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Abstract

For a homogeneous elastic fluid, the specific internal energy function depends on the
deformation gradient through the specific volume, which is essentially the determinant of
the deformation gradient. Standard, elementary minimization problems are commonly
stated in terms of the specific volume field and either the body of fluid is subject to a
constant environmental pressure or the total volume is fixed. When the deformation
field, itself, is of primary concern, the specific internal energy function is left expressed
as a function of the deformation gradient and the standard basic minimization problem
in elasticity is to minimize the total internal energy of the body subject to a given
homogeneous deformation on its boundary. We discuss the relationship between these
two basic problems. Finally, we provide a solution to the latter minimization problem
when the specified boundary placement data is arbitrary but sufficiently regular. Our
analysis excludes the possibility of cavitation.
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1 Introduction

The static deformation of a body is represented by a mapping of points x ∈ B0 ⊂ E3 to
points y = y(x) ∈ B ⊂ E3. We use B0 to denote a natural reference configuration of the
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body (undistorted and stress-free) and B = y(B0) to denote its (relatively) distorted con-
figuration. The mapping is supposed to be oriented and it is assumed that the deformation
gradient F = F(x) := ∇y(x) satisfies detF(x) > 0: We denote this as F ∈ Lin+, where Lin
represents the set of all linear transformation of E3 → E3. For a homogeneous, elastic body,
the constant referential mass density of B0, i.e., ρ0 > 0, and the mass density of B, i.e.,
ρ = ρ(x), satisfy the balance of mass ρ = ρ0/ detF. In addition, the specific internal energy
field ε = ε(x), measured per unit mass of the body, is given by a constitutive assumption
of the form ε = ε̂(F), where ε̂(·) is defined for all F ∈ Lin+. If the body is an elastic fluid
then we may write

ε = ε̂(F) = ε(ν), (1.1)

where ν = 1/ρ = ν0 detF is the specific volume of B, with ν0 = 1/ρ0 being the specific
volume of the reference configuration B0. Thus, by the chain rule we have

DFε̂(F) = νDνε(ν)F−T, (1.2)

which implies that the Cauchy stress is given by

T := ρDFε̂(F)FT = Dνε(ν)1. (1.3)

In this work, we are interested mainly in the relationship between the following two
minimization problems for an elastic fluid body. In the first problem, the fundamental field
to determine is the deformation of the body and the boundary placement is prescribed∗;
in the second problem, the fundamental field to determine is the specific volume and the
total volume of the distorted body is prescribed. It seems natural to believe that the two
problems are equivalent if, in both cases, the total volumes of the distorted body are equal,
and we investigate this notion of “equivalence”.

Problem P1: Given a homogeneous, elastic body and a natural reference configuration B0

with constant mass density ρ0 > 0. Minimize the total stored energy of the body
subject to a specified homogeneous deformation at its boundary, i.e.,

minimize
y(·)∈A1

∫

B0

ρ0ε̂(∇y(x)) dv, with y(x) = F∗x ∀ x ∈ ∂B0, (1.4a)

where F∗ ∈ Lin+ is given and where
∗Here, the boundary placement is restricted to be given by a linear transformation of the referential

boundary points. However, in Section 4, we significantly generalize the form that the prescribed boundary
placement may have.
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A1 :=
{
y(·) ∈ W 1,p(B0)| y(x) is 1-to-1 a.e., det∇y(x) > 0 a.e., x ∈ B0

}
, (1.4b)

with p ≥ 3.†

Problem P2: Given a homogeneous, elastic fluid body and a natural reference configuration
B0 with constant mass density ρ0 > 0. Minimize the total stored energy of the body
subject to a specified total volume, i.e.,

minimize
ν(·)∈A2

∫

B0

ρ0ε(ν(x)) dv, with
∫

B0

ρ0ν(x) dv = volB, (1.5a)

where volB denotes the prescribed volume of the distorted configuration B and

A2 :=
{
ν(·) ∈ L1(B0)| ν(x) > 0 a.e., x ∈ B0

}
. (1.5b)

In order to connect these two problems together, first let B = {F∗x | x ∈ B0} and note
that, for a sufficiently smooth admissible mapping y = y(X) involved in Problem P1,

volB =
∫

B0

det∇y(x) dv =
1
3

∫

B0

div
(
(adj∇y)y

)
dv

=
1
3

∫

∂B0

y · ((adj∇y)Tn
)

da

=
1
3

∫

∂B0

F∗x · cofF∗n da

=
1
3

detF∗
∫

∂B0

x · n da

= detF∗volB0 =
∫

B0

detF∗ dv, (1.6)

where n denotes the outer unit normals on ∂B0 and adjF = (cof F)T is the adjugate of
F (i.e., the unique element in Lin+ satisfying F(adjF) = (detF)1)‡. Accordingly, for
the corresponding Problem P2, an admissible specific volume field ν(x) must satisfy the
constraint

†The restriction p ≥ 3 is a technical requirement, which in particular guarantees that det∇u(·) ∈
L1(B0), ∀ u(·) ∈ A1 and eliminates the possibility of cavitation for Problem P1, a phenomenon that is not
of major relevance in this current work.

‡The result for a general Sobolev map in A1 follows by approximation.
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∫

B0

ρ0ν(x) dv = ν∗ρ0volB0 or
∫

B0

ρ0

(
ν(x)− ν∗

)
dv = 0, (1.7)

where ν∗ := ν0 detF∗ denotes a prescribed specific volume corresponding to the given F∗

for Problem P1. Note that the expression ρ0volB0 in (1.7) corresponds to the total fixed
mass of the body.

In Section 2, we record a few elementary convexity and rank 1 convexity issues that are
characteristic for an elastic fluid and that are relevant to this work.

In Section 3, we develop an explicit minimizer for Problem P1 for a body of spherical
shape and then we use a scaling and covering strategy to show how this minimizer generates
a minimizer for an arbitrarily shaped body. We characterize the complete class of boundary
placements for which a minimizer of Problem P1 is composed of an arbitrarily fine ”mixture”
of two kinds of deformation gradients. This reflects the type of two-phase minimizing states
that are well-known solutions to Problem P2 for a certain range of specified distorted
volumes.§

In Section 4, we introduce a Generalized (minimization) Problem GP1 which replaces
the specified boundary placement of Problem P1 by an ’arbitrarily’ specified form. We then
show how a theorem of Dacorogna and Moser [7], together with a strategy of scaling and
covering, is used to generate a solution to this more general problem for the arbitrarily
shaped domain.¶ We close by showing that the minimizers of this work satisfy weak forms
of the equation of equilibrium and the energy-momentum equation.

2 Convexity issues

The function ε̂(·) is said to be rank 1 convex at F̃ ∈ Lin+ if

ε̂(F) ≥ ε̂(F̃) + DFε̂(F̃) · (F− F̃) (2.1)

for all F ∈ Lin+ such that F− F̃ = a⊗ b, where b is any unit vector and a is any vector,
both in E3. The function ε(·) is said to be convex at ν̃ ∈ R+ if

§Mizel [9] also considers a version of Problem P1 for an isotropic elastic solid whose specific internal
energy ε̂(·) is rank 1 convex, but A(δ) := ε̂(δ31), for δ ∈ (0,∞), is not convex. He relates his minimizers to
the phenomenon of fracture.

¶For interesting general analytical results related to the existence of minimizers for the Generalized
Problem GP1 and the corresponding “relaxed” problem, we refer to Dacorogna [6], Cupini and Mascolo
[5], Cellini and Zagatti [4] and the references therein. While our motivation in Section 4 is somewhat more
physical, our argument in support of our final Theorem 4.1 follows a path similar to Dacorogna [6], Corollary
14.9, but requires less smoothness for the boundary ∂B0 of B0 than is stated in this corollary.
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ε(·)

νν1 ν2

slope = Dνε(ν1) = Dνε(ν1)

0

Figure 1: Graph of ε(·).

ε(ν) ≥ ε(ν̃) + Dνε(ν̃)(ν − ν̃) (2.2)

for all ν ∈ R+. However, with the identification ν = ν0 detF and ν̃ = ν0 det F̃, it is easy to
see that for an elastic fluid, for which (1.1) holds, we have

Theorem 2.1 The function ε̂(·) is rank 1 convex at F̃ ∈ Lin+ if and only if the function
ε(·) is convex at ν̃ ∈ R+.

Proof: First, write F = F̃ + a⊗ b = F̃(1 + F̃−1a⊗ b) and take the determinant to reach
ν = ν̃(1 + F̃−1a ·b). Then, note that ν̃F̃−T · (F− F̃) = ν̃F̃−T · (a⊗b) = ν̃F̃−1a ·b = ν− ν̃,
and observe, using (1.2), that

ε̂(F)−
(
ε̂(F̃) + DFε̂(F̃) · (F− F̃)

)
= ε(ν)−

(
ε(ν̃) + Dνε(ν̃)(ν − ν̃)

)
, (2.3)

to complete the proof. ¥

Throughout this paper we assume that ε̂(·) and ε(·) are smooth functions and that ε(·)
is convex at all points ν̃ ∈ R+ outside the open interval (ν1, ν2), as shown in Figure 1. Thus,
it follows that
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Dνε(ν1) = Dνε(ν2) (2.4a)

and that
ε(ν1)−Dνε(ν1)ν1 = ε(ν2)−Dνε(ν2)ν2. (2.4b)

Let us define the surfaces S1 and S2 in Lin+ through

S1 := {F ∈ Lin+| ν0 detF = ν1}, S2 := {F ∈ Lin+| ν0 detF = ν2}. (2.5)

Then, because of Theorem 2.1 it follows that ε̂(·) is rank 1 convex for all F̃ ∈ Lin+ such
that ν0 det F̃ ≤ ν1 and ν0 det F̃ ≥ ν2. Moreover, we have

Theorem 2.2 Suppose F2 ∈ S2 is given. Then, the points F1 ∈ S1 that are rank 1 con-
nected to F2 are completely characterized by

F1 = F2

(
1 +

ν1 − ν2

ν2
b⊗ b + αb⊥ ⊗ b

)
, (2.6)

where α ∈ R is arbitrary, b is an arbitrary unit vector in E3 and b⊥ is orthogonal to b.

Proof: Observe that since we wish F1 − F2 = a ⊗ b, then detF1 = detF2(1 + F−1
2 a · b).

Moreover, note that because F1 ∈ S1 and F2 ∈ S2 we may then write

F−1
2 a · b =

ν1 − ν2

ν2
.

Thus, for every unit vector b we have

F−1
2 a =

ν1 − ν2

ν2
b + αb⊥,

which readily yields the form of a and completes the proof. ¥

Now, let us suppose that F∗ ∈ Lin+ is such that ν∗ := ν0 detF∗ ∈ (ν1, ν2). Thus, F∗ is
a point in Lin+ where ε̂(·) is not rank 1 convex. Clearly, we have

ν∗ = µν1 + (1− µ)ν2, or, µ =
ν∗ − ν2

ν1 − ν2
. (2.7)
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It follows that there exists a point F2 ∈ S2 and a corresponding point F1 ∈ S1 given by
(2.6) such that

F∗ = µF1 + (1− µ)F2. (2.8)

In fact, it is easy to show that

F2 = F∗
(
1− µ

ν2

ν∗
(ν1 − ν2

ν2
b + αb⊥

)⊗ b
)

(2.9a)

and
F1 = F∗

(
1 + (1− µ)

ν2

ν∗
(ν1 − ν2

ν2
b + αb⊥

)⊗ b
)
. (2.9b)

From a geometric point of view, the set of points in Lin+ between the two surfaces S1 and
S2 are points where the function ε̂(·) fails to be rank 1 convex.

3 The minimization problems

The minimization Problem P2 is elementary and has been thoroughly discussed in the litera-
ture. Thus, we turn our main attention to the minimization Problem P1 and its relationship
to Problem P2. We split our discussion into the following two cases:

Case 1: F∗ is a rank 1 convex point of ε̂(·)

In this case, ν∗ = ν0 detF∗ is a convex point of ε(·), and, according to (1.5) and (1.7),

ν∗ =
1

volB0

∫

B0

ν(x) dv. (3.1)

Thus, by (2.2) and Theorem 2.1, a minimizer of Problem P2 is ν̃(x) ≡ ν∗.

Now, suppose y(x) is any deformation field with ∇y(x) ∈ Lin+ which satisfies y(x) =
F∗x on ∂B0, and suppose ỹ(x) := F∗x for all x ∈ B0. Then, according to (1.1) and (2.2),
we may write

∫

B0

ρ0

(
ε̂
(∇y(x)

)− ε̂
(
F∗

))
dv =

∫

B0

ρ0

(
ε(ν(x))− ε(ν∗)

)
dv ≥

∫

B0

ρ0Dνε(ν∗)
(
ν(x)− ν∗

)
dv.
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However Dνε(ν∗) is constant, and because of (1.7) the integral on the right hand side above
vanishes. Thus, we see that ỹ(x) := F∗x is a minimizer of Problem P1 and we observe that
ν0 det∇ỹ(x) = ν∗ = ν̃(x).

Case 2: F∗ is not a rank 1 convex point of ε̂(·)

In this case, ν∗ = ν0 detF∗ ∈ (ν1, ν2) and F∗ lies in the region of Lin+ between the
surfaces S1 and S2. Also, (2.7), (2.8) and (2.9) apply. Moreover, it is well-known that in
this case a minimizer of Problem P2 is given by

ν̃(x) = χP0(x)ν1 +
(
1− χP0(x)

)
ν2, (3.2)

where χP0(·) is the characteristic function for the set P0 ⊂ B0 whose volume is determined
by (2.7) and

µ =
ν∗ − ν2

ν1 − ν2
=

volP0

volB0
; (3.3)

this readily follows from the volume constraint requirement of Problem P2, expressed equiv-
alently in (1.7), i.e.,

∫

B0

ρ0ν̃(x) dv = ρ0(volP0)ν1 + ρ0(1− volP0)ν2 = ν∗ρ0volB0.

Thus, for Problem P1, suppose ỹ(x) ∈ A1 is a function that satisfies the bound-
ary condition of Problem P1, i.e., ỹ(x) = F∗x for all x ∈ ∂B0, as well as the condi-
tion ρ0 det∇ỹ(x) = ν̃(x), where ν̃(x) is given in (3.2), and suppose y(x) ∈ A1 is a
function that also satisfies the boundary condition of Problem P1; we define, as usual,
ν(x) := ρ0 det∇y(x). Then, it readily follows that

∫

B0

ρ0

(
ε̂
(∇y(x)

)− ε̂
(∇ỹ(x)

))
dv =

∫

B0

ρ0

(
ε
(
ν(x))− ε(ν̃(x)

))
dv

≥
∫

B0

ρ0Dνε(ν̃(x))
(
ν(x)− ν̃(x)

)
dv. (3.4)

But, because (2.4a) requires Dνε(ν̃(x)) = Dνε(ν1) = Dνε(ν2) for all x ∈ B0, and both ỹ(x)
and y(x) satisfy the conditions for the validity of (1.6), we see that the integral on the right



Energy Minimization: Elastic Fluid 9

hand side above vanishes, which shows that ỹ(x) is a minimizer of Problem P1. Our aim
is to now exhibit such a minimizing field ỹ(x). We first suppose that B0 is a ball and then
consider the case when B0 is a body of arbitrary shape.

3.1 The case when B0 is a ball

It is convenient to begin with the special case when B0 is a ball of radius R0, centered at the
point 0 ∈ E3: We denote this spherical domain as BR0 . Suppose BR0 is decomposed into
a set of concentric spherical shells PR0 (with center 0)and a remainder BR0 \ PR0 , where
volPR0 is determined by (2.7) and

µ =
ν∗ − ν2

ν1 − ν2
=

volPR0

volBR0

.

Theorem 3.1 Define

ỹ(x) = F∗ũ(x), ũ(x) := r(R)
x
R

, R = |x|, R ∈ [0, R0], (3.5a)

where r(R) is given by

4
3
πr3(R) :=

∫

BR

(
χPR0

(x)
ν1

ν∗
+

(
1− χPR0

(x)
)ν2

ν∗
)

dv, R ∈ [0, R0], (3.5b)

with BR denoting the ball of radius R ∈ [0, R0] and χPR0
(·) denoting the characteristic

function for the set PR0 ⊂ BR0. Then, ỹ(·) ∈ W 1,∞(BR0) and is a minimizer for Problem
P1 with B = BR0.

Proof: From the definition of r(R) it follows that

4π

3
R3 ν2

ν∗
≥ 4π

3
r3(R) ≥ 4π

3
R3 ν1

ν∗
for R ∈ [0, R0]

and, hence, (ν2

ν∗
) 1

3 ≥ r(R)
R

≥
(ν1

ν∗
) 1

3
. (3.6)

Moreover, differentiating (3.5b) we obtain

4πr(R)2r′(R) =
∫

∂BR

(
χPR0

(x)
ν1

ν∗
+

(
1− χPR0

(x)
)ν2

ν∗
)

da for a.e. R ∈ (0, R0) (3.7)
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and, hence,
4πR2 ν2

ν∗
≥ 4πr2(R)r′(R) ≥ 4πR2 ν1

ν∗
for a.e. R ∈ (0, R0) (3.8)

which, together with (3.6), yields

ν2

ν
2
3
1 (ν∗)

1
3

≥ r′(R) ≥ ν1

ν
2
3
2 (ν∗)

1
3

for a.e. R ∈ (0, R0). (3.9)

It then follows (e.g., using Lemma 4.1 in [2], (3.5a), (3.6) and (3.9)) that ỹ(·) ∈ W 1,∞(B0)
and that the distributional derivatives of ũ(·) are given by

∇ũ(x) = r′(R)
(

x⊗ x
|x|2

)
+

r(R)
R

(
1− x⊗ x

|x|2
)

. (3.10)

Moreover,

4
3
πr3(R0) = volPR0

ν1

ν∗
+

(
volBR0 − volPR0

)ν2

ν∗

=
volBR0

ν∗
(
µν1 + (1− µ)ν2

)
= volBR0 =

4
3
πR3

0,

which shows that r(R0) = R0 and, accordingly, guarantees that ỹ(x) = F∗x for all x ∈
∂BR0 . In addition, note from (3.5a) and (3.10) that det∇ũ(x) = r′(R)

( r(R)
R

)2. Thus, by
(3.7) we have

det∇ũ(x) =
1

4πR2

∫

∂BR

(
χPR0

(x)
ν1

ν∗
+

(
1− χPR0

(x)
)ν2

ν∗
)

da, for a.e. R ∈ (0, R0),

and we see, from ỹ(x) = F∗ũ(x) and ν∗ = ν0 detF∗, that

ν0 det∇ỹ(x) = ν̃(x) = χPR0
(x)ν1 +

(
1− χPR0

(x)
)
ν2, (3.11)

for all x ∈ BR0 . Finally, we note that (3.9) also guarantees that the map ỹ(·) given by
(3.5) is one-to-one on BR0 . It follows that ỹ(x) of (3.5) belongs to the admissible set A1

and satisfies the boundary condition recorded in (1.4) for Problem P1 as well as (3.11), and
these are sufficient for (3.4) and the argument of minimization following (3.4) to hold. The
conclusion is that (3.5) defines a minimizer for Problem P1 when the region B0 is a ball of
radius R0 centered at 0 ∈ E3. ¤

Remark 1: In a rough, but descriptive, sense the deformation gradient field ∇ỹ(x) associ-
ated with the minimizer (3.5) may be thought of as being composed of suitable combinations
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of linear transformation fields in Lin+ that lie in the union of the surfaces S1 and S2. It is
noteworthy that more than two linear transformations, F1 ∈ S1 and F2 ∈ S2, are involved
in the composition of this minimizing field. ¤

3.2 The case when B0 is a body of arbitrary shape

We now consider the case of a bounded, arbitrarily shaped reference configuration B0 and
identify a minimizer y̌(x) for Problem P1. Our strategy is to use the minimizing solution
(3.5) of Problem P1 for the case of a spherical reference domain of radius R0 together with
a scaling and covering technique suggested by Sivaloganathan and Spector [10]‖. Because
our approach will employ the inequality (3.4) in order to verify that a particular field is a
minimizer, we need to identify a field y̌(x) ∈ A1 that satisfies the two conditions which are
essential for (3.4) to hold. These are:

(i) The boundary condition y̌(x) = F∗x for all x ∈ ∂B0.

(ii) The ‘convex combination’ condition

ν̌(x) := ν0 det∇y̌(x) = χP0(x)ν1 +
(
1− χP0(x)

)
ν2 (3.12a)

for all x ∈ B0, where χP0(·) is the characteristic function for the set P0 ⊂ B0 whose
volume is determined by (2.7) and

µ =
ν∗ − ν2

ν1 − ν2
=

volP0

volB0
. (3.12b)

According to (3.2) and (3.3), this condition is equivalent to the condition that ν̌(x) =
ν̃(x) for all x ∈ B0, where ν̃(x) is a minimizer of Problem P2.

First, let us decompose B0 (up to volume measure zero) into the disjoint union of closed
balls

B0 =
∞⋃

i=1

Bεi(xi),

each centered at xi ∈ E3 and of radius εi > 0∗∗. Now, consider the field

‖See, also, Ball and Murat [3].
∗∗See Corollary 2 to the Vitali Covering Theorem in [8].
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B0

phase 2: ν0 det∇y̌(x) = ν2

phase 1: ν0 det∇y̌(x) = ν1

Figure 2: Scaling and covering of B0.

y̌(x) =





εi
R0

ỹ(z)|
z=

x−xi
εi/R0

+ F∗xi ∀ x∈Bεi(xi),

F∗x otherwise,

(3.13)

where ỹ(·) is defined in (3.5). This decomposition and covering is sparsely illustrated in
Figure 2.†† Clearly, y̌(·) ∈ W 1,∞(B0) because ỹ(·) ∈ W 1,∞(B0), and it follows from (3.13)
that y̌(x) = F∗x for all x ∈ ∂B0, so that the condition (i) above holds. (Notice that by
construction y̌(x) = F∗x for all x ∈ ∂Bεi(xi).) We also note that the construction (3.13)
yields a mapping that is one-to-one almost everywhere.

A second elementary observation that follows from (3.13) is that

∇y̌(x) =
(∇ỹ(z)

)|
z=

x−xi
εi/R0

∀ x∈Bεi(xi).

Thus, using the first of (3.11), we see that

ν̌(x) := ν0 det∇y̌(x) = ν̃(z)|
z=

x−xi
εi/R0

∀ x∈Bεi(xi),

††Here, balls containing only two separated, but connected, phase regions are shown. However, balls
having a multiple concentric shell structure, each containing deformation gradients from the surfaces S1 or
S2 which define the two phases, can be envisioned.
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which, with the second of (3.11), allows the conclusion

ν̌(x) =
(
χPR0

(z)ν1 +
(
1− χPR0

(z)
)
ν2

)|
z=

x−xi
εi/R0

∀ x∈Bεi(xi).

Here, to be clear in our interpretation, we observe that

χPεi (xi)(x) := χPR0

(x− xi

εi/R0

)
∀ x∈Bεi(xi)

denotes the characteristic function for the set Pεi(xi)⊂Bεi(xi) whose volume is determined
by (2.7) and

µ =
ν∗ − ν2

ν1 − ν2
=

volPεi(xi)
volBεi(xi)

, (3.15a)

and, accordingly, we may write

ν̌(x) = χPεi (xi)(x)ν1 +
(
1− χPεi (xi)(x)

)
ν2 ∀ x∈Bεi(xi). (3.15b)

However, defining

volP0 :=
∞∑

i=1

volPεi(xi),

observing

volB0 =
∞∑

i=1

volBεi(xi),

and noting, from (3.15a), that the ratio volPεi(xi)/volBεi(xi) is fixed, independent of the
index i, we see from (3.15) that (3.12) is valid for the field introduced in (3.13). Thus, the
condition (ii) above holds and, because condition (i) also holds, we thus obtain the following
result:

Theorem 3.2 Let B0 be an arbitrary domain and let y̌(·) be defined by (3.13). Then y̌(·)
is a minimizer for Problem P1 (given by (1.4)) on B0.
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The total internal energy in B0 corresponding to the minimizing field (3.13) for Problem
P1 and the total internal energy in the ball BR0 corresponding to the minimizing field (3.5)
for Problem P1 are equal to one another if the radius R0 of the ball is chosen such that the
volumes are equal, i.e., volBR0 = 4

3πR3
0 = volB0. The general relationship between the two

energies is given by

∫

B0

ρ0ε̂
(∇y̌(x)

)
dv =

∞∑

i=1

∫

Bεi (xi)
ρε̂

(∇y̌(x)
)
dv

=
∞∑

i=1

( εi

R0

)3
∫

BR0

ρ0ε̂
(∇ỹ(z)

)
dv

=
volB0

volBR0

∫

BR0

ρ0ε̂
(∇ỹ(z)

)
dv. (3.17)

Remark 2: The field y̌(·) of (3.13) is based on the minimizer (3.5) for BR0 , the ball of radius
R0 centered at 0 ∈ E3; by covering the arbitrary region B0 with a countable number of balls,
(3.5) was used above to construct a minimizer for Problem P1 for the arbitrary region B0.
Of course, BR0 , itself, qualifies to be chosen as the ‘arbitrary region’ B0 and in that case by a
covering and scaling strategy the field y̌(·) of (3.13) readily can be used to identify another
minimizer, in addition to (3.5), for Problem P1 for the ball BR0 . This minimizer will also
consist of a countable number of smaller balls within BR0 , and the resulting “mixture” of
deformation gradients from the union of the surfaces S1 and S2 will be finer than what it
was for the minimizer (3.5). This iterated process of covering and scaling sub-balls with
smaller balls which support a field based upon the last iteration can be continued in order
to produce a minimizer ỹ(·) ∈ A1 for Problem P1 for the region BR0 which has as fine a
“mixture” of deformation gradients F1 ∈ S1 and F2 ∈ S2 as one wishes. Of course, the
minimal total internal energy for the Problem P1 is the same for each iteration in this
sequence.

After a sufficient number of iterations, a suitably refined minimizer ỹ(·) ∈ A1 for Prob-
lem P1 for the ball BR0 is obtained. This can be used in conjunction with (3.13) and the
process of covering and scaling to define a new minimizer for Problem P1 for the arbitrary
domain B0 just as was described above. This minimizer will consist of a “mixture” of
deformation gradients F1 ∈ S1 and F2 ∈ S2, and the iteration procedure will produce a
“mixture” as a minimizing field that is as fine as one pleases. ¤

4 A generalized minimization problem

Intuitively, it would seem that for an elastic fluid the solutions to the minimization Problem
P2 should relate well with the solutions to a generalized version of the minimization Problem
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P1, wherein the form of the prescribed boundary placement is arbitrarily specified, to the
extent that the deformed volume is the same as that given in Problem P2. This Generalized
Problem GP1 may be stated as:

minimize
y(·)∈A1

∫

B0

ρ0ε̂(∇y(x)) dv, with y(x) = y∗(x) ∀x ∈ ∂B0, (4.1a)

where the boundary placement y∗(x) is given so that the volume of B = y(B0) is the same
as that prescribed in (1.5) and (1.7), i.e.,

volB = ν∗ρ0volB0. (4.1b)

If ~y(x) is a minimizer of the Generalized Problem GP1 (4.1), then the range of ∇~y(·)
can only correspond to rank 1 convex points of ε̂(·). Consequently, because of Theorem 2.1,
the range of ν0 det∇~y(·) can only correspond to convex points of ε(·). Thus, if ν̃(x) is a
minimizer of Problem P2 we see, using (1.1), that

∫

B0

ρε̂
(∇~y(x)

)
dv =

∫

B0

ρ0ε
(
ν0 det∇~y(x)

)
dv ≥

∫

B0

ρ0ε
(
ν̃(x)

)
dv.

However, from our earlier constructions in Section 3 we know that

∫

B0

ρε̂
(∇ỹ(x)

)
dv =

∫

B0

ρ0ε
(
ν̃(x)

)
dv,

where ỹ(x) is a minimizer of the corresponding Problem P1, which satisfies the special
boundary condition ỹ(x) = F∗x for all x ∈ ∂B0. Thus,

∫

B0

ρε̂
(∇~y(x)

)
dv ≥

∫

B0

ρε̂
(∇ỹ(x)

)
dv,

and we see that for equal distorted volumes the minimum total internal energy of the
Generalized Problem GP1 cannot be less than the minimum total internal energy of the
Problem P1.

Although the boundary conditions for the Generalized Problem GP1 and the Problem
P1 are different in detail, it would seem to be the nature of an elastic fluid and its affinity
towards the rearrangement of its particles to accommodate a minimal equilibrium state
that the inequalities above should be equalities; after all, the total volumes of the distorted
configurations are equal. This can be shown with the aid of a theorem of Dacorogna and
Moser [7], which guarantees the following:
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Proposition 1 Let Ω ⊂ E3 be a bounded, open, connected set with C1 boundary ∂Ω and let
φ0(·) be an orientation preserving C2-diffeomorphism of Ω‡‡. Suppose further that vol (Ω) =
vol (φ0(Ω)). Then there exists a C1-diffeomorphism φ(·) of Ω such that

det∇φ(z) = 1 ∀ z ∈ Ω,

(4.2)
φ(z) = φ0(z) ∀ z ∈ ∂Ω.

Proof: Apply Theorem 5 (and Remark (ii)) in [7] on Ω0 = φ0(Ω) with k = 1, g ≡ 1, f =
det

(∇φ−1
0

)
to obtain a C1-diffeomorphism φ̃(·) of Ω0 satisfying det(∇φ̃(y)) = f(y) for

y ∈ Ω0 with φ̃(y) = y for all y ∈ ∂Ω0. Next, set φ(z) = φ̃ ◦ φ0(z) for all z ∈ Ω to obtain
the result. ¤

In applying Proposition 1, we make the identification Ω :=
{
z ∈ E3| z = F∗x,x ∈ B0

}
,

where F∗ ∈ Lin+, and assume that B0 has a class C1 boundary ∂B0. In addition, we take

φ0(z) := y∗E(x)|x=F∗−1z, z ∈ Ω̄, (4.3)

where y∗E(·) is a C2-diffeomorphism of B0 which satisfies y∗E(x) = y∗(x) for all x ∈ ∂B0.
(Of course, the boundary placement y∗(x) of the Generalized Problem GP1, introduced in
(4.1), must be assumed to be sufficiently regular.)

Case 1: ν∗ := ν0 detF∗ is a convex point of ε(·)

Suppose, for this case, that ~y(x) satisfies the following two conditions:

(i) ~y(x) = y∗(x) for all x ∈ ∂B0, where y∗(x) satisfies (4.1b);

(ii) ν0 det∇~y(x) = ν∗ for all x ∈ B0, i.e., the range of the deformation gradient field,
∇~y(x), is required to lie in the surface S∗ := {F ∈ Lin+| ν0 detF = ν∗}.

Then, it follows by an argument similar to that used following (3.1) that ~y(x) is a mini-
mizer of the Generalized Problem GP1. Moreover, the inequalities above become equalities
because in this case a minimizer of Problem P2 is known to be ν̃(x) = ν∗.

To see that such a field ~y(x) exists, we first recall, from the argument following (3.1),
that in this case ỹ(x) = F∗x is a minimizer of Problem P1, and observe that ỹ(·) maps
B0 → Ω. Now consider the composition
‡‡Given two open sets Ω1, Ω2 ⊂ En. A bijective map ψ(·) : Ω̄1 → Ω̄2 is said to be a Cr-diffeomorphism of

Ω1, r ≥ 1, if both ψ(·) : Ω1 → Ω2 and ψ−1(·) : Ω2 → Ω1 satisfy ψ(·) ∈ Cr(Ω̄1) and ψ−1(·) ∈ Cr(Ω̄2). We
say that ψ(·) is orientation preserving if det∇ψ(x) > 0 for all x ∈ Ω̄1.
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~y(x) := φ ◦ ỹ(x) ∀x ∈ B̄0. (4.4)

Clearly, ~y(·) ∈ C1(B̄0) and because of the boundary condition in (4.2) we have

~y(x) = φ(F∗x) = φ0(F
∗x) = y∗E(x) = y∗(x)

for all x ∈ ∂B0. Moreover, because of the first of (4.2) and the chain rule, we see, using
(4.4), that

det∇~y(x) = det∇ỹ(x) = detF∗ ∀x ∈ B0,

which means that ν0 det∇~y(x) = ν∗ for all x ∈ B0. Thus, the conditions (i) and (ii)
noted above hold and we may conclude that for this case the field ~y(·) defined through the
composition (4.4) is a minimizer of the Generalized Problem GP1.

Case 2: ν∗ := ν0 detF∗ is a non-convex point of ε(·)

Suppose, for this case, that ~y(x) satisfies the following two conditions:

(i) ~y(x) = y∗(x) for all x ∈ ∂B0, where y∗(x) satisfies (4.1b);

(ii) ν0 det∇~y(x) = ν̃(x) for all x ∈ B0, where ν̃(x), given by (3.2) and (3.3), is a minimizer
of Problem P2, i.e., the range of the deformation gradient field, ∇~y(x), is required to
lie in the union of the surfaces S1 and S2.

Then, again, it can be argued, as in (3.4), that ~y(x) is a minimizer of the Generalized
Problem GP1 and it follows that the inequalities above become equalities.

To see that such a field ~y(x) exists, we first recall that in this case any minimizer y̌(x) of
Problem P1, constructed from (3.13) or by an iteration as described in Remark 2, belongs
to W 1,∞(B0), satisfies y̌(x) = F∗x for all x ∈ ∂B0 and maps B̄0 → Ω̄. Now, consider the
composition

~y(x) := φ ◦ y̌(x) ∀x ∈ B̄0, (4.5)

and observe that ~y(·) ∈ W 1,∞(B0). In addition, because of the second of (4.2), we again
have

~y(x) = φ(F∗x) = φ0(F
∗x) = y∗E(x) = y∗(x)
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for all x ∈ ∂B0. Thus, ~y(·) ∈ A1 and satisfies the boundary condition recorded in (4.1a).
Moreover, by the chain rule and the first of (4.2), we see, using (4.5), that

det∇~y(x) = det∇y̌(x) ∀x ∈ B0,

which, according to (3.12b), shows that ν0 det∇~y(x) = ν̃(x) for all x ∈ B0. Thus, conditions
(i) and (ii), above, hold and we may thus conclude the following result:

Theorem 4.1 Let B be a bounded, connected open set with C1 boundary. Suppose that the
boundary data y∗(·) given in the Generalized Problem GP1 (see (4.1)) is the restriction
to ∂B0 of an orientation preserving, C2-diffeomorphism of B0. Let ȳ(·) be a minimizer of
Problem P1 for some F∗ such that (4.1b) is satisfied (i.e., ȳ(·) := ỹ(·) for F∗ as in Case
1 or ȳ(·) := y̌(·) for F∗ as in Case 2, above). Let φ(·) be the diffeomorphism given by
Proposition 1 and (4.3). Then ~y(·) = φ ◦ ȳ(·) (which is one-to-one almost everywhere) is
a minimizer for the Generalized Problem GP1.

Clearly, the arguments used in the above theorem also show that the minimizers we construct
for the Generalized Problem GP1 are also minimizers for the corresponding problem in
which we replace the boundary condition in (4.1) by y(x) = y∗∗(x) for x ∈ ∂B0 where
y∗∗(·) ∈ C2(B̄0) is any C2-diffeomorphism of B0 such that y∗∗(B0) = y∗(B0).

Remark 3: In both cases above where ν∗ is either a convex or a non-convex point of ε(·),
it is straightforward to see that a minimizer ~y(x) of the Generalized Problem GP1 satisfies
the weak forms of the equilibrium equation as well as the energy-momentum equation.
These are given, respectively, by

∫

B0

ρ0DFε̂
(∇~y(x)

) · ∇u(x) dv = 0 ∀u(·) ∈ C1
0 (B0) (4.6a)

and
∫

B0

ρ0

(
ε̂
(∇~y(x)

)
1−∇~y(x)TDFε̂

(∇~y(x)
)) · ∇u(x) dv = 0 ∀u(·) ∈ C1

0 (B0). (4.6b)

To see that (4.6) holds, we first recall (1.1) and (1.2) and re-structure the integrands
above using the identities

ρ0DFε̂(∇~y(x)) = Dνε(ν̃(x)) cof∇~y(x) (4.7a)
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and

ρ0

(
ε̂
(∇~y(x)

)
1−∇~y(x)TDFε̂

(∇~y(x)
))

= ρ0ε
(
ν̃(x)

)
1−Dνε

(
ν̃(x)

)∇~y(x)Tcof∇~y(x)

= ρ0

(
ε
(
ν̃(x)

)−Dνε
(
ν̃(x)

)
ν̃(x)

)
1. (4.7b)

Here, we have used the notation ν̃(x) := ν0 det∇~y(x), where ~y(x) is a minimizer for the
Generalized Problem GP1 in either of Case 1 and Case 2 covered above in this section.

Now, to confirm that (4.6a) holds we observe, regardless of the assigned value ν∗, that
the minimizer ~y(·) ∈ A1 satisfies Dνε

(
ν̃(x)

)
= const. Then, using (4.7a)and the divergence

theorem, we have

∫

B0

ρ0DFε̂
(∇~y(x)

) · ∇u(x) dv = const.
∫

B0

cof∇~y(x) · ∇u(x) dv

= const.
∫

B0

div
(
(cof∇~y(x))T u(x)

)
dv = 0

for all u(·) ∈ C1
0 (B0), which yields (4.6a) (see also expression (3.7) in Lemma 3.3 of [1]).

Similarly, to confirm (4.6b) we observe, regardless of the assigned value ν∗, that the
minimizer ~y(·) ∈ A1 satisfies ρ0

(
ε
(
ν̃(x)

) − Dνε
(
ν̃(x)

)
ν̃(x)

)
= const. Then, using (4.7b)

and the divergence theorem, we have

∫

B0

ρ0

(
ε̂
(∇~y(x)

)
1−∇~y(x)TDFε̂

(∇~y(x)
)) · ∇u(x) dv

= const.
∫

B0

divu(x) dv = 0 ∀u(·) ∈ C1
0 (B0),

which yields (4.6b). ¤
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