real assumptions

Our attention now turns towards utilising the positive and strict positive real lemmas,
that is, Lemmas 4.1.15 and 4.1.20, in order to rewrite the three stability theorems of the
previous subsection in terms of positive and strictly positive real assumptions on the
transfer function. In particular, we shall express the LMIs given by (4.38) and (4.73)
in terms of positive and strict positive real assumptions, respectively. To this end, we
begin with the following two corollaries, which are each an immediate consequence of
Lemma 4.1.15 combined with Theorem 4.2.2 and Theorem 4.2.9, respectively. Indeed,
the existence of a positive semi-definite matrix P ∈ Rn×n and matrices L and W
satisfying (4.20) trivially implies that (4.38) holds.

Corollary 4.2.16. Let Σ ∈ L with Be = B and De = D, and let f : Rm → Rm.
Assume that G is positive real and that either: (i) Σ is controllable and observable,
or; (ii) Σ is stabilisable and detectable and there exists η ∈ ∂D, not a pole of G, such
that G(η) + G(η)∗ > 0. Furthermore, assume that f is continuous on a neighbourhood
containing 0, f is bounded on bounded sets and that there exist α ∈ K∞, c > 0 and
µ > 0 such that the nonlinearity f satisfies (4.39) and (4.40). Then there exist ψ ∈ KL
and φ ∈ K such that (4.41) holds.

Corollary 4.2.17. Let Σ ∈ L and let f : Rm → Rm. Assume that G is positive
real and that either: (i) Σ is controllable and observable, or; (ii) Σ is stabilisable and
detectable and there exists η ∈ ∂D, not a pole of G, such that G(η) + G(η)∗ > 0.
Furthermore, assume that f is continuous, there exists α ∈ K∞ such that (4.39) holds
and f satisfies (4.57). Then (2.17) is ISS.

The next example illustrates that the assumptions of the previous two corollaries are
stronger than the assumptions given in Theorem 4.2.2 and Theorem 4.2.9, respectively.

Example 4.2.18. Let Σ ∈ L, where n = 2, m = 1,

A :=

(
1
2 0
0 −1

)
, B :=

(
0
1

)
, C :=

(
0 −2

)
, D := 1,

and Be and De are arbitrary. By defining

P :=

(
1 0
0 2

)
,

is can easily be verified that P is positive definite and(
ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)
=

−3
4 0 0

0 0 0
0 0 0

 ,
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hence giving that the LMI (4.38) holds. Moreover, Σ is detectable, and so the assump-
tions of Theorems 4.2.2 and 4.2.9, relevant to Σ, hold. However, is it easily checked
that Σ is not controllable. Additionally, since

G(z) =
z − 1

z + 1
∀ z ∈ C\{−1},

it is simple to check that G(z) +G(z)∗ = 0 on ∂D\{−1}. We therefore see that Σ does
not satisfy the relevant hypotheses of Corollaries 4.2.16 and 4.2.17. ♦

The final corollary of this section is obtained from a combination of Theorem 4.2.12
with Lemma 4.1.20.

Corollary 4.2.19. Let Σ ∈ L and f : Rm → Rm. Assume that Σ is controllable and
observable, G is strictly positive real, D + DT > 0 and 0 ≤ −〈ξ, f(ξ)〉 for all ξ ∈ Rm.
Then (2.17) is ISS.

Proof. In order to invoke Theorem 4.2.12, we only need to verify the existence of a
positive definite matrix P = P T ∈ Rn×n such that (4.73) holds. To this end, note
that since the hypotheses of Lemma 4.1.20 hold, we obtain the existence of matrices
P,R ∈ Rn×n, L ∈ Rm×n and W ∈ Rm×m such that P,R and W are all positive definite,
and (4.33) holds. Let (

ξ
ζ

)
∈ Rn+m\{0},

where ξ ∈ Rn and ζ ∈ Rm. For ease of notation in the sequel, set

M :=

(
ATPA− P ATPB − CT
BTPA− C BTPB − (D +DT )

)
and η :=

(
ξ
ζ

)
.

By using Lemma 4.1.9, we see that

〈Mη, η〉 = 〈(ATPA− P )ξ, ξ〉+ 2〈(ATPB − CT )ζ, ξ〉+ 〈(BTPB − (D +DT ))ζ, ζ〉.

Furthermore, if we now invoke (4.33), we obtain that

〈Mη, η〉 = −‖Lξ‖2 − 〈Rξ, ξ〉 − 2〈Lξ,Wζ〉 − ‖Wζ‖2

= −‖Lξ +Wζ‖2 − 〈Rξ, ξ〉. (4.78)

We consider the following two cases. First, if ξ 6= 0, then 〈Rξ, ξ〉 > 0 and so (4.78)
gives that 〈Mη, η〉 < 0. In the second case of when ξ = 0, we deduce therefore that
ζ 6= 0 and so, since W is positive definite, ‖Wζ‖ > 0. Hence, from (4.78), we yield that
〈Mη, η〉 < 0, which completes the proof since ξ and ζ were arbitrary.

We conclude this section with the following trivial example, which shows that the
hypotheses of Theorem 4.2.12 are weaker than the hypotheses of Corollary 4.2.19.

Example 4.2.20. Let Σ ∈ L be as in Example 4.2.15. That is, n = 2, m = 1,

A =

(
−1

2 0
0 0

)
, B =

(
−1
0

)
, C =

(
1 0

)
, D = 2,

and Be and De are arbitrary. By defining P ∈ R2×2 to be 2I, where I is the identity
matrix, we see that (4.73) holds. However, we note that Σ is not controllable. Therefore,
a system with linear component given by Σ satisfies the linear assumptions of Theorem
4.2.12, but not those of Corollary 4.2.19. ♦
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4.3 Convergence properties

In this section, we shall develop sufficient criteria for when (2.17), with potentially su-
perlinear nonlinearity, exhibits a certain convergence property, namely the converging-
input converging-state (CICS) property. This property was discussed in detail in Sec-
tion 2.3, and was first investigated in [15]. We refer the reader to Section 2.3 for explicit
definitions and details.

In both Section 2.3 and [15], the CICS property has been obtained from ISS theorems.
Indeed, this was done in Section 2.3 and [15] by, roughly, forming an ‘incremental’
version of the assumptions relevant to the nonlinearity in Theorem 2.2.10 and [107,
Theorem 3.2], respectively, and by making sure that these assumptions also guarantee
the existence of an equilibrium corresponding to each constant input. Repeated uses
of ISS estimates (of a ‘shifted’ system) then yielded the CICS property. It is this
methodology that we hope to try to reproduce in our current setting, that is, where
functions are allowed to be ‘superlinear’. With this motivation in mind, we split the
current section in two. In the first part we present relevant preliminary results, and in
the second, we give sufficient conditions for when (2.17) exhibits the CICS property.

4.3.1 Preliminary results and definitions

The first preliminary result we shall give is the following, which shows that if a function
satisfies a relevant limit for one particular value, then it does so for every value.

Lemma 4.3.1. Let f : Rm → Rm and assume that there exists η ∈ Rm such that

min

{
−〈ξ, f(ξ + η)− f(η)〉

‖ξ‖
,−〈ξ, f(ξ + η)− f(η)〉
‖f(ξ + η)− f(η)‖

}
→∞ as ‖ξ‖ → ∞. (4.79)

Then for every ζ ∈ Rm,

min

{
−〈ξ, f(ξ + ζ)− f(ζ)〉

‖ξ‖
,−〈ξ, f(ξ + ζ)− f(ζ)〉
‖f(ξ + ζ)− f(ζ)‖

}
→∞ as ‖ξ‖ → ∞. (4.80)

Proof. Let ζ ∈ Rm. We set R := ‖ζ − η‖ which we assume is positive, else (4.80)
trivially holds. A consequence of (4.79) is that we may choose µ > R sufficiently large
so that

2R ≤ −〈ξ, f(ξ + η)− f(η)〉
‖f(ξ + η)− f(η)‖

∀ ξ ∈ Rm, ‖ξ‖ ≥ µ , (4.81)

and so

− ‖f(ξ + η)− f(η)‖ ≥ 1

2R
〈ξ, f(ξ + η)− f(η)〉 ∀ ξ ∈ Rm, ‖ξ‖ ≥ µ . (4.82)

Moreover, for each ξ ∈ Rm with ‖ξ‖ ≥ µ+R > 0, define zξ = ξ + ζ − η. We note that
‖zξ‖ ≥ µ and

1

2
≤ 1− R

‖ξ‖
≤
‖zξ‖
‖ξ‖

≤ 1 +
R

‖ξ‖
≤ 2 . (4.83)

Now, in order to establish (4.80), we first show that

− 〈ξ, f(ξ + ζ)− f(ζ)〉
‖ξ‖

→ ∞ as ‖ξ‖ → ∞. (4.84)
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To this end, we note that, for all ξ ∈ Rm with ‖ξ‖ ≥ µ+R,

−〈ξ, f(ξ + ζ)− f(ζ)〉 = −〈ξ, f(zξ + η)− f(η)〉 − 〈ξ, f(η)− f(ζ)〉. (4.85)

By using the Cauchy-Schwarz inequality, we see that, for all ξ ∈ Rm with ‖ξ‖ ≥ µ+R,

−
〈ξ, f(zξ + η)− f(η)〉

‖ξ‖
= −
〈zξ, f(zξ + η)− f(η)〉

‖ξ‖
+
〈ζ − η, f(zξ + η)− f(η)〉

‖ξ‖

=
‖zξ‖
‖ξ‖

(
−
〈zξ, f(zξ + η)− f(η)〉

‖zξ‖
+
〈ζ − η, f(zξ + η)− f(η)〉

‖zξ‖

)
≥
‖zξ‖
‖ξ‖

(
−
〈zξ, f(zξ + η)− f(η)〉

‖zξ‖
− ‖ζ − η‖

‖f(zξ + η)− f(η)‖
‖zξ‖

)
.

By combining this with (4.82), and by also recalling that ‖ζ − η‖ = R, we obtain, for
all ξ ∈ Rm with ‖ξ‖ ≥ µ+R,

−
〈ξ, f(zξ + η)− f(η)〉

‖ξ‖

≥
‖zξ‖
‖ξ‖

(
−
〈zξ, f(zξ + η)− f(η)〉

‖zξ‖
+
‖ζ − η‖

2R

〈zξ, f(zξ + η)− f(η)〉
‖zξ‖

)
= −1

2

‖zξ‖
‖ξ‖
〈zξ, f(zξ + η)− f(η)〉

‖zξ‖
. (4.86)

From (4.83), this implies that, for all ξ ∈ Rm with ‖ξ‖ ≥ µ+R,

−
〈ξ, f(zξ + η)− f(η)〉

‖ξ‖
≥ −1

4

〈zξ, f(zξ + η)− f(η)〉
‖zξ‖

, (4.87)

which converges to infinity as ‖ξ‖ → ∞. Here, we have used that −〈zξ, f(zξ + η) −
f(η)〉 > 0 by (4.81). In light of (4.85), (4.87) and the fact that

−〈ξ, f(η)− f(ζ)〉
‖ξ‖

≥ −‖f(η)− f(ζ)‖ ∀ ξ ∈ Rm\{0},

we have shown that (4.84) holds. Hence, to complete the proof, it suffices to now show
that

− 〈ξ, f(ξ + ζ)− f(ζ)〉
‖f(ξ + ζ)− f(ζ)‖

→ ∞ as ‖ξ‖ → ∞. (4.88)

To this end, let M > 0. By combining (4.79) and with (4.84), we yield the existence
of ν > µ such that

min

{
−〈ξ, f(ξ + ζ)− f(ζ)〉

‖ξ‖
,−〈ξ, f(ξ + η)− f(η)〉
‖f(ξ + η)− f(η)‖

}
> 4(M + ‖f(η)−f(ζ)‖)

∀ ξ ∈ Rm, ‖ξ‖ ≥ν , (4.89)

and so in particular −〈ξ, f(ξ + ζ)− f(ζ)〉 > 0 for all such ξ. Since, from (4.79),

‖f(ξ + η)− f(η)‖ ≥ −〈ξ, f(ξ + η)− f(η)〉
‖ξ‖

→ ∞ as ‖ξ‖ → ∞,
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without loss of generality, we assume that ν is large enough so that

‖f(ξ + η)− f(η)‖ ≥ ‖f(η)− f(ζ)‖ ∀ ξ ∈ Rm, ‖ξ‖ ≥ ν . (4.90)

Let ξ ∈ Rm be such that ‖ξ‖ > ν + R, so that ‖zξ‖ ≥ ν. If ‖f(ξ + ζ) − f(ζ)‖ ≤ ‖ξ‖,
then clearly, from (4.89),

− 〈ξ, f(ξ + ζ)− f(ζ)〉
‖f(ξ + ζ)− f(ζ)‖

≥ −〈ξ, f(ξ + ζ)− f(ζ)〉
‖ξ‖

> 4(M + ‖f(η)− f(ζ)‖) > M . (4.91)

Alternatively, if ‖f(ξ + ζ) − f(ζ)‖ > ‖ξ‖, then by recalling (4.85) and by multiplying
both sides of (4.86) by ‖ξ‖ and 1/‖f(ξ + ζ)− f(ζ)‖, we see that

−〈ξ, f(ξ + ζ)− f(ζ)〉
‖f(ξ + ζ)− f(ζ)‖

≥ −1

2

〈zξ, f(zξ + η)− f(η)〉
‖f(ξ + ζ)− f(ζ)‖

− ‖f(η)− f(ζ)‖

Therefore, by (4.90),

−〈ξ, f(ξ + ζ)− f(ζ)〉
‖f(ξ + ζ)− f(ζ)‖

≥ −1

2

〈zξ, f(zξ + η)− f(η)〉
‖f(zξ + η)− f(η)‖+ ‖f(η)− f(ζ)‖

− ‖f(η)− f(ζ)‖

=
1

2

− 〈zξ,f(zξ+η)−f(η)〉
‖f(zξ+η)−f(η)‖

1 + ‖f(η)−f(ζ)‖
‖f(zξ+η)−f(η)‖

− ‖f(η)− f(ζ)‖

≥ 1

4
4(M + ‖f(η)− f(ζ)‖)− ‖f(η)− f(ζ)‖

= M .

Since M was arbitrary, we have shown that (4.88) holds, thus completing the proof.

The following is an interesting characterisation of functions f which have the property
that (4.79) holds for some η ∈ Rm.

Lemma 4.3.2. A function f : Rm → Rm satisfies that there exists η ∈ Rm such that
(4.79) holds, if, and only if, there exists a function g : Rm → Rm and c ∈ Rm such that

f(ξ) = g(ξ) + c ∀ ξ ∈ Rm, (4.92)

g(0) = 0 and

min

{
−〈ξ, g(ξ)〉
‖ξ‖

,−〈ξ, g(ξ)〉
‖g(ξ)‖

}
→∞ as ‖ξ‖ → ∞. (4.93)

Proof. Let f : Rm → Rm satisfy that there exists η ∈ Rm such that (4.79) holds. Define
g : Rm → Rm by

g(ξ) := f(ξ)− f(0) ∀ ξ ∈ Rm.
Trivially, g(0) = 0 and (4.92) is satisfied with c := f(0). Moreover, an application of
Lemma 4.3.1 gives that (4.80) holds for all ζ ∈ Rm. In particular, by taking ζ = 0, this
yields (4.93).
As for the reverse implication, we now let g : Rm → Rm and c ∈ Rm be arbitrary such
that g(0) = 0 and g satisfies (4.93). We subsequently define f : Rm → Rm via (4.92)
and note that

min

{
−〈ξ, f(ξ)− f(0)〉

‖ξ‖
,−〈ξ, f(ξ)− f(0)〉
‖f(ξ)− f(0)‖

}
= min

{
−〈ξ, g(ξ)〉
‖ξ‖

,−〈ξ, g(ξ)〉
‖g(ξ)‖

}
,

which converges to∞ as ‖ξ‖ → ∞ from (4.93). Therefore, (4.79) holds with η = 0 and
the proof is complete.
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Remark 4.3.3. Lemma 4.3.2 shows us that examples of functions f : Rm → Rm
satisfying (4.79) for some η ∈ Rm, are easy to find. Indeed, by taking g : Rm → Rm
satisfying the relevant conditions given in the statement of Lemma 4.3.2 (see Example
4.2.11), then any constant addition to g yields such a desired function f . ♦

We now recall the definition of monotone and dissipative functions.

Definition 4.3.4. Let f : Rm → Rm .

(i) We say that f is monotone if

〈ξ, f(ξ + ζ)− f(ζ)〉 ≥ 0 ∀ ζ, ξ ∈ Rm,

and dissipative if −f is monotone.

(ii) We say that f is strictly monotone if

〈ξ, f(ξ + ζ)− f(ζ)〉 > 0 ∀ ζ, ξ ∈ Rm, ξ 6= 0,

and strictly dissipative if −f is strictly monotone.

For background regarding monotone functions, we refer the reader to works such as
[30, 93, 94]. The following lemma is [94, Proposition 12.3, p.534].

Lemma 4.3.5. Let f : Rm → Rm be differentiable. The following statements hold.

(i) f is monotone if, and only if, for each ξ ∈ Rm, the Jacobian matrix ∇f(ξ) is
positive semi-definite.

(ii) f is strictly monotone if, for each ξ ∈ Rm, the Jacobian matrix ∇f(ξ) is positive
definite.

Remark 4.3.6. The definition of (strict) monotonicity and Lemma 4.3.5 together
highlight how the notion can be seen as a generalisation of (strictly) increasing functions
R→ R. Similarly, (strictly) dissipative functions can be seen as a generalisation of the
notion of (strictly) decreasing functions. ♦

The next lemma gives sufficient conditions for when the map ξ 7→ ξ − G(1)f(ξ) is
surjective. This will be useful in determining the existence of equilibrium quadruples
of (2.17) (see Definition 2.3.1) in subsequent proofs (see the preamble at the start of
this section).

Lemma 4.3.7. Let Σ ∈ L and f : Rm → Rm. Assume that 1 /∈ σ(A), G(1)+G(1)T ≥ 0
and f is dissipative. The following statements hold.

(i) The map Rm → Rm, ξ 7→ ξ−G(1)f(ξ) is injective if either f is strictly dissipative
or G(1) + G(1)T > 0.

(ii) The map Rm → Rm, ξ 7→ ξ −G(1)f(ξ) is surjective if G(1) + G(1)T > 0 and f
is continuous.

(iii) The map Rm → Rm, ξ 7→ ξ −G(1)f(ξ) is surjective if f is continuous, strictly
dissipative and there exists η ∈ Rm such that (4.79) holds.
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Proof. To prove statement (i), we begin by assuming that f is strictly dissipative.
Seeking a contradiction, suppose that ξ, η ∈ Rm are such that ξ 6= η and ξ−G(1)f(ξ) =
η −G(1)f(η). This implies that ξ − η = G(1)(f(ξ)− f(η)), and thus

〈ξ − η, f(ξ)− f(η)〉 = 〈G(1)(f(ξ)− f(η)), f(ξ)− f(η)〉. (4.94)

However, the left-hand side is negative by the strict dissipativity of f , and the right-
hand side is non-negative by the positive semi-definiteness of G(1) + G(1)T . We
therefore obtain a contradiction and hence yield that the map in question is injec-
tive. Now assume that G(1) + G(1)T > 0 and again suppose that ξ 6= η and
ξ −G(1)f(ξ) = η −G(1)f(η). We note that this supposition necessarily implies that
f(ξ) 6= f(η), else

ξ = η + G(1)f(ξ)−G(1)f(η) = η,

which would be a contradiction. Therefore, with this in mind, from (4.94) we again
obtain a contradiction, since the left-hand side is non-positive by the dissipativity of
f , and the right-hand side is positive by the positive definiteness of G(1) + G(1)T . We
have therefore shown that ξ 7→ ξ−G(1)f(ξ) is injective if either f is strictly dissipative
or G(1) + G(1)T > 0, and completed the proof of statement (i).

We now proceed to prove statement (ii) and so we now assume that G(1) + G(1)T > 0
and that f is continuous. For ease of notation, we denote the map Rm → Rm, ξ 7→
ξ −G(1)f(ξ) by F . To begin with, we note that since G(1) + G(1)T > 0, there exists
λ > 0 such that

〈(G(1) + G(1)T )ξ, ξ〉 ≥ λ‖ξ‖2 ∀ ξ ∈ Rm. (4.95)

We seek to show that ‖F (ξ)‖ → ∞ as ‖ξ‖ → ∞. To this end, let ξ ∈ Rm\{0} and note
that if f(ξ) 6= 0, then

‖F (ξ)‖ =
‖F (ξ)‖‖f(ξ)‖
‖f(ξ)‖

≥ −〈F (ξ), f(ξ)〉
‖f(ξ)‖

= −〈ξ, f(ξ)〉
‖f(ξ)‖

+
〈G(1)f(ξ), f(ξ)〉

‖f(ξ)‖

= −〈ξ, f(ξ)− f(0)〉
‖f(ξ)‖

− 〈ξ, f(0)〉
‖f(ξ)‖

+
〈(G(1) + G(1)T )f(ξ), f(ξ)〉

2‖f(ξ)‖
. (4.96)

Consider the following two cases. The first case concerns when 2‖G(1)‖‖f(ξ)‖ ≥ ‖ξ‖.
Since this implies that f(ξ) 6= 0, we may combine (4.95) with (4.96) and the dissipativity
of f , to obtain that

‖F (ξ)‖ ≥ −2‖f(0)‖‖G(1)‖+
λ

2
‖f(ξ)‖

≥ −2‖f(0)‖‖G(1)‖+
λ

4‖G(1)‖
‖ξ‖. (4.97)

Here, we have used that ‖G(1)‖ 6= 0 by (4.95). Now, for the second case of when
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2‖G(1)‖‖f(ξ)‖ ≤ ‖ξ‖, we consider

‖F (ξ)‖ =
‖F (ξ)‖‖ξ‖
‖ξ‖

≥ 〈F (ξ), ξ〉
‖ξ‖

= ‖ξ‖ − 〈G(1)f(ξ), ξ〉
‖ξ‖

,

which in turn gives that

‖F (ξ)‖ ≥ ‖ξ‖ − ‖G(1)‖‖f(ξ)‖

≥ 1

2
‖ξ‖. (4.98)

By combining this with (4.97), we hence deduce that ‖F (ξ)‖ → ∞ as ‖ξ‖ → ∞.
Therefore, by combining this with the continuity of F and the fact that F is injective
by statement (i), we obtain that F is surjective. To give some more detail here, we
refer the reader to [30, Theorem 4.3], which says that an injective and continuous
function is an open map. From this (as mentioned in the commentary immediately
after [30, Theorem 4.3]) we see that F (Rm) is open and also closed, since for any
sequence (ξi)i∈Z+ ⊆ Rm such that F (ξi) → ζ ∈ Rm, unboundedness of F guarantess
boundedness of (ξi)i∈Z+ which then guarantees the existence of ξ ∈ Rm such that
F (ξ) = ζ. By the connectedness of Rm, we see that F (Rm) = Rm, hence yielding
surjectivity.

Finally, our attention turns to statement (iii) and thus we now instead assume that
f is continuous, strictly dissipative and there exists η ∈ Rm such that (4.79) holds.
Let ξ ∈ Rm\{0} and again consider the following two cases. The first case is when
2‖G(1)‖‖f(ξ)‖ ≥ ‖ξ‖. In this situation f(ξ) 6= 0, and therefore, by invoking (4.96), it
is easily checked, by use of the positive semi-definiteness of G(1) + G(1)T , that

‖F (ξ)‖ ≥ − 〈ξ, f(ξ)− f(0)〉
‖f(ξ)− f(0)‖+ ‖f(0)‖

− 2‖f(0)‖‖G(1)‖. (4.99)

For the second case of when 2‖G(1)‖‖f(ξ)‖ ≤ ‖ξ‖, we see again that (4.98) holds.
Thus, an application of Lemma 4.3.1 combined with (4.98) and (4.99) implies that
‖F (ξ)‖ → ∞ as ‖ξ‖ → ∞. Therefore, again since F is continuous and injective by
statement (i), [30, Theorem 4.3] gives that F is surjective and the proof is complete.

The following provides a useful characterisation of functions f : Rm → Rm that satisfy
the assumptions of statement (iii) of Lemma 4.3.7. We shall not provide a proof, since
the result is immediately obtained from Lemma 4.3.2.

Corollary 4.3.8. Let f : Rm → Rm. Then f is continuous and strictly dissipative, and
there exists η ∈ Rm such that (4.79) holds, if, and only if, there exists a continuous,
strictly dissipative function g : Rm → Rm and a constant c ∈ Rm such that g(0) = 0
and both (4.92) and (4.93) hold.

Remark 4.3.9. Since every strictly dissipative function g : Rm → Rm with g(0) = 0,
also satisfies that −〈ξ, g(ξ)〉 > 0 for all ξ ∈ Rm\{0}, we see that the function g described
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in the statement of Corollary 4.3.8 satisfies (4.39) and (4.57) (where we replace f by g)
for some α ∈ K∞. Indeed, this can be shown by combining Lemma 4.1.7 with (4.93).
Hence, we see that f : Rm → Rm is continuous and strictly dissipative, and there exists
η ∈ Rm such that (4.79) holds, if, and only if, ξ 7→ f(ξ) − f(0) is strictly dissipative
and satisfies the hypotheses imposed on the nonlinearity in Theorem 4.2.9. We recall
that Theorem 4.2.9 provides sufficient conditions for when (2.17) is ISS. ♦

We conclude the current presentation of preliminary results with the following two
lemmas.

Lemma 4.3.10. Let Σ ∈ L. If there exists a positive semi-definite P = P T ∈ Rn×n
such that (4.38) holds, then for every z ∈ C\σ(A) with |z| ≥ 1, G(z) + G(z)∗ ≥ 0.

Lemma 4.3.11. Let Σ ∈ L. If there exists a positive definite P = P T ∈ Rn×n such
that (4.73) holds, then for every z ∈ C with |z| ≥ 1, G(z) + G(z)∗ > 0.

We shall not provide a proof of either lemma, since they are both known in the liter-
ature. Indeed, for Lemma 4.3.10, this is one of the implications given in [54, Lemma
3], which utilises the continuous-time version of the result which is given in [3, Theo-
rem 3]. Although the previous two results presuppose a minimal realisation and also
that P > 0, we note that in the proof of the relevant implication that we are inter-
ested in, these properties are not utilised. As for Lemma 4.3.11, we refer the reader
to [51, Lemma 4.2] and its continuous-time counterpart [50, Lemma 4.2]. Once again,
although minimality is assumed, the proof of the implication we are concerned with
does not use this.

4.3.2 The converging-input converging-state property

We are now ready to present conditions which guarantee that (2.17) exhibits the CICS
property. Before we do so however, for the benefit of the reader, we briefly recall some
definitions associated with (2.17) which were given in Sections 2.3.1 and 2.3.2 (in the
non-square case). Indeed, for Σ ∈ L and f : Rm → Rm. We say that (2.17) has the
converging-input converging-state (CICS) property if for every v∞ ∈ Rq and w∞ ∈ Rm,
there exists x∞ ∈ Rn such that limt→∞ x(t) = x∞ for every (v, w, x, y) ∈ B with
limt→∞ v(t) = v∞ and limt→∞w(t) = w∞. Moreover, a quadruple (ve, we, xe, ye) ∈
Rq×Rm×Rn×Rm is an equilibrium quadruple of (2.17) if (ve, we, xe, ye) ∈ B, where we
abuse notation and interchangeably write vectors as constant functions. Furthermore,
we say that a subset V ⊆ (Rq)Z+ is equi-convergent to v∞ ∈ Rq if, for all ε > 0, there
exists τ ∈ Z+ such that

‖(Λτv)(t)− v∞‖ ≤ ε ∀ t ∈ Z+, ∀ v ∈ V.

Finally, for ease of notation in the sequel, we define F : Rm → Rm by F (ξ) := ξ −
G(1)f(ξ) for all ξ ∈ Rm and, for a singelton set {ξ}, where ξ ∈ Rm, we shall abuse
notation and set F−1(ξ) := F−1({ξ}) (recall the definition of the preimage given in the
notation section).

The following is the first of two main results of this section.

Theorem 4.3.12. Let Σ ∈ L and f : Rm → Rm. Assume that Σ is detectable, 1 /∈ σ(A)
and that there exists a positive semi-definite P = P T ∈ Rn×n such that (4.38) holds.
Furthermore, assume that f is continuous and strictly dissipative, and that there exists
η ∈ Rm such that (4.79) holds. The following statements hold.
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(i) The map F is bijective.

(ii) For all v∞ ∈ Rq and w∞ ∈ Rm, by letting z∞ ∈ F−1((C(I −A)−1Be +De)v
∞ +

w∞), and setting y∞ := z∞ − w∞ and

x∞ := (I −A)−1 (Bf(z∞) +Bev
∞) , (4.100)

then
y∞ = Cx∞ +Df(z∞) +Dev

∞ , (4.101)

and (v∞, w∞, x∞, y∞) is an equilibrium quadruple of (2.17).

(iii) Let v∞ ∈ Rq and w∞ ∈ Rm. Then there exist ψ1, ψ2 ∈ KL and φ ∈ K such that,
for all (v, w, x, y) ∈ B and t ∈ Z+,

‖x(t)− x∞‖ ≤ψ1(‖x(0)− x∞‖, t) + ψ2

(
max
s∈bt/2c

∥∥∥∥( v(s)− v∞
w(s)− w∞

)∥∥∥∥ , t
)

+ φ

(
max
s∈dt/2e

∥∥∥∥( Λbt/2cv(s)− v∞
Λbt/2cw(s)− w∞

)∥∥∥∥
)
, (4.102)

where x∞ is given by (4.100). In particular, limt→∞ x(t) = x∞ for all (v, w, x, y) ∈
B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞.

Before proving Theorem 4.3.12, we give the following remark.

Remark 4.3.13. (i) The convergence described in the last line of Theorem 4.3.12 is
uniform in the following sense: given a set of inputs V ⊆ (Rq)Z+ × (Rm)Z+ which
is equi-convergent to (v∞, w∞) and κ > 0, the set{

x ∈ (Rn)Z+ : ∃ (v, w, y) ∈ V × (Rm)Z+ s.t. (v, w, x, y) ∈ B

and ‖x(0)‖+ sup
t∈Z+

∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ≤ κ
}

is equi-convergent to x∞.
(ii) From Corollary 4.3.8 (as discussed in Remark 4.3.9), f : Rm → Rm is continuous

and strictly dissipative, and there exists η ∈ Rm such that (4.79) holds, if, and
only if, ξ 7→ f(ξ)−f(0) is strictly dissipative and satisfies the hypotheses imposed
on the nonlinearity in Theorem 4.2.9, which is a result that provides sufficient
conditions for when (2.17) is ISS.

(iii) If f : Rm → Rm is continuous and strictly dissipative, we note that in the case
that m = 1, (4.79) may be reduced to simply saying that

−ξ(f(ξ + η)− f(η))

|ξ|
→ ∞ as |ξ| → ∞.

This is because, sincem = 1, the strict dissipativity of f guarantees that sign(f(ξ+
η)− f(η)) = −sign(ξ) for all ξ ∈ R. We thus see that

−ξ(f(ξ + η)− f(η))

|f(ξ + η)− f(η)|
= |ξ| → ∞ as |ξ| → ∞

as a consequence. ♦
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Proof of Theorem 4.3.12. We begin by applying Lemma 4.3.10 to obtain that G(1) +
G(1)T ≥ 0. From this, we utilise statement (i) and statement (iii) of Lemma 4.3.7 so
that F is bijective, which gives statement (i). As a consequence, for all v∞ ∈ Rq and
all w∞ ∈ Rm, F−1((C(I − A)−1Be + De)v

∞ + w∞) is non-empty. Let v∞ ∈ Rq and
w∞ ∈ Rm and let z∞ ∈ F−1((C(I−A)−1Be +De)v

∞+w∞). By setting y∞ = z∞−w∞
and defining x∞ by (4.100),

y∞ = F (z∞) + G(1)f(z∞)− w∞

= (C(I −A)−1Be +De)v
∞ + (C(I −A)−1B +D)f(z∞)

= Cx∞ +Df(z∞) +Dev
∞,

which is (4.101). Hence, it is clear that (v∞, w∞, x∞, y∞) is an equilibrium quadruple
of (2.17), and statement (ii) is proven. Our attention now turns to statement (iii) and
so we let v∞ ∈ Rq and w∞ ∈ Rm and define f̃ : Rm → Rm by

f̃(ξ) := f(ξ + y∞ + w∞)− f(y∞ + w∞) ∀ ξ ∈ Rm,

where y∞ = z∞−w∞ and z∞ ∈ F−1((C(I−A)−1Be +De)v
∞+w∞). Since statement

(ii) implies that (v∞, w∞, x∞, y∞) is an equilibrium quadruple, where x∞ is given by
(4.100), we see that (v, w, x, y) ∈ B if, and only if,

x̃+ = x+ − x∞

= Ax+Bf(y + w) +Bev −Ax∞ −Bf(y∞ + w∞)−Bev
∞

= Ax̃+Bf̃(ỹ + w̃) +Beṽ,

and

ỹ = Cx+Df(y + w) +Dev − Cx∞ −Df(y∞ + w∞)−Dev
∞

= Cx̃+Df̃(ỹ + w∞) +Deṽ,

where ỹ(t) := y(t)−y∞, x̃(t) := x(t)−x∞, ṽ(t) := v(t)−v∞ and w̃(t) := w(t)−w∞ for
all t ∈ Z+. That is, (v, w, x, y) ∈ B if, and only if, (ṽ, w̃, x̃, ỹ) ∈ Bf̃ . Since f is strictly
dissipative, we see that

− 〈ξ, f̃(ξ)〉 = −〈ξ, f(ξ + y∞ + w∞)− f(y∞ + w∞)〉 > 0 ∀ ξ ∈ Rm\{0}. (4.103)

Moreover, since (4.79) holds, an application of Lemma 4.3.1 gives that

min

{
−〈ξ, f̃(ξ)〉
‖ξ‖

,−〈ξ, f̃(ξ)〉
‖f̃(ξ)‖

}
→∞ as ‖ξ‖ → ∞. (4.104)

Hence, by combining this with the continuity of f and (4.103), Lemma 4.1.7 yields that
there exists α ∈ K∞ such that

α(‖ξ‖) ≤ −〈ξ, f̃(ξ)〉
‖ξ‖

∀ ξ ∈ Rm\{0}.

Therefore, by combining this with (4.104), Theorem 4.2.9 yields the existence of ψ ∈ KL
and φ ∈ K such that (4.35) holds, but for each element of Bf̃ instead of B. In particular,
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for all (v, w, x, y) ∈ B and all t ∈ Z+, by using the left-shift invariance of Bf̃ and that
(ṽ, w̃, x̃, ỹ) ∈ Bf̃ ,

‖x(t)− x∞‖ = ‖(Λbt/2cx)(dt/2e)− x∞‖

≤ ψ (‖x(bt/2c)− x∞‖ , dt/2e) + φ

(
max
s∈dt/2e

∥∥∥∥( Λbt/2cv(s)− v∞
Λbt/2cw(s)− w∞

)∥∥∥∥
)
.

If we then take another ISS estimate of the term ‖x(bt/2c)−x∞‖ in the above inequality,
we obtain, for all (v, w, x, y) ∈ B and all t ∈ Z+,

‖x(t)− x∞‖ ≤ψ

(
ψ(‖x(0)− x∞‖, bt/2c) + φ

(
max
s∈bt/2c

∥∥∥∥( v(s)− v∞
w(s)− w∞

)∥∥∥∥
)
, dt/2e

)

+ φ

(
max
s∈dt/2e

∥∥∥∥( Λbt/2cv(s)− v∞
Λbt/2cw(s)− w∞

)∥∥∥∥
)
.

We now set ψ1(s, t) := ψ (2ψ(s, bt/2c), dt/2e) and ψ2(s, t) := ψ (2φ(s), dt/2e) , to yield,
for all (v, w, x, y) ∈ B and all t ∈ Z+, that (4.102) holds, thus completing the proof.

The following theorem is the second main result of this section.

Theorem 4.3.14. Let Σ ∈ L and f : Rm → Rm. Assume that there exists a posi-
tive definite P = P T ∈ Rn×n such that (4.73) holds. Furthermore, assume that f is
continuous and dissipative. Then statements (i)-(iii) of Theorem 4.3.12 hold.

Before proving Theorem 4.3.14, we give the following remark.

Remark 4.3.15. (i) Similar to Theorem 4.2.12, the strength of (4.73) holding for
some positive definite matrix P ∈ Rn×n, means that weaker assumptions may be
imposed on the nonlinearity than that seen in Theorem 4.3.12.

(ii) In the case where m = 1, the assumptions concerning f in Theorem 4.3.14 are
simply that f is continuous and decreasing.

(iii) We highlight that we do not need to assume that 1 /∈ σ(A) in Theorem 4.3.14
(as we do in Theorem 4.3.12), since the existence of a positive definite P =
P T ∈ Rn×n such that (4.73) holds, implies that A is Schur (see Lemma 4.1.8 and
Remark 4.2.13). ♦

Proof of Theorem 4.3.14. We begin with an application of Lemma 4.3.11 to obtain
that G(1) + G(1)T > 0. We subsequently invoke statement (i) and statement (ii) of
Lemma 4.3.7 to obtain that the map ξ 7→ ξ −G(1)f(ξ) is bijective. The rest of the
proof concerns showing that, for all v∞ ∈ Rq and all w∞ ∈ Rm, (v∞, w∞, x∞, y∞) is
an equilibrium quadruple of (2.17), and to then invoke Theorem 4.2.12 twice to obtain
the correct estimates. Since this is very similar to the proof Theorem 4.3.12, we shall
omit it and leave it to the reader to verify.

We now present four corollaries of the previous two theorems. The first two succinctly
express assumptions that are sufficient for guaranteeing that (2.17) exhibits the CICS
property, and are immediately obtained from Theorem 4.3.12 and Theorem 4.3.14,
respectively.
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Corollary 4.3.16. Let Σ ∈ L and f : Rm → Rm. Assume that Σ is detectable,
1 /∈ σ(A) and that there exists a positive semi-definite P = P T ∈ Rn×n such that (4.38)
holds. Furthermore, assume that f is continuous and strictly dissipative, and that there
exists η ∈ Rm such that (4.79) holds. Then (2.17) has the CICS property.

Corollary 4.3.17. Let Σ ∈ L and f : Rm → Rm. Assume that there exists a posi-
tive definite P = P T ∈ Rn×n such that (4.73) holds. Furthermore, assume that f is
continuous and dissipative. Then (2.17) has the CICS property.

The third and fourth corollaries give assumptions in the form of positive and strict
positive real conditions, that assert that (2.17) exhibits the CICS property. The next
result is immediately obtained from a combination of Corollary 4.3.16 with Lemma
4.1.15, and the final corollary can be obtained via a combination of Corollary 4.3.17
with Lemma 4.1.20 (see the proof of Corollary 4.2.19 for details on how to prove this).

Corollary 4.3.18. Let Σ ∈ L and let f : Rm → Rm. Assume that 1 /∈ σ(A), G is
positive real and that either: (i) Σ is controllable and observable, or; (ii) Σ is stabilisable
and detectable and there exists η ∈ ∂D, not a pole of G, such that G(η) + G(η)∗ > 0.
Furthermore, assume that f : Rm → Rm is continuous and strictly dissipative, and that
there exists η ∈ Rm such that (4.79) holds. Then (2.17) has the CICS property.

Corollary 4.3.19. Let Σ ∈ L and f : Rm → Rm. Assume that Σ is controllable and
observable, G is strictly positive real, and D+DT > 0. Furthermore, assume that f is
continuous and dissipative. Then (2.17) has the CICS property.

We conclude this section with two examples.

Example 4.3.20. Let n = m = 2. Consider (2.17) with linear part given as in Example
4.2.8, that is,

A =
1

2

(
1 0
0 1

)
, B = Be = C = D = De =

(
1 0
0 0

)
,

and nonlinearity given by

f(ξ) := c− ‖ξ‖2ξ ∀ ξ ∈ Rm,

where c ∈ Rm. Example 4.2.8 showed that there exists a positive semi-definite matrix
P ∈ R2×2 such that (4.38) holds. In order to show that f satisfies the relevant as-
sumptions of Corollary 4.3.16, from Corollary 4.3.8, we see that it is sufficient to show
that g : Rm → Rm, defined by g(ξ) := −‖ξ‖2ξ for all ξ ∈ Rm, is continuous, strictly
dissipative and satisfies (4.92), (4.93) and g(0) = 0, which we do so now. Indeed, g
is trivially continuous, zero at zero and satisfies (4.92). Moreover, a combination of
Example 4.2.6 and Example 4.2.11 yields that (4.93) holds. Therefore, all that is left
to show is that g is strictly dissipative. To prove this, let ξ, ζ ∈ Rm with ξ 6= 0. We
shall assume that ζ 6= −ξ and ζ 6= 0, since otherwise,

−〈ξ, g(ξ + ζ)− g(ζ)〉 = ‖ξ‖4 > 0.

With this in mind, note that

−〈ξ, g(ξ + ζ)− g(ζ)〉 = −
〈
ξ,−‖ξ + ζ‖2(ξ + ζ) + ‖ζ‖2ζ

〉
= ‖ξ + ζ‖2‖ξ‖2 +

(
‖ξ + ζ‖2 − ‖ζ‖2

)
〈ξ, ζ〉, (4.105)
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and consider the following cases. For the first case, assume that ‖ξ + ζ‖2 − ‖ζ‖2 < 0.
This then implies that

0 > ‖ξ + ζ‖2 − ‖ζ‖2 = ‖ξ‖2 + 2〈ξ, ζ〉,

which in turn implies that 〈ξ, ζ〉 < 0. Combining this with (4.105) yields that

−〈ξ, g(ξ + ζ)− g(ζ)〉 > 0.

For the second case, assume that ‖ξ + ζ‖2 − ‖ζ‖2 ≥ 0. Now, if 〈ξ, ζ〉 ≥ 0, then (4.105)
gives that

−〈ξ, g(ξ + ζ)− g(ζ)〉 ≥ ‖ξ + ζ‖2‖ξ‖2 > 0,

where we have utilised that ξ 6= 0 and ξ 6= −ζ. Finally, if 〈ξ, ζ〉 < 0, then since
‖ξ + ζ‖2 − ‖ζ‖2 ≥ 0, we have that

‖ξ‖2 + 〈ξ, ζ〉 > ‖ξ‖2 + 2〈ξ, ζ〉 = ‖ξ + ζ‖2 − ‖ζ‖2 ≥ 0

which in turn, by (4.105), yields that

−〈ξ, g(ξ + ζ)− g(ζ)〉 ≥ ‖ξ + ζ‖2
(
‖ξ‖2 + 〈ξ, ζ〉

)
− ‖ζ‖2〈ξ, ζ〉 > 0,

where we have used that ζ 6= 0. We have hence shown that −〈ξ, g(ξ + ζ) − g(ζ)〉 > 0
for all ζ, ξ ∈ Rm with ξ 6= 0, i.e. that g is strictly dissipative. Therefore, f satisfies
the relevant assumptions of Corollary 4.3.16 and so we obtain that (2.17) exhibits the
CICS property. ♦

Example 4.3.21. Let n = 2 and m = 1. Consider (2.17) with linear part described in
Example 4.2.15, that is,

A =

(
−1

2 0
0 0

)
, B =

(
−1
0

)
, C =

(
1 0

)
, D = 2,

and Be and De are arbitrary. Moreover, we take the nonlinearity f to be given by

f(ξ) = c+

{
−sign(ξ)

√
|ξ|, if |ξ| ≤ 1

−sign(ξ), if |ξ| > 1.

where c ∈ R is a constant. In Example 4.2.15, it was shown that (4.73) holds for
some positive definite matrix P ∈ R2×2. Furthermore, it is easy to see that f is
continuous and dissipative. Therefore, Corollary 4.3.17 guarantees that (2.17) has
the CICS property. Additionally, we highlight that f does not satisfy the relevant
assumptions of Corollary 4.3.16. ♦

4.4 Notes and references

We reiterate that the paper [7] served as motivation for Section 4.2, and indeed the
chapter as a whole. To the best of the author’s knowledge, there is no discrete-time
version of [7] in the literature and so our investigation is well-justified. Furthermore,
again to the best of the author’s knowledge, the convergence results of Section 4.3, which
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are applicable to forced Lur’e systems with potentially superlinear nonlinearities, are
not found elsewhere.

In Section 4.1.3, we presented a strict positive real lemma that we obtained from
[51, Lemma 4.2]. We note that a similar result in the literature is [119, Theorem
3.7]. Indeed, in [119, Theorem 3.7], sufficient conditions are given for the existence of a
positive definite matrix P and matrices R and W such that (4.33) holds. We did not use
[119, Theorem 3.7] in this chapter since the result does not guarantee that W is positive
definite, which is a property we heavily made use of in subsequent applications. We
also recall statement (ii) of Lemma 4.1.15, which is a form of the positive real lemma for
potentially nonminimal realisations. A noteworthy lemma from the literature is [127,
Lemma 6]. The result is what the authors call a “generalized discrete-time positive
real lemma”, since it holds for nonminimal realisations. The equations derived involve
the corresponding reachability matrix. For further reading of positive realness in the
discrete-time setting, we refer the reader to the additional sources [51, 54, 68, 125].

Recall Corollary 4.2.19 which presents conditions, in terms of strict positive realness
on the transfer function, that guarantee that (2.17) is ISS. A relevant result found in
the literature is [51, Theorem 4.1], where the same assumptions are used to conclude
asymptotic stability of (2.17). We highlight that this assertion is significantly weaker
than ISS, hence showing the strength of Corollary 4.2.19.

We make note that continuous-time analogues of Theorem 4.2.9 and Theorem 4.2.12
are also possible to obtain, thus furthering the work of [7] to systems which have
output disturbances, feedthrough, and inputs entering the system externally to the
linear system. Moreover, in a similar manner to that already done, one may also
develop continuous-time analogues of the convergence results found in Section 4.3. In
the interest of brevity, we do not provide these and instead leave them to the reader
to formulate.
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Infinite-dimensional Lur’e
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Chapter 5

Stability and convergence
properties of infinite-dimensional
discrete-time Lur’e systems

In this chapter, we investigate stability and convergence properties of forced infinite-
dimensional, discrete-time Lur’e systems. In particular, we derive conditions that guar-
antee that such systems, which are infinite-dimensional versions of those described by
(2.17), are exponentially incrementally ISS, exhibit the CICS property, and produce
asymptotically almost periodic state trajectories when under asymptotically almost
periodic forcing. We note that ISS, CICS, incremental stability and almost periodic
functions, have already been discussed in this thesis and so, in the interest of not re-
peating ourselves, we refer the reader to the introduction for a review of the relevant
background literature. This chapter is based on the paper [40].

The chapter is structured as follows. We begin in Section 5.1 by giving theory con-
cerning linear, infinite-dimensional difference equations and by introducing the Lur’e
system of our current focus. We then utilise these preliminaries to obtain the main
stability results of this chapter, which are presented in Section 5.2. Indeed, we provide
sufficient conditions for when the aforementioned systems are exponentially incremen-
tally ISS, and then give a series of corollaries with assumptions that are reminiscent
of classical absolute stability hypotheses, namely the well-known circle criterion (see,
for example, [53]). Following this, in Section 5.3, we investigate certain convergence
properties of these infinite-dimensional Lur’e systems. Finally, in Sections 5.4 and 5.5,
we present applications of our work by using the previous results to deduce stability
and convergence properties of four-block Lur’e systems (see, for example, [40, 47] or
Section 2.4) and sampled-data systems (see, for example, [73, 75]), respectively.

Throughout this chapter, we let X and V be complex Banach spaces and Y and U be
complex Hilbert spaces. Moreover, we assume that the norm on the cartesian product
of two normed spaces W1 and W2 is given by

∥∥∥∥(ξζ
)∥∥∥∥

W1×W2

:=
√
‖ξ‖2W1

+ ‖ζ‖2W2
∀ ξ ∈W1, ∀ ζ ∈W2. (5.1)
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5.1 Preliminaries

We split this initial section into four, and begin with a short presentation of exponential
stability of bounded linear operators. Following this, we then give theory regarding
infinite-dimensional linear difference equations, and, in particular, investigate linear
output feedback. Subsequently, we discuss convolution operators and causality, which
culminates in determining a result that is of key importance to the main results of this
chapter (see Theorem 5.2.5). Finally, we give the forced infinite-dimensional discrete-
time Lur’e system which will be the focus of our stability investigations in later sections.

5.1.1 Exponential stability, stabilisability and detectability

We begin by recalling the following definitions.

Definition 5.1.1. Let A ∈ L(X).

(i) We say that A is exponentially stable if there exist M ≥ 1 and µ ∈ (0, 1) such
that

‖Ai‖ ≤Mµi ∀ i ∈ Z+. (5.2)

(ii) We define the exponential growth constant of A as the infimum of all µ > 0 that
satisfy (5.2), for some M ≥ 1.

The following lemma comprises two results from the literature regarding the exponential
stability of bounded linear operators. Indeed, statement (i) is a direct consequence of
[72, Lemma 1] and statement (ii) can be found in, for example, [97, Theorem 18.9, p.
360].

Lemma 5.1.2. Let A ∈ L(X) and denote the spectral radius of A by ρ(A). The
following statements hold.

(i) A is exponentially stable if, and only if, ρ(A) < 1.

(ii) ρ(A) = limk→∞ ‖Ak‖1/k.

Remark 5.1.3. As a consequence of the previous result, A ∈ L(X) is exponentially
stable if, and only if, its spectrum is contained in D. Moreover, we also see that the
spectral radius of A is precisely the exponential growth constant of A. ♦

We now define the notion of exponential stabilisability and exponential detectability.

Definition 5.1.4. (i) We say that (A,B) ∈ L(X) × L(U,X) is exponentially sta-
bilisable if there exists F ∈ B(X,U) such that A + BF is exponentially stable.

(ii) We say that (A,C) ∈ L(X)× L(X,Y ) is exponentially detectable if there exists
H ∈ B(Y,X) such that A+HC is exponentially stable.

Remark 5.1.5. We comment that, for the most part, we will omit the word “expo-
nential” and shall simply say that a pair of operators is stabilisable or detectable. ♦

We conclude this initial subsection with the following useful, well-known result, the
proof of which is straightforward and is thus omitted.

Lemma 5.1.6. Let A ∈ L(X). If A is exponentially stable, then I −A is bijective and
its inverse is given by

(I −A)−1 =
∞∑
j=0

Aj .
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5.1.2 Linear systems theory and linear output feedback

Our attention now turns to the theory of infinite-dimensional linear controlled and
observed difference equations. This work will underpin our development of the rest of
this chapter. We shall consider

x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

}
(5.3)

where (A,B,Be, C,D,De) ∈ L(X)×L(U,X)×L(V,X)×L(X,Y )×L(U, Y )×L(V, Y ),
u ∈ UZ+ and v ∈ V Z+ . The variables x and y in (5.3) are called the state and output,
respectively, and u and v are inputs. Occasionally, it will be convenient to identify
the linear system (5.3) and the sextuple (A,B,Be, C,D,De) and to refer to the linear
system (A,B,Be, C,D,De).

Remark 5.1.7. In the case that X = Rn, U = Rm, Y = Rp and V = Rq, where
n,m, p, q ∈ N, (5.3) is precisely the finite-dimensional controlled and observed linear
difference equation given by (2.6). ♦

We now make a series of definitions and give several results regarding (5.3). Many of
these definitions and results can be considered to be infinite-dimensional versions of
those laid out in Section 2.1.2. We shall therefore be brief here and only go into detail
where the infinite-dimensionality is important. The notation we use here should not
be confused with its finite-dimensional counterparts seen previously in this thesis.

Definition 5.1.8. (i) We define

L := L(X)× L(U,X)× L(V,X)× L(X,Y )× L(U, Y )× L(V, Y ).

(ii) For (A,B,Be, C,D,De) ∈ L, we define

Σ := (A,B,Be, C,D,De).

Remark 5.1.9. For Σ ∈ L, (5.3) encompasses many (seemingly more general) systems.
Indeed, we refer the reader to Remark 2.1.10 where we discussed this in the finite-
dimensional setting. The idea there applies here also. ♦

We also record the following definitions associated with (5.3).

Definition 5.1.10. Let Σ ∈ L.

(i) We denote by G the transfer function of (5.3) from u to y, that is,

G(z) = C(zI −A)−1B +D,

for all z ∈ C for which this makes sense.

(ii) We say that Σ is exponentially stable if A is, stabilisable if (A,B) is, and de-
tectable if (A,C) is.
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(iii) We define the behaviour of (5.3) as

Blin(Σ) :=
{

(u, v, x, y) ∈ UZ+ × V Z+ ×XZ+ × Y Z+ : (u, v, x, y) satisfies (5.3)
}
,

and, when the context is clear, we will suppress this to just Blin.

The following lemma is [72, Theorem 2], which we present here for completeness.

Lemma 5.1.11. Let Σ ∈ L. Then Σ is exponentially stable if, and only if, Σ is
stabilisable and detectable and G ∈ H∞(L(U, Y )).

The next result shows that the transfer function of (5.3) is always bounded and holo-
morphic on the exterior of any open disc in C centred at 0 with radius greater than
the exponential growth constant of A.

Lemma 5.1.12. Let Σ ∈ L and let µ be the exponential growth constant of A. Then

G ∈ H∞α (L(U, Y )) ∀α > µ.

Whilst Lemma 5.1.12 is a known result, we include a proof here since one in the
literature is difficult to locate.

Proof of Lemma 5.1.12. Let α > µ and note that µ/α ∈ (0, 1). Hence, A/α is expo-
nentially stable and so, by using Lemma 5.1.11, we obtain that Gα ∈ H∞(L(U, Y )),
where Gα denotes the transfer function of the system with linear component given by
(A/α,B,Be, C, αD,De). We may write Gα as

Gα(z) = αC(αzI −A)−1B + αD = αG(αz) ∀ z ∈ E,

which thus gives that

sup
z∈Eα

G(z) = sup
z∈Eα

1

α
Gα

( z
α

)
= sup

z∈E

1

α
Gα(z).

Therefore, G ∈ H∞α (L(U, Y )), hence completing the proof.

For the rest of this subsection, we will discuss linear output feedback of the linear
system (5.3). The process is often termed “loop shifting” (see, for example, [44]). For
motivation, we refer the reader to Section 2.1.2, where this is discussed in the finite-
dimensional setting. The idea of loop-shifting shown there, applies here also. With
this motivation in mind, we now give a series of definitions and results. As previously
mentioned, for brevity, we shall only explicitly prove the results that are inherently
different from the results given in the finite-dimensional setting in Section 2.1.2.

Definition 5.1.13. Let Σ ∈ L. We define the set of admissible feedback operators by

A(D) := {L ∈ L(Y,U) : I −DL is invertible}.

The following result gives a characterisation of the definition of admissibility. We shall
not prove it here, since an inspection of the proof of Lemma 2.1.15 shows that it also
applies in the infinite-dimensional setting.
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Lemma 5.1.14. Let Σ ∈ L. For L ∈ L(Y,U), I − DL is invertible if, and only if,
I − LD is invertible. Moreover,

L(I −DL)−1 = (I − LD)−1L ∀L ∈ A(D).

We now define feedback operators associated with the linear components of (5.3).

Definition 5.1.15. Let Σ ∈ L and L ∈ A(D). We define the quadruple of feedback
operators

AL := A+BL(I −DL)−1C, BL := B +BL(I −DL)−1D,

CL := (I −DL)−1C, DL := (I −DL)−1D.

Remark 5.1.16. For Σ ∈ L and L ∈ A(D), it can easily be shown, by use of Lemma
5.1.14, that

BL = B(I − LD)−1. (5.4)
♦

The following lemma gives relations between systems once loop shifting has occured.
We omit the proof of the result, since the argument is the same as that given in the
proof of Lemma 2.1.18.

Lemma 5.1.17. Let Σ ∈ L and L ∈ A(D). Then (u, v, x, y) is in Blin if, and only if,
(u, v, x, y) satisfies

x+ = ALx+BL(u− Ly) + (Be +BLLDe)v ,

y = CLx+DL(u− Ly) + (I −DL)−1Dev .

}
(5.5)

We shall now give the final definitions of this subsection.

Definition 5.1.18. Let Σ ∈ L and L ∈ A(D).

(i) We denote the linear components of the system given by (5.5) by ΣL, that is,

ΣL := (AL, BL, Be +BLLDe, C
L, DL, (I −DL)−1De).

(ii) We denote by GL the transfer function of the system given by ΣL, that is,

GL(z) = CL(zI −AL)−1BL +DL.

We may express GL as GL = G(I − LG)−1.

(iii) We define the set of stabilising feedback operators by

S(G) :=
{
M ∈ A(D) : GM ∈ H∞(L(U, Y ))

}
.

The next result highlights an associativity condition for admissible feedback operators.
Once again, we shall not prove the result since it can be done so identically, mutatis
mutandis, to the proof of Lemma 2.1.20.

Lemma 5.1.19. Let Σ ∈ L and L ∈ A(D). For M ∈ L(Y,U), it follows that M ∈
A(DL) if, and only if, L+M ∈ A(D), and in which case,

ΣL+M = (ΣL)M and (GL)M = GL+M .
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In the following, we see that applying feedback operators preserves stabilisability and
detectability.

Lemma 5.1.20. Let Σ ∈ L and L ∈ A(D). The following statements hold.

(i) Σ is stabilisable if, and only if, ΣL is stabilisable.

(ii) Σ is detectable if, and only if, ΣL is detectable.

The proof is straightforward and so we leave it to the reader to verify.

We now provide a state-space characterisation of the set of stabilising output feedback
operators for stablisable and detectable systems.

Lemma 5.1.21. Let Σ ∈ L. If Σ is stabilisable and detectable, then

S(G) =
{
L ∈ A(D) : σ(AL) ⊆ D

}
.

Proof. Let L ∈ A(D). If σ(AL) ⊆ D, then Lemma 5.1.2 implies that AL is exponentially
stable. By combining this with Lemma 5.1.11, we yield that GL ∈ H∞(L(U, Y )),
or that L ∈ S(G). Now assume that L ∈ S(G). We begin with an application of
Lemma 5.1.20 to obtain that ΣL is stabilisable and detectable. Hence, from Lemma
5.1.11, we see that AL is exponentially stable, or, equivalently (see Lemma 5.1.2), that
σ(AL) ⊆ D.

The final result that we present here is the following, and is given in the continuous-time
setting in [46, Proposition 5.6].

Lemma 5.1.22. Let Σ ∈ L, L ∈ L(Y,U) and r > 0. Then

B(L, r) ⊆ S(G) ⇐⇒ ‖GL‖H∞ ≤ 1/r.

A method similar to that used to prove [46, Proposition 5.6] may be applied to prove
Lemma 5.1.22. For clarity, we briefly provide such a proof.

Proof of Lemma 5.1.22. To begin with, let us assume that ‖GL‖H∞ ≤ 1/r. Let
K ∈ B(L, r) and define M := K − L, which has norm less than r. Consequently,
‖MGL‖H∞ < 1 which implies that I −MGL(z) is invertible for every z ∈ E ∪ {∞}.
In particular, M ∈ A(DL). We claim that M ∈ S(GL). To see this, note that

‖(I −MGL(z))−1‖ ≤ 1

1− ‖MGL(z)‖
≤ 1

1− ‖MGL‖H∞
∀ z ∈ E ∪ {∞}.

Hence, (GL)M = GL(I −MGL)−1 ∈ H∞(L(U, Y )), that is, M ∈ S(GL). A subse-
quent application of Lemma 5.1.19 then yields that K ∈ A(D) and GK = (GL)M ∈
H∞(L(U, Y )). We have therefore shown that K ∈ S(G), which completes the first part
of the proof.
As for the converse, let us now assume that B(L, r) ⊆ S(G). Seeking a contradic-
tion, suppose that ‖GL‖H∞ > 1/r. This then implies the existence of z0 ∈ E such
that ‖GL(z0)‖ > 1/r. Acting in the same manner as that done in the proof of [46,
Proposition 5.6], we let (uj)j∈N ⊆ U be such that ‖uj‖U = 1 for all j ∈ N and
‖GL(z0)uj‖Y → ‖GL(z0)‖ as j →∞. We also define

vj :=
1

‖GL(z0)uj‖Y
GL(z0)uj ∈ Y ∀ j ∈ N,
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and Kj : Y → U by

Kjξ :=
〈ξ, vj〉Y

‖GL(z0)uj‖Y
uj ∀ ξ ∈ Y, ∀ j ∈ N.

It is easy to verify that ‖Kj‖ = 1/‖GL(z0)uj‖Y → 1/‖GL(z0)‖ < r as j → ∞.
Moreover, it is also easy to check that (I−KjG

L(z0))uj = 0 for all j ∈ N. Therefore, for
j large enough, we have that Kj ∈ B(0, r) and Kj /∈ S(GL). However, for all j ∈ N large
enough, by setting Mj := Kj + L, it is easily seen that Mj ∈ B(L, r) ⊆ S(G). Hence,
again from Lemma 5.1.19, (GL)Kj = GMj ∈ H∞(L(U, Y ) for all j ∈ N sufficiently
large, which yields the desired contradiction. We thus have that ‖GL‖H∞ ≤ 1/r and
the proof is complete.

Remark 5.1.23. We note that Lemma 5.1.22 shows that S(G) is open. Indeed, for
every element L in S(G), either: ‖GL‖H∞ = 0, in which case G = 0 and so S(G) =
B(Y,U); or, ‖GL‖H∞ 6= 0 and the ball of radius 1/‖GL‖H∞ centred at L is contained
in S(G). ♦

5.1.3 The impulse response and convolution operator

We now discuss convolution operators and causality. We also define what we mean by
an impulse response and present a preliminary result which, as previously mentioned,
will be key in order to prove the main results of this chapter. With the definition of
the truncation of a sequence given in the notation section in mind, we begin by giving
the following definition.

Definition 5.1.24. Let F : UZ+ → Y Z+.

(i) We say that F is causal if F is linear and πtF = πtFπt for every t ∈ Z+.

(ii) We say that F is a convolution operator if there exists V : Z+ → L(U, Y ) such
that F(u) = V ∗ u for all u ∈ UZ+, where

(V ∗ u)(t) :=
t∑

j=0

V(t− j)u(j) ∀u ∈ UZ+ , ∀ t ∈ Z+.

The following lemma asserts that all convolution operators are causal.

Lemma 5.1.25. If F : UZ+ → Y Z+ is a convolution operator, then F is causal.

Whilst Lemma 5.1.25 is a generally known result, it is difficult to find an explicit
reference. We hence provide a proof in order to preserve completeness.

Proof of Lemma 5.1.25. Let V : Z+ → L(U, Y ) be such that F(·) = V ∗ ·. The linearity
of F follows from the linearity of V(t) for all t ∈ Z+. Hence, to prove the result it
suffices to show that πτF = πτFπτ for every τ ∈ Z+. To see this, let τ, t ∈ Z+ and
u ∈ UZ+ be arbitrary. We note that if t > τ , then

(πτ (F(πτu))) (t) = 0 = (πτ (Fu)) (t).
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Moreover, if t ≤ τ , then

(πτ (F(πτu))) (t) = (F(πτu)) (t)

=
t∑

j=0

V(t− j)(πτu)(j)

=

t∑
j=0

V(t− j)u(j)

= (Fu) (t)

= (πτ (Fu)) (t),

which therefore completes the proof.

We now define the impulse response and convolution operator associated with (5.3).

Definition 5.1.26. Let Σ ∈ L.

(i) We denote the impulse response of (5.3) (or of Σ) by G : Z+ → L(U, Y ), that is,

G(t) :=

{
D, if t = 0,

CAt−1B, if t ∈ N.

(ii) We define the convolution operator corresponding to (5.3) (or of Σ) as

H : UZ+ → Y Z+ , H(u) := G ∗ u ∀u ∈ UZ+ .

The following lemma asserts that the H∞-norm of a transfer function is equal to the `2-
induced operator norm of the associated convolution operator. The result is well-known
in the literature (see, for example, [23, 96]) and so we shall not provide a proof.

Lemma 5.1.27. Let Σ ∈ L be exponentially stable. Then the restriction of H to
`2(Z+, U) is in L(`2(Z+, U), `2(Z+, Y )) and ‖H‖2,2 = ‖G‖H∞, where we denote by
‖ · ‖2,2 the `2-induced operator norm.

The next lemma is the aforementioned key result of this section, underpinning future
development.

Lemma 5.1.28. Let Σ ∈ L be exponentially stable. Then, there exist c1, c2, c3 > 0
such that, for every (u, v, x, y) ∈ Blin,

‖πtx‖`2 ≤ c1‖x(0)‖X + c2‖πt−1u‖`2 + c3‖πt−1v‖`2 ∀ t ∈ N , (5.6)

and

‖πty‖`2 ≤ c1‖x(0)‖X + ‖G‖H∞‖πtu‖`2 + c3 ‖πtv‖`2 ∀ t ∈ Z+. (5.7)

Proof. Let (u, v, x, y) ∈ Blin. To begin with, we note that y(0) = Cx(0)+Du(0)+Dev(0)
and

y(t) = CAtx(0) +

t−1∑
k=0

CAt−1−k (Bu(k) +Bev(k)) +Du(t) +Dev(t) ∀ t ∈ N.
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By denoting the impulse response of the system with B = Be and D = De by Ge (see
Definition 5.1.26), we thus see that, for all t ∈ N,

y(t) = CAtx(0) +
t−1∑
k=0

G(t− k)u(k) +Du(t) +
t−1∑
k=0

Ge(t− k)v(k) +Dev(t)

= CAtx(0) +

t∑
k=0

G(t− k)u(k) +

t∑
k=0

Ge(t− k)v(k). (5.8)

By further denoting the corresponding convolution operator to Ge by He (see again
Definition 5.1.26), and by defining g ∈ Y Z+ by

g(t) := CAtx(0) ∀ t ∈ Z+,

we see that (5.8) implies

y(t) = g(t) + (Hu)(t) + (Hev)(t) ∀ t ∈ Z+.

We now utilise Lemma 5.1.25, to yield that

πty = πtg + πtH(πtu) + πtHe(πtv) ∀ t ∈ Z+. (5.9)

To obtain (5.7), we make the following estimates. First, for all t ∈ Z+,

‖πtg‖`2 =

(
t∑

k=0

‖CAkx(0)‖2Y

) 1
2

≤ ‖C‖

( ∞∑
k=0

‖Ak‖2
) 1

2

‖x(0)‖X ≤ c1‖x(0)‖X ,

where c1 > 0 exists by the exponential stability of Σ. With this in mind, we take norms
of (5.9) to yield, for all t ∈ Z+,

‖πty‖`2 ≤ ‖πtg‖`2 + ‖πtH(πtu)‖`2 + ‖πtHe(πtv)‖`2
≤ c1‖x(0)‖X + ‖H(πtu)‖`2 + ‖He(πtv)‖`2
≤ c1‖x(0)‖X + ‖H‖2,2‖πtu‖`2 + c3‖πtv‖`2 ,

where c3 := ‖He‖2,2 and is finite by the exponential stability of Σ. We now utilise an
application of Lemma 5.1.27 to yield (5.7). In an entirely similar manner, one can easily
show that (5.6) holds. In the interest of avoiding repetition, we omit the details.

5.1.4 The Lur’e system and the initial-value problem

The nonlinear control systems considered in this chapter are given by the interconnec-
tion of (5.3) with the nonlinear feedback u = f(y + w) for some f : Y → U , where
w ∈ Y Z+ is an output disturbance (see Figure 5.1).
Namely, we study

x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

u = f(y + w) ,

 (5.10)

where Σ ∈ L, v ∈ V Z+ , w ∈ Y Z+ and f : Y → U .

For some commentary relevant to (5.10), we refer the reader to Remark 2.1.30.

We now proceed to give a series of definitions and preliminary results regarding (5.10).
To begin with, similar to the behaviour of (5.3), we define the behaviour of (5.10).
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Σ
u

yv

f
+ w

Figure 5.1: Block diagram of the feedback interconnection of (5.3) with u = f(y + w).

Definition 5.1.29. Let Σ ∈ L and f : Y → U . We define the behaviour of (5.10) as

Bf (Σ) :=
{

(v, w, x, y) ∈ V Z+ × Y Z+ ×XZ+ × Y Z+ : (v, w, x, y) satisfies (5.10)
}
,

and, when the context is clear, we will suppress this to just B.

The following lemma contains an important (although trivial to prove) property of (the
behaviour of) (5.10), which will be crucial throughout this chapter.

Lemma 5.1.30. Let Σ ∈ L and f : Y → U .

(v, w, x, y) ∈ B =⇒ (Λτv,Λτw,Λτx,Λτy) ∈ B ∀ τ ∈ Z+ .

The following definition explains what we mean when we talk about the initial-value
problem associated with (5.10).

Definition 5.1.31. Let Σ ∈ L and f : Y → U . Associated with (5.10) is the following
initial-value problem (IVP)

x+ = Ax+Bu+Bev , x(0) = x0 ∈ X ,

y = Cx+Du+Dev ,

u = f(y + w) ,

 (5.11)

where v ∈ V Z+, w ∈ Y Z+. For a given x0 ∈ X, v ∈ V Z+ and w ∈ Y Z+, we say that
(x, y) ∈ XZ+ × Y Z+ is a solution to the IVP (5.11) if x(0) = x0 and (v, w, x, y) ∈ B.

The next two results present sufficient conditions for when, given an initial condition
and inputs, solutions to the IVP (5.11) exist and when there is at most one solution.
We shall not provide a proof of these results, and shall instead refer the reader to the
proofs of Propositions 2.1.36 and 2.1.37. Although they are in the finite-dimensional
setting, that property is not utilised and so the proofs apply here also.

Proposition 5.1.32. Let Σ ∈ L, f : Y → U , x0 ∈ X, v ∈ V Z+ and w ∈ Y Z+. The
following statements hold.

(i) If the map I −Df is surjective, then there exists a solution to the IVP (5.11).

(ii) If the map I − Df is injective, then there is at most one solution to the IVP
(5.11).

Proposition 5.1.33. Let Σ ∈ L, f : Y → U , x0 ∈ X, v ∈ V Z+, w ∈ Y Z+ and
K ∈ A(D). The following statements hold.
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(i) If the map I −DK(f −K) is surjective, then there exists a solution to the IVP
(5.11).

(ii) If the map I −DK(f −K) is injective, then there is at most one solution to the
IVP (5.11).

We conclude this section by recalling Example 2.1.38. There, two systems are presented
(in the finite-dimensional setting) that satisfy that I − Df is not surjective and not
injective, respectively. In the first example, for certain initial conditions and inputs,
the corresponding IVP has no solutions. In the second illustration, again for certain
initial conditions and inputs, the IVP has more than one solution. This whence tells
us that the conclusions of statement (i) and (ii) of Proposition 5.1.32 need not hold if
the respective assumptions fail.

5.2 Input-to-state stability properties

This section concerns input-to-state stability properties of systems of the form (5.10).
In particular, we consider incremental stability notions (see, for example, [5, 47]). We
split the section in two, and begin in the first part by defining relevant stability notions
and by presenting the main incremental stability result (see Theorem 5.2.5) of this
chapter. In the latter part of this section, we give various corollaries of this result,
which have assumptions in terms of positive realness conditions.

5.2.1 Incremental input-to-state stability

In what follows, we shall abuse notation and, when the context is clear, consider an
element ξ of a vector space as a constant function mapping t 7→ ξ for all t ∈ Z+.

Definition 5.2.1. Let Σ ∈ L and f : Y → U .

(i) A quadruple (ve, we, xe, ye) ∈ V × Y ×X × Y is called an equilibrium quadruple
of (5.10) if (ve, we, xe, ye) ∈ B.

(ii) An equilibrium quadruple (ve, we, xe, ye) is said to be exponentially input-to-state
stable (ISS) if there exist c > 0 and a ∈ (0, 1) such that, for all (v, w, x, y) ∈ B,

‖x(t)− xe‖X ≤ c

(
at‖x(0)− xe‖X + max

s∈t−1

∥∥∥∥(v(s)
w(s)

)
−
(
ve

we

)∥∥∥∥
V×Y

)
∀ t ∈ N.

(5.12)

(iii) An equilibrium quadruple (ve, we, xe, ye) is said to be exponentially input-to-
state/output stable (ISOS) if there exist c > 0 and a ∈ (0, 1) such that, for
all (v, w, x, y) ∈ B, (5.12) holds and

‖y(t)− ye‖Y ≤ c

(
at‖x(0)− xe‖X + max

s∈t

∥∥∥∥(v(s)
w(s)

)
−
(
ve

we

)∥∥∥∥
V×Y

)
∀ t ∈ Z+.

(iv) We say that (5.10) is exponentially ISS (respectively, ISOS) if (0, 0, 0, 0) is an
exponentially ISS (respectively, ISOS) equilibrium quadruple of (5.10).
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Remark 5.2.2. An interesting question is whether or not ISOS of (5.10) is a conse-
quence of ISS. Of course, in the case where the feedthrough is zero, ISOS is trivially
implied by ISS. The system given in Example 2.2.6 can be used here as an example
of a system which is ISS but not ISOS. This hence gives credence to the justification
of our investigation of output stability. Moreover, this justification is furthered by the
fact that the aforementioned example is in the finite-dimensional setting. ♦

We now continue with giving stability notions that are attached to (5.10).

Definition 5.2.3. Let Σ ∈ L, f : Y → U , and let S, S1, S2 be non-empty subsets of Y .

(i) We define the sub-behaviour of (5.10) on S by

BSf (Σ) := {(v, w, x, y) ∈ Bf (Σ) : y(t) + w(t) ∈ S ∀ t ∈ Z+} ,

and, when the context is clear, will suppress this to simply BS.

(ii) We say that (5.10) is exponentially incrementally input-to-state stable (δISS)
with respect to S1 and S2 if there exist c > 0 and a ∈ (0, 1) such that, for all
(v1, w1, x1, y1) ∈ BS1, all (v2, w2, x2, y2) ∈ BS2 and all t ∈ Z+,

‖x1(t)− x2(t)‖X ≤ c

(
at‖x1(0)− x2(0)‖X + max

s∈t−1

∥∥∥∥(v1(s)
w1(s)

)
−
(
v2(s)
w2(s)

)∥∥∥∥
V×Y

)
(5.13)

(iii) We say that (5.10) is exponentially incrementally input-to-state/output stable
(δISOS) with respect to S1 and S2 if there exist c > 0 and a ∈ (0, 1) such that,
for all (v1, w1, x1, y1) ∈ BS1, all (v2, w2, x2, y2) ∈ BS2 and all t ∈ Z+, (5.13) holds
and

‖y1(t)− y2(t)‖Y ≤ c

(
at‖x1(0)− x2(0)‖X + max

s∈t

∥∥∥∥(v1(s)
w1(s)

)
−
(
v2(s)
w2(s)

)∥∥∥∥
V×Y

)

(iv) We say that (5.10) is exponentially δISS (respectively, δISOS) if S1 = S2 = Y in
statement (ii) (respectively, statement (iii)).

Remark 5.2.4. In the case that f(0) = 0, if (5.10) is δISS (respectively, δISOS) with
respect to S1 := Y and S2 := {0}, then, trivially, (5.10) is also ISS (respectively, ISOS).
Moreover, exponential δISOS with respect to S1 and S2 implies exponential δISS with
respect to the same sets. However, Example 2.2.6 (as discussed in Remark 5.2.2) shows
that the converse implication is false. ♦

By recalling the definition of a weighted `2-space given in the notation section of this
thesis, we are now ready to present the aforementioned main theorem of this chapter.

Theorem 5.2.5. Let Σ ∈ L be stabilisable and detectable, f : Y → U , and let S1, S2 ⊆
Y be non-empty. Assume that r > 0 and K ∈ L(Y, U) satisfy B(K, r) ⊆ S(G) and that
there exists δ ∈ (0, r) such that

‖f(ξ)− f(ζ)−K(ξ − ζ)‖U ≤ (r − δ)‖ξ − ζ‖Y ∀ ξ ∈ S1, ∀ ζ ∈ S2 . (5.14)

Then the following hold.
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(i) There exist constants a > 0, b > 0 and ω > 1 such that, for all (v1, w1, x1, y1) ∈
BS1 , (v2, w2, x2, y2) ∈ BS2 , and all ρ ∈ [1, ω],

‖πt(x1 − x2)‖`2ρ ≤ a

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt−1

(
v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)
∀ t ∈ N ,

(5.15)
and

‖πt(y1−y2)‖`2ρ ≤ b

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)
∀t ∈ Z+ . (5.16)

(ii) For q ∈ [2,∞], there exist constants c > 0, d > 0 and θ ∈ (0, 1) such that, for all
(v1, w1, x1, y1) ∈ BS1 and (v2, w2, x2, y2) ∈ BS2,

‖x1(t)− x2(t)‖X ≤ c
(
θt‖x1(0)− x2(0)‖X +

∥∥∥∥πt−1

(
v1 − v2

w1 − w2

)∥∥∥∥
`q

)
∀ t ∈ N ,

(5.17)
and

‖y1(t)− y2(t)‖Y ≤ d
(
θt‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`q

)
∀ t ∈ Z+ .

(5.18)
Here c and d depend on q, but θ does not.

Before proving Theorem 5.2.5, we note that, by taking q =∞, the following immediate
consequence of Theorem 5.2.5 holds.

Corollary 5.2.6. Under the assumptions of Theorem 5.2.5, the Lur’e system (5.10) is
exponentially δISOS with respect to S1 and S2. In particular, the following statements
hold.

(i) If (5.14) holds with S1 = S2 = Y , then (5.10) is exponentially δISOS.

(ii) If (ve, we, xe, ye) is an equilibrium quadruple of (5.10) and (5.14) holds with S1 =
Y and S2 = {ye + we}, then (ve, we, xe, ye) is an exponentially ISOS equilibrium
quadruple of (5.10).

Proof of Theorem 5.2.5. The proof uses a combination of small-gain and exponential
weighting arguments. Since Σ is stabilisable and detectable, it follows from Lemma
5.1.20 that ΣK is as well. Moreover, since GK ∈ H∞(L(U, Y )), an application of
Lemma 5.1.11 yields that AK is exponentially stable, with exponential growth constant
µ ∈ (0, 1). Let α ∈ (µ, 1). Lemma 5.1.12 gives that GK ∈ H∞α (L(U, Y )). Let us
consider GK on the closed annulus A := {z ∈ C : β ≤ |z| ≤ 1}, where β ∈ (α, 1).
Owing to the continuity of GK on Eα, GK is uniformly continuous on A. Thus, there
exists γ ∈ (0, 1− β) such that, for all z1, z2 ∈ A with |z1 − z2| < γ,

‖GK(z1)−GK(z2)‖ < 1

r − δ/2
− 1

r
.
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Since, from Lemma 5.1.22, ‖GK‖H∞ ≤ 1/r, the above inequality implies that, for all
z ∈ C with 1− γ < |z| ≤ 1,

‖GK(z)‖ ≤ ‖GK(z)−GK(z∗)‖+ ‖GK(z∗)‖

<
1

r − δ/2
− 1

r
+

1

r

=
1

r − δ/2
,

where z∗ = z/|z|. Here, we have used that, for such a z, z, z∗ ∈ A and |z − z∗| < γ.
Consequently, since ‖GK‖H∞ ≤ 1/r, for γ∗ ∈ (1− γ, 1) ,

sup
z∈Eγ∗

‖GK(z)‖ ≤ 1

r − δ/2
<

1

r − δ
. (5.19)

To prove statement (i), set ω := 1/γ∗ > 1 and let ρ ∈ [1, ω].We define H(z) := GK(z/ρ)
to obtain that, from (5.19),

‖H‖H∞ = sup
z∈E
‖H(z)‖ ≤ sup

z∈Eγ∗
‖GK(z)‖ < 1

r − δ
. (5.20)

By the choice of ρ, we have that

ρµ <
µ

1− γ
<
µ

β
< 1 ,

which implies that ρAK is exponentially stable.
Let (v1, w1, x1, y1) ∈ BS1 and (v2, w2, x2, y2) ∈ BS2 . By Lemma 5.1.17, it follows that,
for i ∈ {1, 2},

x+
i = AKxi +BK

(
f(yi + wi)−Kyi

)
+ (Be +BKKDe)vi ,

yi = CKxi +DK
(
f(yi + wi)−Kyi

)
+ (I −DK)−1Devi .

Forming the differences then gives

(x1 − x2)+ = AK(x1 − x2) +BK (f(y1 + w1)− f(y2 + w2)

−K(y1 + w1 − y2 − w2)) + η , (5.21)

and

y1 − y2 = CK(x1 − x2) +DK (f(y1 + w1)− f(y2 + w2)

−K(y1 + w1 − y2 − w2)) + ν , (5.22)

where

η := (Be +BKKDe)(v1 − v2) +BKK(w1 − w2) and

ν := (I −DK)−1De(v1 − v2) +DKK(w1 − w2) .

Now, by recalling (5.1) and that ρ ≤ ω, it is easy to check that there exists κ > 0 which
is independent of ρ, (v1, w1, x1, y1) and (v2, w2, x2, y2), and is such that∥∥∥∥(ρη(t)

ν(t)

)∥∥∥∥
X×Y

≤ κ
∥∥∥∥( (v1 − v2)(t)

(w1 − w2)(t)

)∥∥∥∥
V×Y

∀ t ∈ Z+ . (5.23)
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5.2. Input-to-state stability properties

By defining ũρ(t) = ρtũ(t) for all t ∈ Z+ and all sequences ũ, we see that (5.21)
and (5.22) yield

(x1 − x2)+
ρ = ρAK(x1 − x2)ρ + ρBKgρ + ρηρ ,

(y1 − y2)ρ = CK(x1 − x2)ρ +DKgρ + νρ ,

}
(5.24)

where

g(t) := f(y1(t) +w1(t))−f(y2(t) +w2(t))−K(y1(t) +w1(t)−y2(t)−w2(t)) ∀ t ∈ Z+ .

We thus obtain that the quadruple(
gρ,

(
ρηρ
νρ

)
, (x1 − x2)ρ, (y1 − y2)ρ

)
is in the behaviour of the linear system given by

(
ρAK , ρBK ,

(
I 0

)
, CK , DK ,

(
0 I

))
∈

L where V = X × Y . Therefore, since ρAK is exponentially stable, an application of
Lemma 5.1.28 to system (5.24) yields the existence of constants c1, c2, c3 (independent
of (v1, w1, x1, y1) and (v2, w2, x2, y2)) such that, for all t ∈ N,

‖πt(x1 − x2)ρ‖`2 ≤ c1‖(x1 − x2)(0)‖X + c2‖πt−1gρ‖`2 + c3

∥∥∥∥πt−1

(
ρηρ
νρ

)∥∥∥∥
`2
, (5.25)

and that, for all t ∈ Z+,

‖πt(y1 − y2)ρ‖`2 ≤ c1‖(x1 − x2)(0)‖X + ‖H‖H∞‖πtgρ‖`2 + c3

∥∥∥∥πt(ρηρνρ
)∥∥∥∥

`2
. (5.26)

Now, since AK is exponentially stable with exponential growth constant µ ∈ (0, 1) and
since ρ ≤ ω = 1/γ∗ where γ∗ ∈ (µ, 1), it is easy to check that c1, c2, and c3 are bounded
above by positive constants c4, c5, and c6, respectively, which are independent of ρ,
(v1, w1, x1, y1) and (v2, w2, x2, y2). With this in mind, we now use the previous two
estimates to prove that statement (i) holds. To this end, we first note that, by the
definition of g and assumption (5.14), we have, for all t ∈ Z+,

‖gρ(t)‖U = ρt‖f(y1(t) + w1(t))− f(y2(t) + w2(t))−K(y1(t) + w1(t)− y2(t)− w2(t))‖U
≤ (r − δ)ρt‖(y1 + w1 − y2 − w2)(t)‖Y
= (r − δ)‖(y1 + w1 − y2 − w2)ρ(t)‖Y ,

which in turn implies that

‖πtgρ‖`2 ≤ (r − δ)‖πt(y1 − y2)ρ‖`2 + (r − δ)‖πt(w1 − w2)ρ‖`2 ∀ t ∈ Z+ . (5.27)

Substituting (5.20), (5.23) and (5.27) into (5.26) and rearranging, subsequently yields

‖πt(y1 − y2)‖`2ρ = ‖πt(y1 − y2)ρ‖`2

≤ c7‖(x1 − x2)ρ(0)‖X + c8

∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2
∀ t ∈ Z+ , (5.28)

where

c7 :=
c4

1− (r − δ)‖H‖H∞
> 0, c8 :=

κc6 + (r − δ)‖H‖H∞
1− (r − δ)‖H‖H∞

> 0 .
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Inequality (5.16) now follows from (5.28) with b := max{c7, c8}. Similarly, by substi-
tuting (5.27) and (5.28) into (5.25), we see that, for all t ∈ N,

‖πt(x1 − x2)‖`2ρ = ‖πt(x1 − x2)ρ‖`2

≤ c4‖(x1 − x2)(0)‖X + c6

∥∥∥∥πt−1

(
ρηρ
νρ

)∥∥∥∥
`2

+ c5(r − δ) (‖πt−1(y1 − y2)ρ‖`2 + ‖πt−1(w1 − w2)ρ‖`2)

≤ c9‖(x1 − x2)(0)‖X + c10

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2
,

where c9 := c4 + c5(r − δ)c7 > 0 and c10 := c6κ + c5(r − δ)(c8 + 1) > 0. We now
set a := max{c9, c10} so that the above inequality gives (5.15). Since a and b are
independent of ρ, (v1, w1, x1, y1) and (v2, w2, x2, y2), we have thus proven statement (i).
We proceed to prove statement (ii). To this end, we let ρ ∈ (1, ω] and note that, since
ρAK is exponentially stable, we have that

c11 := sup
t∈Z+

‖(ρAK)t‖ <∞ .

Moreover, let (v1, w1, x1, y1) ∈ BS1 and (v2, w2, x2, y2) ∈ BS2 . By applying the variation-
of-parameters formula to (5.24), we see that

(x1 − x2)ρ(t) = (ρAK)t(x1 − x2)(0) +
t−1∑
k=0

(ρAK)t−1−kρBKgρ(k)

+

t−1∑
k=0

(ρAK)t−1−kρηρ(k) ∀ t ∈ N .

If we then apply the triangle inequality and Hölder’s inequality we yield, for all t ∈ N,

‖(x1 − x2)ρ(t)‖X ≤ c11‖(x1 − x2)(0)‖X + ‖ρBK‖
t−1∑
k=0

‖(ρAK)t−1−k‖‖gρ(k)‖U

+ ρ
t−1∑
k=0

‖(ρAK)t−1−k‖‖ηρ(k)‖U

≤ c11‖(x1 − x2)(0)‖X + ‖ρBK‖

(
t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1gρ‖`2

+ ρ

(
t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖`2 .

Substituting (5.27), and then (5.28) and (5.23), into the above estimate gives

‖(x1 − x2)ρ(t)‖X ≤ c11‖(x1 − x2)(0)‖X + ρ

(
t−1∑
k=0

‖(ρAK)k‖2
)1/2

‖πt−1ηρ‖`2

+ (r − δ)‖ρBK‖

(
t−1∑
k=0

‖(ρAK)k‖2
)1/2

(‖πt−1(y1 − y2)ρ‖`2 + ‖πt−1(w1 − w2)ρ‖`2)

≤ c12‖(x1 − x2)(0)‖X + c13

∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2
∀ t ∈ N, (5.29)
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where

c12 := c11 + c7(r − δ)‖ρBK‖

( ∞∑
k=0

‖(ρAK)k‖2
)1/2

,

and

c13 := κ

( ∞∑
k=0

‖(ρAK)k‖2
)1/2

+ (c8 + 1)(r − δ)‖ρBK‖

( ∞∑
k=0

‖(ρAK)k‖2
)1/2

.

We note that estimate (5.29) can be written as

‖(x1 − x2)(t)‖X ≤ c12ρ
−t‖(x1 − x2)(0)‖X + c13ρ

−t
∥∥∥∥πt−1

(
(v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2
∀ t ∈ N .

(5.30)
If q ∈ (2,∞), then there exists p ∈ (1,∞) such that 2/q + 1/p = 1. Whence, by using
Hölder’s inequality again, we see that∥∥∥∥πt( (v1 − v2)ρ

(w1 − w2)ρ

)∥∥∥∥2

`2
=

t∑
k=0

ρ2k

∥∥∥∥( (v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥2

V×Y

≤

(
t∑

k=0

ρ2kp

)1/p ∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥2

`q
∀ t ∈ Z+ ,

which then implies that∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥2

`2
=

(
ρ2p(t+1) − 1

ρ2p − 1

)1/p ∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥2

`q

≤ ρ2t

(
ρ2

(ρ2p − 1)1/p

)∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥2

`q
∀ t ∈ Z+ .

If q = 2, then since ρ > 1,∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2

=

(
t∑

k=0

ρ2k

∥∥∥∥( (v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥2

V×Y

)1/2

≤ ρt
∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2
∀ t ∈ Z+ .

Finally, if q =∞,∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2

=

(
t∑

k=0

ρ2k

∥∥∥∥( (v1 − v2)(k)
(w1 − w2)(k)

)∥∥∥∥2

V×Y

)1/2

≤

(
t∑

k=0

ρ2k

)1/2

max
s∈t

∥∥∥∥( (v1 − v2)(s)
(w1 − w2)(s)

)∥∥∥∥
V×Y

=

(
ρ2(t+1) − 1

ρ2 − 1

)1/2

max
s∈t

∥∥∥∥( (v1 − v2)(s)
(w1 − w2)(s)

)∥∥∥∥
V×Y

≤ ρt
(

ρ

(ρ2 − 1)1/2

)∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`∞

∀ t ∈ Z+ .
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Therefore, we have shown that for every q ∈ [2,∞], there exists a positive constant c14

(independent of (v1, w1, x1, y1) and (v2, w2, x2, y2)) such that∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`2
≤ ρtc14

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`q
∀ t ∈ Z+ ,

which, when substituted into (5.30), gives that, for any q ∈ [2,∞],

‖(x1 − x2)(t)‖X ≤ c12ρ
−t‖(x1 − x2)(0)‖X + c13ρ

−1c14

∥∥∥∥πt−1

(
v1 − v2

w1 − w2

)∥∥∥∥
`q

≤ c12ρ
−t‖(x1 − x2)(0)‖X + c13c14

∥∥∥∥πt−1

(
v1 − v2

w1 − w2

)∥∥∥∥
`q
∀ t ∈ N.

Setting c := max{c12, c13c14} and θ = ρ−1 then yields (5.17).
It remains to establish (5.18). To this end, we note that

‖DK‖ ≤ ‖GK‖H∞ ≤
1

r
<

1

r − δ
. (5.31)

Whence, appealing to (5.14) and (5.22),

‖(y1 − y2)(t)‖Y ≤‖CK‖‖(x1 − x2)(t)‖X
+ ‖DK‖(r − δ) (‖(y1 − y2)(t)‖Y + ‖(w1 − w2)(t)‖Y )

+ ‖ν(t)‖Y ∀ t ∈ Z+ . (5.32)

Define

d1 :=
1

1− (r − δ)‖DK‖
,

which is positive by (5.31). Substituting (5.17) into (5.32) and setting d2 := d1‖CK‖c
and d3 := d1

(
‖CK‖c+ κ+ (r − δ)‖DK‖

)
, we see that

‖(y1 − y2)(t)‖Y ≤ d2θ
t‖(x1 − x2)(0)‖X + d3

∥∥∥∥πt( (v1 − v2)ρ
(w1 − w2)ρ

)∥∥∥∥
`q
∀ t ∈ Z+ .

Finally, by setting d := max{d2, d3}, we complete the proof.

Remark 5.2.7. (i) By inspecting the above proof, we are able to see that Theo-
rem 5.2.5 holds true if X, Y , U and V are real spaces, provided that the complex
ball condition Bc(K, r) ⊆ Sc(G) holds, with Bc(K, r) := {M ∈ L(Yc, Uc) :
‖M −K‖ < r} and

Sc(G) := {M ∈ L(Yc, Uc) : I −DM is invertible and GM ∈ H∞(L(Uc, Yc))},

where Yc and Uc denote the complexifications of Y and U , respectively. The same
can be said of the rest of the results in the subsequent sections.

(ii) For later purposes, it will be useful to consider Theorem 5.2.5 in the (rather
degenerate) situation wherein G = 0. If G = 0, then GK = 0 for all K ∈ L(Y,U)
and by Lemma 5.1.22, it follows that B(K, r) ⊆ S(G) for all r > 0. Consequently,
in the case wherein G = 0, the conclusions of Theorem 5.2.5 hold, provided that
there exists K ∈ L(Y,U) such that

sup
(ξ,ζ)∈S1×S2, ξ 6=ζ

‖f(ξ)− f(ζ)−K(ξ − ζ)‖U
‖ξ − ζ‖Y

<∞. (5.33)
♦
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The following result is another consequence of Theorem 5.2.5, and will be especially
useful in Section 5.5 and Chapter 6.

Corollary 5.2.8. Let Σ ∈ L be stabilisable and detectable and f : Y → U . Assume
that r > 0 and K ∈ L(Y,U) satisfy B(K, r) ⊆ S(G) and that there exists δ ∈ (0, r)
such that

‖f(ξ)−Kξ‖U ≤ (r − δ)‖ξ‖Y ∀ ξ ∈ Y. (5.34)

Then the following statements hold.

(i) There exist constants a > 0, b > 0 and ω > 1 such that, for all (v, w, x, y) ∈ B
and ρ ∈ [1, ω],

‖πtx‖`2ρ ≤ a

(
‖x(0)‖X +

∥∥∥∥πt−1

(
v
w

)∥∥∥∥
`2ρ

)
∀ t ∈ N, (5.35)

and

‖πty‖`2ρ ≤ b

(
‖x(0)‖X +

∥∥∥∥πt(vw
)∥∥∥∥

`2ρ

)
∀ t ∈ Z+. (5.36)

(ii) For q ∈ [2,∞], there exist constants c > 0, d > 0 and θ ∈ (0, 1) such that, for all
(v, w, x, y) ∈ B,

‖x(t)‖X ≤ c
(
θt‖x(0)‖X +

∥∥∥∥πt−1

(
v
w

)∥∥∥∥
`q

)
∀ t ∈ N, (5.37)

and

‖y(t)‖Y ≤ d
(
θt‖x(0)‖X +

∥∥∥∥πt(vw
)∥∥∥∥

`q

)
∀ t ∈ Z+. (5.38)

Here c and d depend on q, but θ does not.

Proof. From (5.34), we obtain that f(0) = 0, which in turn implies that (0, 0, 0, 0) is
an equilibrium quadruple. By subsequently defining S1 := Y and S2 := {0}, we see
that (5.14) is satisfied. Therefore, since the rest of the hypotheses of Theorem 5.2.5
are also satisfied, we may apply the theorem to yield the result.

5.2.2 Positive real assumptions

We now present several corollaries to Theorem 5.2.5 which have assumptions in terms
of “positive realness”. We therefore begin by giving the following definition of a positive
real operator. We recall that, for a self-adjoint operator M ∈ L(U), we use the notation
M ≥ 0 to mean that 〈ξ,Mξ〉U ≥ 0 for all ξ ∈ U .

Definition 5.2.9. Let α ∈ (0, 1].

(i) We denote by H∗α(L(U, Y )) the set of functions H : Eα → L(U, Y ) that are
holomorphic on Eα, with the exception of isolated singularities, that is, poles and
essential singularities. We always assume that removable singularities have been
removed via holomorphic extension. For convenience, we set H∗(L(U, Y )) :=
H∗1 (L(U, Y )).
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(ii) For H ∈ H∗α(L(U)), we define ΣH ⊆ Eα to be the set of isolated singularities of
H. The function H is said to be positive real if

H(z) + H(z)∗ ≥ 0 ∀ z ∈ E\ΣH. (5.39)

Remark 5.2.10. We note that an equivalent statement to (5.39) is the assertion that

Re 〈H(z)u, u〉U ≥ 0 ∀u ∈ U, ∀ z ∈ E\ΣH . (5.40)

In the sequel, we will interchange between (5.39) and (5.40) depending on which is the
most useful representation in the current situation. ♦

Before coming to the aforementioned corollaries of Theorem 5.2.5, we first require the
use of two lemmas. The first lemma shows that if a function is positive real then it must
be holomorphic on E∪{∞}. The continuous-time analogue is given in [46, Proposition
3.3], however, there the region of analyticity does not include {∞}.

Lemma 5.2.11. Let H ∈ H∗(L(U)) be positive real. Then H does not have any
singularities in E ∪ {∞}.

Proof. We begin by showing that ΣH ∩ E = ∅. To do so, we act analogously to that
done in the proof of [46, Proposition 3.3]. To this end, we seek a contradiction and so
we suppose that ΣH ∩ E 6= ∅ and let z0 ∈ ΣH ∩ E. From this, we deduce the existence
of a punctured open disc ∆ := {z ∈ C : |z−z0| < ε, z 6= z0} centred at z0 and of radius
ε > 0 such that H has Laurent expansion

H(z) =
∞∑
−∞

Hj(z − z0)j ∀ z ∈ ∆,

where Hj ∈ L(U) for all j ∈ Z (see, for example, [43, 1.10.2, p.25]). For u ∈ U, we
define

Ju := {j > 0 : 〈H−ju, u〉U 6= 0}.

Let v ∈ U be such that Jv 6= ∅. Such a v ∈ U does exist, because otherwise [46, Lemma
2.1] would yield that H−j = 0 for every j > 1 and so z0 would not be a singularity,
thus yielding a contradiction. Continuing, define h ∈ H∗(C) by h(z) = 〈H(z)v, v〉U
for all z ∈ E. If Jv is infinite, then h has an essential singularity at z0 and so, using
the Casorati-Weierstrass theorem (see, for example, [97, Theorem 10.21]), there exists
z∗ ∈ ∆ such that

Re〈H(z∗)u, u〉U = Reh(z∗) < 0,

contradicting the positive realness of H.
We therefore assume that Jv is finite and set k := maxJv. In this case, h has a pole of
order k at z0 and so h can be written as

h(z) =
h0 + g(z)

(z − z0)k
∀ z ∈ ∆,

where h0 6= 0, g is holomorphic on ∆∪{z0} and g(z0) = 0. For sufficiently small r > 0,
we have

h(z0 + reiθ) = r−ke−ikθ(h0 + g(z0 + reiθ)) ∀ θ ∈ (−π, π].
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Let θ0 ∈ (−π, π] be such that Re(e−ikθ0h0) < 0 and note that, from the fact that
g(z0) = 0, for sufficiently small r > 0,

Re〈H(z0 + reiθ0)v, v〉 = Reh(z0 + reiθ0) < 0.

This contradicts the positive realness of H, consequently showing that H does not have
any singularities in E.
Finally, we show that H is holomorphic at infinity. To this end, we define H̃ : D\{0} →
L(U, Y ) by

H̃(z) := H(1/z) ∀ z ∈ D\{0},

and note that Re〈H̃(z)u, u〉 ≥ 0 for all u ∈ U and z ∈ D\{0}. Thus, by supposing
that 0 ∈ ΣH̃ and by following the same method as above, we obtain a contradiction,
completing the proof.

We shall also require the following technical lemma, which is a direct consequence of
Lemma 5.2.11 and [46, Corollary 2.3].

Lemma 5.2.12. Let H ∈ H∗(L(U)) be positive real. Then, I + H(z) is invertible for
every z ∈ E and

‖(I −H)(I + H)−1‖H∞ ≤ 1.

We now present the first corollary to Theorem 5.2.5, which is reminiscent of the circle
criterion.

Corollary 5.2.13. Let Σ ∈ L be stabilisable and detectable, f : Y → U , S ⊆ Y be
non-empty and K1,K2 ∈ L(Y,U) with K1 ∈ A(D). If (I−K2G)(I−K1G)−1 is positive
real and there exists ε > 0 such that

Re
〈
f(ζ+ξ)−f(ξ)−K1ζ, f(ζ+ξ)−f(ξ)−K2ζ

〉
U
≤ −ε‖ζ‖2Y ∀ζ ∈ Y, ∀ξ ∈ S , (5.41)

then statements (i) and (ii) of Theorem 5.2.5 with S1 = Y , S2 = S hold.

The following proof is in part inspired by a method outlined in the proof of [46, Theorem
6.8].

Proof of Corollary 5.2.13. We define

L := (K1 −K2)/2, M := (K1 +K2)/2 ,

and rewrite (5.41) so that

−ε‖ζ‖2Y ≥ Re
〈
f(ζ + ξ)− f(ξ)− (L+M)ζ, f(ζ + ξ)− f(ξ) + (L−M)ζ

〉
U

= −‖Lζ‖2U + ‖f(ζ + ξ)− f(ξ)−Mζ‖2U ∀ ζ ∈ Y, ∀ ξ ∈ S . (5.42)

We deduce from (5.42) that ‖Lζ‖U ≥
√
ε‖ζ‖Y for all ζ ∈ Y , which in turn implies that

‖L∗Lζ‖Y ‖ζ‖Y ≥ |
〈
L∗Lζ, ζ

〉
Y
| = ‖Lζ‖2U ≥ ε‖ζ‖2Y ∀ ζ ∈ Y.

Hence L∗L is bounded away from 0 and, by combining this with the self-adjointness of
L∗L, we have that L∗L is invertible.We define L# := (L∗L)−1L∗ and let Q := LL#. It
is clear that Q2 = LL#LL# = Q and, since L has a left inverse, imL is closed. Thus,

imL = (kerL∗)⊥ = (kerL#)⊥,
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where the superscript ⊥ denotes the orthogonal complement. Therefore, Q is the
orthogonal projection onto (kerL#)⊥ along kerL#. Utilising this with (5.42) gives that

‖(f ◦ L#)(ζ + ξ)− (f ◦ L#)(ξ)−ML#ζ‖2U ≤ ‖Qζ‖2U − ε‖L#ζ‖2Y
≤ ‖ζ‖2Y − ε‖L#ζ‖2Y ∀ ζ ∈ Y, ∀ ξ ∈ S . (5.43)

Moreover, since L# is bounded away from 0 on imL, there exists ν > 0 such that

‖L#ζ‖Y ≥ ν‖ζ‖Y ∀ ζ ∈ imL .

Hence, since L#Q = L#, (5.43) yields

‖(f ◦ L#)(ζ+ξ)− (f ◦ L#)(ξ)−ML#ζ‖2U
= ‖(f ◦ L#)(Qζ +Qξ)− (f ◦ L#)(Qξ)−ML#Qζ‖2U
≤ ‖Qζ‖2U − εν2‖Qζ‖2U ∀ ζ ∈ Y, ∀ ξ ∈ S ,

and so

‖(f ◦L#)(ζ + ξ)− (f ◦L#)(ξ)−ML#ζ‖U ≤
√

1− εν2‖ζ‖Y ∀ ζ ∈ Y, ∀ ξ ∈ S . (5.44)

Next, on the one hand we compute that

(I−K2G)(I−K1G)−1 = (I−K1G+2LG)(I−K1G)−1 = I+2LG(I−K1G)−1 , (5.45)

and, on the other, that

(I −K2G)(I −K1G)−1 = (I − 2MG +K1G)(I −K1G)−1 . (5.46)

By invoking the positive realness of (I −K2G)(I −K1G)−1 along with Lemma 5.2.12,
the expressions (5.45) and (5.46) yield that

1 ≥
∥∥∥2LG(I −K1G)−1

(
I + (I − 2MG +K1G)(I −K1G)−1

)−1
∥∥∥
H∞

= ‖2LG(2I − 2MG)−1‖H∞
= ‖LG(I −MG)−1‖H∞ . (5.47)

In addition, by recalling Definition 5.1.18, we evidently see that

LG(I −MG)−1 = LG(I −ML#LG)−1 = (LG)ML#
,

and thus, by Lemma 5.1.22, (5.47) obtains that

B(ML#, 1) ⊆ S(LG) . (5.48)

Finally, let (v, w, x, y) ∈ B and note that, since I = L#L,

x+ = Ax+B(f ◦ L#)(Ly + Lw) +Bev,

Ly = LCx+ LD(f ◦ L#)(Ly + Lw) + LDev,

which shows that (v, Lw, x, Ly) satisfies (5.10) with non-linearity f ◦ L# and linear
component given by (A,B,Be, LC,LD,LDe). Moreover, since Σ is stabilisable and
detectable, it is clear, by the left invertibility of L, that (A,B,Be, LC,LD,LDe) is also
stabilisable and detectable. By combining this with (5.44) and (5.48), we see that the
hypotheses of Theorem 5.2.5 are satisfied, and so the left-invertibility of L completes
the proof.
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Remark 5.2.14. An inspection of the proof of Corollary 5.2.13 shows that if instead
the estimate given in (5.41) holds for all ζ ∈ S1 and for all ξ ∈ S, where S1 is a non-
empty subset of Y , then statements (i) and (ii) of Theorem 5.2.5 with S2 = S hold,
provided that K1 −K2 is left invertible. ♦

To conclude this section, we present two more corollaries of Theorem 5.2.5 that present
slightly different assumptions than that given in Corollary 5.2.13. Namely, the two
results, in order to obtain the same conclusions, weaken the sector condition given by
(5.41), but in doing so, strengthen the notion of positive realness that we assert. With
this in mind, we make the following definition.

Definition 5.2.15. Let α ∈ (0, 1].

(i) We say H ∈ H∗α(L(U)) is strictly positive real if α ∈ (0, 1) and there exists
ε ∈ (α, 1) such that the function z 7→ H(εz) is positive real.

(ii) We say a positive real function H ∈ H∗α(L(U)) is strongly positive real, if there
exists δ > 0 such that

H(z) + H(z)∗ − δIU ≥ 0 ∀ z ∈ E, (5.49)

where IU is the identity operator on U .

Remark 5.2.16. An equivalent condition to strong positive realness is that there exists
δ > 0 such that

Re 〈H(z)u, u〉U ≥ δ‖u‖2U ∀u ∈ U, ∀ z ∈ E . (5.50)

Similar to (standard) positive realness, we will interchange between (5.49) and (5.50)
depending on which is the most useful representation in the current setting. ♦

Before presenting the final two corollaries of this section, we first provide the following
two lemmas.

Lemma 5.2.17. Let α ∈ (0, 1) and H ∈ H∗α(L(U)) be strictly positive real. If

lim
|z|→∞

Re〈H(z)u, u〉U > 0 ∀u ∈ U\{0}, (5.51)

then

Re〈H(z)u, u〉U > 0 ∀ z ∈ Eε, ∀u ∈ U\{0},

where ε ∈ (α, 1) is such that the function z 7→ H(εz) is positive real.

Proof. We shall employ a contradiction argument. To this end, suppose that there
exist z∗ ∈ Eε and u ∈ U\{0} such that Re〈H(z∗)u, u〉U = 0. Define H̃ : D1/ε → L(U)
by

H̃(z) :=

{
H(1/z), if z ∈ D1/ε\{0},
lim|w|→∞H(w), if z = 0,

where the limit is in the uniform operator topology and exists by Lemma 5.2.11. Note
that the function z 7→ e−〈H̃(z)u,u〉U is holomorphic on D1/ε. Moreover,

|e−〈H̃(z)u,u〉U | = e−Re〈H̃(z)u,u〉U ∀ z ∈ D1/ε,
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which implies, in particular, that

|e−〈H̃(1/z∗)u,u〉U | = 1 ≥ e−Re〈H̃(z)u,u〉U ∀z ∈ D1/ε.

Therefore, an application of the maximum modulus principle applied to the function
z 7→ e−〈H̃(z)u,u〉U yields that Re〈H̃(z)u, u〉U = 0 for all z ∈ D1/ε. However, by (5.51),
we have

lim
|z|→0

Re〈H̃(z)u, u〉U > 0.

This is a contradiction, and thus the proof is complete.

Lemma 5.2.18. Let α ∈ (0, 1) and H ∈ H∗α(L(U)) be strictly positive real. If there
exists z̃ ∈ clos(E) ∪ {∞} such that

inf
‖u‖U=1

Re〈H(z̃)u, u〉U > 0, (5.52)

then there exists δ > 0 such that

Re〈H(z)u, u〉U ≥ δ‖u‖2U ∀u ∈ U, ∀ z ∈ clos(E) ∪ {∞}. (5.53)

In particular, H is strongly positive real.

Proof. To prove the result, we shall utilise a contradiction argument. To this end,
suppose that the claim is false. From this we deduce the existence of a sequence
(zk)k∈N ⊆ clos(E) ∪ {∞} such that

inf
‖u‖U=1

Re〈H(zk)u, u〉U → 0 as k →∞.

Without loss of generality, we may assume that (zk)k∈N converges to λ ∈ clos(E)∪{∞}.
Now, we claim that the function h : clos(E) ∪ {∞} → R+, defined by

h(z) := inf
‖u‖U=1

Re〈H(z)u, u〉U ∀ z ∈ clos(E) ∪ {∞},

is continuous. We omit the verification of this claim, since the proof is identical, mutatis
mutandis, to that done in [46, pp.56-57]. Continuing with the proof of the lemma, the
continuity of h implies that

inf
‖u‖U=1

Re〈H(λ)u, u〉U = 0.

By denoting the square root of a self-adjoint positive semi-definite operator M by M1/2

(see, for example, [87, Proposition 3.2.11, p.92]), the above equality yields that

inf
‖u‖U=1

‖(H(λ) + H(λ)∗)1/2u‖2U = 0,

which in turn gives that

inf
‖u‖U=1

‖(H(λ) + H(λ)∗)u‖2U = 0.

Therefore, we have shown that 0 ∈ σap(H(λ) + H(λ)∗), where σap(H(λ) + H(λ)∗)
denotes the set of approximate eigenvalues of H(λ) + H(λ)∗, that is, numbers η ∈ C
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satisfying inf‖u‖U=1 ‖(H(λ) + H(λ)∗ − ηI)u‖U = 0. An application of [74, Theorem
4.4] then gives that 0 ∈ σap(H(z) + H(z)∗) for all z ∈ clos(E) ∪ {∞}. (Technically,
[74, Theorem 4.4] holds for positive real operators defined on the open right half-
plane, instead of E. An inspection of the proof shows that it extends very easily to
the discrete-time case and so, in the interest of brevity, we do not provide an explicit
proof.) In particular, we see that 0 ∈ σap(H(z̃) + H(z̃)∗), which contradicts (5.52),
thus completing the proof.

Remark 5.2.19. We note that if H satisfies (5.52) for some z̃ ∈ E ∪ {∞}, but is only
positive real, and not strictly positive real, then the conclusions of Lemma 5.2.18 need
not hold. Indeed, for a counterexample consider the function z 7→ 1/(z−1)+1/2, which
has real part given by (|z|2−1)/(2|z−1|2). It is clear that the function is positive real,
but is not strongly positive real since the real part is zero on the unit circle (except at
z = 1) and tends towards zero as it approaches the unit circle. ♦

We are now ready to present the final two corollaries of this section.

Corollary 5.2.20. Let Σ ∈ L be stabilisable and detectable, f : Y → U , S, S1 ⊆ Y
be non-empty and K1,K2 ∈ L(Y,U) with K1 ∈ A(D). If K1 − K2 is left invertible,
H := (I −K2G)(I −K1G)−1 ∈ H∞(L(U)), H is strongly positive real and

Re
〈
f(ζ + ξ)− f(ξ)−K1ζ, f(ζ + ξ)− f(ξ)−K2ζ

〉
U
≤ 0 ∀ ζ ∈ S1, ∀ ξ ∈ S , (5.54)

then statements (i) and (ii) of Theorem 5.2.5 with S2 = S hold.

In order to prove Corollary 5.2.20, we follow a similar method to that shown in [46,
Theorem 6.11].

Proof of Corollary 5.2.20. Define M := K2 −K1 and note that, by assumption,

I −MG(I −K1G)−1 = (I − (M +K1)G)(I −K1G)−1 = H ∈ H∞(L(U)).

Since M is left-invertible, we have that G(I−K1G)−1 ∈ H∞(L(U, Y )), or, equivalently,
that K1 ∈ S(G). Lemma 5.1.22 implies that S(G) is open (see Remark 5.1.23) and so
there exists ρ∗ > 0 such that K1 − ρM ∈ S(G) for all ρ ∈ [0, ρ∗]. We define

Hρ := (I − (K2 + ρM)G)(I − (K1 − ρM)G)−1 ∀ ρ ∈ [0, ρ∗],

and claim that the map

[0, ρ∗]→ H∞(L(U)), ρ 7→ Hρ, (5.55)

is continuous. In order to verify this claim, we shall only prove that ρ 7→ (I − (K1 −
ρM)G)−1 is continuous and leave the rest to the reader. To this end, let ρ ∈ [0, ρ∗]
and (ρn)n∈N ⊆ [0, ρ∗] be such that ρn → ρ as n → ∞. For ease of notation, define
Tn := I − (K1 − ρnM)G and T := I − (K1 − ρM)G. Note that, for all n ∈ Z+,

‖T−1
n − T−1‖ = ‖T−1

n (T − Tn)T−1‖.

Since Tn → T as n→∞, if we can show that supn∈Z+
‖T−1

n ‖H∞ <∞, then the claim

follows. To this end, we define Pn := T−1(Tn − T ) so that Pn → 0 as n → ∞. As
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a consequence, there exists N ∈ Z+ such that ‖Pn‖ < 1 for all n ∈ N . This in turn
implies that (I + Pn)−1 =

∑∞
k=0(−Pn)k for all n > N . Therefore,

‖(I + Pn)−1‖ ≤ 1

1− ‖Pn‖
→ 1, as n→∞.

Finally, we note that T−1
n = (I + Pn)−1(I + Pn)T−1

n = (I + Pn)−1T−1 for all n ∈ Z+

and so supn∈Z+
‖T−1

n ‖H∞ <∞, completing the proof of the claim.

Continuing again with the proof, by using the continuity of (5.55) along with the strong
positive realness of H0 = H, we obtain that there exists ρ† ∈ (0, ρ∗] such that

Re〈Hρ(z)u, u〉U ≥ 0 ∀u ∈ U, ∀ z ∈ E, ∀ ρ ∈ [0, ρ†].

Now, we note that the left invertibility of K1−K2 implies that (K1−ρM)−(K2 +ρM)
is left invertible. Whence, from Remark 5.2.14, if we can show that for all ρ ∈ (0, ρ†]
there exists ε > 0 such that

Re〈f(ζ + ξ)− f(ξ)− (K1 − ρM)ζ, f(ζ + ξ)− f(ξ)− (K2 + ρM)ζ〉U
≤ −ε‖ζ‖2Y ∀ ζ ∈ S1, ∀ ξ ∈ S,

}
(5.56)

then the result follows from Corollary 5.2.13. Indeed, this is what we shall now do. To
this end, by using (5.54), we have, for all ρ ∈ (0, ρ†], all ζ ∈ S1 and all ξ ∈ S,

Re〈f(ζ + ξ)− f(ξ)− (K1 − ρM)ζ, f(ζ + ξ)− f(ξ)− (K2 + ρM)ζ〉U
= Re〈f(ζ + ξ)− f(ξ)−K1ζ, f(ζ + ξ)− f(ξ)− (K2 + ρM)ζ〉U

+ Re〈ρMζ, f(ζ + ξ)− f(ξ)− (K2 + ρM)ζ〉U
= Re〈f(ζ + ξ)− f(ξ)−K1ζ, f(ζ + ξ)− f(ξ)−K2ζ〉U + Re〈ρMζ,−ρMζ〉U

+ Re〈f(ζ + ξ)− f(ξ)−K1ζ,−ρMζ〉U + Re〈ρMζ, f(ζ + ξ)− f(ξ)−K2ζ〉U
≤ 0− ρ‖Mζ‖2U − ρ2‖Mζ‖2U
= −ρ(ρ+ 1)‖Mζ‖2U .

By the left-invertibility of M, there exists µ > 0 such that ‖Mζ‖2U ≥ µ‖ζ‖2Y for all ζ ∈ Y
and so we see that (5.56) holds with ε := µρ(ρ+ 1) > 0, completing the proof.

Corollary 5.2.21. Let Σ ∈ L be stabilisable and detectable, α ∈ (0, 1), f : Y → U ,
S, S1 ⊆ Y be non-empty and K1,K2 ∈ L(Y,U) with K1 ∈ A(D). Assume that K1−K2

is left invertible, H := (I −K2G)(I −K1G)−1 ∈ H∗α(L(U)) is strictly positive real and
there exists z̃ ∈ clos(E)∪{∞} such that (5.52) holds. If (5.54) holds, then statements (i)
and (ii) of Theorem 5.2.5 with S2 = S hold

Proof. The result is immediately obtained by combining Lemma 5.2.18 with Corollary
5.2.20.

Remark 5.2.22. Due to the strict positive realness assumption used in the statement
of Corollary 5.2.21, we may perceive this result to be ‘closest’, of the three corollaries
presented, to the circle-criterion (see, for example, [66, Theorem 7.1, p.265]). ♦
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5.3 Convergence properties

In this section, we provide two applications of Theorem 5.2.5. Indeed, we begin by
determining conditions for when (5.10) exhibits a notion of convergence known as
the converging-input converging-state property [15] (see also Section 2.3). We then
present assumptions that guarantee that asymptotically almost periodic inputs generate
asymptotically almost periodic state and output trajectories (see, for example, [1, 14,
21] and Appendix C).

5.3.1 The converging-input converging-state property

We begin with the following definition.

Definition 5.3.1. Let Σ ∈ L and f : Y → U .

(i) We say that (5.10) has the converging-input converging-state (CICS) property
if, for every v∞ ∈ V and w∞ ∈ Y, there exists x∞ ∈ X such that, for every
(v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞, we have that
limt→∞ x(t) = x∞.

(ii) We say that (5.10) has the converging-input converging-state/output (CICSO)
property if, for every v∞ ∈ V and w∞ ∈ Y, there exists x∞ ∈ X and y∞ ∈ Y such
that, for every (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞,
we have that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞.

Remark 5.3.2. (i) We note that some authors (see, for example, [113]) use the term
CICS for the special case wherein v∞ = 0, w∞ = 0 and x∞ = 0.

(ii) In the case that D = 0, the CICS property trivially implies the CICSO prop-
erty. In the nonzero feedthrough situation however, the CICS property does not
necessarily imply the CICSO property and there exist systems which exhibit the
former but not the latter. Indeed, even in the finite-dimensional case this is true,
and an example is presented in Example 2.3.14.

(iii) If w in (5.10) is perceived to be an output disturbance to the system, then con-
vergence of w is not an assumption which will be generically satisfied. Therefore,
in what follows, we shall not only investigate the conditions that guarantee the
CICS property, but will also develop a result for bounded but not necessarily
convergent w. ♦

Before coming to a result that guarantees the CICS property for (5.10), we first present
some relevant definitions and results.

Definition 5.3.3. Let Σ ∈ L be stabilisable and detectable, f : Y → U and K ∈ S(G).
We define

FK : Y → Y, FK(ξ) := ξ −GK(1)(f(ξ)−Kξ) . (5.57)

To facilitate the proofs of the main results in this subsection, it is useful to state the
following two lemmas.

Lemma 5.3.4. Let Σ ∈ L be stabilisable and detectable, f : Y → U , S ⊆ Y be
non-empty, r > 0 and K ∈ L(Y, U). Assume that B(K, r) ⊆ S(G) and

‖f(ξ + ζ)− f(ζ)−Kξ‖U < r‖ξ‖Y ∀ ζ ∈ S, ∀ ξ ∈ Y \{0}. (5.58)

Then the following statements hold.
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(i) #F−1
K (ξ) = 1 for all ξ ∈ Y such that F−1

K (ξ) ∩ S 6= ∅.

If there exists δ > 0 such that f and K satisfy (5.14) with S1 = S2 = Y , then

(ii) FK is globally Lipschitz and bijective;

(iii) the inverse F−1
K is globally Lipschitz.

Remark 5.3.5. In the case that ‖GK‖H∞ = 0, FK is the identity map which is
trivially globally Lipschitz and bijective. ♦

Proof of Lemma 5.3.4. We begin with the assumption that GK(1) 6= 0, since otherwise
the result is trivial. We first prove statement (i) and so we let ξ ∈ Y be such that
F−1
K (ξ) ∩ S 6= ∅. Furthermore, let ξ1 ∈ F−1

K (ξ) ∩ S and ξ2 ∈ F−1
K (ξ). We seek to show

that ξ1 = ξ2. To this end, note that

‖ξ2 − ξ1‖Y = ‖FK(ξ2) + GK(1)(f(ξ2)−Kξ2)− FK(ξ1)−GK(1)(f(ξ1)−Kξ1)‖Y
≤ ‖GK‖H∞‖f(ξ2)− f(ξ1)−K(ξ2 − ξ1)‖U .

Seeking a contradiction, suppose that ξ1 6= ξ2. Then, by (5.58) and an application of
Lemma 5.1.22, we obtain that

‖ξ2 − ξ1‖Y < r‖GK‖H∞‖ξ2 − ξ1‖Y ≤ ‖ξ2 − ξ1‖Y ,

which is a contradiction. Hence, ξ1 = ξ2 and #F−1
K (ξ) = 1. Turning our attention now

to proving statement (ii), since there exists δ > 0 such that f and K satisfy (5.14) with
S1 = S2 = Y , we obtain that, for all ξ, ζ ∈ Y ,

‖FK(ξ)− FK(ζ)‖Y ≤ ‖ξ − ζ‖Y + ‖GK(1)‖‖f(ξ)− f(ζ)−K(ξ − ζ)‖U
≤ (1 + (r − δ)‖GK(1)‖)‖ξ − ζ‖Y .

This shows that FK is globally Lipschitz with Lipschitz constant (1 + (r− δ)‖GK(1)‖).
We now proceed to show surjectivity of FK . To that end, observe that the map Y → Y,
ξ 7→ GK(1)(f(ξ)−Kξ) is a contraction. Indeed, by (5.14) with S1 = S2 = Y ,

‖GK(1)(f(ξ)−Kξ)−GK(1)(f(ζ)−Kζ)‖Y ≤ (r − δ)‖GK(1)‖|ξ − ζ‖Y ∀ ζ, ξ ∈ Y ,

and, furthermore, (r − δ)‖GK(1)‖ < r‖GK‖H∞ ≤ 1. Fix η ∈ Y and define the map
hη : Y → Y by

hη(ξ) := ξ − FK(ξ) + η ∀ ξ ∈ Y .

We note that hζ is also a contraction since,

‖hη(ξ)− hη(ζ)‖Y = ‖GK(1)(f(ξ)−Kξ)−GK(1)(f(ζ)−Kζ)‖Y
≤ (r − δ)‖GK(1)‖‖ξ − ζ‖Y ∀ ξ, ζ ∈ Y.

Hence, by the contraction mapping theorem, there exists a (unique) fixed point of hη,
that is, there exists ξ∗ ∈ Y such that hη(ξ

∗) = ξ∗. This is equivalent to

ξ∗ − FK(ξ∗) + η = ξ∗,

and so FK(ξ∗) = η, showing that FK is surjective. As for injectivity of FK , this
follows immediately from statement (i) since (5.14) holds with S1 = S2 = Y and FK is
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surjective. Finally, let us now prove statement (iii). To this end, let ξ, ζ ∈ Y and note
that, since FK is surjective, there exist η1, η2 ∈ Y such that

FK(η1) = ξ, FK(η2) = ζ.

Now, by the definition of FK and by (5.14) with S1 = S2 = Y ,

‖η1 − η2‖Y = ‖FK(η1) + GK(1)(f(η1)−Kη1)− FK(η2)−GK(1)(f(η2)−Kη2)‖Y
≤ ‖ξ − ζ‖Y + ‖GK(1)‖‖f(η1)− f(η2)−K(η1 − η2)‖U
≤ ‖ξ − ζ‖Y + (r − δ)‖GK(1)‖‖η1 − η2‖Y .

Moreover, F−1
K (ξ) = η1, F−1

K (ζ) = η2, (r − δ)‖GK(1)‖ < 1, and so we conclude that

‖F−1
K (ξ)− F−1

K (ζ)‖Y ≤
1

1− (r − δ)‖GK(1)‖
‖ξ − ζ‖Y ,

completing the proof.

For the next result, recall that (ve, we, xe, ye) ∈ V × Y × X × Y is an equilibrium
quadruple of the Lur’e system (5.10), if (ve, we, xe, ye) ∈ B.

Lemma 5.3.6. Let Σ ∈ L be stabilisable and detectable, f : Y → U , v∞ ∈ V and
w∞ ∈ Y . Assume that K ∈ S(G) and

TK := F−1
K

(
CK(I −AK)−1

(
Be +BKKDe

)
v∞

+ (I −DK)−1Dev
∞ +

(
I + GK(1)K

)
w∞

)
(5.59)

is nonempty. Let z∞ ∈ TK and define y∞ := z∞ − w∞ and

x∞ := (I −AK)−1
(
BK(f(z∞)−K(z∞ − w∞)) + (Be +BKKDe)v

∞) . (5.60)

Then

y∞ = CKx∞ +DK(f(z∞)−K(z∞ − w∞)) + (I −DK)−1Dev
∞ , (5.61)

and (v∞, w∞, x∞, y∞) is an equilibrium quadruple of the Lur’e system (5.10).

We shall not prove the previous lemma since it can be done so identically, mutatis
mutandis, to the proof of Proposition 2.3.6. Moreover, we also refer the reader to
Remark 2.3.7, since the comments there can analogously be applied to Lemma 5.3.6.
Indeed, the remark outlines motiviation for (5.60) and (5.61) and also discusses simple
situations for clarity.

The following theorem gives sufficient conditions for when (5.10) exhibits the CICSO
property.

Theorem 5.3.7. Let Σ ∈ L be stabilisable and detectable, f : Y → U , S ⊆ Y be
non-empty, r > 0, K ∈ L(Y,U), v∞ ∈ V and w∞ ∈ Y . Assume that B(K, r) ⊆ S(G),
TK∩S 6= ∅, where TK is given by (5.59), and there exists δ ∈ (0, r) such that (5.14) holds
with S1 = Y and S2 = S. Then #TK = 1 and, writing z∞ ∈ TK , (v∞, w∞, x∞, y∞)
is an equilibrium quadruple of (5.10) where y∞ := z∞ − w∞ and x∞ is as in (5.60).
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Furthermore, there exist c > 0 and a ∈ (0, 1) such that, for all (v, w, x, y) ∈ B and all
t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥

X×Y
≤ c

(
at‖x(0)− x∞‖X + adt/2e max

s∈bt/2c

∥∥∥∥(v(s)
w(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

+ max
s∈dt/2e

∥∥∥∥((Λbt/2cv)(s)

(Λbt/2cw)(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

)
. (5.62)

In particular, for all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞,
we have limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞.

Before proving Theorem 5.3.7, we provide some commentary.

Remark 5.3.8. (i) Under the hypotheses of Theorem 5.3.7, we note that x∞ and
y∞ given by (5.60) and (5.61) do not depend on the choice of K. Indeed, if
K1,K2 ∈ S(G), v∞ ∈ V, w∞ ∈ Y, Σ is stabilisable and detectable, f : Y → Y ,
and each of the relevant assumptions regarding K1 and K1 respectively hold, then
it can be shown directly, or as a consequence of Theorem 5.3.7, that x∞1 = x∞2
and y∞1 = y∞2 , where

x∞l := (I −AKl)−1
(
BKl(f(y∞l + w∞)−Kly

∞
l ) + (Be +BKlKlDe)v

∞) ,
y∞l = CKlx∞ +DKl(f(y∞l + w∞)−Kly

∞
l ) + (I −DKl)

−1Dev
∞,

for l ∈ {1, 2}. By “directly”, we mean that it can be shown without the use of
Theorem 5.3.7. We shall not explicitly show this since the argument given in the
proof of Lemma 2.3.19 can be used for this infinite-dimensional setting.

(ii) Assumption (5.14) with S1 = S2 = Y may be rewritten as

sup
ζ,ξ∈Y
ξ 6=0

‖f(ξ + ζ)− f(ζ)−Kξ‖U
‖ξ‖Y

< r , (5.63)

which trivially implies (5.58) with S = Y , and is itself equivalent to the function
ξ 7→ f(ξ) − Kξ being globally Lipschitz with Lipschitz constant smaller than
r. Furthermore, by acting in a similar manner to that shown in the proof of
Proposition 2.3.10, we can deduce that (5.63) implies that I − DK(f − K) is
bijective. By then combining this with Proposition 5.1.33, we see that, for given
x0 ∈ X, v ∈ V Z+ and w ∈ Y Z+ , the IVP (5.11) has a unique solution.

(iii) Recalling the notion of equi-convergence from Definiton 2.3.15, the convergence
property provided by Theorem 5.3.7 is uniform in the following sense: given a set
of inputs V ⊆ V Z+ × Y Z+ which is equi-convergent to (v∞ , w∞) and κ > 0, the
set of solutions{(

x
y

)
∈ XZ+ × Y Z+ : ∃

(
v
w

)
∈ V s.t. (v, w, x, y) ∈ B

and ‖x(0)‖X + sup
t∈Z+

∥∥∥∥(v(t)
w(t)

)∥∥∥∥
V×Y

≤ κ

}
,

is equi-convergent to (x∞ , y∞). ♦
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Proof of Theorem 5.3.7. First, statement (i) of Lemma 5.3.4 yields that #TK = 1.
Moreover, an application of Lemma 5.3.6 gives that (v∞, w∞, x∞, y∞) is an equilibrium
quadruple of (5.10) and, since y∞ + w∞ ∈ S, we have that (v∞, w∞, x∞, y∞) ∈ BS .
We invoke statement (ii) of Theorem 5.2.5, with q =∞, to obtain c̃ > 0 and a ∈ (0, 1)
such that, for all (v, w, x, y) ∈ B and all t ∈ Z+,∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥

X×Y
≤ c̃at‖x(0)− x∞‖X + c̃max

s∈t

∥∥∥∥(v(s)
w(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

. (5.64)

Let (v, w, x, y) ∈ B and fix t ∈ Z+. Note that (5.64) holds for

(Λbt/2cv,Λbt/2cw,Λbt/2cx,Λbt/2cy) ∈ B ,

from the time-invariance property given by Lemma 5.1.30. In light of the identity
dt/2e+ bt/2c = t, it follows from (5.64) that∥∥∥∥(x(t)− x∞

y(t)− y∞
)∥∥∥∥

X×Y
=

∥∥∥∥((Λbt/2cx)(dt/2e)− x∞
(Λbt/2cy)(dt/2e)− y∞

)∥∥∥∥
X×Y

≤ c̃adt/2e‖x(bt/2c)− x∞‖X + c̃ max
s∈dt/2e

∥∥∥∥(Λbt/2cv(s)

Λbt/2cw(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

.

Appealing to (5.64) again, and also using that adt/2eabt/2c = at, yields∥∥∥∥(x(t)− x∞
y(t)− y∞

)∥∥∥∥
X×Y

≤c̃2at‖x(0)− x∞‖X + c̃2adt/2e max
s∈bt/2c

∥∥∥∥(v(s)
w(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

+ c̃ max
s∈dt/2e

∥∥∥∥(Λbt/2cv(s)

Λbt/2cw(s)

)
−
(
v∞

w∞

)∥∥∥∥
V×Y

.

Therefore, by defining c := max{c̃, c̃2}, we obtain that (5.62) holds, whence completing
the proof.

Remark 5.3.9. By inspecting the above proof we see that in the situation where
G = 0 and (5.33) holds with S1 = Y and S2 = S for some K ∈ L(Y,U), then the
conclusions of Theorem 5.3.7 remain valid (see Statement (ii) of Remark 5.2.7 and also
Remark 5.3.5). ♦

The following corollary provides succinct hypotheses for when (5.10) exhibits the CI-
CSO property.

Corollary 5.3.10. Let Σ ∈ L be stabilisable and detectable, f : Y → U , and r > 0 and
K ∈ L(Y,U) be such that B(K, r) ⊆ S(G). If either:

(i) there exists δ ∈ (0, r) such that (5.14) holds with S1 = S2 = Y , or;

(ii) G = 0 and (5.33) holds with S1 = S2 = Y ,

then (5.10) has the CICSO property.

Proof. Let v∞ ∈ V and w∞ ∈ Y . In either case, Lemma 5.3.4 implies that FK is
bijective. Therefore, TK 6= ∅, where TK is given by (5.59). An application of Thereom
5.3.7 (see also Remark 5.3.9) then yields that limt→∞ x(t) = x∞ and limt→∞ y(t) = y∞

for all (v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and limt→∞w(t) = w∞, and where y∞+
w∞ = z∞ ∈ TK and x∞ is given by (5.60). Thus, (5.10) has the CICSO property.
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As previously mentioned in Remark 5.3.2, if w in (5.10) is considered to be an output
disturbance, then it may be unreasonable to expect convergence of w. The next result
is an immediate corollary to Theorem 5.3.7 and yields that asymptotic ‘closeness’ of
the state and output of (5.10) to the equilibrium components x∞ and y∞, respectively,
is linearly bounded by ‖w‖`∞ .

Corollary 5.3.11. Under the assumptions of Theorem 5.3.7 with w∞ = 0, for all
(v, w, x, y) ∈ B with limt→∞ v(t) = v∞ and bounded w,

lim sup
t→∞

(
‖x(t)− x∞‖X + ‖y(t)− y∞‖Y

)
≤ c lim sup

t→∞
‖w(t)‖Y ,

where c > 0 is as in (5.62).

Proof. The claim follows from (5.62), Lemma 5.1.30, and a standard time-invariance
argument.

To conclude this subsection, we briefly comment on the steady-state gain maps associ-
ated with (5.10). In the interest of avoiding repetition, we refer the reader to Section
2.3.3 for the motivation of these maps.

Definition 5.3.12. Let Σ ∈ L and f : Y → U . If (5.10) has the CICSO property,
then the maps

Γis : V × Y → X, (v∞, w∞) 7→ x∞,

and

Γio : V × Y → Y, (v∞, w∞) 7→ y∞,

are well-defined. As in the finite-dimensional setting, we call Γis the input-to-state
steady-state (ISSS) gain and Γio the input-to-output steady-state (IOSS) gain.

Under the assumptions of Theorem 5.3.7 with S = Y , Lemma 5.3.4 gives that F−1
K

exists and is globally Lipschitz. When these assumptions are imposed, we shall denote
by GK the map

V × Y 3 (ξ1, ξ2) 7→ F−1
K

(
CK(I −AK)−1

(
Be +BKKDe

)
ξ1

+ (I −DK)−1Deξ1 +
(
I + GK(1)K

)
ξ2

)
∈ Y

We now present the following result concerning the steady-state gain maps. For brevity,
we shall not prove the result since it is straightforward to do so.

Corollary 5.3.13. Under the assumptions of Theorem 5.3.7 with S = Y , for all
(ξ, ζ) ∈ V × Y ,

Γis(ξ1, ξ2) =(I −AK)−1(BK(f −K)GK(ξ1, ξ2) +BKKξ2 + (Be +BKKDe)ξ1),

and

Γio(ξ1, ξ2) = GK(ξ1, ξ2)− ξ2.

Furthermore, Γis and Γio are globally Lipschitz.
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5.3.2 The response to asymptotically almost periodic inputs

We now apply Theorem 5.2.5 to obtain a result that guarantees that asymptotically
almost periodic inputs generate asymptotically almost periodic state and output tra-
jectories of (5.10). Almost periodic functions were used in Chapter 3 and a thorough
presentation is given in Appendix C. Therefore, in what follows, we will not define
almost and asymptotically almost periodic functions or give much relevant theory, and
instead refer the reader to the aforementioned parts of this thesis. For background
reading, we also refer the reader to literature such as [1, 14, 17, 21, 22, 52].

What we will recall here, however, is that AP (Z,X) denotes the space of almost pe-
riodic functions mapping Z → X, where Z = Z or Z+; P (vap, ε) denotes the set of
ε-periods of an almost periodic function vap, where ε > 0; the space of asymptotically
almost periodic functions Z+ → X is denoted by AAP (Z+, X); and c0(Z+, X) denotes
the space of all functions Z+ → X that converge to zero. Moreover, we recall that
every vap ∈ AP (Z+, X) has a unique extension vap

e ∈ AP (Z, X) such that

vap
e (t) = vap(t) ∀ t ∈ Z+ and sup

t∈Z
‖vap

e (t)‖X = sup
t∈Z+

‖vap(t)‖X .

Indeed, as done in Appendix C, by following an idea in [12, Remark on p.318], we
define vap

e by
vap

e (t) = lim
k→∞

vap(t+ τk) ∀ t ∈ Z, (5.65)

where, for each k ∈ N, τk ∈ P (vap, 1/k) and τk ↗ ∞ as k → ∞. In Appendix C,
this function is shown to be well-defined and having all of the previously mentioned
properties. As a consequence, we obtain the following, which is Theorem C.1.35 in the
appendix.

Theorem 5.3.14. The map AP (R+, X) → AP (R, X) which maps vap to vap
e , where

vap
e is given by (5.65), is an isometric isomorphism.

The following is a corollary of Theorem 5.2.5 and is the main result of this subsection.

Corollary 5.3.15. Let vap ∈ AP (Z+, V ) and wap ∈ AP (Z+, Y ). If the assumptions
of Theorem 5.2.5 hold with S1 = S2 = Y , then the following statements are true.

(i) There exists a unique pair (xap, yap) ∈ AP (Z+, X) × AP (Z+, Y ) such that (vap,
wap, xap, yap) ∈ B and, for all (v, w, x, y) ∈ B such that v − vap ∈ c0(Z+, V ) and
w − wap ∈ c0(Z+, Y ),

lim
t→∞
‖x(t)− xap(t)‖X = 0 = lim

t→∞
‖y(t)− yap(t)‖Y . (5.66)

Furthermore, for all ε > 0, there exists δ > 0 such that P (vap, δ) ∩ P (wap, δ) ⊆
P (xap, ε) ∩ P (yap, ε). In particular, if vap and wap are τ -periodic, then xap and
yap are τ -periodic.

(ii) The pair of almost periodic extensions (xap
e , y

ap
e ) of (xap, yap) to Z, is the unique

bounded pair of functions which satisfy

z1(t+ 1) = Az1(t) +Bf(z2(t) + wap
e (t)) +Bev

ap
e (t),

z2(t) = Cz1(t) +Df(z2(t) + wap
e (t)) +Dev

ap
e (t),

}
∀ t ∈ Z. (5.67)
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Remark 5.3.16. Corollary 5.3.15 shows that, under the assumptions of Theorem 5.2.5
with S1 = S2 = Y , asymptotically almost periodic inputs generate asymptotically
almost periodic state and output trajectories. ♦

Proof of Corollary 5.3.15. We shall begin with the proof of statement (i). An appli-
cation of Lemma 5.3.4 gives that FK is bijective and, consequently, an application of
Lemma 5.3.6 yields that, for every v∗ ∈ V and w∗ ∈ Y , there exist (unique) x∗ ∈ X
and y∗ ∈ Y such that (v∗, w∗, x∗, y∗) is an equilibrium quadruple. We now fix such a
quadruple (v∗, w∗, x∗, y∗). Moreover, we note that since (5.14) holds with S1 = S2 = Y ,
then I − DK(f − K) is bijective (see Remark 5.3.8) and so Proposition 5.1.33 yields
that, for all x0 ∈ X, all v ∈ V Z+ and all w ∈ Y Z+ , the IVP (5.11) has a unique
solution. With this in mind, we let (vap, wap, x, y) ∈ B. We also note that, since vap

and wap are almost periodic, vap and wap are bounded. Now, since the hypotheses of
Theorem 5.2.5 hold, we see that the conclusions of statement (ii) of that result hold
with q = ∞. Hence, it follows that there exist c, d > 0 and θ ∈ (0, 1) such that (5.17)
and (5.18) hold for all (v1, w1, x1, y1) and (v2, w2, x2, y2) ∈ B. In particular, we may
use (5.17) and (5.18) with the trajectories (v∗, w∗, x∗, y∗) and (vap, wap, x, y). By now
utilising the boundedness of (v∗, w∗, x∗, y∗) and vap and wap, it is clear that there exists
µ > 0 such that

‖x‖`∞ + ‖y‖`∞ ≤ µ, (5.68)

whence showing that x and y are bounded. Moreover, since vap and wap are almost
periodic, by Lemma C.1.37, we may obtain a sequence (τk)k∈N ⊆ Z+ such that

τk ∈ P
(
vap,

1

k

)
∩ P

(
wap,

1

k

)
∀ k ∈ N and τk →∞ as k →∞. (5.69)

Inspired by an argument from the proof of [5, Proposition 4.4], we claim that (Λτkx)k∈N
and (Λτky)k∈N are Cauchy sequences in `∞(Z+, X) and `∞(Z+, Y ), respectively. To
see this, we let ε > 0 and let k, l ∈ N be sufficiently large so that

2µθτk , 2µθτl ≤ ε

2(c+ d)
and 2

(
1

k
+

1

l

)
≤ ε

2(c+ d)
,

and, without loss of generality, assume that τl ≥ τk. Then, for all t ∈ Z+,

sup
s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τl − τk)
wap(s+ t)− wap(s+ t+ τl − τk)

)∥∥∥∥
V×Y

≤ sup
s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τl)
wap(s+ t)− wap(s+ t+ τl)

)∥∥∥∥
V×Y

+ sup
s∈τk

∥∥∥∥( vap(s+ t+ τl)− vap(s+ t+ τl − τk)
wap(s+ t+ τl)− wap(s+ t+ τl − τk)

)∥∥∥∥
V×Y

≤ 2

(
1

l
+

1

k

)
Hence, by combining this with Lemma 5.1.30 and (5.17), (5.18) and (5.68), we obtain
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that, for all t ∈ Z+,∥∥∥∥((Λτkx)(t)− (Λτlx)(t)
(Λτky)(t)− (Λτly)(t)

)∥∥∥∥
X×Y

=

∥∥∥∥((Λtx)(τk)− (Λt+τl−τkx)(τk)
(Λty)(τk)− (Λt+τl−τky)(τk)

)∥∥∥∥
X×Y

≤ (c+ d)

(
θτk‖x(t)− x(t+ τl − τk)‖X + 2

(
1

l
+

1

k

))
≤ (c+ d)

(
θτk2µ+ 2

(
1

l
+

1

k

))
≤ ε.

Whence, we have shown that (Λτkx)k∈N and (Λτky)k∈N are Cauchy sequences in
`∞(Z+, X) and `∞(Z+, Y ), respectively. They therefore converge to functions xap ∈
`∞(Z+, X) and yap ∈ `∞(Z+, Y ), respectively.
In order to show that (vap, wap, xap, yap) ∈ B, we note that, by once again applying
Lemma 5.1.30, for all k ∈ Z+ and t ∈ Z+,

(Λτkx)(t+ 1) = A(Λτkx)(t) +Bf((Λτky)(t) + (Λτkw
ap)(t)) +Be(Λτkv

ap)(t),

(Λτky)(t) = C(Λτkx)(t) +Df((Λτky)(t) + (Λτkw
ap)(t)) +De(Λτkv

ap)(t).

Since f is continuous, we recall (5.69) and take the limit in the above equality as
k →∞, to obtain that (vap, wap, xap, yap) ∈ B.
Our attention now turns to showing that xap ∈ AP (Z+, X) and yap ∈ AP (Z+, Y ). To
this end, we fix ε > 0 and let δ := ε/(2(c+ d)) and let τ ∈ P (vap, δ)∩P (wap, δ), which
exists by Lemma C.1.37. Then, by combining Lemma 5.1.30 with (5.17) and (5.18),
we see that, for all t ∈ Z+ and all k ∈ N,∥∥∥∥((Λτkx)(t)− (Λτkx)(t+ τ)

(Λτky)(t)− (Λτky)(t+ τ)

)∥∥∥∥
X×Y

=

∥∥∥∥((Λtx)(τk)− (Λt+τx)(τk)
(Λty)(τk)− (Λt+τy)(τk)

)∥∥∥∥
X×Y

≤ (c+ d)

(
θτk‖x(t)− x(t+ τ)‖X + sup

s∈τk

∥∥∥∥( vap(s+ t)− vap(s+ t+ τ)
wap(s+ t)− wap(s+ t+ τ)

)∥∥∥∥
V×Y

)
≤ (c+ d) (θτk‖x(t)− x(t+ τ)‖X + 2δ) . (5.70)

Since (τk)k∈N converges to ∞ as k →∞, (5.70) hence yields∥∥∥∥(xap(t)− xap(t+ τ)
yap(t)− yap(t+ τ)

)∥∥∥∥
X×Y

≤ ε ∀ t ∈ Z+,

showing that τ ∈ P (xap, ε) ∩ P (yap, ε). It thus follows that P (vap, δ) ∩ P (wap, δ) ⊆
P (xap, ε) ∩ P (yap, ε), and, since P (vap, δ) ∩ P (wap, δ) is relatively dense in Z+ (see
Defintion C.1.29) by Lemma C.1.37, we obtain that P (xap, ε)∩P (yap, ε) is also relatively
dense in Z+. We have therefore shown that xap ∈ AP (Z+, X) and yap ∈ AP (Z+, Y ).
To prove that (5.66) holds, let (v, w, x, y) ∈ B be such that v − vap ∈ c0(Z+, V ) and
w − wap ∈ c0(Z+, Y ), and define ṽ := v − vap and w̃ := w − wap. By utilising more
applications of Lemma 5.1.30, (5.17) and (5.18), we yield, for all t ∈ Z+,∥∥∥∥(x(t)− xap(t)

y(t)− yap(t)

)∥∥∥∥
X×Y

=

∥∥∥∥((Λbt/2cx)(dt/2e)− (Λbt/2cx
ap)(dt/2e)

(Λbt/2cy)(dt/2e)− (Λbt/2cy
ap)(dt/2e)

)∥∥∥∥
X×Y

≤ (c+ d)

(
θdt/2e‖x(bt/2c)− xap(bt/2c)‖X +

∥∥∥∥πdt/2e((Λbt/2cṽ)

(Λbt/2cw̃)

)∥∥∥∥
`∞

)
.
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By estimating the term ‖x(bt/2c)− xap(bt/2c)‖ in the above inequality via (5.17), we
deduce that, for all t ∈ Z+,∥∥∥∥(x(t)− xap(t)

y(t)− yap(t)

)∥∥∥∥
X×Y

≤ (c+ d)θdt/2ec

(
θbt/2c‖x(0)− xap(0)‖X +

∥∥∥∥πbt/2c( ṽw̃
)∥∥∥∥

`∞

)
+ (c+ d)

∥∥∥∥πdt/2e((Λbt/2cṽ)

(Λbt/2cw̃)

)∥∥∥∥
`∞
.

Finally, the right hand side of the above inequality converges to 0 as t → ∞, showing
that (5.66) holds. To conclude the proof of statement (i), we combine (5.66) with
Lemma C.1.39 to yield that (xap, yap) is the unique almost periodic pair such that
(vap, wap, xap, yap) ∈ B and, for all (v, w, x, y) ∈ B such that v − vap ∈ c0(Z+, V ) and
w − wap ∈ c0(Z+, Y ), (5.66) holds.

We shall now prove statement (ii). We begin by noting that the almost periodic exten-
sions xap

e and yap
e of xap and yap to Z, respectively, are bounded. To see that (xap

e , y
ap
e )

satisfies (5.67), we highlight that since Λ1x
ap
e is the almost periodic extension of Λ1x

ap,
we deduce that Λ1x

ap
e is also the almost periodic extension of Axap +Bf(yap +wap) +

Bev
ap. Moreover, since f is (globally) Lipschitz, f(yap

e + wap
e ) is almost periodic and,

consequently, Axap
e + Bf(yap

e + wap
e ) + Bev

ap
e is also an almost periodic extension of

Axap +Bf(yap + wap) +Bev
ap. Therefore, Theorem 5.3.14 gives that

Λ1x
ap
e = Axap

e +Bf(yap
e + wap

e ) +Bev
ap
e .

Similarly, it is straight forward to show that

yap
e = Cxap

e +Df(yap
e + wap

e ) +Dev
ap
e ,

which thus yields that (xap
e , y

ap
e ) satisfies (5.67).

To prove that (xap
e , y

ap
e ) is the unique pair which satisfies (5.67) on Z, let (x̃, ỹ) ∈

XZ × Y Z be another bounded pair satisfying (5.67). Furthermore, let M > 0 be such
that

‖xap‖`∞ + ‖x̃‖`∞ ≤M.

We fix ε > 0 and t ∈ Z, and we also choose τ ∈ Z such that τ ≤ t and

θt−τ ≤ ε

2M(c+ d)
.

Now, since, from Lemma 5.1.30, the restrictions of (Λτv
ap
e ,Λτw

ap
e ,Λτx

ap
e ,Λτy

ap
e ) and

(Λτv
ap
e ,Λτw

ap
e ,Λτ x̃,Λτ ỹ) to Z+ are in B, (5.17) and (5.18) then yield that∥∥∥∥(xap

e (t)− x̃(t)
yap

e (t)− ỹ(t)

)∥∥∥∥
X×Y

=

∥∥∥∥((Λτx
ap
e )(t− τ) + (Λτ x̃)(t− τ)

(Λτy
ap
e )(t− τ) + (Λτ ỹ)(t− τ)

)∥∥∥∥
X×Y

≤ (c+ d)θt−τ‖xap(τ)− x̃(τ)‖X
≤ (c+ d)θt−τ2M

≤ ε.

Therefore, since ε was arbitrary, we obtain that xap
e (t) = x̃(t) and yap

e (t) = ỹ(t) and,
since t was also arbitrary, it follows that xap

e = x̃ and yap
e = ỹ, completing the proof.
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5.4 Application to the four-block problem

In the following, we demonstrate how the results of earlier sections apply to the related
class of so-called ‘four-block’ Lur’e systems which are informally described by the block
diagram arrangement in Figure 5.2, where Σ = (A,B,Be, C,D,De) ∈ L and the signal
y is given by

y =

(
y1

y2

)
.

We highlight that the output space is split in two, and only one part is utilised for
feedback purposes. The four-block system we shall investigate here, is an infinite-
dimensional version of the finite-dimensional four-block forced discrete-time Lur’e sys-
tem seen in Section 2.4 (see (2.76)). Similar to that situation, the key to developing
analogous results of the prior sections for the four-block Lur’e system, will be to rewrite
the system in terms of one that is of the form (5.10).

Σ
u

yv y1

y2

f + w

Figure 5.2: Block diagram of a four-block forced Lur’e system: the feedback interconnection
of a linear system specified by Σ and the static nonlinearity f , with output disturbance w.

We shall now lay foundation so that we may explicitly describe the four-block Lur’e
system of interest to us. Moreover, we shall also give some preliminary results regarding
the said system. We comment that we shall be brief in doing this, since the finite-
dimensional versions of these can be found in Section 2.4. Indeed, we shall only prove
results, and go into particular detail, when the infinite-dimensional setting causes us
to do so.

We begin by assuming throughout this section, that the output space Y is of the form

Y = Y1 × Y2,

where Y1 and Y2 are complex Hilbert spaces.

Definition 5.4.1. For i = 1, 2, we define

Pi : Y → Yi,

(
y1

y2

)
7→ yi.

With the previous in mind, we shall now explicitly give the four-block forced discrete-
time Lur’e system in the infinite-dimensional setting, informally described by Fig-
ure 5.2:

x+ = Ax+Bu+Bev ,

y = Cx+Du+Dev ,

u = f(Piy + w) ,

 (5.71)

where Σ ∈ L, v ∈ V Z+ , w ∈ (Yi)
Z+ , f : Yi → U and i = 1, 2.
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By multiplying the output equation of (5.71) by Pi, we see that the decomposition of
the output space Y = Y1 × Y2 induces two linear systems, viz.

(A,B,Be, PiC,PiD,PiDe), i = 1, 2. (5.72)

For the rest of this section, we consider i ∈ {1, 2} to be a fixed quantity.

We now make the following definitions associated with (5.71).

Definition 5.4.2. Let Σ ∈ L and f : Yi → U .

(i) We denote by Σi the components of the subsystem of (5.71) (generated by applying
Pi to the output equation), that is,

Σi := (A,B,Be, PiC,PiD,PiDe).

(ii) We denote the behaviour of (5.71) by B̃, that is,

B̃ :=
{

(v, w, x, y) ∈ V Z+ × (Yi)
Z+ ×XZ+ × Y Z+ : (v, w, x, y) satisfies (5.71)

}
.

(iii) For S ⊆ Yi, we set

B̃S := {(v, w, x, y) ∈ B̃ : Piy(t) + w(t) ∈ S, ∀ t ∈ Z+} .

Remark 5.4.3. It was explained in Remark 2.4.5 how the finite-dimensional four-block
forced discrete-time Lur’e system can be written in the form of the finite-dimensional
version of (5.10). Identically, (in the infinite-dimensional setting) (5.71) can be ex-
pressed in the form of (5.10). For brevity, we do not do this here, and instead refer the
reader to Remark 2.4.5. ♦

The following two propositions provide relations between the overall system (5.71) to
the subsystem (5.72) once feedback has been applied. We shall not provide a proof of
these results since the proofs of Proposition 2.4.6 and Proposition 2.4.7 can be applied
to each of the following, respectively.

Proposition 5.4.4. Let Σ ∈ L, Ki ∈ L(Yi, U) and K := KiPi. Then Ki ∈ A(PiD) if,
and only if, K ∈ A(D), and in which case

AKi = AK , BKi = BK , (PiC)Ki = PiC
K , (PiD)Ki = PiD

K

and

(PiG)Ki = PiG
K .

Proposition 5.4.5. Let Σ ∈ L, Ki ∈ L(Yi, U) and K := KiPi. The following state-
ments hold.

(i) Σ is stabilisable if Σi is stabilisable.

(ii) Σ is detectable if Σi is detectable.

(iii) If Σi is stabilisable and detectable, then Ki ∈ S(PiG) if, and only if, K ∈ S(G).
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One may also associate to (5.71), an initial-value problem. In the interest of not
repeating ourselves, we do not do this, and instead refer the reader to Section 2.4
where this is done in the finite-dimensional setting (see Definition 2.4.8, Proposition
2.4.9 and Corollary 2.4.10).

Our attention now turns towards proving that the stability and convergence properties
of earlier sections apply analogously to (5.71), provided that the linear system Σi

and nonlinearity f satisfy the relevant assumptions. To this end, the following is an
analogous result to Theorem 5.2.5.

Corollary 5.4.6. Let Σ ∈ L, f : Yi → U , and let S1, S2 ⊆ Yi be non-empty. Assume
that Σi is stabilisable and detectable, r > 0 and Ki ∈ L(Yi, U) satisfy B(Ki, r) ⊆
S(PiG), and that there exists δ ∈ (0, r) such that

‖f(ξ)− f(ζ)−Ki(ξ − ζ)‖U ≤ (r − δ)‖ξ − ζ‖Yi ∀ ξ ∈ S1, ∀ ζ ∈ S2 . (5.73)

Then the conclusions of Theorem 5.2.5 hold for the Lur’e system (5.71).

Proof. In the following, we shall only prove that statement (i) of Theorem 5.2.5 holds
for (5.71), since the proof of statement (ii) is similar. Let us consider the Lur’e system

x+ = Ax+Bf(Piy + w) +Bev ,

Piy = PiCx+ PiDf(Piy + w) + PiDev ,

}
(5.74)

which is obtained from (5.71) by applying Pi to the output equation. Note that the
Lur’e system (5.74) is of the form (5.10) with Y , C, D, De and y replaced by Yi, PiC,
PiD, PiDe and Piy, respectively.

By hypothesis, the conclusions of Theorem 5.2.5 apply to (5.74) and so there ex-
ist constants a > 0, b > 0 and ω > 1 such that, for all (v1, w1, x1, y1) ∈ B̃S1 ,
(v2, w2, x2, y2) ∈ B̃S2 , and all ρ ∈ [1, ω], we have

‖πt(x1 − x2)‖`2ρ ≤ a

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt−1

(
v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)
∀ t ∈ N , (5.75)

and

‖πt(Piy1 − Piy2)‖`2ρ ≤ b

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)
∀ t ∈ Z+ . (5.76)

It remains to establish that an estimate of the form (5.76) holds for the difference y1−y2.
For which purpose, fix (v1, w1, x1, y1) ∈ B̃S1 and (v2, w2, x2, y2) ∈ B̃S2 . Since Ki ∈
A(PiD), Lemma 5.4.4 gives that K := KiPi ∈ A(D). Hence, by using Lemma 5.1.17
and (5.71), we have that the difference y1 − y2 satisfies

y1 − y2 =CK(x1 − x2)

+DK (f(Piy1 + w1)− f(Piy2 + w2)−Ki(Piy1 − Piy2))

+ (I −DK)−1De(v1 − v2) .

 (5.77)
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Estimating (5.77) by invoking (5.73), (5.75) and (5.76) gives

‖πt(y1 − y2)‖`2ρ ≤ ‖C
K‖‖πt(x1 − x2)‖`2ρ + (r − δ)‖DK‖‖πt(Piy1 − Piy2 + w1 − w2)‖`2ρ

+ ‖(I −DK)−1De‖‖πt(v1 − v2)‖`2ρ + ‖DKKi‖‖πt(w1 − w2)‖`2ρ

≤ a‖CK‖

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)

+ b(r − δ)‖DK‖

(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)

+ ζ

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

,

for some ζ > 0 independent of (v1, w1, x1, y1) and (v2, w2, x2, y2). Thus, by setting
b̃ := a‖CK‖+ b(r − δ)‖DK‖+ ζ, it follows that

‖πt(y1 − y2)‖`2ρ ≤ b̃
(
‖x1(0)− x2(0)‖X +

∥∥∥∥πt( v1 − v2

w1 − w2

)∥∥∥∥
`2ρ

)
∀ t ∈ Z+ ,

completing the proof.

We close the current section with the following important remark.

Remark 5.4.7. We make clear that the various other results presented in Sections 5.2
and 5.3 for the forced Lur’e system (5.10), also have obvious extensions to the four-block
setting considered here, namely system (5.71). For brevity and to avoid repetition, we
do not give formal statements of these results, and instead leave the details to the
reader. ♦

5.5 Application to sampled-data systems

In this section, we provide an application of Theorem 5.2.5 (or more precisely Corollary
5.2.8) in the form of an ISS result for a class of forced, infinite-dimensional sampled-
data control systems (see, for example, [65, 73, 75]). Briefly, in sampled-data control, a
continuous-time system is controlled by a discrete-time controller, via the use of sample
and hold operations. This discrete-time controller may be thought of, for example, as
a processor of a digital computer.

Before coming to the aforementioned result, we need to explicitly give the sampled-data
system that we are interested in. To this end, we begin this section by making a series
of relevant definitions and assumptions.

Definition 5.5.1. (i) A family (T(t))t≥0 of bounded linear operators mapping X → X
is a strongly continuous semigroup on X if T(t+ s) = T(t)T(s) for all t, s ≥ 0,
T(0) = I, and

lim
t→0+

‖T(t)x− x‖X = 0 ∀x ∈ X.
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5.5. Application to sampled-data systems

(ii) The generator A of a strongly continous semigroup (T(t))t≥0 is defined by

Ax = lim
t→0+

1

t
(T(t)− I)x,

for all x ∈ X for which the limit exists. The domain of A is the set in X for
which the limit exists.

(iii) We denote the exponential growth constant of a strongly continuous semigroup
(T(t))t≥0 by ω(T), that is,

ω(T) := lim
t→∞

1

t
ln ‖T(t)‖,

which is finite by, for example, [26, Theorem 2.1.6].

(iv) A strongly continuous semigroup (T(t))t≥0 is exponentially stable if there exist
M ≥ 1 and ω < 0 such that

‖T(t)‖ ≤Meωt ∀ t ≥ 0.

From [26, Theorem 2.1.6], exponential stability is equivalent to the condition
ω(T) < 0 holding.

For brevity, we do not provide a complete theory regarding strongly continuous semi-
groups and their generators. We instead refer the reader to sources such as [26, 86, 118].
What we will mention here, however, is the following which is a combination of [86,
Theorem 2.3, p.6] with [86, Theorem 1.1, p.76].

Lemma 5.5.2. (i) Let (T(t))t≥0 and (S(t))t≥0 be strongly continuous semigroups with
generators A and B, respectively. If A = B, then T(t) = S(t) for all t ≥ 0.

(ii) Let (T(t))t≥0 be a strongly continuous semigroup with generator A satisfying
‖T(t)‖ ≤ Meωt for all t ≥ 0, for some M ≥ 1 and ω ∈ R. If B ∈ L(X),
then A + B is the generator of a strongly continuous semigroup (S(t))t≥0 such
that

‖S(t)‖ ≤Me(ω+M‖B‖)t ∀ t ≥ 0.

We now fix A to be the generator of a strongly continuous semigroup on X, denoted
by (T(t))t≥0, and fix B ∈ L(U,X) and C ∈ L(X,Y ). We consider the following
continuous-time, infinite-dimensional linear system

ẋ = Ax+Bu+ v, x(0) = x0 ∈ X,
y = Cx .

}
(5.78)

As usual, x and y in (5.78) are respectively called the state and output, and u and v
are inputs, with the former being available for feedback purposes.

Throughout this section, we assume that

• X, U and Y are Hilbert spaces, with U and Y finite-dimensional;

• the pair (A,B) is (exponentially) stabilisable, that is, there exists F ∈ L(X,U)
such that the strongly continuous semigroup generated by A+BF is exponentially
stable;
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Chapter 5. Stability and convergence properties of infinite-dimensional discrete-time Lur’e systems

• the pair (C,A) is (exponentially) detectable, that is, there exists H ∈ L(Y,X) such
that the strongly continuous semigroup generated by A + HC is exponentially
stable.

We make the following definitions associated with the linear system (5.78).

Definition 5.5.3. (i) We denote by H the transfer function of (5.78), that is, H(s) =
C(sI −A)−1B.

(ii) For K ∈ L(Y, U), we define HK := H(I − KH)−1 and we denote the set of
stabilising feedback operators by

Sc(H) := {K ∈ L(Y, U) : HK is a bounded and holomorphic function on C0},

where the superscript ‘c’ indicates the continuous-time setting.

In addition to the previous definitions, in order to define the sampled-data system that
we are interested in, we also require the use of two particular operators, namely the
sampling and hold operators.

Definition 5.5.4. Let τ ∈ Z+.

(i) We define the sampling operator (with respect to τ) S : C(R+, Y )→ Y Z+ by

(Sy)(k) := y(kτ) ∀ y ∈ C(R+, Y ), ∀ k ∈ Z+ .

(ii) We define the (zero order) hold operator (with respect to τ) H by

(Hu)(t) := u(k) ∀ u ∈ UZ+ , ∀ t ∈ [kτ, (k + 1)τ) ,

which maps UZ+ into the set of step-functions mapping R+ to U .

We are now in a position to define the aforementioned sampled-data Lur’e system. In-
deed, we shall consider the forced sampled-data Lur’e system arising from the feedback
interconnection of (5.78) with the nonlinear sampled-data output feedback control

u = H(f(S(y) + w)) , (5.79)

where w ∈ Y Z+ is an output disturbance and f : Y → U with f(0) = 0. Thus, for
given τ ∈ Z+, x0 ∈ X, v ∈ L∞loc(R+, X) and w ∈ Y Z+ , we consider the initial-value
problem

ẋ = Ax+BH(f(S(Cx) + w)) + v, x(0) = x0 ∈ X , (5.80)

see Figure 5.3.

(A,B,C)
yv

u

S

f

H
+ w

Figure 5.3: Block diagram illustrating the sampled-data Lur’e system (5.80).
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We say that a continuous function x : R+ → X is a (mild) solution to (5.80) if x
satisfies x(0) = x0 and

x(kτ + t) =T(t)x(kτ) +

∫ t

0
T(t− s)Bf(Cx(kτ) + w(k))ds

+

∫ t

0
T(t− s)v(kτ + s)ds ∀ t ∈ (0, τ ], ∀ k ∈ Z+ . (5.81)

It is clear that, for all τ ∈ Z+, x0 ∈ X, v ∈ L∞loc(R+, X) and w ∈ Y Z+ , there exists a
unique solution of (5.80). Note that if x0 = 0, v = 0 and w = 0, then 0 is a solution
of (5.80), as f(0) = 0.

We now define what we mean when we say that (5.80) is exponentially input-to-state
stable.

Definition 5.5.5. For a given τ ∈ Z+, the sampled-data Lur’e system (5.80) is said to
be exponentially input-to-state stable (ISS) if there exist constants c, γ > 0 such that,
for all initial states x0 ∈ X, all inputs v ∈ L∞loc(R+, X) and all output disturbances
w ∈ Y Z+, the solution x of (5.80) satisfies

‖x(kτ + t)‖ ≤ c
(
e−γ(kτ+t)‖x0‖+ ‖v‖L∞([0,kτ+t]) + ‖πkw‖l∞

)
∀ t ∈ (0, τ ], ∀ k ∈ Z+ .

The following theorem is the main result of this section and gives a sufficient condition
for exponential ISS of (5.80).

Theorem 5.5.6. Assume that K ∈ Sc(H) and

‖f(ξ)−Kξ‖ ≤ r‖ξ‖ ∀ ξ ∈ Y, (5.82)

where r < 1/ sups∈C0
‖HK(s)‖. Then there exists τ∗ > 0 such that (5.80) is exponen-

tially ISS for all τ ∈ (0, τ∗).

Before proving Theorem 5.5.6, we give some commentary in the form of a remark.

Remark 5.5.7. We note that under the assumptions of Theorem 5.5.6, it follows
from [47, Theorem 4.1] that the continuous-time Lur’e system

ẋ = Ax+Bf(Cx) + v, x(0) = x0 ∈ X , (5.83)

is exponentially ISS. Theorem 5.5.6 shows that exponential ISS is inherited by the
sample-hold discretization (5.79) of the continuous-time system (5.83), provided the
sampling period is sufficiently small. ♦

To facilitate the proof of Theorem 5.5.6, we state the following definitions and technical
lemma.

Definition 5.5.8. (i) For τ > 0, we set

Aτ := T(τ) ∈ L(X), Bτ :=

∫ τ

0
T(s)Bds ∈ L(U,X).

Moreover, for L ∈ L(Y,U), we define

ALτ = (Aτ )L := Aτ +BτLC .

(See Definition 5.1.15.)
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(ii) For L ∈ L(Y,U) and r > 0, we let

Bcl(L, r) :=
{
M ∈ L(Y,U) : ‖M − L‖ ≤ r

}
,

denote the closed ball of radius r, centred at L.

Lemma 5.5.9. Let r > 0 and K ∈ L(Y, U) and assume that Bcl(K, r) ⊆ Sc(H). Then
there exists τ∗ > 0 such that, for all L ∈ Bcl(K, r) and every τ ∈ (0, τ∗), the operator
ALτ is (discrete-time) exponentially stable (i.e. stable in the sense of Definition 5.1.1).

To avoid disruption of the flow of the presentation, the proof of Lemma 5.5.9 is placed
at the end of this section.

Proof of Theorem 5.5.6. Let ρ ∈ R be such that r < ρ < 1/ sups∈C0
‖HK(s)‖. Then,

by [46, Proposition 5.6], Bcl(K, ρ) ⊆ Sc(H). Consequently, by Lemma 5.5.9, there
exists τ∗ > 0 such that, for all L ∈ Bcl(K, ρ) and every τ ∈ (0, τ∗), the operator
ALτ is exponentially stable. Now, let τ ∈ (0, τ∗) be fixed. Moreover, let x0 ∈ X,
v ∈ L∞loc(R+, X), w ∈ Y Z+ and let x be a solution of (5.80). Then, for every k ∈ Z+

and all t ∈ (0, τ ], x satisfies (5.81). Letting t = τ in (5.81) and changing variables, it
follows that, for every k ∈ Z+,

x((k+ 1)τ) = T(τ)x(kτ) +

∫ τ

0
T(s)Bdsf(Cx(kτ) +w(k)) +

∫ τ

0
T(s)v((k+ 1)τ − s)ds.

Setting xk := x(kτ), wk := w(k) and vk :=
∫ τ

0 T(s)v((k+ 1)τ − s)ds for all k ∈ Z+, we
see that (vk, wk, xk) satisfies the following discrete-time system

xk+1 = Aτxk +Bτf(Cxk + wk) + vk, x(0) = x0 ∈ X,
yk = Cxk.

Therefore, statement (ii) of Theorem 5.2.5 (or more precisely of Corollary 5.2.8) yields
the existence of constants c1 > 0 and θ ∈ (0, 1) (independent of v, w and x) such that,
for all k ∈ N,

‖xk‖X ≤ c1

(
θk‖x0‖X + max

σ∈k−1

∥∥∥∥(vσwσ
)∥∥∥∥

X×Y

)
. (5.84)

Let
µ := τ sup

s∈[0,τ ]
‖T(s)‖,

and note that, for all k ∈ Z+,

‖vk‖X ≤ µ ‖v‖L∞([kτ,(k+1)τ ]) .

Hence, there exists c2 > 0 (again independent of v, w and x) such that

‖xk‖X ≤ c2

(
θk‖x0‖X + µ ‖v‖L∞([0,kτ ]) + ‖πk−1w‖l∞

)
∀ k ∈ Z+ . (5.85)

It remains to use the discrete-time estimate (5.85) to bound the state x over all times.
To this end, note that for all k ∈ Z+ and all t ∈ (0, τ ], (5.81) gives that

x(kτ + t) = T(t)xk +

∫ t

0
T(s)Bdsf(Cx(kτ) + w(k)) +

∫ t

0
T(t− s)v(kτ + s)ds .

(5.86)
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Appealing to (5.82), we estimate, for all k ∈ Z+ and all t ∈ (0, τ ],∥∥∥∥∫ t

0
T(s)dsBf(Cx(kτ) + w(k))

∥∥∥∥ ≤ µ‖B‖(r + ‖K‖)(‖C‖‖xk‖+ ‖wk‖). (5.87)

Moreover, for all k ∈ Z+ and all t ∈ (0, τ ],∥∥∥∥∫ t

0
T(t− s)Bv(kτ + s)ds

∥∥∥∥ ≤ µ‖B‖‖v‖L∞([kτ,kτ+t]). (5.88)

Taking norms in (5.86) and substituting in (5.87) and (5.88) yields that, for all k ∈ Z+

and all t ∈ (0, τ ],

‖x(kτ + t)‖ ≤
(
‖T(t)‖+ µ‖B‖(r + ‖K‖)‖C‖

)
‖xk‖+ µ‖B‖ ‖v‖L∞([kτ,kτ+t])

+ µ‖B‖(r + ‖K‖)‖wk‖.

The claim now follows in light of the above inequality and (5.85).

Proof of Lemma 5.5.9. The proof is a refinement of that of [75, Theorem 3.1]. For F ∈
L(Y, U), we let TF denote the strongly continuous semigroup generated by A+BFC
(see Lemma 5.5.2). By hypothesis, Bcl(K, r) ⊆ Sc(H), (A,B) is stabilisable and (C,A)
is detectable, and so, by [26, Theorem 7.32], for each F ∈ Bcl(K, r), there exist ωF < 0
and MF ≥ 1 such that ‖TF (t)‖ ≤ MF e

ωF t for all t ≥ 0. We seek to show that there
exist ω ∈ (−∞, 0) and M ∈ [1,∞) such that

‖TF (t)‖ ≤Meωt ∀ t ≥ 0, ∀ F ∈ Bcl(K, r) . (5.89)

To this end, note that for each F ∈ Bcl(K, r), there exists εF > 0 such that

ωF +MF ‖B(L− F )C‖ ≤ ωF
2
∀L ∈ B(F, εF )

and thus, by Lemma 5.5.2,

‖TL(t)‖ ≤MF e
(ωF /2)t ∀ t ≥ 0, ∀L ∈ B(F, εF ).

Here we have used the fact that A+BLC = (A+BFC) +B(L−F )C. Now, the balls
B(F, εF ) form an open cover of Bcl(K, r) and, since U and Y are finite dimensional,
Bcl(K, r) is compact. Hence, there exist F1, . . . , Fn ∈ Bcl(K, r), ε1, . . . , εn ∈ (0,∞) and
ω1, . . . , ωn ∈ (−∞, 0) such that Bcl(K, r) ⊆ ∪ni=1B(Fi, εi) and

‖TL(t)‖ ≤MFie
ωit ∀ t ≥ 0, ∀L ∈ B(Fi, εi), ∀ i ∈ {1, . . . , n}.

By setting M := max{MF1 , . . . ,MFn} and ω := max{ω1, . . . , ωn}, it follows that (5.89)
holds.
Next, we claim that for all ε > 0, there exists T > 0 such that

‖FC(I −TF (t))‖ < ε ∀ F ∈ Bcl(K, r), ∀ t ∈ [0, T ] . (5.90)

To prove (5.90), we will show that for all ε > 0 and all F ∈ Bcl(K, r), there exist rF > 0
and TF > 0 such that

‖LC(I −TL(t))‖ < ε ∀ t ≤ TF , ∀ L ∈ B(F, rF )
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and then use another compactness argument. To this end, fix ε > 0 and let F ∈
Bcl(K, r). Since U and Y are finite dimensional and C is bounded, it follows that
FC ∈ L(X,U) is a compact operator. Furthermore, as X is a Hilbert space, [86,
Corollary 10.6, p.41] yields that T∗F is a strongly continuous semigroup, and thus

lim
t→0

(I −TF (t))∗x = 0 ∀ x ∈ X .

Therefore, we invoke [75, Lemma 2.1] to yield that

lim
t→0
‖FC(I −TF (t))‖ = 0 .

Consequently, we let T̃F > 0 be such that

‖FC(I −TF (t))‖ < ε

3
∀ t ∈ [0, T̃F ] . (5.91)

We now choose rF > 0 such that

‖L− F‖‖C‖M <
ε

6
∀L ∈ B(F, rF ). (5.92)

We apply [86, Corollary 1.3, p.78] and recall (5.89) to obtain, for all L ∈ B(F, rF ) and
all t ≥ 0,

‖TL(t)−TF (t)‖ ≤Meωt(eM‖B‖‖L−F‖‖C‖t − 1) ≤Meωt(erFM‖B‖‖C‖t − 1),

which in turn implies that

‖LC‖‖TL(t)−TF (t)‖ ≤ (‖F‖+ rF )‖C‖Meωt(erFM‖B‖‖C‖t − 1).

We then let T̂F > 0 be such that

‖LC‖‖TL(t)−TF (t)‖ < ε

6
∀ t ∈ [0, T̂F ], ∀L ∈ B(F, rF ) . (5.93)

Setting TF := min{T̃F , T̂F }, it follows from (5.89), (5.91), (5.92) and (5.93) that, for
all t ∈ [0, TF ] and all L ∈ B(F, rF ),

‖LC(I −TL(t))‖ ≤ ‖LC − FC‖+ ‖LCTL(t)− FCTF (t)‖+ ‖FC(I −TF (t))‖

<
ε

6
+ ‖LC‖‖TL(t)−TF (t)‖+ ‖L− F‖‖C‖‖TF (t)‖+

ε

3
< ε.

Hence, for all ε > 0 and for all F ∈ Bcl(K, r), there exists rF > 0 and TF > 0 such that

‖LC(I −TL(t))‖ < ε ∀ t ∈ [0, TF ], ∀ L ∈ B(F, rF ).

A compactness argument similar to that establishing (5.89) can now be used to prove
that for all ε > 0, there exists T > 0 such that (5.90) holds.

Finally, we seek to use (5.89) and (5.90) to yield the existence of τ∗ > 0 such that
ALτ is (discrete-time) exponentially stable for all L ∈ Bcl(K, r) and every τ ∈ (0, τ∗).
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To that end, fix L ∈ Bcl(K, r). The variation-of-parameters formula for perturbed
semigroups [86, Equation (1.2), p.77] gives, for all τ ≥ 0 and all x ∈ X,

Aτx+BτLCx = T(τ)x+

∫ τ

0
T(s)BdsLCx

= T(τ)x+

∫ τ

0
T(τ − s)BLC(I −TL(s))xds

+

∫ τ

0
T(τ − s)BLCTL(s)xds

= TL(τ)x+ Pτx, (5.94)

where Pτx :=
∫ τ

0 T(τ − s)BLC(I −TL(s))xds for all x ∈ X.
As in the proof of [75, Theorem 3.1], let us introduce a new norm on X given by

|x| := sup
t≥0
‖TL(t)x‖e−ωt ∀ x ∈ X,

where recall ω < 0 is as in (5.89). We note that, from (5.89) and the fact that TL(0) = I,

‖x‖X ≤ |x| ≤M‖x‖X ∀ x ∈ X. (5.95)

For all x ∈ X and all t ≥ 0, we have

|TL(t)x| = sup
s≥0
‖TL(s)TL(t)x‖e−ωs

= sup
s≥0
‖TL(s+ t)x‖e−ω(s+t)eωt

≤ sup
s≥0
‖TL(s)x‖e−ωseωt.

Therefore,
|TL(t)x| ≤ eωt|x| ∀ t ≥ 0, ∀ x ∈ X. (5.96)

For G ∈ L(X), let |G| denote the operator norm of G induced by the new norm, that
is,

|G| = sup
x∈X
x 6=0

|Gx|
|x|

.

Combining (5.94) with (5.95), (5.96) and the inequality

eωτ ≤ 1 + ωτeωτ ∀ τ ∈ R+,

we obtain that

|Aτ +BτLC| ≤ eωτ +M‖Pτ‖
≤ 1 + ωτ + (ω(−1 + eωτ ) + h(τ)) τ ∀ τ ∈ R+ ,

where
h(τ) := M sup

s∈[0,τ ]
‖T(τ − s)BLC(I −TL(s))‖ .

Combining this with (5.90) shows that, for fixed δ ∈ (0,−ω), there exists τ∗ > 0
(independent of L ∈ Bcl(K, r)) such that

|Aτ +BτLC| < 1 + (ω + δ)τ < 1 ∀ τ ∈ (0, τ∗). (5.97)
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Finally, by invoking (5.95), we obtain that, for all τ ∈ (0, τ∗), all n ∈ Z+ and all x ∈ X,

‖(Aτ +BτLC)nx‖ ≤ |(Aτ +BτLC)nx| ≤ |Aτ +BτLC|n|x| ≤M |Aτ +BτLC|n‖x‖.

In light of (5.97), the above inequality yields the exponential stability of ALτ for all
L ∈ Bcl(K, r) and all τ ∈ (0, τ∗), completing the proof.

5.6 Examples

We now give a detailed discussion of two examples. Before coming to these however,
we highlight to the reader that the numerical simulations seen in both examples were
created Dr. Chris Guiver (University of Bath) and appear in our co-authored paper
[40].

Example 5.6.1. Consider the following controlled and observed heat equation describ-
ing the temperature evolution in a unit rod

zt(ξ, t) = zξξ(ξ, t) + 2χ[1/2,1](ξ)u(t) + be(ξ)v(t),

zξ(0, t) = zξ(1, t) = 0, z(ξ, 0) = z0,

y(t) = 2

∫ 1
2

0
z(t, ζ) dζ,

 ξ ∈ (0, 1), t > 0 . (5.98)

Here z(ξ, t) denotes the temperature of the rod at position ξ and time t, z0 ∈ L2(0, 1)
is the initial temperature distribution, χ[1/2,1] is the indicator function of the interval
[1/2, 1] and be ∈ L2(0, 1). Further, u and v are inputs and y is the output (or observa-
tion). It is shown in [26, Example 4.3.11] that (5.98) (with v = 0) may be written in
the form (5.78), with state-space X = L2(0, 1), A the Laplacian with zero Neumann
boundary conditions, and bounded B and C operators. Furthermore, (A,B) is stabil-
isable and (C,A) is detectable by [26, Example 5.2.8]. The transfer function H from u
to y is given by

H(s) =
2 tanh(

√
s/2)

s
√
s

,

where we have again used [26, Example 4.3.11], which has a simple pole at s = 0 and
so (5.98) is neither exponentially nor input-output stable. To illustrate the sampled-
data control results of Section 5.5, we consider the following problem: find conditions
which are sufficient for the sampled-data system given by (5.98) and the feedback (5.79)
to be exponentially ISS.

Writing L(s) := sH(s) enables us to exploit the results of [78] to compute stabilising
gains for H. For which purpose, we note that (see again [26, Example 4.3.11]) L(0) =
1 > 0 and that L is bounded and holomorphic on {s ∈ C : Re (s) > α} for every
α > −π2. Setting

λ := 2 sup
ω∈R

∣∣∣∣Re
L(iω)− L(0)

iω

∣∣∣∣ > 0 ,

an application of [78, Lemma 3.1 and Corollary 3.4] yields that

sup
s∈C0

|H−k(s)| = 1/k ∀ k ∈ (0, 1/λ) .
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In light of [46, Proposition 5.6], it follows that

B(−k, k) ⊆ Sc(H) ∀ k ∈ (0, 1/λ) ,

whence, for all ρ ∈ (0, 1),

Bcl(−k, ρk) ⊆ B(−k, k) ⊆ Sc(H) ∀ k ∈ (0, 1/λ) . (5.99)

Consequently, Theorem 5.5.6 ensures that, for all k ∈ (0, 1/λ) and all ρ ∈ (0, 1), if
f : R→ R is such that

|f(θ) + kθ| ≤ ρk|θ| ∀ θ ∈ R , (5.100)

then there exists τ∗ > 0 such that the sampled-data feedback interconnection of (5.98)
and (5.79) is exponentially ISS for all sampling/hold periods τ ∈ (0, τ∗).
For a numerical illustration, we first compute numerically that λ ≈ 0.3707, so that
5/2 < 1/λ. We take k = 1, ρ = 0.95 and

f : R→ R, f(θ) = −θ + 0.95
(
1− e−|θ|

)
sin(3θ) , (5.101)

so that (5.99) and (5.100) both hold. Note that f is Lipschitz, but has Lipschitz
constant bigger than one. Figure 5.4 illustrates the sector condition (5.100).

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 5.4: Graph of f(θ) + θ against θ, for f in (5.101). The dashed lines have gradient
±0.95.

We set be = χ[1/4,1/2], and define the constant and periodic input v1 = 3 and v2(t) =
3 sin(2t) for all t ≥ 0, respectively. Certain simulations use the initial temperature
distribution z0(ξ) = e−|ξ−1/2|2 . We simulate the closed-loop feedback system (5.98)
and (5.79) by performing a semi-discretization in space using a finite-element method
with 31 elements. In the interest of brevity, we refer the reader to [40, Appendix 2] for
the details concerning this. Figures 5.5(a)–5.5(d) show plots of ‖x(t)‖ against t in the
following situations described in Table 5.1. Simulation data are also listed in Table 5.1.
In Figure 5.5(a), we see the exponential stability property of the unforced (v = 0)
sampled-data feedback system — a consequence of exponential ISS. In Figures 5.5(a)
and 5.5(c), we see the ISS property — the state is bounded in the presence of persistent
inputs and, as might be expected, ‖x(t)‖ increases as ‖v‖L∞(0,t) increases.
To conclude the example, we comment that although taking τ = 0.25 appears to
“work”, in the sense that the numerical results agree with what the theory predicts,
in fact the constant τ∗, the existence of which is guaranteed by Theorem 5.5.6, could
be either smaller or larger than 0.25. Determining the maximal τ∗ analytically or
numerically is a difficult open problem. It seems that Figure 5.5(d) shows divergence
when τ = 2.5, indicating that τ∗ < 2.5. ♦
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Figure Initial condition z(·, 0) Input v Sampling/hold period τ

5.5(a) j2z0 0 0.25

5.5(b) 0 jv1 0.25

5.5(c) 0 jv2 0.25

5.5(d) z0 0 1, 2, 2.5

Table 5.1: Model parameters used in the numerical simulations in Example 5.6.1. Here
j ∈ {1, 2, 3}.

(a) (b)

(c)
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Figure 5.5: Numerical simulation of the sampled-data feedback interconnection of (5.98)
and (5.79) from Example 5.6.1.

Example 5.6.2. We consider a forced Integral Projection Model (IPM) for the mono-
carpic plant Platte thistle (Cirsium canescens), based on the model presented in [18, 95].
For a recent overview of IPMs we refer the reader to [82]. Platte thistle is a perennial
plant native to central North America. The IPM describes the distribution of plant
size, according to the natural logarithm of the crown diameter in mm. Following [18],
we assume that the continuous variable of natural logarithm of crown diameter takes
minimum and maximum values given by m1 = −0.5 and m2 = 3.5 (so that roughly
em1 = 0.6mm and em2 = 33mm), respectively, and that the time-steps correspond to
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years. Incorporating an additive input, the model is

η(t+ 1, ξ) =

∫ m2

m1

p(ξ, ζ)η(t, ζ) dζ + b(ξ)h(c∗η(t, ξ))c∗η(t, ξ)

+ be(ξ)v(t),

η(0, ξ) = η0(ξ)


∀ t ∈ Z+

a.e. ξ ∈ [m1,m2] ,

(5.102)
where η(t, ·) denotes the distribution of plant size at time-step t, with initial distribution
η0 ∈ L1([m1,m2]). In the following, our aim is to write (5.102) in the form of a forced,
infinite-dimensional Lur’e system (5.10) with the natural state space X = L1(Ω), where
Ω := [m1,m2]. Before doing this, we provide some commentary on the model (5.102).

The first term on the right hand side of the difference equation in (5.102) models survival
and growth of existing plants. Here p(ξ, ζ) denotes the probability of an individual of
size ζ surviving to one of size ξ in one time-step, and is assumed in [18, 95] to have the
structure

p(ξ, ζ) = s(ζ)(1− fp(ζ))g(ξ, ζ) ∀ ξ, ζ ∈ Ω , (5.103)

where s(ζ) is the survival probability of an individual of size ζ, fp(ζ) is the probability
that an individual of size ζ flowers, and g(ξ, ζ) is the probability of an individual of
size ζ growing to size ξ, each over one time-step. We take s, fp and g as in [18, Table
2]. The term 1 − fp appears on the right-hand side of (5.103) as flowering is fatal to
Platte thistle, that is, it is monocarpic.

The second term on the right hand side of the difference equation in (5.102) models
reproduction and recruitment into the population. In particular, b ∈ X denotes the
distribution of offspring plant size, c∗z equals the total number of new seeds recruited
into the population by the distribution z ∈ X in one time-step, and is given by

c∗z =

∫
Ω
s(θ)fp(θ)S(θ)z(θ)dθ ∀ z ∈ X .

In addition to the terms in (5.103), S(θ) denotes the number of seeds produced on
average by a plant of size θ. We take b = J , where J is as in [18, Table 2], and
the function S is given in [18, Table 2]. We have c∗ ∈ X∗ as θ 7→ s(θ)fp(θ)S(θ) ∈
L∞(Ω). The function h in (5.102) denotes the probability of seed germination, and
is a nonlinear function of the total number of seeds produced, and so seeks to model
density-dependence in the seed germination probability. As such, it is assumed to be
non-increasing, representing competition or crowding affects at higher seed abundances.
Two situations are explored in [18]: first, h is constant with value 0.067, and; second,
h is defined by h(s) = s−0.33. We note that there is uncertainty in modelling nonlinear
terms for Platte thistle, see [32], and in order to demonstrate different settings where
the incremental condition (5.14) holds, we shall choose a different h below.

The third term term on the right hand side of the difference equation in (5.102) is an
additive input, which may be the arrival of new plants via planned replanting schemes,
or accidental movement. We assume that be ∈ X and v ∈ (R+)Z+ , which capture the
distribution and magnitude, respectively.

We define the integral operator A : X → X by

(Ax)(·) =

∫
Ω
p(·, ζ)x(ζ)dζ ∀ x ∈ X ,
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and impose the ecologically reasonable assumption

sup
ζ∈Ω

∫
Ω
p(ξ, ζ) dξ < 1 ,

which corresponds to some positive level of mortality in the population at all sizes. An
application of [70, Theorem 1, p. 173] yields that ‖A‖ < 1.
Combining the above, and setting x(t) = η(t, ·) for all t ∈ Z+, we see that (5.102) may
be written as a forced Lur’e system,

x+ = Ax+ bf(c∗x) + bev , (5.104)

on the state-space X = L1(Ω), and with U = V = Y = R. Here f(s) := h(s)s for s ≥ 0
and we extend h and f to all of R by setting h(s) = f(s) = 0 for s ∈ (−∞, 0). The
extension is to ensure that f is defined on the whole of Y , so that the results of the
chapter are applicable.
We seek to apply Theorem 5.2.5, Theorem 5.3.7 and Corollary 5.3.15 to (5.104) to infer
various (incremental) stability and convergence notions. To simulate (5.104) we use a
finite-element approximation. Once again, in the interest of brevity, we refer the reader
to [40, Appendix 3] for the details of this.
The property ‖A‖ < 1 implies that B(0, r) ⊆ S(G) for all r ∈ (0, 1/‖G‖H∞), where
G(z) = c∗(zI − A)−1b. Moreover, by [36, Proposition 3.1], we have that ‖G‖H∞ =
G(1), and we compute numerically that G(1) ≈ 43.8. We propose a negative sigmoid
type function for h : R→ R+, namely

h(s) =

 0 s < 0 ,
ρ1

1 + eρ2(s−ρ3)
s ≥ 0 ,

(5.105)

where ρ1, ρ2 and ρ3 are positive parameters. Broadly, ρ1 captures the probability of
germination at low abundance, ρ2 determines the rate of transition and ρ3 the value at
which the transition occurs. Figure 5.6 contains plots of h for several parameter values.
Since h is nonnegative-valued and nonincreasing, it follows that there exists δ > 0 such
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1

y

Figure 5.6: Graph of function h in (5.105) for nonnegative arguments. Here ρ1 = 1 and
ρ3 = 10, and ρ2 varies.

that s 7→ f(s) = h(s)s satisfies (5.14) with K = 0, S1 = R, S2 = {0} and r = 1/G(1)
whenever

h(0) =
ρ1

1 + e−ρ2ρ3
<

1

G(1)
. (5.106)
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If (5.106) holds, then Theorem 5.2.5 yields that (5.104) is exponentially ISS. If the
inequality

sup
s>0
|f ′(s)| < 1

G(1)
, (5.107)

holds, then f satisfies (5.14) with K = 0, S1 = S2 = R, and hence Theorem 5.2.5
yields that (5.104) is exponentially δISS. In this case, it also follows from Theorem 5.3.7
that (5.104) has the CICS property. Moreover, the inequality (5.107) is sufficient for the
hypotheses of Corollary 5.3.15 to hold, which ensures that (5.104) admits an asymptoti-
cally almost periodic trajectory when subject to asymptotically almost periodic inputs.
Numerical simulations are plotted in Figure 5.7. Throughout, we take

ρ1 =
0.9

G(1)
, ρ2 = 2, ρ3 = 20 ,

and with these parameter values it can be shown that f satisfies (5.107). In each
of panels (a), (b) and (d) of Figure 5.7, three lines are plotted, which each show
the norm of a state trajectory as time varies. For each panel, the three different
choices of initial conditions and inputs given in Table 5.2 give rise to the three state
trajectories. In the inner and outer subpanels of panel (c), each of the three lines, plots
the norm of the difference of two inputs as time varies and the norm of the difference
of the two corresponding state trajectories as time varies, respectively. Once again,
the details of the initial conditions and inputs are given in Table 5.2. We now briefly
give some commentary of the panels of Figure 5.7. In panel (a), we see that in each of
the three cases of initial conditions, a 0 input implies exponential convergence of the
corresponding state towards 0, as guaranteed by Theorem 5.2.5. In panel (b), we see
an ISS-property of state trajectories corresponding to zero initial conditions, and in
panel (c), we observe a characteristic of the incremental ISS notion (again guaranteed
by Theorem 5.2.5). Finally, panel (d) shows that we obtain asymptotically periodic
responses to periodic forcing, thus illustrating Corollary 5.3.15. We note that panel (d)
shows that, asymptotically, the responses to the same input are identical and do not
depend on the initial conditions, thereby illustrating a typical aspect of ISS. ♦

Figure Initial condition x(0) Input v

5.7(a) Random s.t. ‖x(0)‖ = 4j2 0
5.7(b) 0 v(t) random perturbation of 4j2

5.7(c) Random s.t. ‖x1(0)‖, ‖x2(0)‖ = 4j2 v1(t), v2(t) convergent to 4j2

5.7(d) Random s.t. ‖x(0)‖ = 4j2 v(t) = 4 sin(2πt/12)

Table 5.2: Model parameters used in the numerical simulations in Example 5.6.2, where
j ∈ {1, 2, 3}.
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Figure 5.7: Numerical simulation of the IPM (5.102) from Example 5.6.2. In each panel the
solid, dashed and dashed-dotted lines correspond to j = 1, 2, 3, respectively. The x-axes of all
panels correspond to time, and the y-axes of panels (a), (b) and (d) correspond to ‖x(t)‖. The
y-axes for the inner and outer graphs of panel (c) represent |v1(t)− v2(t)| and ‖x1(t)− x2(t)‖,
respectively. For commentary, see the main body of text.

5.7 Notes and references

In the main result of this chapter, Theorem 5.2.5, we made use of exponential weighting
and small gain arguments. We comment that these methods are not new and refer the
reader to works such as [59] and the references therein for further details. The result,
and indeed much of the chapter, is based off the work achieved in [40] (of which the
author of this thesis co-authored), and may be considered to be a discrete-time analogue
of the main contributions of [47], with a few exceptions. Indeed, in [47], the effect of
(asymptotically) almost periodic inputs on the state and output trajectories of the
relevant system is not considered, and, of course, neither are sampled-data systems.

To the best of the author’s knowledge, there is no existing literature that overlaps
with any significance with the present chapter. For background literature regarding
the stability results of the current chapter, we refer the reader to [5] for a suite of
Lyapunov methods for finite-dimensional, continuous-time nonlinear control systems.
Moreover, we also refer to works such as [55, 83, 88, 91] for ISS investigations in the
infinite-dimensional setting.
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5.7. Notes and references

The inspiration of the results of Section 5.2.2 orginate from the papers [46, 74]. In [74],
the invertibility of positive real operators is investigated, and in [46], characterisations
and relationships of different notions of positive realness are presented. Both of these
papers are in the infinite-dimensional setting and both define positive realness in the
continuous-time format, that is, functions are defined on the open right-half plane. In
addition, a result closely related to the corollaries seen in Section 5.2.2 is [57, Theorem
4.5], which deduces ISS of infinite-dimensional continuous-time Lur’e systems.

Some noteworthy papers with results similar to Corollary 5.3.15 that can be found in
the literature are [103, 105, 128]. Since a discussion of these papers is given in the Notes
and References section of Chapter 3, we refer the reader to Chapter 3 for more details.
We shall simply state here that the methods of proofs used in the papers are entirely
different to the proof of Corollary 5.3.15, and the continuous-time systems considered
are much more restrictive.
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Chapter 6

Sampled-data integral control of
linear infinite-dimensional
systems with input nonlinearities

Low-gain integral control is a well-studied technique that seeks to conclude that the
output of a stable linear system converges to a predescribed constant reference signal. It
is very well-known (see, for example, [29, 84]) that for a stable, continuous-time linear
system in the finite-dimensional setting, by applying an integrator with sufficiently
small gain parameter and closing the feedback loop, the corresponding output does
indeed converge to the prescribed reference value, so long as the eigenvalues of the
transfer function at 0 have positive real part. Much work has been attributed to
the investigation of low-gain integral control for more general systems. Indeed, we
refer the reader to works such as [23, 25, 65, 80, 89, 90] for integral control results
in the infinite-dimensional setting, discrete-time setting and sampled-data setting. In
much of the literature (see, for example, [35, 76, 79]), the assumptions imposed to
obtain tracking of the output to a reference signal, limit the system to be in the
single-input single-output setting. However, recently, in [48], low-gain integral control
is investigated for multi-input multi-output, linear, continuous-time, finite-dimensional
systems with input nonlinearities. In particular, the authors consider a low-gain integral
controller that includes an antiwindup component, and they show that it achieves global
exponential tracking for all feasible reference signals, so long as the controller has small
enough integrator gain and the nonlinearity exhibits a Lipschitz-like assumption. The
inclusion of the so-called antiwindup component of the controller makes it feasible for
multi-input multi-output systems. Indeed, the antiwindup component of the controller
is implemented to reduce, or even remove, integrator windup [8]. Briefly, integrator
windup is a potentially destabilising effect on the tracking of multi-input multi-output
integral control systems that have input saturation, and occurs due to controllers being
based upon linear assumptions. The theory of antiwindup control, which seeks to
remove this effect, is a much researched area. We refer the reader to works such as
[13, 37, 120] and the references therein for background reading.

A problem not addressed in the literature is that of sampled-data low-gain integral
control of linear infinite-dimensional multi-input multi-output systems with input non-
linearities. Briefly, in sampled-data control, a continuous-time system is controlled by
a discrete-time controller, via the use of sample and hold operations. This discrete-
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time controller may be thought of, for example, as a processor of a digital computer.
The main result of this chapter, Theorem 6.3.5, provides a stability criterion for the
sampled-data feedback interconnection of a well-posed linear system (see, for example,
[118]) with input nonlinearities, with a discrete-time low-gain integral controller which
contains an antiwindup component. Our sampled-data model includes continuous as
well as discrete-time external disturbances. In the absence of these disturbances, Theo-
rem 6.3.5 guarantees asymptotic tracking. To prove Theorem 6.3.5, we first extend the
finite-dimensional continuous-time results of [48] to infinite-dimensional discrete-time
systems that are interconnected with a low-gain integral controller with an antiwindup
component, have potentially nonzero feedthrough and include external disturbances,
that is, under analogous assumptions of those in [48, Theorem 4], we derive a stability
estimate of the difference between the output and reference signal which, in the absence
of disturbances, guarantees exponentially fast asymptotic tracking. We comment that
the work of this chapter is based of that presented in [42].

The layout of the chapter is as follows. We begin in Section 6.1 by giving some useful
preliminary definitions and results. Following this, in Section 6.2, we provide the pre-
viously descibed low-gain integral control result which is a discrete-time generalisation
of the work of [48]. Then, in Section 6.3, we apply this to obtain the main contribution
of this chapter, that is, a sampled-data low-gain integral control result for well-posed
infinite-dimensional systems with input nonlinearities.

As in the previous chapter, we assume that the norm on the cartesian product of two
normed spaces W1 and W2 is given by (5.1). We note that, if W1 and W2 are Hilbert
spaces, then W1 ×W2 is itself a Hilbert space when equipped with the inner-product〈(

ξ1

ζ1

)
,

(
ξ2

ζ2

)〉
W1×W2

:= 〈ξ1, ξ2〉W1 + 〈ζ1, ζ2〉W2 ∀ ξ1, ξ2 ∈W1, ∀ ζ1, ζ2 ∈W2.

6.1 Preliminaries

We begin this section by recalling the following definitions.

Definition 6.1.1. Let α ∈ R and W be a Hilbert space.

(i) We define the exponentially weighted L2-space L2
α(R+,W ) by

L2
α(R+,W ) :=

{
w ∈ L2

loc(R+,W ) : e−αw ∈ L2(R+,W )
}
,

with norm ‖w‖L2
α

:= ‖e−αw‖L2 and where, for β ∈ R, eβ(t) := eβt for all t ∈ R+.

(ii) We recall the definition of the Hardy space

H2(Cα,W ) :=

{
h : Cα →W : h is holomorphic and

sup
x>α

(∫ ∞
−∞
‖h(x+ iy)‖2Wdy

)
<∞

}
.

We shall also give the definition of discrete- and continuous-time exponential conver-
gence.
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Definition 6.1.2. Let W be a normed space. For u ∈ WZ+ and ũ ∈ W , we say
that u(k) → ũ as k → ∞ (discrete-time) exponentially if there exists δ > 0 such that
k 7→ eδk‖u(k) − ũ‖W is bounded. Similarly, for v : R+ → W and ṽ ∈ W , we say that
v(t) → ṽ as t → ∞ (continuous-time) exponentially if there exists δ > 0 such that
t 7→ eδt‖v(t)− ṽ‖W is bounded.

We now concern ourselves with the invertibility of triangular operator matrices.

Lemma 6.1.3. Let (L1, L2, L3, L4) ∈ L(W1)×L(W2,W1)×L(W1,W2)×L(W2), where
W1 and W2 are normed spaces. If L,M ∈ L(W1 ×W2) are defined by

L :=

(
L1 L2

0 L4

)
and M :=

(
L1 0
L3 L4

)
,

then
σ(L) ⊆ σ(L1) ∪ σ(L4) and σ(M) ⊆ σ(L1) ∪ σ(L4).

Lemma 6.1.3 is a well-known result, and for a proof we refer the reader to the proof of
[10, Lemma 3], for example. Interestingly, in the finite-dimensional setting, it is known
that the spectrum of a triangular block matrix is equal to the union of the spectra
of the diagonal matrices. The following example proves that this is not true in the
infinite-dimensional case, and so we cannot expect more from Lemma 6.1.3, without
any extra assumptions.

Example 6.1.4. Let W1 = W2 = `∞(Z+,R). Define (L1, L2, L4) ∈ L(W1)×L(W2,W1)
×L(W2) by

(L1w)(t) :=

{
0, if t = 0

w(t− 1), if t ∈ N
, (L2w)(t) :=

{
w(0), if t = 0

0, if t ∈ N
,

and (L4w)(t) := w(t + 1) for all t ∈ Z+, and all w ∈ `∞(Z+,R). It is easily seen that
L1 is not surjective and L4 is not injective. However, we claim that

L :=

(
L1 L2

0 L4

)
is invertible, which we shall now show. To this end, let u, v, ũ, ṽ ∈ `∞(Z+,R) and
assume that

L

(
u
v

)
= L

(
ũ
ṽ

)
.

As a consequence of this, L4v = L4ṽ and

L1u+ L2v = L1ũ+ L2ṽ. (6.1)

From this, we see that u(t− 1) = ũ(t− 1) for all t ∈ N, that is, u = ũ. Moreover, since
L4v = L4ṽ, we see that v(t+ 1) = ṽ(t+ 1) for all t ∈ Z+. By combining this with (6.1),
we see that also v(0) = ṽ(0) and so v = ṽ.
As for surjectivity, let u, v ∈ `∞(Z+,R). Define ũ, ṽ ∈ `∞(Z+,R) by ũ(t) := u(t + 1)
for all t ∈ Z+ and

ṽ(t) :=

{
u(0), if t = 0

v(t− 1), if t ∈ N.
It is then easily checked that

L

(
ũ
ṽ

)
=

(
u
v

)
,

which proves that L is surjective. ♦
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6.2. Low-gain integral control in discrete-time

6.2 Low-gain integral control in discrete-time

In this section, we give a low-gain integral control result for infinite-dimensional,
discrete-time linear systems with input nonlinearities and external disturbances. We
proceed to outline the mathematical formulation. Throughout this section, we let X
and V be complex Banach spaces and Y and U be complex Hilbert spaces. We consider
the discrete-time system given by

x+ = Ax+Bφ(u) +Bev, x(0) = x0 ∈ X,
y = Cx+Dφ(u) +Dev,

}
(6.2)

where

(A,B,Be, C,D,De) ∈ L(X)× L(U,X)× L(V,X)× L(X,Y )× L(U, Y )× L(V, Y ),

u ∈ UZ+ , v ∈ V Z+ , φ : U → U and A is exponentially stable (see Definition 5.1.1).
Keeping with the theme of this thesis, x in (6.2) will be called the state, y the output,
and u and v forcing, inputs or disturbances. For ease of notation, we shall employ
notation used in the previous chapter (see Definition 5.1.8). To this end, we set

L = L(X)× L(U,X)× L(V,X)× L(X,Y )× L(U, Y )× L(V, Y ),

and, for (A,B,Be, C,D,De) ∈ L, we define

Σ = (A,B,Be, C,D,De).

Moreover, we denote the transfer function of (6.2) by G (see Definition 5.1.10), that
is,

G(z) = C(zI −A)−1B +D,

for all z ∈ C for which this makes sense.

Remark 6.2.1. For Σ ∈ L, the generality of the operators Be and De means that
(6.2) encompasses many (even seemingly more general) systems. We shall not go into
detail here, since this has already been discussed in previous chapters (see Remark
2.1.10). ♦

We aim to apply low-gain integral control to (6.2) so that the output, when v = 0,
converges to some constant reference signal r ∈ Y . With this in mind, we give the
following definitions.

Definition 6.2.2. Let Σ ∈ L be such that A is exponentially stable and let φ : U → U .

(i) We say that r ∈ Y is feasible (with respect to (6.2)), if the set

U r := {w ∈ U : G(1)φ(w) = r},

is non-empty.

(ii) We say that a set R ⊆ Y is feasible (with respect to (6.2)) if every r ∈ R is
feasible.

Some immediate implications concerning feasibility are presented in the following re-
mark.
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Remark 6.2.3. Let Σ ∈ L be such that A is exponentially stable and let φ : U → U .
If r ∈ Y is feasible, then by taking w ∈ U r and setting u(t) := w for all t ∈ Z+, it
is easily seen that, for (x, y) ∈ XZ+ × Y Z+ satisfying (6.2) with v = 0, it follows that
y(t)→ r as t→∞. ♦

Given Σ ∈ L such that A is exponentially stable, φ : U → U , R ⊆ Y feasible, r ∈ R
and ur ∈ U r, consider the control law

u+ = u+ gK(r − y)− gΓ(u− φ(u)− ur + φ(ur)) + w, u(0) = u0 ∈ U, (6.3)

where g > 0, K ∈ L(Y, U) and Γ ∈ L(U) are design parameters and w ∈ UZ+ is a
disturbance.

Remark 6.2.4. We denote the term gΓ(u − φ(u) − ur + φ(ur)) in (6.3) as the anti-
windup component of the controller [48]. As already mentioned, it seeks to mitigate
against integrator windup when under input saturation. For more details on this, we
refer the reader to the preamble given at the start of the present chapter. Finally,
we highlight that if Γ = 0 or φ = id, then (6.3) becomes ‘standard’ integral control
(subject to a disturbance w). ♦

Our focus in this section is the feedback interconnection of (6.2) and (6.3), which yields
the closed-loop system

x+ = Ax+Bφ(u) +Bev, x(0) = x0 ∈ X,
y = Cx+Dφ(u) +Dev,

u+ = u+ gK(r − y)− gΓ(u− φ(u)− ur + φ(ur)) + w, u(0) = u0 ∈ U.

 (6.4)

The following result is the main theorem of this section and provides a low-gain integral
control result for (6.4).

Theorem 6.2.5. Let Σ ∈ L be such that A is exponentially stable, φ : U → U ,
K ∈ L(Y,U), Γ ∈ L(U) be such that I − Γ is exponentially stable, and R ⊆ Y feasible.
Assume that there exists L > 0 such that

‖φ(ξ + ζ)− φ(ζ)‖U ≤ L‖ξ‖U ∀ ξ ∈ U, ∀ ζ ∈
⋃
r∈R

U r, (6.5)

and

sup
z∈E
‖(zI − (I − Γ))−1‖‖Γ−KG(1)‖ < 1/L. (6.6)

Then, there exists g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗), there exist constants c, d > 0
and θ ∈ (0, 1) such that, for all r ∈ R, ur ∈ U r and (u,w, v, x, y) ∈ UZ+×UZ+×V Z+×
XZ+ × Y Z+ satisfying (6.4),∥∥∥∥(x(t)− (I −A)−1Bφ(ur)

u(t)− ur
)∥∥∥∥ ≤ c(θt ∥∥∥∥(x0 − (I −A)−1Bφ(ur)

u0 − ur
)∥∥∥∥+ max

s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)
∀ t ∈ N, (6.7)

‖y(t)− r‖ ≤ d
(
θt
∥∥∥∥(x0 − (I −A)−1Bφ(ur)

u0 − ur
)∥∥∥∥+ max

s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) ∀ t ∈ Z+. (6.8)
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6.2. Low-gain integral control in discrete-time

Before proving Theorem 6.2.5, we provide some commentary in the following remark.

Remark 6.2.6. (i) We note that Theorem 6.2.5 guarantees that, under zero forcing,
u(t) → ur, x(t) → (I − A)−1Bφ(ur) and y(t) → r as t → ∞ and each with
exponential rate of convergence - see Definition 6.1.2.

(ii) Assumption (6.5) is evidently satisfied if φ is globally Lipschitz with Lipschitz
constant L. Moreover, if there exist distinct u1, u2 ∈ U such that φ(u1) = u1,
φ(u2) = u2 and at least one of u1 and u2 is in U r for some r ∈ R, then an
immediate consequence of (6.5) is that L ≥ 1.

(iii) The assumptions of Theorem 6.2.5 imply that any ur ∈ U r that satisfies ur =
φ(ur) is in fact unique. To see this, suppose that wr ∈ U r also satisfies wr =
φ(wr). From (6.5) we see that

‖ur − wr‖U = ‖φ(ur)− φ(wr)‖U ≤ L‖ur − wr‖U ,

which in turn yields that either ur = wr or L ≥ 1. In the latter case, (6.6) gives
that

‖Γ−KG(1)‖ < 1

supz∈E ‖(zI − (I − Γ))−1‖
.

Therefore, from Lemma 5.1.22 (see also Remark 5.1.23), Γ − KG(1) ∈ S(H),
where H(z) = (zI − (I − Γ))−1 for all z ∈ E. Since I − Γ is exponentially stable,
Lemma 5.1.21 gives that

σ(I −KG(1)) = σ((I − Γ) + (Γ−KG(1))) ⊆ D,

which in turn implies that KG(1) is invertible. Finally, by definition of ur, wr ∈
U r,

KG(1)ur = KG(1)φ(ur) = Kr = KG(1)φ(wr) = KG(1)wr,

which shows that ur = wr.

(iv) Theorem 6.2.5 remains valid if the spaces V , U , X and Y are real, provided
that the estimate (6.6) holds for the canonical extensions of Γ and KG(1) to the
complexifications U c and Y c of U and Y , respectively.

(v) In the situation wherein U = Rm and Y = Rp for some m, p ∈ N, if L ≥ 1, then
part (iii) of this remark shows that KG(1) is invertible. From this, we deduce
that rk G(1) = m is a necessary condition for the assumptions of Theorem 6.2.5
to hold.

(vi) The assumption (6.6) is trivially satisfied for any L > 0, if we choose K as a left
inverse of G(1) and Γ = I. Such a choice naturally requires knowledge of G(1)
to be implemented, although the condition (6.6) carries robustness with respect
to parametric uncertainty in G(1). ♦

In order to prove Theorem 6.2.5, we first require the following lemma, which is a
discrete-time version of [48, Lemma 6], extended to the case of potentially nonzero
feedthrough and to the infinite-dimensional setting.
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Lemma 6.2.7. Let Σ ∈ L, K ∈ L(Y, U) and Γ ∈ B(U). Assume that A and I − Γ are
exponentially stable. For g > 0, we define

Ã :=

(
A 0

−gKC I − gΓ

)
, B̃ :=

(
B

g(Γ−KD)

)
, C̃ :=

(
0 I

)
, (6.9)

and denote by G̃ the transfer function of (Ã, B̃, C̃), that is, G̃(z) = C̃(zI − Ã)−1B̃.
The following the statements hold.

(i) For each g ∈ (0, 1], Ã is exponentially stable.

(ii) For all ε > 0, there exists g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗),

‖G̃‖H∞ ≤ ε+ sup
z∈E
‖(zI − (I − Γ))−1‖‖Γ−KG(1)‖. (6.10)

The following proof is inspired by the proof of [48, Lemma 6].

Proof of Lemma 6.2.7. To prove statement (i), fix g ∈ (0, 1]. We begin with an appli-
cation of Lemma 6.1.3 to obtain that σ(Ã) ⊆ σ(A) ∪ σ(I − gΓ). Thus, if we show that
I − gΓ is exponentially stable, the exponential stability of A will yield the exponential
stability of Ã. Indeed, this is what we shall now show. For which purpose, note that,
for λ ∈ C,

λI − (I − gΓ) = (λ− 1)I + gΓ = g

(
λ− 1

g
I + Γ

)
= g

((
λ− 1

g
+ 1

)
I − (I − Γ)

)
.

Hence, λ ∈ σ(I − gΓ) if, and only if, ((λ − 1)/g + 1) ∈ σ(I − Γ). By combining this
with the fact that I − Γ is exponentially stable, we see that if λ ∈ σ(I − gΓ), then
((λ− 1)/g + 1) ∈ D. This in turn implies that (λ− 1)/g ∈ BC(−1, 1). For such a λ, it
is easily checked that since g ≤ 1, then λ − 1 ∈ BC(−1, 1) and hence λ ∈ D. We have
thus shown that σ(I − gΓ) ⊆ D, i.e. that I − gΓ is exponentially stable. As previously
mentioned, from Lemma 6.1.3, the exponential stability of A and I − gΓ yields the
exponential stability of Ã.
For statement (ii), fix ε > 0 and note that, for all z ∈ E and all g ∈ (0, 1],

G̃(z) =
(
0 I

)(zI −A 0
gKC zI − (I − gΓ)

)−1(
B

g(Γ−KD)

)
=
(
0 I

)( (zI −A)−1 0
−(zI − (I − gΓ))−1gKC(zI −A)−1 (zI − (I − gΓ))−1

)(
B

g(Γ−KD)

)
= g(zI − (I − gΓ))−1(Γ−KG(z)).

We write G̃ = H1 + H2, where, for all z ∈ E and all g ∈ (0, 1],

H1(z) := g(zI − (I − gΓ))−1K(G(1)−G(z)),

H2(z) := −g(zI − (I − gΓ))−1(KG(1)− Γ).

We highlight that for all g ∈ (0, 1], we have H1,H2 ∈ H∞(L(U)). We claim that there
exists g∗ ∈ (0, 1] such that

‖H1‖H∞ ≤ ε ∀ g ∈ (0, g∗), (6.11)
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and
‖H2‖H∞ ≤ sup

z∈E
‖(zI − (I − Γ))−1‖‖Γ−KG(1)‖ ∀ g ∈ (0, 1]. (6.12)

Since G̃ = H1 + H2, the desired estimate (6.10) follows from the conjunction of (6.11)
and (6.12). Before proving these equations, we record that

z − 1

g
+ 1 ∈ E ∀ z ∈ E, ∀ g ∈ (0, 1], (6.13)

which follows from the estimates∣∣∣∣z − 1

g
+ 1

∣∣∣∣ ≥ ∣∣∣∣z − 1

g
+

1

g

∣∣∣∣− ∣∣∣∣1g − 1

∣∣∣∣ =
|z|
g
− 1

g
+ 1 > 1 ∀ z ∈ E, ∀ g ∈ (0, 1].

Consequently, from the exponential stability of I − Γ, Lemma 5.1.11 yields that

sup
z∈E

∥∥∥∥∥
((

z − 1

g
+ 1

)
I − (I − Γ)

)−1
∥∥∥∥∥ = M1 <∞ ∀ g ∈ (0, 1]. (6.14)

To establish (6.11), we express H1 as

H1(z) = g

(
I +

g

z − 1
Γ

)−1

K
G(1)−G(z)

z − 1
∀ z ∈ E, ∀ g ∈ (0, 1]. (6.15)

We claim that there exists M > 0 such that∥∥∥∥∥
(
I +

g

z − 1
Γ

)−1
∥∥∥∥∥ ≤M ∀ z ∈ E, ∀ g ∈ (0, 1]. (6.16)

To show this, fix ρ > 1 and let g ∈ (0, 1] and z ∈ E. If |z − 1| ≤ ρ‖Γ‖g, then, from
(6.14), ∥∥∥∥∥

(
I +

g

z − 1
Γ

)−1
∥∥∥∥∥ =
|z − 1|
g

∥∥∥∥∥
((

z − 1

g
+ 1

)
I − (I − Γ)

)−1
∥∥∥∥∥

≤ ρ‖Γ‖M1.

If instead |z − 1| ≥ ρ‖Γ‖g, then∥∥∥∥ g

z − 1
Γ

∥∥∥∥ = g
‖Γ‖
|z − 1|

≤ 1

ρ
< 1.

Whence, from an application of Lemma 5.1.6,∥∥∥∥∥
(
I +

g

z − 1
Γ

)−1
∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑
j=0

(− g

z − 1
Γ)j

∥∥∥∥∥∥
≤
∞∑
j=0

∥∥∥∥ g

z − 1
Γ

∥∥∥∥j
≤ ρ

ρ− 1

=: M2.
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Setting M := max{ρ‖Γ‖M1,M2} gives (6.16). A combination of (6.15) and (6.16)
yields that

‖H1(z)‖ ≤ gM‖J‖H∞ ∀ z ∈ E, ∀ g ∈ (0, 1], (6.17)

where

J(z) :=

{
KG(z)−G(1)

z−1 , if z 6= 1

KG′(1), if z = 1.

The bound (6.11) now follows from (6.17) by taking g∗ := min{1, ε/(M‖J‖H∞)}.
To establish (6.12), we note that

‖H2(z)‖ ≤

∥∥∥∥∥
(
z − 1

g
I + Γ

)−1
∥∥∥∥∥ ‖Γ−KG(1)‖

=

∥∥∥∥∥
((

z − 1

g
+ 1

)
I − (I − Γ)

)−1
∥∥∥∥∥ ‖Γ−KG(1)‖

≤ sup
λ∈E
‖(λI − (I − Γ))−1‖‖Γ−KG(1)‖ ∀ z ∈ E, ∀ g ∈ (0, 1],

where the final inequality invokes (6.13). This then yields (6.12) and completes the
proof.

We are now in a position to prove Theorem 6.2.5.

Proof of Theorem 6.2.5. To begin with, we note that (6.6) implies that we may choose
ε > 0 so that

ε+ sup
z∈E
‖(zI − (I − Γ))−1‖‖Γ−KG(1)‖ < 1/L. (6.18)

We may apply Lemma 6.2.7 to obtain the existence of g∗ ∈ (0, 1] such that, for all
g ∈ (0, g∗), it follows that (6.10) holds. With this in mind, we let r ∈ R, ur ∈ U r,
g ∈ (0, g∗), and (u,w, v, x, y) ∈ UZ+ × UZ+ × V Z+ ×XZ+ × Y Z+ satisfy (6.4). Define

x̃ := x− (I −A)−1Bφ(ur), ỹ := y − r and ũ := u− ur.

In follows that

x̃+ = Ax+Bφ(u) +Bev − (I −A)−1Bφ(ur)

= Ax̃− (I −A)(I −A)−1Bφ(ur) +Bφ(u) +Bev

= Ax̃+B(φ(ũ+ ur)− φ(ur)) +Bev

= Ax̃+Bφur(ũ) +Bev, (6.19)

where φur(ũ) = φ(ũ + ur) − φ(ur). Furthermore, noting that r = G(1)φ(ur), we see
that

ỹ = Cx+Dφ(u) +Dev − r
= Cx̃+ C(I −A)−1Bφ(ur) +Dφ(u) +Dev −G(1)φ(ur)

= Cx̃+Dφur(ũ) +Dev. (6.20)
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By combining this with (6.19), we obtain that

ũ+ = u+ gK(r − y)− gΓ(u− φ(u)− ur + φ(ur)) + w − ur

= ũ− gKCx̃− gKDφur(ũ)− gKDev − gΓ(u− φ(u)− ur + φ(ur)) + w

= (I − gΓ)ũ− gKCx̃+ g(Γ−KD)φur(ũ)− gKDev + w. (6.21)

We may re-write (6.19) and (6.21) as(
x̃
ũ

)+

=

(
A 0

−gKC I − gΓ

)(
x̃
ũ

)
+

(
B

g(Γ−KD)

)
φur

((
0 I

)(x̃
ũ

))
+

(
Bev

−gKDev + w

)
.

By defining Ã, B̃ and C̃ as in (6.9), this becomes(
x̃
ũ

)+

= Ã

(
x̃
ũ

)
+ B̃φur

(
C̃

(
x̃
ũ

))
+

(
Be 0

−gKDe I

)(
v
w

)
. (6.22)

The estimate (6.7) follows from an application of Corollary 5.2.8 to the system (6.22).
We thus shall verify that the relevant hypotheses are satisfied. To this end, (6.18)
combined with (6.10) yields that

‖G̃‖H∞ < 1/L,

where G̃ the transfer function of (Ã, B̃, C̃). Finally, since, from (6.5), φur satisfies

‖φur(ξ)‖U ≤ L‖ξ‖U ∀ ξ ∈ U,

we see that the hypotheses of Corollary 5.2.8 are satisfied, which in turn then yields
the existence of constants c, d > 0 and θ ∈ (0, 1) such that (6.7) holds. By thoroughly
inspecting the proof of Theorem 5.2.5, we are able to deduce that c, d and θ are inde-
pendent of φur , and hence are therefore independent of u, w, v, x, y, r and ur. As for
(6.8), we shall use (6.5) and (6.20) to obtain that, for all t ∈ Z+,

‖y(t)− r‖ ≤ ‖C‖‖x(t)− (I −A)−1Bφ(ur)‖+ ‖D‖‖φ(u(t))− φ(ur)‖+ ‖De‖‖v(t)‖

≤ 2(‖C‖+ L‖D‖)
∥∥∥∥(x(t)− (I −A)−1Bφ(ur)

u(t)− ur
)∥∥∥∥+ ‖De‖

∥∥∥∥(v(t)
w(t)

)∥∥∥∥ ,
and then combine this with (6.7). This yields that (6.8) holds with d := 2(‖C‖ +
L‖D‖)c+ ‖De‖, thus completing the proof.

6.3 Sampled-data integral control

In this section, we apply Theorem 6.2.5 in the context of sampled-data low-gain integral
control of well-posed linear systems. In the interest of brevity, we will be brief in our
setup, since there is much literature concerning these systems. Indeed, we refer the
reader to the references [56, 101, 102, 116, 117, 118, 122, 123, 124] for more details.

Throughout, we consider an L2-well-posed system with state space X, input space U ×
Ue, output space Y (all Hilbert spaces), generating operators (A, (BBe), C) and transfer
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Chapter 6. Sampled-data integral control of linear infinite-dimensional systems with input nonlinearities

function (H He). Control inputs will act through B, whilst external disturbances will
act through Be. By definition, A is the generator of a strongly continuous semigroup
T on X (see Definition 5.5.1), (B Be) ∈ L(U × Ue, X−1) and C ∈ L(X1, Y ), where X1

is the domain of A endowed with the graph norm ‖x‖1 := ‖x‖ + ‖Ax‖, and X−1 is
the completion of X with respect to the norm ‖x‖−1 := ‖(βI − A)−1x‖, where β is
in the resolvent set of A. We recall here that the choice of β is unimportant, since a
different choice leads to equivalent norms. It is clear that X1 ⊂ X ⊂ X−1 and that
the canonical injections are dense. It is well-known that the semigroup T restricts to a
strongly continuous semigroup on X1 and extends to a strongly continuous semigroup
on X−1, with the exponential growth constants being the same on all three spaces X1,
X and X−1. It is also true that the generator of the restricted semigroup is a restriction
of A, and the generator of the extended semigroup is an extension of A. We shall use
the same symbols, T and A, for the restriction and extension of the semigroups and
their generators, respectively.

The operator (B Be) is an admissible control operator, that is, for every t ≥ 0 there
exists bt ≥ 0 such that∥∥∥∥∫ t

0
T(t− s)(B Be)v(s)ds

∥∥∥∥ ≤ bt‖v‖L2 ∀ v ∈ L2([0, t], U × Ue),

and C is an admissible observation operator, that is, for every t ≥ 0 there exists ct ≥ 0
such that ∫ t

0
‖CT(t)ξ‖2dt ≤ ct‖ξ‖2 ∀ ξ ∈ X1.

We highlight that the admissibility of (B Be) implies that (sI − A)−1(B Be) ∈ L(U ×
Ue, X) for every s in the resolvent set of A. We define the Λ-extension of C as

CΛξ := lim
λ→∞

Cλ(λI −A)−1ξ ∀ ξ ∈ dom(CΛ),

where dom(CΛ) is the set of all ξ ∈ X such that the limit exists. We note that
X1 ⊆ dom(CΛ). Moreover, for all ξ ∈ X, it follows that T(t)ξ ∈ dom(CΛ) for almost
all t ≥ 0, and CΛTξ ∈ L2

α(R+, Y ) for all α > ω(T), where recall ω(T) denotes the
exponential growth constant of T (see Definition 5.5.1). Furthermore, the transfer
function is such that

(H He) ∈ {g : Cα → L(U × Ue, Y ) : g is holomorphic and bounded} ∀α > ω(T).

Finally, throughout this section, we assume that T is exponentially stable (see again
Definition 5.5.1).

For given φ : U → U globally Lipschitz, we shall consider the continuous-time system
of the form

ẋ = Ax+Bφ(w) +Bev1, x(0) = x0 ∈ X,
y = CΛ

(
x− (ηI −A)−1B(φ(w) +Bev1)

)
+ H(η)φ(w) + He(η)v1),

}
(6.23)

where w ∈ L2
loc(R+, U) is a to-be-determined control, v1 ∈ L2

loc(R+, Ue) denotes a
forcing or disturbance term, and Re η > ω(T).

Remark 6.3.1. (i) We interpret the differential equation in (6.23) in the larger space
X−1.
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6.3. Sampled-data integral control

(ii) The expression (6.23) is a generalisation of the familiar

ẋ = Ax+Bφ(w) +Bev1, x(0) = x0, y = Cx+Dφ(w) +Dev1,

for finite-dimensional control systems to well-posed infinite-dimensional systems.
♦

In order to discuss the sampled-data system of interest to us, we now recall the defi-
nitions of (zero-order) sample- and hold- operators. To this end, let us first fix τ > 0,
the sampling period. The (zero-order) hold operator H is defined as

(Hu)(t) := u(k) ∀ t ∈ [kτ, (k + 1)τ), ∀u ∈ UZ+ ,

which maps UZ+ into the set of U -valued step-functions (of step length τ) defined on
[0,∞). Furthermore, we let a ∈ L2([0, τ ],R) be such that

(i)

∫ τ

0
a(t)dt = 1 and (ii)

∫ τ

0
a(t)T(t)xdt ∈ X1 ∀x ∈ X. (6.24)

Remark 6.3.2. We comment that (ii) holds in (6.24) if a is piecewise absolutely
continuous, which follows from integration by parts and the fact that

∫ s
0 T(t) xdt =

A−1(T(s) − I)x is a continuous X1-valued function of s for every x ∈ X (see [118,
Theorem 4.4.4]). A trivial example of a function a satisfying (6.24) is the constant
function a(t) = 1/τ for all t ∈ [0, τ ]. ♦

For a ∈ L2([0, τ ],R) satisfying (6.24), S : L2
loc(R+, Y )→ Y Z+ denotes the (generalised)

sampling operator and is defined by

(Sy)(k) :=

∫ τ

0
a(t)y(kτ + t)dt ∀ y ∈ L2

loc(R+, Y ), ∀ k ∈ Z+.

Finally, we say that r ∈ Y is feasible (with respect to (6.23)), if the set

U r := {w ∈ U : H(0)φ(w) = r},

is non-empty. A subset R ⊆ Y is said to be feasible (with respect to (6.23)) if every
r ∈ R is feasible.

We are now in a position to give the discrete-time integral control law of interest to us.
Indeed, given R ⊆ Y feasible, r ∈ R and ur ∈ U r, consider the discrete-time integral
control law

u+ = u+ gK(r − Sy)− gΓ(u− φ(u)− ur + φ(ur)) + v2, u(0) = u0 ∈ U, (6.25)

where y is the output of (6.23), and g > 0, K ∈ L(Y, U) and Γ ∈ L(U) are design
parameters. The signal v2 ∈ UZ+ is a disturbance.

The feedback interconnection of (6.23) and the control law (6.25) via

w = Hu,

yields the closed-loop system

ẋ = Ax+Bφ(Hu) +Bev1, x(0) = x0 ∈ X, (6.26a)

y = CΛ

(
x− (ηI −A)−1B(φ(Hu) +Bev1)

)
+ H(η)φ(Hu) + He(η)v1, (6.26b)

u+ = u+ gK(r − Sy)− gΓ(u− φ(u)− ur + φ(ur)) + v2, u(0) = u0 ∈ U. (6.26c)
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Definition 6.3.3. For given v1 ∈ L2
loc(R+, Ue), v2 ∈ UZ+, x0 ∈ X and u0 ∈ U , we say

that (x, y, u) ∈ C(R+, X)× L2
loc(R+, Y )× UZ+ is a solution of (6.26) if

x(t) = T(t)x0 +

∫ t

0
T(t− s) (Bφ((Hu)(s)) +Bev1(s)) ds ∀ t ≥ 0,

and (6.26b) and (6.26c) are satisfied.

Remark 6.3.4. For all v1 ∈ L2
loc(R+, Ue), v2 ∈ UZ+ , x0 ∈ X and u0 ∈ U , there exists

a unique solution to (6.26). Indeed, we define (x, y, u) ∈ C(R+, X)×L2
loc(R+, Y )×UZ+

iteratively as follows. For t ∈ [0, τ ], define

x(t) = T(t)x0 +

∫ t

0
T(t− s)

(
Bφ(u0) +Bev1(s)

)
ds,

that is, x is the solution of the well-posed system with input (φ(u0) v1) and initial
condition x0 on the interval [0, τ ]. From this, we then define y on [0, τ ] to be the
corresponding output of this system, and hence satisfies (6.26b) almost everywhere on
the interval [0, τ ]. Furthermore, we define

u(1) = u0 + gK

(
r −

∫ τ

0
a(t)y(t)dt

)
− gΓ(u0 − φ(u0)− ur + φ(ur)) + v2(0)

= u0 + gK (r − (Sy)(0))− gΓ(u0 − φ(u0)− ur + φ(ur)) + v2(0).

For t ∈ [τ, 2τ ], we define

x(t) = T(t− τ)x(τ) +

∫ t

τ
T(t− s) (Bφ(u(1)) +Bev1(s)) ds

= T(t− τ)

(
T(τ)x0 +

∫ τ

0
T(τ − s)

(
Bφ(u0) +Bev1(s)

)
ds

)
+

∫ t

τ
T(t− s) (Bφ(u(1)) +Bev1(s)) ds

= T(t)x0 +

∫ t

0
T(t− s) (Bφ((Hu)(s)) +Bev1(s)) ds.

By repeating this process, it is clear that the resulting triple (x, y, u) ∈ C(R+, X) ×
L2

loc(R+, Y )×UZ+ , is a solution of (6.26). The uniqueness of (x, y, u) can be shown via
similar methods. Finally, we note that, by the previous construction, the sampled-data
system (6.26) is causal. ♦

We denote by PC(R+, U) the set of piecewise continuous functions defined on R+ and
with values in U . With this in mind, we now present the main theorem of this section,
which is a stability result for the sampled-data low-gain integral control system (6.26).

Theorem 6.3.5. Let ω(T) < 0, φ : U → U , K ∈ L(Y,U), Γ ∈ L(U), R ⊆ Y
be feasible and let H denote the input-output operator associated with H. Assume
that I − Γ is discrete-time exponentially stable, φ is globally Lipschitz continuous with
Lipschitz constant L > 0 and

sup
z∈E
‖(zI − (I − Γ))−1‖‖Γ−KH(0)‖ < 1/L. (6.27)
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Then there exists g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗), there exist constants c1, c2, γ >
0 and θ ∈ (0, 1) such that, for all r ∈ R, ur ∈ U r, all (x0, u0) ∈ X × U and all
v1 ∈ L∞loc(R+, Ue), v2 ∈ UZ+, the solution (x, y, u) of (6.26) satisfies the following
estimates.

‖u(k)− ur‖ ≤c1

(
θk
∥∥∥∥(x0 +A−1Bφ(ur)

u0 − ur
)∥∥∥∥+ ‖v1‖L∞([0,kτ ],Ue) + ‖πk−1v2‖`∞

)
∀ k ∈ N, (6.28)

and

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ c2

(
e−γ(kτ+t)

∥∥∥∥(x0 +A−1Bφ(ur)
u0 − ur

)∥∥∥∥
+ ‖v1‖L∞([0,kτ+t],Ue) + ‖πkv2‖`∞

)
∀ k ∈ Z+, ∀ t ∈ [0, τ). (6.29)

In particular, if v1 = 0 and v2 = 0, then u(k)→ ur as k →∞ and x(t)→ −A−1Bφ(ur)
as t→∞, and the rates of convergence are discrete- and continuous-time exponential,
respectively. Furthermore, again if v1 = 0 and v2 = 0, then the following statements
hold.

(i) There exists ε > 0 such that r − y ∈ L2
−ε(R+, Y ).

(ii) Under the additional assumptions that

lim
t→∞

(Hf)(t) = 0 ∀ f ∈ PC(R+, U) ∩ L2(R+, U) with lim
t→∞

f(t) = 0, (6.30)

and, for some t0 ≥ 0,
T(t0)(Ax0 +Bφ(ur)) ∈ X, (6.31)

y(t)→ r as t→∞.

Remark 6.3.6. (i) We note that the conclusions of Theorem 6.3.5 hold for any sam-
pling period τ > 0.

(ii) If U and Y are finite-dimensional and H is of the form

(Hu)(t) =

∫ t

0
µ(ds)u(t− s) ∀ t ≥ 0, ∀u ∈ L1

loc(R+,Cm),

where µ is a Cp×m-valued Borel measure on R+ and m, p ∈ N (that is, the impulse
response of H is a matrix-valued Borel measure on R+), then it can be shown
that (6.30) holds (see [64, Lemma 6.2.4]).

(iii) If T is an analytic semigroup, then T(t) maps X to X1 for all t > 0. Hence, in
this case, for all t0 > 0, all x0 ∈ X, all r ∈ R and all ur ∈ U r,

T(t0)(Ax0 +Bφ(ur)) = AT(t0)(x0 +A−1Bφ(ur)) ∈ X,

that is, (6.31) holds. ♦
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The remainder of this section is dedicated to proving Theorem 6.3.5. To that end, we
begin with the following lemma.

Lemma 6.3.7. The operator M : X → X1 defined by

Mx :=

∫ τ

0
a(t)T(t)xdt ∀x ∈ X,

is in L(X,X1).

From property (ii) in (6.24), Mx ∈ X1 for all x ∈ X. It is straightforward to show
that M is closed, and hence M ∈ L(X,X1) by the closed-graph theorem. Indeed, for
an explicit proof, we refer the reader to the proof of [64, Lemma 7.2.1].

In addition to the previous, in order to facilitate the proof of Theorem 6.3.5, we shall
also define the operators

Aτ := T(τ), Bτ :=

∫ τ

0
T(s)Bds, Cτ := CM, Dτ := CMA−1B + H(0). (6.32)

We see that Aτ ∈ L(X) and, since ω(T) < 0, Aτ is discrete-time exponentially stable
(see Definition 5.1.1). Moreover,

Bτ = (T(τ)− I)A−1B ∈ L(U,X),

and by rearranging this, we see that

(I −Aτ )−1Bτ = −A−1B. (6.33)

By the boundedness of M guaranteed by Lemma 6.3.7, it follows that Cτ ∈ L(X,Y )
and Dτ ∈ L(U, Y ). We denote the transfer function of the discrete-time system given
by the operators (Aτ , Bτ , Cτ , Dτ ) by Gτ .

The final result that we shall use to prove Theorem 6.3.5 is the next lemma, which is
a generalisation of [65, Proposition 3.1].

Lemma 6.3.8. Let ω(T) < 0, φ : U → U , K ∈ L(Y, U), Γ ∈ L(U), g > 0, R ⊆ Y
feasible, r ∈ R, ur ∈ U r and let (Aτ , Bτ , Cτ , Dτ ) be given as in (6.32). Furthermore,
let (x0, u0) ∈ X × U , v1 ∈ L∞loc(R+, Ue), v2 ∈ UZ+, and let (x, y, u) be the solution of
(6.26). Then

ξ+ = Aτξ +Bτφ(u) + η1,

ζ = Cτξ +Dτφ(u) + η2,

}
(6.34)

where, for all k ∈ Z+, ξ(k) := x(kτ), ζ(k) = (Sy)(k),

η1(k) :=

∫ τ

0
T(τ − s)Bev1(s+ kτ)ds, (6.35)

and

η2(k) :=

∫ τ

0
a(t)CΛ

(∫ t

0
T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
dt

+

∫ τ

0
a(t)He(0)v1(kτ + t)dt. (6.36)
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The following proof is a generalisation of the proof of [65, Proposition 3.1].

Proof of Lemma 6.3.8. We begin by noting that we may, without loss of generality,
take η = 0 in (6.26), which we do so. For k ∈ Z+, we note that

ξ(k + 1) = x((k + 1)τ)

= T(τ)x(kτ) +

∫ (k+1)τ

kτ
T((k + 1)τ − s)(Bφ(u(k)) +Bev1(s))ds

= Aτξ(k) +

∫ τ

0
T(τ − s)(Bφ(u(k)) +Bev1(s+ kτ))ds

= Aτ +Bτφ(u(k)) + η1(k),

which gives the state equation of (6.34). As for the output equation, let us first note
that, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
x(kτ + t) +A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+ H(0)φ(u(k))

+ He(0)v1(kτ + t)

= CΛ

(
T(t)x(kτ) +

∫ kτ+t

kτ
T(kτ + t− s)(Bφ(u(k)) +Bev1(s))ds

+ A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+ H(0)φ(u(k) + He(0)v1(kτ + t).

By using a change of variables, this becomes, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
T(t)x(kτ) +

∫ t

0
T(t− s)(Bφ(u(k)) +Bev1(s+ kτ))ds

+ A−1Bφ(u(k)) +A−1Bev1(kτ + t)

)
+ H(0)φ(u(k) + He(0)v1(kτ + t).

Since ∫ t

0
T(t− s)Bφ(u(k))ds = A−1(T(t)− I)Bφ(u(k)) ∀ k ∈ Z+, ∀ t ∈ [0, τ),

we see that, for all k ∈ Z+ and t ∈ [0, τ),

y(kτ + t) = CΛ

(
T(t)x(kτ) + T(t)A−1Bφ(u(k)) +

∫ t

0
T(t− s)Bev1(s+ kτ)ds

+ A−1Bev1(kτ + t)

)
+ H(0)φ(u(k) + He(0)v1(kτ + t).

Consequently, for all k ∈ Z+,

ζ(k) =

∫ τ

0
a(t)CΛ

(
T(t)x(kτ) + T(t)A−1Bφ(u(k)) +

∫ t

0
T(t− s)Bev1(s+ kτ)ds

+ A−1Bev1(kτ + t)

)
dt+

∫ τ

0
a(t)(H(0)φ(u(k)) + He(0)v1(kτ + t))dt.
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If we now recall that, for all ξ ∈ X, T(t)ξ ∈ dom(CΛ) for almost all t ≥ 0, we see that,
for all k ∈ Z+,

ζ(k) =

∫ τ

0
a(t)CΛT(t)(x(kτ) +A−1Bφ(u(k)))dt

+

∫ τ

0
a(t)CΛ

(∫ t

0
T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
dt

+

∫ τ

0
a(t)(H(0)φ(u(k)) + He(0)v1(kτ + t))dt. (6.37)

We pause here and note that

CMz =

∫ τ

0
a(t)CΛT(t)zdt ∀ z ∈ X. (6.38)

This is straightforward to prove given the density of X1 in X and that C is admissible.
(For an explicit proof, see the proof of [64, Equation (7.20)].) By combining (6.37)
with (6.38), (6.24), Lemma 6.3.7 and (6.32), we obtain that, for all k ∈ Z+,

ζ(k) = CMx(kτ) + CMA−1Bφ(u(k)) + H(0)φ(u(k)) + η2(k)

= Cτξ(k) +Dτφ(u(k)) + η2(k).

We have therefore shown that the output equation of (6.34) holds, which completes
the proof.

We are now in a position to prove Theorem 6.3.5.

Proof of Theorem 6.3.5. The first part of the current proof is to apply to the discrete-
time system (6.34) the integral control result Theorem 6.2.5. In order to do so, we first
write (6.34) as

ξ+ = Aτξ +Bτφ(u) +
(
I 0

)(η1

η2

)
,

ζ = Cτξ +Dτφ(u) +
(
0 I

)(η1

η2

)
,

 (6.39)

where (Aτ , Bτ , Cτ , Dτ ) are as in (6.32), and then check that the relevant hypotheses
are satisfied. Indeed, Aτ is discrete-time exponentially stable since ω(T) < 0, and it
is clear that (6.5) holds by the global Lipschitz property of φ. Thus, we only need to
verify the feasibility of the set R with respect to (6.39) and that

sup
z∈E
‖(zI − (I − Γ))−1‖‖Γ−KGτ (1)‖ < 1/L, (6.40)

which is simply (6.6) in the context of (6.39). From an application of [65, Proposition
3.1], we yield that Gτ (1) = H(0). Hence, R is feasible with respect to (6.39), and
(6.40) holds from (6.27). We may now apply Theorem 6.2.5 to yield the existence of
g∗ ∈ (0, 1] such that, for all g ∈ (0, g∗), there exist constants c, d > 0 and θ ∈ (0, 1)
such that (6.7) and (6.8) both hold for all r ∈ R, ur ∈ U r and (u,w, v, x, y) ∈ UZ+ ×
UZ+ × V Z+ ×XZ+ × Y Z+ satisfying (6.39).
We now fix g ∈ (0, g∗) and let c, d, θ be such described constants. Moreover, let r ∈ R,
ur ∈ U r, (x0, u0) ∈ X × U and v1 ∈ L∞loc(R+, Ue), v2 ∈ UZ+ be given, and let (x, y, u)
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denote the solution of (6.26). We utilise an application of Lemma 6.3.8 to obtain that
(6.39) holds, where, for all k ∈ Z+, ξ(k) := x(kτ), ζ(k) = (Sy)(k), η1(k) is given
by (6.35) and η2(k) is given by (6.36). From an application of Lemma 6.3.8 and the
previous application of Theorem 6.2.5,∥∥∥∥(ξ(k)− (I −Aτ )−1Bτφ(ur)

u(k)− ur
)∥∥∥∥ ≤ c

θk ∥∥∥∥(x0 − (I −Aτ )−1Bτφ(ur)
u0 − ur

)∥∥∥∥
+ max
s∈k−1

∥∥∥∥∥∥
η1(s)
η2(s)
v2(s)

∥∥∥∥∥∥
 ∀ k ∈ N, (6.41)

where, for all k ∈ Z+, ξ(k) := x(kτ), ζ(k) = (Sy)(k), and η1(k) and η2(k) are given by
(6.35) and (6.36), respectively. To establish (6.28), we give two bounds of η1 and η2 in
terms of v1. First, the admissibility of Be yields the existence of κ > 0 (independent
of v1) such that∥∥∥∥∫ t

0
T(t− s)Bev1(kτ + s) ds

∥∥∥∥ ≤ κ‖v1‖L2([kτ,kτ+t],Ue)

≤ κ
√
τ‖v1‖L∞([kτ,kτ+t],Ue) ∀ k ∈ Z+, ∀ t ∈ [0, τ) .

(6.42)

Whence
‖πk−1η1‖`∞ ≤ κ

√
τ‖v1‖L∞([0,kτ ],Ue) ∀ k ∈ N. (6.43)

We now seek to prove the existence of d1 > 0 (independent of v1) such that

‖πk−1η2‖`∞ ≤ d1‖v1‖L∞([0,kτ ],Ue) ∀ k ∈ N. (6.44)

To this end, by writing

w̃(t) := CΛ

(∫ t

0
T(t− s)Bev1(s+ kτ))ds+A−1Bev1(kτ + t)

)
+ He(0)v1(kτ + t),

we see that w̃ is the output of an exponentially stable well-posed system with zero
initial condition. Hence, there exists d2 > 0 such that

‖w̃‖L2([0,τ ]) ≤ d2‖v1‖L2([kτ,(k+1)τ ]) ≤ d2

√
τ‖v1‖L∞([kτ,(k+1)τ ]).

By use of Hölder’s inequality, we then obtain from (6.36) that, for all k ∈ Z+,

‖η2(k)‖ ≤ ‖a‖L2([0,τ ])‖w̃‖L2([0,τ ]) ≤ d1‖v1‖L∞([kτ,(k+1)τ ]),

where d1 := d2
√
τ‖a‖L2([0,τ ]) > 0. It is thus evident that (6.44) holds. Continuing with

the proof, by combining (6.41) with (6.43) and (6.44), we see that∥∥∥∥(ξ(k)− (I −Aτ )−1Bτφ(ur)
u(k)− ur

)∥∥∥∥ ≤ c1

(
θk
∥∥∥∥(x0 − (I −Aτ )−1Bτφ(ur)

u0 − ur
)∥∥∥∥

+ ‖v1‖L∞([0,kτ ],Ue) + ‖πk−1v2‖`∞
)

∀ k ∈ N, (6.45)
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where c1 :=
√

3c(κ
√
τ + d1 + 1) > 0. As a consequence of this, (6.28) holds.

We proceed to derive (6.29). To this end, we note that, for each k ∈ N and t ∈ [0, τ),

x(kτ + t) = T(t)x(kτ) +

∫ kτ+t

kτ
T(kτ + t− s)(Bφ(u(k)) +Bev1(s))ds

= T(t)x(kτ) +

∫ t

0
T(s)(Bφ(u(k))ds+

∫ t

0
T(t− s)Bev1(kτ + s))ds

= T(t)x(kτ) + (T(t)− I)A−1Bφ(u(k)) +

∫ t

0
T(t− s)Bev1(kτ + s))ds. (6.46)

Therefore, taking norms in (6.46) and invoking (6.42), we see that

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ ‖T(t)‖‖x(kτ) +A−1Bφ(u(k))‖
+ ‖A−1B(φ(ur)− φ(u(k)))‖+ κ

√
τ‖v1‖L∞([kτ,kτ+t],Ue) ∀ k ∈ Z+, ∀ t ∈ [0, τ).

With this in mind, if we define the positive constants µ1, µ2 by

µ1 := sup
t∈[0,τ ]

‖T(t)‖ <∞ and µ2 := ‖A−1B‖ <∞,

and recall the Lipschitz property of φ, we obtain that

‖x(kτ + t) +A−1Bφ(ur)‖ ≤ µ1‖x(kτ) +A−1Bφ(ur)‖+ µ2L(1 + µ1)‖ur − u(k)‖
+ κ
√
τ‖v1‖L∞([kτ,kτ+t],Ue) ∀ k ∈ Z+, ∀ t ∈ [0, τ). (6.47)

Set γ := −(ln θ)/τ and µ3 := eγτ . We then have that

θk = µ3e
−γ(k+1)τ ≤ µ3e

−γ(kτ+t) ∀ k ∈ Z+, ∀ t ∈ [0, τ) . (6.48)

Combining (6.45) with (6.33), (6.47) and (6.48) gives (6.29), where c2 is a positive
constant independent of r, ur, x0, u0, v1 and v2.
We next prove statement (i). To this end, let v1 = 0 and v2 = 0, let ρ ∈ (θ, 1) and let
δ1 := −(ln ρ)/τ > 0. We compute that∫ ∞

0
‖eδ1t(H(φ(u))(t)− φ(ur))‖2dt =

∞∑
k=0

∫ (k+1)τ

kτ
‖eδ1t(φ(u(k))− φ(ur))‖2dt

=

(∫ τ

0
e2δ1tdt

) ∞∑
k=0

e2δ1kτ‖φ(u(k))− φ(ur)‖2

=
1

2δ1
(e2δ1τ − 1)

∞∑
k=0

ρ−2k‖φ(u(k))− φ(ur)‖2

≤ b 1

2δ1
(e2δ1τ − 1)

∞∑
k=0

(ρ−1θ)2k

<∞,

where b > 0 is guaranteed to exist by (6.28) and the Lipschitz property of φ. Hence,

H(φ(u))− φ(ur) ∈ L2
−δ1(R+, U). (6.49)
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Continuing, we have that

y(t)− r = CΛT(t)x0 +H(H(φ(u)))(t)−H(0)φ(ur)

= CΛT(t)x0 +H(H(φ(u))− φ(ur))(t) +H(φ(ur))(t)−H(0)φ(ur) a.e. t ≥ 0,
(6.50)

where we view φ(ur) as a constant function in L2
loc(R+, U), and have used that r =

H(0)φ(ur). In addition, by noting that the Laplace transform of H(φ(ur))−H(0)φ(ur)
is

1

s
(H(s)−H(0))φ(ur) ∀ s ∈ Cω(T),

we obtain, by exponential stability, the existence of δ2 > 0 such that

s 7→ 1

s
(H(s)−H(0))φ(ur) ∈ H2(C−δ2 , Y ).

The Payley-Wiener theorem (see, for example, [118, Theorem 10.3.4]) then gives that

H(φ(ur))−H(0)φ(ur) ∈ L2
−δ2(R+, Y ). (6.51)

Furthermore, using (6.49) and the fact that H ∈ L(L2
α(R+, U), L2

α(R+, Y )) for every
α > ω(T), we see that

H(H(φ(u))− φ(ur)) ∈ L2
−δ3(R+, Y ), (6.52)

for some δ3 ∈ (0,−ω(T)). Upon recalling that CΛTx0 ∈ L2
α(R+, Y ) for all α > ω(T),

if we combine (6.51) and (6.52) with (6.50), we arrive at y − r ∈ L2
−ε(R+, Y ) where

ε := min{δ2, δ3}, hence giving statement (i).
To prove statement (ii), we now additionally assume that (6.30) and (6.31) hold. We
first note that, by (6.50), we have

y − r = e1 + e2,

where

e1 := CΛTx0 +H(φ(ur))−H(0)φ(ur) and e2 := H(H(φ(u))− φ(ur)).

Using [118, Statement (iii) of Theorem 4.4.2 ], we obtain that the Laplace transform
of e1, which we denote by ê1, is given by

ê1(s) = C(sI −A)−1x0 +
1

s
(H(s)−H(0))φ(ur) ∀ s ∈ Cω(T). (6.53)

Moreover, [118, Theorem 4.6.7] yields that

1

s
(H(s)−H(0))φ(ur) = C(sI −A)−1A−1Bφ(ur) ∀ s ∈ Cω(T).

Combining this with (6.53) gives

ê1(s) = C(sI −A)−1A−1(Ax0 +Bφ(ur)) ∀s ∈ Cω(T).

Consequently,

e1(t) = CΛT(t)A−1(Ax0 +Bφ(ur)) = CA−1T(t− t0)T(t0)(Ax0 +Bφ(ur)) ∀ t ≥ t0.

Combining (6.31) with the exponential stability of T, we see that limt→∞ e1(t) = 0.
Finally, we invoke (6.30) to yield that limt→∞ e2(t) = 0, hence completing the proof.
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6.4 Notes and references

The papers from the literature that are the most relevant to the main results of this
chapter, are [48] and [65]. We now proceed to discuss similarities and differences.
To begin with, as already commented on, the content of Section 6.2 is a discrete-time
analogue of the finite-dimensional, continuous-time work achieved in [48]. In particular,
Theorem 6.2.5 and Lemma 6.2.7 are infinite-dimensional discrete-time generalisations
of [48, Theorem 4] and [48, Lemma 6], respectively. As for Section 6.3, the main
result, Theorem 6.3.5, is partly inspired by [65, Theorem 3.2]. In [65], an adaptive
control law is considered in feedback, via sample- and hold- operations, with a well-
posed linear system. We comment that the system investigated in [65] does not involve
input nonlinearities, nor external disturbances, which majorly differs from the system
(6.26) under consideration presently. The inclusion of the external disturbances and
the input nonlinearities, complicates the analysis. For more comparison on this, we
refer the reader to the proofs of [65, Proposition 3.1 and Theorem 3.2] and Theorem
6.3.5. Due to the differences in the systems under consideration, we comment that [65,
Theorem 3.2] does not provide explicit stability estimates as we do in (6.28) and (6.29).
Thus, the most similar part of Theorem 6.3.5 to [65, Theorem 3.2] concerns the output
convergence and the additional assumptions utilised to achieve it. It is this from where
we draw our inspiration. Indeed, the final part of the proof of Theorem 6.3.5 follows a
method employed in the proof of [65, Theorem 3.2].
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Appendix A

Discrete-time ISS Lyapunov
functions

In this appendix, we give the proof of Proposition 2.2.9, which asserts that the existence
of an ISS-Lyapunov function (see Definition 2.2.8) is sufficient for (2.17) being ISS (see
Definition 2.2.5).

In order to prove Proposition 2.2.9, we generalise the proof of [106, Proposition 5.2.4] to
our current setting. To this end, we begin by first highlighting an equivalent definition of
ISS. Indeed, let Σ ∈ L and f : Rp → Rm, and note that max{a, b} ≤ a+b ≤ 2 max{a, b}
for all a, b ∈ R. It is therefore clear that (2.17) being ISS is equivalent to the existence
of ψ ∈ KL and φ ∈ K such that

‖x(t)‖ ≤ max

{
ψ (‖x(0)‖, t) , φ

(
max
s∈t−1

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)} ∀ t ∈ N, ∀ (v, w, x, y) ∈ B.

(A.1)
The following proof is a generalisation of [106, Proposition 5.2.4].

Proof of Proposition 2.2.9. Let V : Rn → R+ be an ISS-Lyapunov function of
(2.17) and let α1, α2, α3, α4 ∈ K∞ be such that (2.25) holds and (2.26) holds for all
(v, w, x, y) ∈ B and all t ∈ N. Note that, from Lemma 2.1.2, α−1

1 , α−1
2 ∈ K∞. Hence,

from (2.25),

‖ξ‖ ≤ α−1
1 (V (ξ)) and α−1

2 (V (ξ)) ≤ ‖ξ‖ ∀ ξ ∈ Rn. (A.2)

By combining this with the equivalent definition of ISS given by (A.1), in order to
prove the proposition it suffices to show that there exist ψ ∈ KL and φ ∈ K such that

V (x(t+ 1)) ≤max

{
ψ(V (x(0)), t+ 1), φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)}
∀ t ∈ Z+, ∀ (v, w, x, y) ∈ B, (A.3)

and that ψ and φ only depend on α1, α2, α3 and α4. Indeed, this is what we shall do.
To this end, note that, from (2.26) and (A.2), for all (v, w, x, y) ∈ B and all t ∈ Z+,

V (x(t+ 1))− V (x(t)) ≤ −α3(α−1
2 (V (x(t)))) + α4

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥) . (A.4)
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An application of [106, Lemma 5.1.6] gives the existence of α ∈ K∞ such that α(s) ≤
α3(α−1

2 (s)) for all s ∈ R+, and id−α ∈ K∞. Moreover, [106, Lemma 5.1.7] gives the
existence of ρ, φ ∈ K∞ such that ρ(s) < s for all s > 0, and (id−α)(s1) + α4(s2) ≤
max{ρ(s1), φ(s2)} for all s1, s2 ≥ 0. Hence, from (A.4), we see that, for all (v, w, x, y) ∈
B and all t ∈ N,

V (x(t+ 1)) ≤ (id−α)(V (x(t)) + α4

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)
≤ max

{
ρ(V (x(t))), φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)}
≤ max

{
ρ

(
max

{
ρ(V (x(t− 1))), φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)}) , φ(max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)}
≤ max

{
ρ2(V (x(t− 1))), φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)}
...

≤ max

{
ρt+1(V (x(0))), φ

(
max
s∈t

∥∥∥∥(v(s)
w(s)

)∥∥∥∥)} .
In view of (A.3), to conclude the proof, it suffices to prove that ψ : R+ × Z+ → R+,
defined by ψ(s, t) := ρt(s) for all (s, t) ∈ R+ × Z+, is a KL function. To that end, it
is clear that for each fixed t ∈ Z+, ψ(·, t) ∈ K. Moreover, for s > 0 fixed, we have
0 < ρt(s) < ρt−1(s) < · · · < s, since ρ(s) < s. Also, since the sequence (ρt(s))t∈Z+

is bounded below and decreasing, it has a limit. This limit is 0, since otherwise,
limt→∞ ρ

t(s) > ρ(limt→∞ ρ
t(s)) = limt→∞ ρ

t(s), which is a contradiction. Therefore,
ψ ∈ KL. Finally, we note that ψ and φ depend only upon α1, α2, α3 and α4.
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Appendix B

A convergence property of
asymptotically stable equilibria

In this appendix, we concern ourselves with the discrete-time non-linear control system:

x+ = g(x, v), x(0) = x0 ∈ Rn, (B.1)

where v ∈ (Rm)Z+ , g : Rn × Rm → Rn is continuous and n,m ∈ N. For given x0 ∈ Rn
and v ∈ (Rm)Z+ , we denote by x(·;x0, v) the unique solution of (B.1). Moreover, for
ζ ∈ Rm, we will abuse notation and write x(·;x0, ζ) = x(·;x0, t 7→ ζ).

The aim of this appendix is to give a discrete-time analogue of [112, Theorem 1]. We
used this discrete-time result in the proof of Theorem 2.3.16 in Chapter 2. In order for
us to present the theorem, we first give the following definitions associated with (B.1).

Definition B.0.1. (i) We say that (v∞, x∞) ∈ Rm × Rn is an equilibrium pair of
(B.1), if x∞ = g(x∞, v∞).

(ii) We say that an equilibrium pair (v∞, x∞) ∈ Rm × Rn is stable if for all ε > 0,
there exists δ > 0 such that, for all x0 ∈ Rn with ‖x0 − x∞‖ ≤ δ, it follows that
‖x(t;x0, v∞)− x∞‖ ≤ ε for all t ∈ Z+. Moreover, (v∞, x∞) is attractive if there
exists δ > 0 such that, for all x0 ∈ Rn with ‖x0 − x∞‖ ≤ δ,

‖x(t;x0, v∞)− x∞‖ → 0 as t→∞.

We say that (v∞, x∞) is asymptotically stable if it is both stable and attractive.

(iii) The domain of attraction of an asymptotically stable equilibrium pair (v∞, x∞)
is

O(v∞, x∞) := {x0 ∈ Rn : ‖x(t;x0, v∞)− x∞‖ → 0 as t→∞}.

When the context is clear, we shall simply write O instead of O(v∞, x∞).

(iv) For C, a compact set in Rn, and (x0, v) ∈ Rn × (Rm)Z+, we say that x(·;x0, v) is
C-recurrent, if for all T ∈ Z+, there exists t ∈ T such that x(t;x0, v) ∈ C.

We may now present the aformentioned theorem, which is a discrete-time analogue of
[112, Theorem 1].
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B.1. Proof of Theorem B.0.2

Theorem B.0.2. Let (v∞, x∞) ∈ Rm×Rn be an asymptotically stable equilibrium pair
of (B.1). Furthermore, let C be a compact set in O, v ∈ (Rm)Z+, x0 ∈ Rn and x(·;x0, v)
a C-recurrent solution of (B.1). If limt→∞ v(t) = v∞, then limt→∞ x(t;x0, v) = x∞.

To prove the above theorem, we shall proceed analogously to that done in [112]. Since
the proof uses several preliminary results, we collect these, and the proof itself, in the
following section.

B.1 Proof of Theorem B.0.2

We begin with the following two lemmas, which each provide a useful property of (B.1).

Lemma B.1.1. Let T ∈ Z+. Then for all ε > 0 and all (x0
1, v) ∈ Rn × (Rm)Z+,

there exists δ > 0 such that, for all (x0
2, w) ∈ Rn × (Rm)Z+ satisfying ‖x0

1 − x0
2‖ +

maxs∈T ‖v(s)− w(s)‖ ≤ δ,

‖x(t;x0
1, v)− x(t;x0

2, w)‖ ≤ ε ∀ t ∈ T .

Proof. Let (x0
1, v) ∈ Rn × (Rm)Z+ and ε > 0. We shall first show that for all t ∈ Z+,

(Pt) holds, where (Pt) denotes the property: for every ε̃ > 0, there exists δt,ε̃ > 0 such
that, for all (x0

2, w) ∈ Rn × (Rm)Z+ satisfying ‖x0
1 − x0

2‖+ maxs∈t ‖v(s)−w(s)‖ ≤ δt,ε̃,

‖x(t;x0
1, v)− x(t;x0

2, w)‖ ≤ ε̃.

To prove that (Pt) holds for all t ∈ Z+, we utilise an inductive argument. The case
t = 0 is trivial and is hence omitted. Now assume that (Pt) holds for some t ∈ Z+. Fix
ε̃ > 0 and note that, since g is continuous at (x(t;x0

1, v), v(t)), there exists δ̃ > 0 such
that

‖g(x(t;x0
1, v), v(t))− g(ξ, ζ)‖ ≤ ε̃, (B.2)

for all (ξ, ζ) ∈ Rn × Rm such that ‖x(t;x0
1, v) − ξ‖ + ‖v(t) − ζ‖ ≤ δ̃. Moreover, since

(Pt) holds, there exists δt,δ̃/2 > 0 such that, for all (x0
2, w) ∈ Rn × (Rm)Z+ satisfying

‖x0
1 − x0

2‖+ maxs∈t ‖v(s)− w(s)‖ ≤ δt,δ̃/2,

‖x(t;x0
1, v)− x(t;x0

2, w)‖ ≤ δ̃

2
.

Whence, by setting δt+1,ε̃ := min{δ̃/2, δt,δ̃/2} > 0 and by combining this with (B.2), we

yield that, for all (x0
2, w) ∈ Rn×(Rm)Z+ satisfying ‖x0

1−x0
2‖+maxs∈t+1 ‖v(s)−w(s)‖ ≤

δt+1,ε̃,

‖x(t+ 1;x0
1, v)− x(t+ 1;x0

2, w)‖ = ‖g(x(t;x0
1, v), v(t))− g(x(t;x0

2, w), w(t))‖ ≤ ε̃.

Therefore, (Pt+1) holds, and via induction, (Pt) holds for all t ∈ Z+. By simply setting

δ := min{δ0,ε, . . . , δT,ε} > 0,

we complete the proof.

Lemma B.1.2. Let (x0, v) ∈ Rn × (Rm)Z+. Then

x(t+ T ;x0, v) = x(t;x(T ;x0, v),ΛT v) ∀ t, T ∈ Z+.
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Proof. Fix T ∈ Z+. We shall induct on t ∈ Z+. The case t = 0 is trivial and is thus
omitted. Now assume that x(t + T ;x0, v) = x(t;x(T ;x0, v),ΛT v) for some t ∈ Z+.
From (B.1), we then have that

x(t+ 1 + T ;x0, v) = g(x(t+ T ;x0, v), v(t+ T ))

= g
(
x(t;x(T ;x0, v),ΛT v), (ΛT v)(t)

)
= x(t+ 1;x(T ;x0, v),ΛT v).

The proof is whence complete.

The following asserts that the domain of attraction is an open set. It is well-known in
the continuous-time setting (see, for example, [77, Exercise 5.14]), but it is difficult to
find a proof for our discrete-time setting. We thus provide a proof for completeness.

Lemma B.1.3. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then O is an open subset of Rn.

Proof. We begin by noting that there exists δ1 > 0 such that, for all ξ ∈ Rn satisfying
‖ξ − x∞‖ < δ1,

‖x(t; ξ, v∞)− x∞‖ → 0 as t→∞. (B.3)

Indeed, this is due to the asymptotic stability of (v∞, x∞). Let x0 ∈ O. We shall show
that there is a open neighbourhood around x0 which is contained in O. To this end,
we begin by highlighting that, since x0 ∈ O, there exists T ∈ Z+ such that

‖x(t+ T ;x0, v∞)− x∞‖ < δ1

2
∀ t ∈ Z+. (B.4)

Moreover, an application of Lemma B.1.1 yields the existence of δ > 0 such that, for
all ξ ∈ Rn satisfying ‖ξ − x0‖ < δ,

‖x(t;x0, v∞)− x(t; ξ, v∞)‖ < δ1

2
∀ t ∈ T . (B.5)

Therefore, for ξ ∈ Rn such that ‖ξ − x0‖ < δ, a combination of (B.4) and (B.5) yields

‖x(T ; ξ, v∞)− x∞‖ ≤ ‖x(T ; ξ, v∞)− x(T ;x0, v∞)‖+ ‖x(T ;x0, v∞)− x∞‖ < δ1.

By invoking (B.3) and recalling Lemma B.1.2, we see therefore that

‖x(t+ T ; ξ, v∞)− x∞‖ = ‖x(t;x(T ; ξ, v∞), v∞)− x∞‖ → 0 as t→∞.

Whence, we see that ξ ∈ O for all ξ ∈ Rn such that ‖ξ − x0‖ < δ, completing the
proof.

We now present a discrete-time analogue of [112, Lemma II.1].

Lemma B.1.4. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for every compact set C ⊆ O, every T ∈ Z+ and every ε > 0, there
exists δ > 0 such that, for all (x0, v) ∈ C × (Rm)Z+ satisfying maxs∈T ‖v(s)− v∞‖ ≤ δ,

‖x(t;x0, v)− x(t;x0, v∞)‖ ≤ ε ∀ t ∈ T .
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Proof. Let C ⊆ O be a compact set, T ∈ Z+ and ε > 0. We begin with an application
of Lemma B.1.1 to yield, for each ξ ∈ C, the existence of δξ > 0 such that, for all
(x0, v) ∈ Rn × (Rm)Z+ satisfying ‖x0 − ξ‖+ maxs∈T ‖v(s)− v∞‖ ≤ 2δξ,

‖x(t;x0, v)− x(t; ξ, v∞)‖ ≤ ε

2
∀ t ∈ T . (B.6)

It is clear that the family of open balls {B(ξ, δξ) : ξ ∈ C} forms an open cover of C. By
the compactness of C, there exist ξ1, . . . , ξk ∈ C, for some k ∈ N, such that ∪ki=1B(ξi, δξi)
is a finite subcover of C. We subsequently define δ := min{δξ1 , . . . , δξk} > 0. To
conclude the proof, let (x0, v) ∈ C × (Rm)Z+ be such that maxs∈T ‖v(s) − v∞‖ ≤ δ.
Then, since x0 ∈ B(ξi, δξi) for some i ∈ {1, . . . , k}, we obtain, from (B.6), that, for all
t ∈ T ,

‖x(t;x0, v)− x(t;x0, v∞)‖ ≤ ‖x(t;x0, v)− x(t; ξi, v
∞)‖+ ‖x(t; ξi, v

∞)− x(t;x0, v∞)‖
≤ ε,

which completes the proof.

The following result is a discrete-time version of [114, Lemma 5.9.12].

Lemma B.1.5. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for all x0 ∈ O and all ε > 0, there exist δ > 0 and T ∈ Z+ such that,
for all ξ ∈ Rn satisfying ‖ξ − x0‖ ≤ δ,

‖x(t; ξ, v∞)− x∞‖ ≤ ε ∀ t ∈ T .

Proof. Let x0 ∈ O and ε > 0. Since (v∞, x∞) is a stable equilibrium, there exists
δ1 > 0 such that, for all ξ ∈ Rn satisfying ‖ξ − x∞‖ ≤ δ1,

‖x(t; ξ, v∞)− x∞‖ ≤ ε ∀ t ∈ Z+. (B.7)

Moreover, by utilising the asymptotic stability of x∞ and that x0 ∈ O, there exists
T ∈ Z+ such that

‖x(t;x0, v∞)− x∞‖ ≤ δ1

2
∀ t ∈ T . (B.8)

Furthermore, an application of Lemma B.1.1 gives the existence of δ > 0 such that, for
all ξ ∈ Rn satisfying ‖ξ − x0‖ ≤ δ,

‖x(t; ξ, v∞)− x(t;x0, v∞)‖ ≤ δ1

2
∀ t ∈ T .

Hence, by combining this with (B.8), we obtain that, for all ξ ∈ Rn satisfying ‖ξ−x0‖ ≤
δ,

‖x(T ; ξ, v∞)− x∞‖ ≤ δ1.

By recalling (B.7), we see that this implies, for all ξ ∈ Rn satisfying ‖ξ − x0‖ ≤ δ,

‖x(t;x(T ; ξ, v∞), v∞)− x∞‖ ≤ ε ∀ t ∈ Z+.

Finally, from Lemma B.1.2, this is equivalent to

‖x(t; ξ, v∞)− x∞‖ ≤ ε ∀ t ∈ T ,

which completes the proof.
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Our attention now turns towards discretising [112, Lemma II.2], which we do so now.

Lemma B.1.6. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for all compact C ⊆ O and all ε > 0, there exists T ∈ Z+ such that

‖x(T ;x0, v∞)− x∞‖ ≤ ε ∀x0 ∈ C.

Proof. Let C ⊆ O be compact and let ε > 0. For each ξ ∈ C, we can apply Lemma
B.1.5 to obtain the existence of δξ and Tξ ∈ Z+ such that, for all ζ ∈ Rn satisfying
‖ξ − ζ‖ ≤ δξ,

‖x(t; ζ, v∞)− x∞‖ ≤ ε ∀ t ∈ Tξ. (B.9)

The compactness of C then yields the existence of ξ1, . . . , ξk ∈ C, for some k ∈
N, such that ∪ki=1B(ξi, δξi) is a finite subcover of C. We subsequently define T :=
max{Tξ1 , . . . , Tξk} ∈ Z+. Therefore, for each x0 ∈ C, it follows that x0 ∈ B(ξi, δξi) for
some i ∈ {1, . . . , k}, and so, by (B.9),

‖x(t;x0, v∞)− x∞‖ ≤ ε ∀ t ∈ Tξi .

By using the definition of T , this implies that

‖x(T ;x0, v∞)− x∞‖ ≤ ε,

hence completing the proof.

The following is inspired by [112, Lemma II.3].

Lemma B.1.7. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for every compact C ⊆ O and every ε > 0, there exist T ∈ Z+ and
δ > 0 such that, for every (x0, v) ∈ C × (Rm)Z+ satisfying maxs∈T ‖v(s)− v∞‖ ≤ δ,

‖x(t;x0, v)− x(t;x0, v∞)‖ ≤ ε ∀ t ∈ T , (B.10)

and
‖x(T ;x0, v)− x∞‖ ≤ ε. (B.11)

Proof. Let C ⊆ O be compact and ε > 0. An application of Lemma B.1.6 then yields
the existence of T ∈ Z+ such that

‖x(T ;x0, v∞)− x∞‖ ≤ ε

2
∀x0 ∈ C. (B.12)

Furthermore, by Lemma B.1.4, there exists δ > 0 such that, for every (x0, v) ∈ C ×
(Rm)Z+ satisfying maxs∈T ‖v(s)− v∞‖ ≤ δ,

‖x(t;x0, v)− x(t;x0, v∞)‖ ≤ ε

2
∀ t ∈ T . (B.13)

Let (x0, v) ∈ C × (Rm)Z+ be such that maxs∈T ‖v(s) − v∞‖ ≤ δ. From (B.13) we
trivially obtain (B.10). Moreover, by combining (B.13) with (B.12), we yield

‖x(T ;x0, v)− x∞‖ ≤ ‖x(T ;x0, v)− x(T ;x0, v∞)‖+ ‖x(T ;x0, v∞)− x∞‖ ≤ ε,

whence giving (B.11) and completing the proof.
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The following is a stability result and will be key in proving Theorem B.0.2.

Lemma B.1.8. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for all ε > 0, there exists δ > 0 such that, for all (x0, v) ∈ Rn× (Rm)Z+

satisfying ‖x0 − x∞‖+ ‖v − v∞‖`∞ ≤ δ,

‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ Z+. (B.14)

Proof. Let ε > 0 and note that, from Lemma B.1.3, there exists δ1 > 0 such that, for
all x0 ∈ Rn satisfying ‖x0−x∞‖ ≤ δ1, it follows that x0 ∈ O. Moreover, by the stability
of (v∞, x∞), there exists δ2 > 0 such that, for all x0 ∈ Rn satisfying ‖x0 − x∞‖ ≤ δ2,

‖x(t;x0, v∞)− x∞‖ ≤ ε

2
∀ t ∈ Z+. (B.15)

We then define δ3 := min{ε, δ1, δ2} > 0 and let C ⊆ O be the closed ball of radius δ3/2
centred at x∞. An application of Lemma B.1.7 yields the existence of T ∈ Z+ and
δ4 > 0 such that, for all (x0, v) ∈ C × (Rm)Z+ satisfying maxs∈T ‖v(s)− v∞‖ ≤ δ4,

‖x(t;x0, v)− x(t;x0, v∞)‖ ≤ δ3

2
∀ t ∈ T , (B.16)

and

‖x(T ;x0, v)− x∞‖ ≤ δ3

2
. (B.17)

We now define

δ := min

{
δ4,

δ3

2

}
> 0,

and let (x0, v) ∈ Rn × (Rm)Z+ be such that ‖x0 − x∞‖ + ‖v − v∞‖`∞ ≤ δ. With the
intent of showing that (B.14) holds, we claim that

x((k + 1)T ;x0, v) ∈ C ∀ k ∈ Z+, (B.18)

and
‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ {kT, . . . , (k + 1)T}, ∀ k ∈ Z+. (B.19)

To show this, we utilise an inductive method. To this end, for the case k = 0, we
use (B.17) to immediately give that x(T ;x0, v) ∈ C. Additionally, since ‖x0 − x∞‖ ≤
δ3/2 < δ2, we see that (B.15) holds. By combining this with (B.16), we thus yield that

‖x(t;x0, v)− x∞‖ ≤ ‖x(t;x0, v)− x(t;x0, v∞)‖+ ‖x(t;x0, v∞)− x∞‖ ≤ ε ∀ t ∈ T ,

thus proving the case k = 0. We now assume that the claim holds true for arbitrary
k ∈ Z+. First note that since ‖v − v∞‖`∞ ≤ δ, we have that ‖Λ(k+1)T v − v∞‖`∞ ≤ δ.
Moreover, by the induction hypothesis, x((k + 1)T ;x0, v) ∈ C and so we are able to
invoke (B.17) to obtain that∥∥x (T ;x((k + 1)T ;x0, v),Λ(k+1)T v

)
− x∞

∥∥ ≤ δ3

2
,

that is, (see Lemma B.1.2)

‖x((k + 2)T ;x0, v)− x∞‖ ≤ δ3

2
,
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whence giving that x((k + 2)T ;x0, v) ∈ C. Finally, using (B.16),∥∥x (t;x ((k + 1)T ;x0, v
)
,Λ(k+1)T v

)
− x

(
t;x
(
(k + 1)T ;x0, v

)
, v∞

)∥∥ ≤ δ3

2
≤ ε

2
,

for all t ∈ T . By once again applying Lemma B.1.2, from the above we deduce that

‖x(t+ (k + 1)T ;x0, v)− x
(
t;x
(
(k + 1)T ;x0, v

)
, v∞

)
‖ ≤ ε

2
∀ t ∈ T .

We recall that ξ := x
(
(k + 1)T ;x0, v

)
∈ C. Whence, by combining the previous in-

equality with (B.15), we obtain that, for all t ∈ T ,

‖x(t+ (k + 1)T ;x0, v)− x∞‖ ≤ ‖x(t+ (k + 1)T ;x0, v)− x (t; ξ, v∞) ‖
+ ‖x (t; ξ, v∞)− x∞‖
≤ ε.

This is equivalent to saying that

‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ {(k + 1)T, . . . , (k + 2)T}.

By induction, we infer that (B.18) and (B.19) hold. To conclude the proof, we note that
we have shown that, for all (x0, v) ∈ Rn×(Rm)Z+ satisfying ‖x0−x∞‖+‖v−v∞‖`∞ ≤ δ,
(B.14) holds, completing the proof.

We now give the final preliminary result that we shall use in order to prove Theorem
B.0.2. The result is a discrete-time version of [112, Proposition II.4].

Lemma B.1.9. Let (v∞, x∞) ∈ Rm × Rn be an asymptotically stable equilibrium pair
of (B.1). Then for every compact set C ⊆ O and every ε > 0, there exist T ∈ Z+ and
δ > 0 such that, for every (x0, v) ∈ C × (Rm)Z+ with ‖v − v∞‖`∞ ≤ δ,

‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ T .

Proof. Let C ⊆ O be a compact set and ε > 0. An application of Lemma B.1.8 gives
the existence of δ1 > 0 such that, for all (x0, v) ∈ Rn × (Rm)Z+ satisfying ‖x0 − x∞‖+
‖v − v∞‖`∞ ≤ δ1, (B.14) holds. Additionally, by invoking Lemma B.1.7, we obtain
the existence of T ∈ Z+ and δ2 > 0 such that, for all (x0, v) ∈ C × (Rm)Z+ satisfying
maxs∈T ‖v(s)− v∞‖ ≤ δ2,

‖x(T ;x0, v)− x∞‖ ≤ δ1

2
. (B.20)

We define δ := min{δ1, δ2}/2 > 0. Furthermore, let (x0, v) ∈ C × (Rm)Z+ be such that
‖v − v∞‖`∞ ≤ δ. This implies that ‖ΛT v − v∞‖`∞ ≤ δ and so, by recalling (B.20) and
invoking (B.14), we obtain that

‖x(t;x(T ;x0, v),ΛT v)− x∞‖ ≤ ε ∀ t ∈ Z+.

Since Lemma B.1.2 gives that x(t+ T ;x0, v) = x(t;x(T ;x0, v),ΛT v) for all t ∈ Z+, we
see that the above inequality implies

‖x(t+ T ;x0, v)− x∞‖ ≤ ε ∀ t ∈ Z+,

i.e.
‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ T ,

thus completing the proof.
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We are now in a position to give the proof of Theorem B.0.2.

Proof of Theorem B.0.2. Let C be a compact set in O, v ∈ (Rm)Z+ , x0 ∈ Rn and
x(·;x0, v) be a C-recurrent solution of (B.1). Furthermore, assume that limt→∞ v(t) =
v∞. Let ε > 0. To complete the proof, it is sufficient to show that there exists T ∈ Z+

such that
‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ T .

To this end, by Lemma B.1.9, there exist T0 ∈ Z+ and δ > 0 such that, for all
(ξ, w) ∈ C × (Rm)Z+ with ‖w − v∞‖`∞ ≤ δ,

‖x(t; ξ, w)− x∞‖ ≤ ε ∀ t ∈ T0. (B.21)

Since v(t)→ v∞ as t→∞, there exists T1 ∈ Z+ such that

‖v(t)− v∞‖ ≤ δ ∀ t ∈ T1.

Furthermore, since x(·;x0, v) is C-recurrent, there exists T2 ∈ T1 such that x(T2;x0, v) ∈
C. Now, using (B.21) with ξ = x(T2;x0, v) and w = ΛT2v, we obtain that

‖x(t;x(T2;x0, v),ΛT2v)− x∞‖ ≤ ε ∀ t ∈ T0.

Since, from Lemma B.1.2, x(t + T2;x0, v) = x(t;x(T2;x0, v),ΛT2v) for all t ∈ Z+, we
see that this implies

‖x(t+ T2;x0, v)− x∞‖ ≤ ε ∀ t ∈ T0,

which is equivalent to
‖x(t;x0, v)− x∞‖ ≤ ε ∀ t ∈ T ,

where T := T0 + T2, thus completing the proof.
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Almost periodic functions

Almost periodic functions were first conceived by Harold Bohr in the 1920s [16]. They
are a generalisation of the notion of continuous periodic functions and are frequently
used in the theory of differential and difference equations (see, for example, [34, 52,
105, 128]). Much work has been attributed to the theory, and several generalisations
of the notion have been developed (see, for example, [14]). One such is the notion of
almost periodic functions in the sense of Stepanov. In this appendix, we present theory
of (Bohr) almost periodic functions and Stepanov almost periodic functions over the
time domains R+, R, Z+ and Z. As a rule-of-thumb, literature concerning the time
domains R and Z is easy to find (see, such as, [1, 14, 17, 21, 22]), however it is difficult
to find explicit references for the cases of R+ and Z+. Thus, in the sequel, where theory
is difficult to find, we shall give explicit proofs of results.

We split this appendix in two, with the first section concerning (Bohr) almost periodic
functions, and the second comprising theory of Stepanov almost periodic functions.

Throughout this appendix, we let X and Y be Banach spaces and, moreover, we define∥∥∥∥(xy
)∥∥∥∥

X×Y
:=
√
‖x‖2X + ‖y‖2Y ∀x ∈ X, ∀ y ∈ Y, (C.1)

and let
R = R+ or R, and Z = Z+ or Z.

C.1 Bohr almost periodicity

We shall first consider almost periodic functions on the time domains R+ and R. To
this end, we begin with the following definition.

Definition C.1.1. (i) A set S ⊆ R is said to be relatively dense (in R) if there exists
L > 0 such that

[a, a+ L] ∩ S 6= ∅ ∀ a ∈ R.

(ii) Let ε > 0. Then τ ∈ R is said to be an ε-period of a continuous function
f : R→ X if

‖f(t)− f(t+ τ)‖X ≤ ε ∀ t ∈ R.

We shall denote by P (f, ε) ⊆ R the set of ε-periods of f .
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(iii) We say that a continuous function f : R→ X is almost periodic (in the sense of
Bohr) if P (f, ε) is relatively dense in R for every ε > 0.

(iv) We denote the set of almost periodic functions R→ X by AP (R,X).

Remark C.1.2. (i) An example of a relatively dense set in R+ is Z+. Moreover,
it is worth noting that the intersection of two relatively dense sets need not be
non-empty. Indeed, the sets of even and odd positive integers are both relatively
dense in R+, but clearly have empty intersection.

(ii) Trivially, a continuous periodic function is almost periodic. We hence may think
of almost periodicity as a generalisation of the standard notion of periodicity.
However, the converse is false. For a counterexample, see [14, p.ix].

(iii) For τ ∈ R, if an almost periodic function f : R→ X satisfies that τ ∈ P (f, ε) for
every ε > 0, then f is τ -periodic. ♦

The following result asserts that almost periodic functions are bounded and uniformly
continuous.

Lemma C.1.3. Let f ∈ AP (R,X). Then f is bounded and uniformly continuous.

This is very well-known in the case R = R (see, for example, [22, Proposition 3.16,
p.71]). The half-line case can be proven via a similar method. For completeness, we
provide a proof of this situation.

Proof of Lemma C.1.3. Let f ∈ AP (R,X) and R = R+. We begin by showing that f
is bounded. To this end, by taking ε = 1, the almost periodicity of f guarantees the
existence of δ > 0 such that, for all t0 ∈ R, there exists τ ∈ [t0, t0 + δ] which is an
ε-period of f . Define

c := sup
s∈[0,δ]

‖f(s)‖X ,

and note that, in order to prove the boundedness of f , it is sufficient to show that
‖f(t)‖X ≤ 1 + c for all t ∈ [δ,∞), which we shall do so now. Let t ∈ [δ,∞) and
additionally let τ ∈ [t − δ, t] be an ε-period of f . We note that t − τ ∈ [0, δ], which
subsequently yields that

‖f(t)‖X ≤ ‖f(t− τ)− f(t)‖X + ‖f(t− τ)‖X ≤ 1 + c,

and shows that f is bounded. Moving on to showing uniform continuity, let ε > 0 and
let δ1 > 0 be such that, for all t0 ∈ R, there exists τ ∈ [t0, t0 +δ] which is an ε/3-period.
Since f is continuous, f is uniformly continuous on [0, δ1 + 1], and so we let δ2 ∈ (0, 1)
be such that

‖f(t1)− f(t2)‖X ≤
ε

3
∀ t1, t2 ∈ [0, δ1 + 1] s.t. |t1 − t2| ≤ δ2. (C.2)

We now fix t1, t2 ∈ R such that |t1− t2| < δ2. If one of t1 or t2, say t2, is in [0, δ1], then

t1 ≤ |t1 − t2|+ t2 ≤ δ2 + δ1 ≤ 1 + δ1,

and, by (C.2), the proof is complete. Thus, we assume that t1 and t2 are both strictly
larger than δ1. Further, without loss of generality, we assume that t2 ≥ t1. Let
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τ ∈ [t1 − δ1, t1] be an ε/3-period and define s1 := t1 − τ and s2 := t2 − τ . It is easily
verified that s1 ∈ [0, δ1] and s2 ∈ [0, δ1 + 1]. Finally, we thus obtain, by (C.2) and the
choice of τ , that

‖f(t1)− f(t2)‖X ≤ ‖f(t1)− f(s1)‖X + ‖f(s1)− f(s2)‖X + ‖f(s2)− f(t2)‖X ≤ ε,

which completes the proof.

The next lemma is a useful property regarding the ‘tails’ of almost periodic functions.

Lemma C.1.4. Let f ∈ AP (R,X). The following statements hold.

(i) If R = R+, then

sup
t≥T
‖f(t)‖X = sup

t∈R
‖f(t)‖X ∀T ∈ R+.

(ii) If R = R, then

sup
t≤T
‖f(t)‖X = sup

t∈R
‖f(t)‖X = sup

t≥T
‖f(t)‖X ∀T ∈ R.

The result is surely known in the literature (at least in the case that R = R), but it is
difficult to locate. We hence prove a proof here.

Proof of Lemma C.1.4. We shall only provide a proof of statement (i), since statement
(ii) can be proven in a similar manner. We begin noting that the suprema in question
are well-defined and finite by Lemma C.1.3. Fix T ∈ R = R+ and note that, trivially,

sup
t∈R
‖f(t)‖X ≥ sup

t≥T
‖f(t)‖X .

Therefore, in order to prove statement (i), it is sufficient to show that

sup
t∈R
‖f(t)‖X ≤ sup

t≥T
‖f(t)‖X + ε ∀ ε > 0, (C.3)

which we do so now. Let ε > 0, t ∈ R and let τ ∈ R+ be an ε-period of f chosen large
enough so that τ + t ≥ T . We then see that

‖f(t)‖X ≤ ‖f(t+ τ)− f(t)‖X + ‖f(t+ τ)‖X ≤ ε+ sup
s≥T
‖f(s)‖X .

Since t was arbitrary, we obtain that (C.3) holds and the proof is complete.

Lemma C.1.4 can be used to deduce many properties of almost periodic functions. Two
such, are outlined in the following remark.

Remark C.1.5. (i) If f ∈ AP (R, X) is such that limt∈R, t→∞ f(t) = 0, then Lemma
C.1.4 yields that f = 0.

(ii) Let T ∈ R. If f ∈ AP (R, X) is such that f(t) = 0 for all t ≥ T , or f(t) = 0 for
all t ≤ T , then Lemma C.1.4 gives that f = 0. ♦

The next result asserts a relationship between AP (R, X) and AP (R+, X).
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Lemma C.1.6. For every f ∈ AP (R+, X), there exists a unique function fe : R→ X
such that fe ∈ AP (R, X) and fe(t) = f(t) for all t ∈ R+. Moreover,

sup
t∈R
‖fe(t)‖X = sup

t∈R+

‖f(t)‖X , (C.4)

and, for every ε > 0, P (fe, ε) = {±τ : τ ∈ P (f, ε)}.

Before proving this, we give some commentary.

Remark C.1.7. Lemma C.1.6 will be especially useful in asserting basic properties
of AP (R+, X). Since many of these properties are easy to find in the literature for
AP (R, X), Lemma C.1.6 will allow us to carry these properties through and deduce
them for AP (R+, X). ♦

Proof of Lemma C.1.6. In the sequel, we act following an idea in [12, Remark on p.318].
To this end, let f ∈ AP (R+, X) and, for each k ∈ N, let τk ∈ P (f, 1/k) be such that
τk ↗∞ as k →∞. We define fe : R→ X by

fe(t) = lim
k→∞

f(t+ τk) ∀ t ∈ R. (C.5)

We pause here and show that fe is well-defined. Indeed, note that, for given t ∈ R,

‖f(t+ τk)− f(t+ τl)‖X ≤ ‖f(t+ τk)− f(t+ τk + τl)‖X
+ ‖f(t+ τk + τl)− f(t+ τl)‖X

≤ 1

l
+

1

k
,

for all k, l ∈ N sufficiently large. We hence see that (f(t + τk))k∈N ⊆ X is a Cauchy
sequence, which in turn implies that fe(t) is well-defined for every t ∈ R. Moving
on, it is trivial that fe(t) = f(t) for all t ∈ R+. Moreover, it is straight forward to
prove that, for all ε > 0, P (fe, ε) = {±τ : τ ∈ P (f, ε)}. Thus, in order to prove that
fe ∈ AP (R, X), it suffices to show that fe is continuous, which we shall do so now. Let
ε > 0 and t ∈ R. Note that, since f is uniformly continuous by Lemma C.1.3, we may
obtain the existence of δ > 0 such that

‖f(s1)− f(s2)‖ ≤ ε

3
∀ s1, s2 ∈ R+ s.t. |s1 − s2| ≤ δ.

Furthermore, for s ∈ R such that |s− t| ≤ δ, note that there exist Kt,Ks ∈ N such that

‖fe(t)− f(t+ τk)‖, ‖fe(s)− f(s+ τk)‖ ≤
ε

3
,

for all k ≥ Kt and Ks, respectively. Let k ≥ Kt +Ks. By combining the previous two
inequalities, we yield that

‖fe(t)− fe(s)‖ ≤ ‖fe(t)− f(t+ τk)‖+ ‖f(t+ τk)− f(s+ τk)‖+ ‖f(s+ τk)− fe(s)‖
≤ ε,

whence giving that fe is continuous. For the uniqueness of fe, assume that there exists
another almost periodic extension of f to R, and denote this by g. Since fe(t)−g(t) = 0
for all t ∈ R+, and fe − g ∈ AP (R, X) (see, for example, [1, IX, p.10]), Lemma C.1.4
implies that fe = g. Finally, (C.4) is immediately obtained from Lemma C.1.4, hence
concluding the proof.
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We now give some basic properties of AP (R,X). The case R = R is known in the
literature and we will provide explicit references of these properties as we proceed. For
the case R = R+, we shall deduce the properties by using the known results of the
case R = R along with Lemma C.1.6 (see Remark C.1.7). We begin with the following
linearity assertion.

Lemma C.1.8. If f, g ∈ AP (R,X), then f + g is in AP (R,X).

The case that R = R can be found in, for example, [1, IX, p.10], and so the following
proof is for the situation that R = R+.

Proof of Lemma C.1.8. Let f, g ∈ AP (R+, X). We apply Lemma C.1.6 to obtain
(unique) extensions fe, ge ∈ AP (R, X) of f and g, respectively. We note that fe + ge ∈
AP (R, X) (again, see such as [1, IX, p.10]) and that, for all t ∈ R+,

(fe + ge)(t) = fe(t) + ge(t) = f(t) + g(t) = (f + g)(t).

Hence fe + ge is an extension of f + g and is almost periodic. This trivially implies
that f + g is almost periodic, since the restriction of an almost periodic function on R
to R+ is almost periodic.

The next lemma is a closedness result for almost periodic functions.

Lemma C.1.9. If (fk)k∈N ⊆ AP (R,X) converges uniformly to f : R → X, then
f ∈ AP (R,X).

The case R = R is easily found in the literature: see, for example, [1, V, p.6].

Proof of Lemma C.1.9. As done for the full-line case in the proof of [1, V, p.6], the
half-line case is immediately obtained by use of the inequality

‖f(t+ τ)− f(t)‖X ≤‖f(t+ τ)− fk(t+ τ)‖X + ‖fk(t+ τ)− fk(t)‖X
+ ‖fk(t)− f(t)‖X ∀ t, τ ∈ R, ∀ k ∈ Z+.

As a consequence of Lemmas C.1.3, C.1.8 and C.1.9, and the fact that X is a Banach
space, it is easy to deduce the following result.

Corollary C.1.10. AP (R,X) is a Banach space with resepect to the relevant supremum-
norm.

With this and Lemma C.1.4 in mind, may now “improve” Lemma C.1.6 with the
following result, the proof of which is straightforward and so is omitted.

Theorem C.1.11. The map AP (R+, X) → AP (R, X) which maps f to fe, where fe

is given by (C.5), is an isometric isomorphism.

Remark C.1.12. We note that an isometric isomporphism is proven to exist between
AP (R+, X) and AP (R, X) in [11, Lemma 7]. However, in [11], it is not clear what the
explicit formulation of fe is. ♦

For the following result, recall that for the cartesian product of Banach spaces, we
assume the norm is given by (C.1) (or something equivalent).
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Lemma C.1.13. Let f ∈ AP (R,X) and g ∈ AP (R, Y ). Then, for all ε > 0, P (f, ε)∩
P (g, ε) is non-empty and relatively dense in R. Furthermore,

AP (R,X × Y ) = AP (R,X)×AP (R, Y ). (C.6)

The case that R = R can be found in, for example, [1, p.10].

Proof of Lemma C.1. We only consider the case R = R+ since, as previously men-
tioned, the case R = R is not difficult to find in the literature. To this end, we let
ε > 0 and apply Lemma C.1.6 to obtain (unique) extensions fe ∈ AP (R, X) and
ge ∈ AP (R, Y ) of f and g, respectively. From the full-line case, we obtain that
P (fe, ε) ∩ P (ge, ε) is non-empty and relatively dense in R for all ε > 0. Trivially,
we yield that P (f, ε) ∩ P (g, ε) is non-empty and relatively dense in R+ for all ε > 0.
As for showing that (C.6) holds, note that, by the definition of the norm on X × Y
(see (C.1)),

τ ∈ P (f, ε) ∩ P (g, ε) =⇒ τ ∈ P
((

f
g

)
,
√

2ε

)
∀ ε > 0,

and

τ ∈ P
((

f
g

)
, ε

)
=⇒ τ ∈ P (f, ε) ∩ P (g, ε) ∀ ε > 0.

Therefore, by combining this with the first part of the proof, we obtain that (C.6) is
true, and the proof is complete.

We now define what we mean by an asymptotically almost periodic function over R+.

Definition C.1.14. We denote by C0(R+, X) the space of continuous functions f :
R+ → X such that limt→∞ f(t) = 0, and endow it with the supremum-norm. Moreover,
we say that a continuous function f : R+ → X is asymptotically almost periodic if
f ∈ AP (R+, X) + C0(R+, X), and denote the space of asymptotically almost periodic
functions R+ → X by AAP (R+, X).

As an immediate consequence of Lemma C.1.4, we obtain the next result.

Lemma C.1.15. The following statements hold.

(i) AP (R+, X) ∩ C0(R+, X) = {0}.

(ii) If f ∈ AAP (R+, X), then the decomposition f = fap+f0, where fap ∈ AP (R+, X)
and f0 ∈ C0(R+, X), is unique.

It is well-known (see, for example, [14]) that (Bohr) almost periodicity over R is equiv-
alent to several other notions. We will now discuss whether or not these equivalences
hold in the ‘half-line’ case. We begin with the following definition.

Definition C.1.16. We denote by TP (R,X) the space of all X-valued trigonometric
functions over R endowed with the supremum-norm, that is, functions p : R → X of
the form

p(t) =
N∑
k=0

ake
iλkt ∀ t ∈ R,

where N ∈ Z+ and, for each k ∈ {0, . . . , N}, ak ∈ X and λk ∈ R.
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The following propositon provides a characterisation of the space of almost periodic
functions.

Proposition C.1.17. We have that

AP (R,X) = clos(TP (R,X)), (C.7)

where we take the closure of TP (R,X) in the space of bounded uniformly continuous
functions R→ X.

The case of R = R is easily found in the literature (see, for example, [22, Proposition
3.20 and Theorem 4.8]) and so we shall only prove the case R = R+.

Proof of Proposition C.1.17. Let R = R+. We begin with the realisation that if f ∈
TP (R+, X), then since f is a linear combination of almost periodic functions, it is
almost periodic by Corollary C.1.10. From this same result, we then see that the
uniform limit of a sequence of functions in TP (R+, X) is almost periodic, hence yielding
that clos(TP (R+, X)) ⊆ AP (R+, X). As for the reverse inclusion, if f ∈ AP (R+, X),
then, by Theorem C.1.11, fe is the unique almost periodic extension of f to R. We
hence deduce, by using (C.7) with R = R, that fe ∈ clos(TP (R, X)). By letting
(pk)k∈Z+ ⊆ TP (R, X) be such that

fe(t) = lim
k→∞

pk(t) ∀ t ∈ R,

we see that
f(t) = fe(t) = lim

k→∞
pk(t) = lim

k→∞
qk(t) ∀ t ∈ R+,

where (qk)k∈Z+ ⊆ TP (R+, X) are the restrictions of (pk)k∈Z+ to R+. Therefore,
AP (R+, X) ⊆ clos(TP (R+, X)) and the proof is complete.

We now define what we mean by normality (see again, for example, [14]).

Definition C.1.18. We say that a continuous function f : R → X is normal if for
all sequences (σk)k∈Z+ ⊆ R, the sequence of translates (Λσkf)k∈Z+ has a uniformly
convergent subsequence. Moreover, we denote by N(R,X) the set of X-valued normal
functions over R.

It is well-known (see, for example, [22, Theorem 3.2]) that

AP (R, X) = N(R, X). (C.8)

We note that the notion of normality is often termed “Bochner’s definition of almost
periodicity”, see, for example, [14, p.10]. It is easily seen that this equality does not
hold in the half-line case of R = R+. Indeed, by Lemma C.1.15, any non-constant
function in C0(R+, X) provides a counter-example. What is true in the half-line case,
however, is that

N(R+, X) = AAP (R+, X). (C.9)

Indeed, this is proven in [98, Theorem 3.1].

Our attention now moves towards forming a ‘module containment’ result for almost
periodic vector-valued functions, that is, a generalisation of [34, Theorem 4.5, p.61].
Before coming to this, we first give some preliminaries, starting with the following
definition.
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Definition C.1.19. Let f ∈ L1
loc(R, X). The mean value of f is defined to be

M(f) := lim
T→∞

1

2T

∫ T

−T
f(t)dt,

whenever the limit exists.

From [1, II, p.21], we obtain that the mean value of an almost periodic function exists.

Lemma C.1.20. The mean value M(f) exists for all f ∈ AP (R, X), and, furthermore,

M(f) = lim
T→∞

1

2T

∫ T+a

−T+a
f(t)dt,

uniformly with respect to a ∈ R.

We now present a result which, as a consequence, shall provide us with an alternative
definition of the mean value of an almost periodic function.

Lemma C.1.21. Let f ∈ L1
loc(R, X). Then limT→∞

1
2T

∫ T+a
−T+a f(t)dt exists uniformly

with respect to a ∈ R if, and only if, limT→∞
1
T

∫ T+a
a f(t)dt exists uniformly with respect

to a ∈ R. Furthermore, when the previous limits exist uniformly with respect to a ∈ R,

lim
T→∞

1

2T

∫ T+a

−T+a
f(t)dt = lim

T→∞

1

T

∫ T+a

a
f(t)dt. (C.10)

Proof. Let us begin by assuming that c := limT→∞
1

2T

∫ T+a
−T+a f(t)dt ∈ X exists uni-

formly with respect to a ∈ R and then deduce that limT→∞
1
T

∫ T+a
a f(t)dt exists uni-

formly with respect to a ∈ R. To prove this, it is sufficient to show that for all ε > 0,
there exists T̃ > 0 such that∥∥∥∥c− 1

T

∫ T+a

a
f(t)dt

∥∥∥∥
X

≤ ε ∀T ≥ T̃ , ∀ a ∈ R. (C.11)

To this end, let ε > 0 and let L̃ > 0 be such that∥∥∥∥c− 1

2L

∫ L+b

−L+b
f(t)dt

∥∥∥∥
X

≤ ε ∀L ≥ L̃, ∀ b ∈ R. (C.12)

The existence of L̃ is guaranteed by the hypothesis. Set T̃ := 2L̃ > 0. Let T ≥ T̃ and
a ∈ R. By setting L := T/2 ≥ T̃ /2 = L̃ and b := a+ L ∈ R, (C.12) implies that∥∥∥∥c− 1

T

∫ T+a

a
f(t)dt

∥∥∥∥
X

=

∥∥∥∥c− 1

2L

∫ L+b

−L+b
f(t)dt

∥∥∥∥
X

≤ ε.

We have therefore shown that (C.11) holds, thus proving that limT→∞
1
T

∫ T+a
a f(t)dt

exists uniformly with respect to a ∈ R and equals c.
For the converse implication, we now instead assume that d := limT→∞

1
T

∫ T+a
a f(t)dt

exists uniformly with respect to a ∈ R and we will prove that, for all ε > 0, there exists
T̃ > 0 such that ∥∥∥∥d− 1

2T

∫ T+a

−T+a
f(t)dt

∥∥∥∥
X

≤ ε ∀T ≥ T̃ , ∀ a ∈ R. (C.13)
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To see this holds, let ε > 0 and note that by hypothesis, there exists L̃ > 0 such that∥∥∥∥d− 1

L

∫ L+b

b
f(t)dt

∥∥∥∥
X

≤ ε ∀L ≥ L̃, ∀ b ∈ R. (C.14)

Set T̃ := L̃/2 > 0 and let T ≥ T̃ and a ∈ R. We set L := 2T ≥ 2T̃ = L̃ and
b := a− T ∈ R. From (C.14), we obtain that∥∥∥∥d− 1

2T

∫ T+a

−T+a
f(t)dt

∥∥∥∥
X

=

∥∥∥∥d− 1

L

∫ L+b

b
f(t)dt

∥∥∥∥
X

≤ ε.

Therefore, (C.13) holds, and so limT→∞
1

2T

∫ T+a
−T+a f(t)dt exists uniformly with respect

to a ∈ R and equals d.

We now outline some terminology and notation which will prove useful in the sequel.

Definition C.1.22. Let f : R→ X and λ ∈ R. We define fλ : R→ X by

fλ(t) := f(t)e−iλt ∀ t ∈ R.

From Lemmas C.1.20 and C.1.21, we obtain the following result regarding the mean
value of fλ when f is almost periodic.

Corollary C.1.23. Let f ∈ AP (R, X) and λ ∈ R. Then M(fλ) exists and

M(fλ) = lim
T→∞

1

2T

∫ T+a

−T+a
fλ(t)dt = lim

T→∞

1

T

∫ T+a

a
fλ(t)dt,

uniformly with respect to a ∈ R.

Proof. From [1, IX, p.10], we obtain that fλ ∈ AP (R, X) since f ∈ AP (R, X) and
t 7→ e−iλt is (almost) periodic. The result thus follows immediately from Lemma
C.1.20 and Lemma C.1.21.

Definition C.1.24. Let f ∈ L1
loc(R, X). We define the set Λ(f) ⊆ R of characteristic

exponents of f by
Λ(f) := {λ ∈ R : M(fλ) 6= 0}.

The next lemma asserts that Λ(f) is countable if f is almost periodic. The result is
given in [1, III, p.22] and so we shall not provide a proof here.

Lemma C.1.25. Let f ∈ AP (R, X). Then Λ(f) is countable.

Associated with Λ(f) is the module of f , which we define now.

Definition C.1.26. Let f ∈ L1
loc(R, X) be such that Λ(f) is a countable set. We

denote by mod(f) the smallest additive group of real numbers that contains Λ(f). That
is, mod(f) is the set of all real numbers that are a finite linear combination of the
elements of Λ(f) with integer coefficients:

mod(f) =
{

ΣN
j=1αjλj : αj ∈ Z, λj ∈ Λ(f), N ∈ N

}
.

We now present the following module containment result for almost periodic vector-
valued functions.
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Theorem C.1.27. Let f ∈ AP (R, X) and g ∈ AP (R, Y ) be such that for all ε > 0,
there exists δ > 0 such that P (f, δ) ⊆ P (g, ε). We then have that

mod(f) ⊇ mod(g).

In the case that X = Y = R or C, the above is a particular case of [34, Theorem 4.5].

Proof of Theorem C.1.27. In [1, p.11], a sequence (σk)k∈N ⊆ R is called regular (with
respect to f), if (f(· + σk))k∈N is uniformly convergent. From [1, X, p.34], we obtain
that

ζf ⊆ ζg ⇐⇒ mod(f) ⊇ mod(g),

where ζf and ζg denote the sets of all regular sequences of f and g, respectively.
Furthermore, [1, XII, p.12] yields that

ζf ⊆ ζg ⇐⇒ lim
ξ↓0

ωf,g(ξ) = 0,

where

ωf,g(ξ) := sup
τ∈P (f,ξ)

(
sup
t∈R
‖g(t+ τ)− g(t)‖Y

)
∀ ξ > 0.

Hence, to complete the proof it suffices to show that limξ↓0 ωf,g(ξ) = 0. Before we
do this however, we note that in [1, p.12], it is shown that ωf,g is nondecreasing and
limξ↓0 ωf,g(ξ) exists. Let ε > 0 and choose δ > 0 such that P (f, δ) ⊆ P (g, ε). We then
see that

sup
t∈R
‖g(t+ τ)− g(t)‖ ≤ ε ∀ τ ∈ P (f, δ),

which in turn implies that

ωf,g(δ) = sup
τ∈P (f,δ)

(
sup
t∈R
‖g(t+ τ)− g(t)‖

)
≤ ε.

Therefore, since ωf,g is nondecreasing, ωf,g(ξ) ≤ ε for all ξ ∈ (0, δ]. Since ε was
arbitrary, the proof is thus complete.

Remark C.1.28. With Theorem C.1.11 in mind, by defining the mean value of a
function f ∈ L1

loc(R+, X) by

M(f) := lim
T→∞

1

T

∫ T

0
f(t)dt,

whenever the limit exists, we see, from Corollary C.1.23 (with a = 0), that if f ∈
AP (R+, X) and λ ∈ R, then

M((fe)λ) = lim
T→∞

1

T

∫ T

0
(fe)λ(t)dt = lim

T→∞

1

T

∫ T

0
fλ(t)dt = M(fλ).

That is, M(fλ) exists and equals M((fe)λ). As a consequence of this,

mod(f) = mod(fe) ∀ f ∈ AP (R+, X). (C.15)

Furthermore, by also recalling Lemma C.1.6, we see that a ‘half-line’ version of Theorem
C.1.27 holds. By this, we mean that the conclusions of Theorem C.1.27 remain true if
f ∈ AP (R+, X) and g ∈ AP (R+, Y ). ♦
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For the rest of this section, we concern ourselves with almost periodic functions on Z+

and Z. In parallel with the cases R+ and R, the literature concerning almost periodic
functions on Z is easy to find, but for almost periodic functions on Z+, it is difficult to
locate. Therefore, we are reasonable in giving the subsequent presentation. We begin
with the following definition.

Definition C.1.29. (i) A set S ⊆ Z is said to be relatively dense (in Z) if there exists
L ∈ N such that

{a, . . . , a+ L} ∩ S 6= ∅ ∀ a ∈ Z.

(ii) Let ε > 0. Then τ ∈ Z is said to be an ε-period of f : Z → X if

‖f(t)− f(t+ τ)‖X < ε ∀ t ∈ Z.

We denote by P (f, ε) ⊆ Z the set of ε-periods of f .

(iii) We say that f : Z → X is almost periodic if P (f, ε) is relatively dense in Z for
every ε > 0 and denote the set of almost periodic functions Z → X by AP (Z,X).

Remark C.1.30. Trivially, a periodic function over Z is almost periodic, but the
converse is false:

v(t) := sin(π
√

2t) ∀ t ∈ Z. ♦

The methods used to prove the earlier results relevant to the spaces AP (R, X) and
AP (R+, X), can be used analogously to obtain similar results for both AP (Z, X) and
AP (Z+, X). Because of this, in what follows, we will mostly just state the subsequent
results, and only provide explicit proofs where the content is entirely different from
the earlier results. We begin with the following two lemmas concerning the suprema of
almost periodic sequences.

Lemma C.1.31. Let f ∈ AP (Z,X). Then f is bounded.

Lemma C.1.32. Let f ∈ AP (Z,X). The following statements hold.

(i) If Z = Z+, then

sup
t∈Z, t≥T

‖f(t)‖X = sup
t∈Z
‖f(t)‖X ∀T ∈ Z+.

(ii) If Z = Z, then

sup
t∈Z, t≤T

‖f(t)‖X = sup
t∈Z
‖f(t)‖X = sup

t∈Z, t≥T
‖f(t)‖X ∀T ∈ Z.

As a consequence of these results, we may act identically to that done in the proof of
Lemma C.1.6 to obtain the following.

Corollary C.1.33. For every f ∈ AP (Z+, X), if we define fe : Z→ X by

fe(t) = lim
k→∞

f(t+ τk) ∀ t ∈ Z, (C.16)

where, for each k ∈ N, τk ∈ P (f, 1/k) and τk ↗ ∞ as k → ∞, then fe is the unique
function such that fe ∈ AP (Z, X) and fe(t) = f(t) for all t ∈ Z+. Moreover,

sup
t∈Z
‖fe(t)‖X = sup

t∈Z+

‖f(t)‖X ,

and, for every ε > 0, P (fe, ε) = {±τ : τ ∈ P (f, ε)}.
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Analogously to the continuous-time setting, we can apply this corollary with the known
theory of almost periodic functions defined on Z (see, for example [52, Appendix B])
to prove the following two results.

Corollary C.1.34. AP (Z,X) is a Banach space with resepect to the relevant supremum-
norm.

Theorem C.1.35. The map AP (Z+, X) → AP (Z, X) which maps f to fe, where fe

is given by (C.16), is an isometric isomorphism.

We now present the following interesting connection between the spaces AP (Z,X) and
AP (R,X), where (R,Z) = (R+,Z+) or (R,Z).

Theorem C.1.36. Let (R,Z) = (R+,Z+) or (R,Z). Then f ∈ AP (Z,X) if, and only
if, there exists g ∈ AP (R,X) such that f(t) = g(t) for all t ∈ Z.

The case that (R,Z) = (R,Z) is given in [52, Theorem 8 in Appendix B].

Proof of Theorem C.1.36. Let f ∈ AP (Z+, X). Then, from Theorem C.1.35, we obtain
the existence of a unique almost periodic extension of f to Z, fe. An application of
[52, Theorem 8 in Appendix B] then gives the existence of h ∈ AP (R, X) such that
h(t) = fe(t) for all t ∈ Z. Trivially, since h is almost periodic, the restriction of h to
R+, which we shall denote by g, is almost periodic. Moreover,

g(t) = h(t) = fe(t) = f(t) ∀ t ∈ Z+,

thus proving one of the required implications. We omit the proof of the converse, since
it can be proven by reversing the previous argument.

Theorem C.1.36 is an entirely useful result, since it allows us to assert discrete-time
analogues of some of the previously given results with little difficulty. Indeed, as an
illustration of this, the following is easily obtained from combining Theorem C.1.36
with Lemma C.1.13.

Lemma C.1.37. Let f ∈ AP (Z,X) and g ∈ AP (Z, Y ). Then, for all ε > 0, P (f, ε)∩
P (g, ε) is non-empty and relatively dense in Z. Furthermore,

AP (Z,X × Y ) = AP (Z,X)×AP (Z, Y ). (C.17)

We now define what we mean by an asymptotically almost periodic function over Z+.

Definition C.1.38. We denote by c0(Z+, X) the space of functions f ∈ XZ+ such that
limt→∞ f(t) = 0. Moreover, we say that f ∈ XZ+ is asymptotically almost periodic
if f ∈ AP (Z+, X) + c0(Z+, X), and denote the space of asymptotically almost periodic
functions Z+ → X by AAP (Z+, X).

As an immediate consequence of Lemma C.1.32, we obtain the next result.

Lemma C.1.39. The following statements hold.

(i) AP (Z+, X) ∩ c0(Z+, X) = {0}.

(ii) If f ∈ AAP (Z+, X), then the decomposition f = fap+f0, where fap ∈ AP (Z+, X)
and f0 ∈ c0(Z+, X), is unique.

As in the continuous-time setting, one could also develop equivalent notions of almost
periodic functions Z → X, where Z = Z+ or Z. For brevity, we shall not do this and
instead leave it to the reader.
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C.2 Stepanov almost periodicity

We now consider a generalisation of the notion of almost periodic functions, namely,
almost periodicity in the sense of Stepanov. Contrary to the last section, we shall not
discuss the time domains Z+ and Z, since Stepanov almost periodicity, as will become
apparent, is not relevant in those situations.

Definition C.2.1. Let f ∈ L1
loc(R,X).

(i) For ε > 0, we say that τ ∈ R is an ε-period (in the sense of Stepanov) of f if

sup
a∈R

∫ a+1

a
‖f(s+ τ)− f(s)‖Xds ≤ ε.

We denote by P1(f, ε), the set of all ε-periods (in the sense of Stepanov) of f .

(ii) We say that f is Stepanov almost periodic if P1(f, ε) is relatively dense in R for
every ε > 0, and denote the set of all Stepanov almost periodic functions R→ X
by S1(R,X).

(iii) We define f̃ : R→ L1([0, 1], X) by

(f̃(t))(s) := f(t+ s) ∀ t ∈ R, ∀ s ∈ [0, 1].

The function f̃ is often called the Bochner transform of f (see, for example, [1]).
We note that f̃ is continuous. This is due to the fact that translation operators
of L1 functions are continuous (see, for example, [97, Theorem 9.5, p.182]).

(iv) We define the space of uniformly locally integrable functions on R by

UL1
loc(R,X) :=

{
f ∈ L1

loc(R,X) : sup
a∈R

∫ a+1

a
‖f(s)‖Xds <∞

}
,

and endow it with the norm

‖f‖S := sup
a∈R

∫ a+1

a
‖f(s)‖Xds.

Remark C.2.2. (i) Stepanov almost periodicity can be thought of as a generalisation
of almost periodic functions, since, trivially, AP (R,X) ⊆ S1(R,X). This is a
strict inclusion. Indeed, a trivial example of a Stepanov almost periodic function
that is not almost periodic is f : R→ R defined by

f(t) =

{
0, t ∈ [2k, 2k + 1]

1, t ∈ [2k + 1, 2(k + 1)]
∀ k ∈ Z.

It is clear that f is periodic with period 2. Moreover, since f is not continuous,
f is not almost periodic. However, it is easy to show that f is Stepanov almost
periodic.

(ii) For every b > 0, the functional

f 7→ sup
a∈R

∫ a+b

a
‖f(t)‖Xdt

is a norm on UL1
loc(R,X) equivalent to ‖ · ‖S . ♦
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C.2. Stepanov almost periodicity

The following is straightforward to prove. Indeed, an infinite-dimensional generalisation
of the proof given in [22, pp.38-39] can be applied here.

Lemma C.2.3. UL1
loc(R,X) is a Banach space.

An interesting question is whether or not every continuous function R→ L1([0, 1], X)
can be written as the Bochner transform applied to a function in L1

loc(R,X). The
following trivial example answers this question.

Example C.2.4. We let λ ∈ L1([0, 1], X) be non-zero and such that λ(s) = 0 for
almost every s ∈ [0, 1/2]. Subsequently, we define F ∈ AP (R,L1([0, 1], X)) by

F (t) := λ ∀ t ∈ R.

Let us now assume that there exists f ∈ L1
loc(R,X) such that f̃ = F . As a consequence

of the fact that λ(s) = 0 for almost every s ∈ [0, 1/2], we obtain that, for all t ∈ R,

f(t+ s) = (f̃(t))(s) = (F (t))(s) = λ(s) = 0 a.e. s ∈ [0, 1/2].

Since this holds for all t ∈ R, we may consider the above identity for t = k/2 for all
k ∈ Z+ if R = R+ and all k ∈ Z if R = R. From this we deduce that f(t) = 0 for
almost every t ∈ R. This in turn implies that F = f̃ = 0, which is a contradiction.
Therefore, no such f exists. ♦

The subsequent result asserts a relationship between Stepanov and Bohr almost peri-
odic functions.

Lemma C.2.5. Let f ∈ L1
loc(R,X). Then

f ∈ S1(R,X) ⇐⇒ f̃ ∈ AP (R,L1([0, 1], X)),

and if f ∈ S1(R,X), then, for all ε > 0, P1(f, ε) = P (f̃ , ε).

Lemma C.2.5 is proven in [1, pp.77-78]. Since the proof is straightforward, we provide
it here for completeness.

Proof of Lemma C.2.5. The proof follows immediately upon noticing that, for all a, τ ∈
R, ∫ a+1

a
‖f(s+ τ)− f(s)‖Xds =

∫ 1

0
‖f(a+ s+ τ)− f(a+ s)‖Xds

=

∫ 1

0
‖(f̃(a+ τ))(s)− (f̃(a))(s)‖Xds

= ‖f̃(a+ τ)− f̃(a)‖L1([0,1],X).

Remark C.2.6. We shall see that Lemma C.2.5 is very useful. This is because it
allows us to bring forward some of the knowledge that we already know about (Bohr)
almost periodic functions and apply it in the Stepanov sense. ♦

The Bochner transform can be thought of as an isometry.
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Lemma C.2.7. The Bochner transform is a linear operation and

‖f‖S = ‖f̃‖L∞ ∀ f ∈ L1
loc(R,X). (C.18)

Proof. The linearity claim is easy to prove, and so we omit this and will instead focus
on showing that (C.18) holds for all f ∈ L1

loc(R,X). To this end, let f ∈ L1
loc(R,X)

and note that

‖f‖S = sup
a∈R

∫ 1

0
‖f(s+ a)‖Xds = sup

a∈R

∫ 1

0
‖(f̃(a))(s)‖Xds = ‖f̃‖L∞ ,

which completes the proof.

As a consequence of Lemmas C.2.5 and C.2.7, we yield the following.

Lemma C.2.8. S1(R,X) is a closed subspace of UL1
loc(R,X).

Proof. The fact that S1(R,X) is a vector space follows easily from Corollary C.1.10 and
Lemmas C.2.5 and C.2.7. Moreover, since every almost periodic function is bounded
(see Lemma C.1.3), Lemmas C.2.5 and C.2.7 yield that every f ∈ S1(R,X) has the
property that f ∈ UL1

loc(R,X). Finally, for the closedness property, let (fk)k∈N be
a sequence of functions in S1(R,X) converging to f : R → X. It is clear that f ∈
L1

loc(R,X). Another application of Lemma C.2.7 then yields that

‖f̃k − f̃‖∞ = ‖fk − f‖S → 0 as k →∞.

Therefore, Lemma C.1.9 implies that f̃ ∈ AP (R,L1([0, 1], X)), which, by Lemma C.2.5,
completes the proof.

The next result can be thought of as an analogue to Lemma C.1.6.

Lemma C.2.9. Let f ∈ S1(R+, X). Then there exists a unique function f e ∈ S1(R, X)
such that f e(t) = f(t) for almost every t ∈ R+. Moreover,

sup
a∈R+

∫ a+1

a
‖f(s)‖Xds = sup

a∈R

∫ a+1

a
‖f e(s)‖Xds, (C.19)

and, for every ε > 0, P1(f e, ε) = {±τ : τ ∈ P1(f, ε)}.

Remark C.2.10. By combining Lemma C.2.9 with Lemma C.1.6, we see that if f ∈
AP (R+, X), then f e = fe. ♦

Proof of Lemma C.2.9. For each k ∈ N, let τk ∈ P1(f, 1/k) be such that τk ↗ ∞ as
k →∞. We define f e ∈ L1

loc(R, X) by

f e(·) = lim
k→∞

f(·+ τk) (C.20)

in L1([−a, a], X) for every a ∈ N. We claim that f e is well-defined since (f(·+ τk))k∈N
is a Cauchy sequence in L1([−a, a], X) for every a ∈ N. Indeed, to see this, fix a ∈ N
and note that∫ a

0
‖f(s)− f(s+ τk)‖Xds ≤

a∑
i=1

∫ i

i−1
‖f(s)− f(s+ τk)‖Xds ≤

a

k
. (C.21)
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Therefore, f(· + τk) → f(·) as k → ∞ in L1([0, a], X). As a consequence of this,
f e(t) = f(t) for almost every t ∈ R+. Furthermore, since τk ↗ ∞ as k → ∞, there
exists K ∈ N such that τk > a for all k ∈ K. Hence, for all k, l ∈ K,∫ 0

−a
‖f(s+ τk)− f(s+ τl)‖Xds =

∫ 0

−a
‖f(s+ τl + τk − τl)− f(s+ τl)‖Xds

=

∫ τl

τl−a
‖f(s+ τk − τl)− f(s)‖Xds

≤
∫ τl

τl−a
‖f(s+ τk − τl)− f(s+ τk − τl + τl)‖Xds

+

∫ τl

τl−a
‖f(s+ τk)− f(s)‖Xds.

By again changing variables, we see that the above inequality becomes∫ 0

−a
‖f(s+ τk)− f(s+ τl)‖Xds ≤

∫ τk

τk−a
‖f(s)− f(s+ τl)‖Xds

+

∫ τl

τl−a
‖f(s+ τk)− f(s)‖Xds

≤ a
(

1

l
+

1

k

)
.

We have therefore shown that (f(· + τk))k∈N is a Cauchy sequence in L1([−a, 0], X).
By combining this with (C.21), we thus see that (f(·+ τk))k∈N is a Cauchy sequence in
L1([−a, a], X), which hence shows that f e is well-defined. To show that f e ∈ S1(R, X),
we shall use the Bochner transform and Lemma C.2.5. To this end, let t ∈ R and note
that, for k ∈ N large enough,

‖(̃f e)(t)− f̃(t+ τk)‖L1([0,1],X) =

∫ 1

0
‖((̃f e)(t))(s)− (f̃(t+ τk))(s)‖Xds

=

∫ 1

0
‖f e(t+ s)− f(t+ τk + s)‖Xds

=

∫ t+1

t
‖f e(s)− f(s+ τk)‖Xds

= ‖f e(·)− f(·+ τk)‖L1([t,t+1],X),

which converges to zero as k → ∞. Therefore, (̃f e)(t) = limk→∞ f̃(t + τk). Moreover,
since f̃ ∈ AP (R+, L

1([0, 1], X)) and τk ∈ P (f̃ , 1/k) for all k ∈ N, we hence obtain,

from Lemma C.1.6 (see, in particular, (C.5)), that (̃f e) is the unique almost periodic

extension of f̃ to R. That is, (̃f e) = (f̃)e. By applying Lemma C.2.5 once again, we
thus yield that f e ∈ S1(R, X). As for the uniqueness of f e, assume that there exists
another Stepanov almost periodic extension of f to R, and denote this function by
g. We therefore see that g − f e = 0 almost everywhere on R+. This implies that

g̃ − (̃f e) = 0 almost everywhere on R+. Since g̃ and (̃f e) are continuous, we see that

g̃− (̃f e) = 0 on R+. As a consequence (see Lemma C.1.4), g̃− (̃f e) = 0 on R. Therefore,
g − f e = 0 almost everywhere on R and f e is unique. To show that (C.19) holds, note
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that since (̃f e) is the unique almost periodic extension of f̃ to R, Lemma C.1.6 and
Lemma C.2.7 give that

sup
a∈R+

∫ a+1

a
‖f(s)‖Xds = sup

t∈R+

‖f̃(t)‖L1([0,1],X)

= sup
t∈R
‖(̃f e)(t)‖L1([0,1],X)

= sup
a∈R

∫ a+1

a
‖f e(s)‖Xds,

which is precisely (C.19). Finally, let ε > 0 and note that, from Lemma C.2.5, from

the fact that (̃f e) is the unique almost periodic extension of f̃ to R, and from Lemma
C.1.6,

P1(f e, ε) = P ((̃f e), ε) = {±τ : τ ∈ P (f̃ , ε)} = {±τ : τ ∈ P1(f, ε)},

which completes the proof.

As a consequence of the previous result and Lemma C.2.8, we obtain the following.

Theorem C.2.11. The map S1(R+, X)→ S1(R, X) which maps f to f e, where f e is
given by (C.20), is an isometric isomorphism.

In addition to the previous, an inspection of the proof of Lemma C.2.9 leads to the
next result, which provides an interesting relationship between taking extensions of
(Stepanov) almost periodic functions and taking Bochner transforms: the two opera-
tions commute.

Corollary C.2.12. We have that

(f̃)e = (̃f e) ∀ f ∈ S1(R+, X).

For the rest of this section, we establish a module containment result for Stepanov
almost periodic functions. That is, an analogue of Theorem C.1.27 applied to Stepanov
almost periodic functions. To do this, we shall again use the Bochner transform to infer
the known results of the previous section. Before doing so, we first present the following
preliminary result.

Lemma C.2.13. Let f ∈ L1
loc(R,X), λ ∈ R, a ∈ R and b > a. Then(∫ b

a
f̃(t)e−iλtdt

)
(s) =

∫ b

a
f(t+ s)e−iλtdt a.e. s ∈ [0, 1]. (C.22)

The identity (C.22) is implicitly used in the arguments given in [1, pp.80-81], but is
not proven.

Proof of Lemma C.2.13. For s ∈ [0, 1) and h > 0 such that s + h ≤ 1, we define an
operator Js,h : L1([0, 1], X)→ X by

Js,h(g) :=

∫ s+h

s
g(t)dt ∀ g ∈ L1([0, 1], X).
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Since f̃ is continuous, we see that (f̃)λ, which is defined in Definition C.1.22, is also
continuous and hence locally integrable. Therefore, by combining this with the fact
that Js,h is a bounded linear operator for all s ∈ [0, 1) and h > 0 such that s+ h ≤ 1,
[129, Corollary 2, p.134] yields that

Js,h

(∫ b

a
f̃(t)e−iλtdt

)
=

∫ b

a
Js,h(f̃(t)e−iλt)dt.

By recalling the definition of Js,h, we then see that, for all s ∈ [0, 1) and h > 0 such
that s+ h ≤ 1,∫ s+h

s

(∫ b

a
f̃(t)e−iλtdt

)
(σ)dσ =

∫ b

a

(∫ s+h

s
(f̃(t))(σ)e−iλtdσ

)
dt,

which, when recalling the definition of the Bochner transform, becomes∫ s+h

s

(∫ b

a
f̃(t)e−iλtdt

)
(σ)dσ =

∫ b

a

(∫ s+h

s
f(t+ σ)e−iλtdσ

)
dt.

By Fubini’s theorem, we may interchange the integrals on the right-hand side of the
above equation to obtain that, for all s ∈ [0, 1) and h > 0 such that s+ h ≤ 1,∫ s+h

s

(∫ b

a
f̃(t)e−iλtdt

)
(σ)dσ =

∫ s+h

s

(∫ b

a
f(t+ σ)e−iλtdt

)
dσ.

If we now divide by h on both sides of the above equality and take the limit as h→ 0,
an application of [129, Theorem 2, p.134] yields the result.

We now show that the mean value of a Stepanov almost periodic function exists and
is closely related to the mean value of its Bochner transform.

Lemma C.2.14. Let f ∈ S1(R, X) and λ ∈ R. Then M(fλ) exists and is given by

M(fλ) = (M(f̃λ))(η)e−iλη a.e. η ∈ [0, 1]. (C.23)

In particular, (M(f̃λ))(η)e−iλη does not depend on η ∈ [0, 1]. Furthermore,

M(fλ) = lim
T→∞

1

2T

∫ T+a

−T+a
f(t)e−iλtdt = lim

T→∞

1

T

∫ T+a

a
f(t)e−iλtdt, (C.24)

uniformly with respect to a ∈ R.

A proof of the above result may be obtained from arguments similar to those presented
in [1, pp.80-81]. For completeness, we shall present such a proof.

Proof of Lemma C.2.14. We note that since f̃ ∈ AP (R, L1([0, 1], X)), Corollary C.1.23
gives that M(f̃λ) exists and

lim
T→∞

∫ 1

0

∥∥∥∥(M(f̃λ))(η)−
(

1

T

∫ a+T

a
f̃λ(t)dt

)
(η)

∥∥∥∥ dη = 0,

uniformly with respect to a ∈ R. An application of Lemma C.2.13 yields that

lim
T→∞

∫ 1

0

∥∥∥∥(M(f̃λ))(η)− 1

T

∫ a+T

a
f(t+ η)e−iλtdt

∥∥∥∥ dη = 0,
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uniformly with respect to a ∈ R. By using a change of variables, we see that this
becomes

lim
T→∞

∫ 1

0

∥∥∥∥(M(f̃λ))(η)e−iλη − 1

T

∫ a+T+η

a+η
f(t)e−iλtdt

∥∥∥∥ dη = 0, (C.25)

uniformly with respect to a ∈ R. Now, f ∈ UL1
loc(R, X) and so fλ ∈ UL1

loc(R, X).
Hence, there exists c > 0 such that∥∥∥∥∫ a+η

a
f(t)e−iλtdt

∥∥∥∥ ≤ c ∀ a ∈ R, ∀ η ∈ [0, 1].

Therefore, by combining this with (C.25), we see that

lim
T→∞

∫ 1

0

∥∥∥∥(M(f̃λ))(η)e−iλη − 1

T

∫ a+T

a
f(t)e−iλtdt

∥∥∥∥ dη = 0, (C.26)

uniformly with respect to a ∈ R. We now recall (from, for example, [97, Theorem
3.12]) that every Cauchy sequence in L1([0, 1], X) has a subsequence which converges
pointwise almost everywhere to its limit. Whence, from (C.26) with a = 0, we obtain
the existence of a sequence (Tk)k∈N ⊆ R+ such that limk→∞ Tk =∞ and

lim
k→∞

1

Tk

∫ Tk

0
f(t)e−iλtdt = (M(f̃λ))(η)e−iλη a.e. η ∈ [0, 1].

We have thus shown that M(f̃λ)(η)e−iλη does not depend on η ∈ [0, 1]. Therefore,
(C.26) gives, uniformly with respect to a ∈ R,

lim
T→∞

1

T

∫ T+a

a
f(t)e−iλtdt = (M(f̃λ))(η)e−iλη a.e. η ∈ [0, 1]. (C.27)

An application of Lemma C.1.21 then guarantees that M(fλ) exists and that (C.24)
holds. Finally, by combining (C.24) with (C.27), we see that (C.23) holds, thus com-
pleting the proof.

As an immediate consequence of Lemma C.2.14, and by recalling Lemma C.1.25, we
obtain the following.

Corollary C.2.15. Let f ∈ S1(R, X). Then Λ(f) = Λ(f̃) and mod(f) = mod(f̃).

We now present the aforementioned module containment result for Stepanov almost
periodic functions.

Theorem C.2.16. Let f ∈ S1(R, X) and g ∈ S1(R, Y ). If for all ε > 0 there exists
δ > 0 such that P1(f, δ) ⊆ P1(g, ε), then

mod(f) ⊇ mod(g).

Proof. We begin by noting that, from Lemma C.2.5

P1(f, ξ) = P (f̃ , ξ) and P1(g, ξ) = P (g̃, ξ) ∀ ξ > 0. (C.28)

Hence, we obtain that for all ε > 0 there exists δ > 0 such that P (f̃ , δ) ⊆ P (g̃, ε). An
application of Theorem C.1.27 then gives that mod(f̃) ⊇ mod(g̃). Therefore, the proof
is complete upon invoking Corollary C.2.15.
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Remark C.2.17. As in Remark C.1.28, let us define the mean value of a function
f ∈ L1

loc(R+, X) by

M(f) := lim
T→∞

1

T

∫ T

0
f(t)dt,

whenever the limit exists. By recalling Theorem C.2.11, an application of Lemma
C.2.14 (with a = 0) yields, for all f ∈ S1(R+, X) and λ ∈ R, that M((f e)λ) exists and

M((f e)λ) = lim
T→∞

1

T

∫ T

0
f e(t)e−iλtdt = lim

T→∞

1

T

∫ T

0
f(t)e−iλtdt = M(fλ).

Therefore, M(fλ) exists for all f ∈ S1(R+, X) and all λ ∈ R, and equals M((f e)λ).
From this, we deduce that

mod(f) = mod(f e) ∀ f ∈ S1(R+, X). (C.29)

By also recalling Lemma C.2.9, we see from (C.29) that the conclusions of Theorem
C.2.16 hold if f ∈ S1(R+, X) and g ∈ S1(R+, Y ). ♦
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